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We study a susceptible–infected–susceptible reaction–diffusion model with spatially
heterogeneous disease transmission and recovery rates. A basic reproduction number
R0 is defined for the model. We first prove that there exists a unique endemic
equilibrium if R0 > 1. We then consider the global attractivity of the disease-free
equilibrium and the endemic equilibrium for two cases. If the disease transmission
and recovery rates are constants or the diffusion rate of the susceptible individuals is
equal to the diffusion rate of the infected individuals, we show that the disease-free
equilibrium is globally attractive if R0 � 1, while the endemic equilibrium is globally
attractive if R0 > 1.
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1. Introduction

Over the past few years, several susceptible–infected-type (SI-type) epidemic re-
action–diffusion models have been developed to study the impact of spatial het-
erogeneity of environment and movement rates of individuals on the dynamics of
the models. In [3], a susceptible-infected-susceptible (SIS) reaction–diffusion model
with homogeneous Neumann boundary conditions,

St = dS∆S − β(x)SI

S + I
+ γ(x)I,

It = dI∆I +
β(x)SI

S + I
− γ(x)I,

⎫⎪⎪⎬
⎪⎪⎭ x ∈ Ω, t > 0, (1.1)

has been considered under the condition∫
Ω

(S(x, 0) + I(x, 0)) dx ≡ N > 0,

where Ω is a bounded domain in R
m and N is the total number of individuals at

t = 0.
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In [3], a basic reproduction number R0 is defined, and it was shown that the
disease-free equilibrium is globally asymptotically stable if R0 � 1, while a unique
endemic equilibrium exists if R0 > 1. Later, in [18, 20], the global attractivity of
the endemic equilibrium of the model was proved for two cases: dS = dI and γ(x) =
rβ(x), although the global attractivity of the endemic equilibrium for general cases
remains open. Furthermore, several results on asymptotic profiles of the equilibria
(see [3,17,19]) have been established, which has important implications for disease
control.

In addition, an SIS epidemic patch model was formulated in [2], where susceptible
and infected individuals are both allowed to move between different patches. This
patch model can be considered as a spatially discrete version of the model (1.1).
In [14], two SIS reaction–diffusion models similar to (1.1) with Dirichlet boundary
conditions were considered, and partial results on the global stability of the endemic
equilibrium were obtained.

On the other hand, in [11, 22], under the assumption that recovered individu-
als have permanent immunity, the classic Kermack–McKendrick model (see [4]) is
extended to the following reaction–diffusion model with homogeneous Neumann
boundary conditions:

St = dS∆S − βSI,

It = dI∆I + βSI − γI,

}
x ∈ Ω, t > 0, (1.2)

where β and γ are positive constants. By introducing some Lyapunov functionals
(see [15] for a different proof), it is proved that the density of susceptible individ-
uals S(x, t) converges to a positive constant uniformly and the density of infected
individuals I(x, t) converges to zero uniformly. In sharp contrast with (1.1), this
model always predicts the elimination of disease in the long run. For more studies
on SI-type models, the reader is referred to the survey papers [4, 10,21].

Note that the well-known SIS model, also due to Kermack and McKendrick (see
[5]), takes the form of a system of ordinary differential equations:

S′ = −βSI + γI,

I ′ = βSI − γI,

}
t > 0, (1.3)

with initial data satisfying

S(0) + I(0) = N > 0,

where N represents the total population. A basic reproduction number can be
defined as R0 = Nβ/γ. It is proved that if R0 � 1, the solution (S(t), I(t)) of (1.3)
approaches the disease-free equilibrium (N, 0), while if R0 > 1, a unique endemic
equilibrium exists:

S∗ =
γ

β
, I∗ = N − γ

β
,

and it is globally asymptotically stable.
Our main objective is to generalize model (1.3) to an epidemic reaction–diffusion

model and then study the existence of the disease-free equilibrium and the endemic
equilibrium and their global attractivity. Even though our model bears a resem-
blance to model (1.1) by Allen et al . [3], there is one major difference: Allen et al .
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consider the SIS reaction–diffusion model with frequency-dependent interaction,
while we focus on mass-action-type nonlinearity. Consequently, our arguments for
proving the global existence and boundedness of the model, the existence of the
endemic equilibrium and the global attractivity of the endemic equilibrium are
quite different.

The paper is organized as follows. In § 2, we present the model and establish the
global existence and boundedness results. In § 3, we define a basic reproduction
number R0 and prove that there exists a unique endemic equilibrium if R0 > 1.
In § 4, we consider the global attractivity of the disease-free equilibrium and the
endemic equilibrium for two cases. If the disease transmission and recovery rates
are constants or the diffusion rate of the susceptible individuals is equal to the
diffusion rate of the infected individuals, we show that the disease-free equilibrium
is globally attractive if R0 � 1, while the endemic equilibrium is globally attractive
if R0 > 1. In § 5, we conduct a concluding discussion.

2. The model

Let Ω be a bounded domain in R
m with smooth boundary ∂Ω. Let S(x, t) and

I(x, t) be the density of susceptible and infected individuals at location x and time
t, respectively. We assume that the individuals randomly move in the domain Ω
with diffusion rates dS and dI for susceptible and infected individuals, respectively.
If all the infected individuals at the same location have the same rate to recover
and become susceptible immediately, an SIS epidemic reaction–diffusion model can
be formulated as follows:

St = dS∆S − β(x)SI + γ(x)I,

It = dI∆I + β(x)SI − γ(x)I,

}
x ∈ Ω, t > 0, (2.1)

where the disease transmission-rate function β(x) describes the effective interaction
between susceptible and infected individuals at location x, and the function γ(x)
represents the recovery rate of the infected individuals at location x. Both β and γ
are positive Hölder-continuous functions in Ω̄. Furthermore, we assume that there
is no flux across the boundary ∂Ω, that is,

∂S

∂n
=

∂I

∂n
= 0, x ∈ ∂Ω, t > 0, (2.2)

where ∂/∂n is the outward normal derivative to ∂Ω. We also assume that the initial
data satisfy the following hypothesis.

(H1) S(x, 0) and I(x, 0) are non-negative continuous functions in Ω̄, and initially
the number of infected individuals is positive, i.e.∫

Ω

I(x, 0) dx > 0.

Let ∫
Ω

(S(x, 0) + I(x, 0)) dx ≡ N
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be the total number of individuals at t = 0. Adding the two equations in (2.1) and
then integrating over the domain Ω, we find

∂

∂t

∫
Ω

(S + I) dx = 0, t > 0,

which implies that the total population size is a constant given by∫
Ω

(S(x, t) + I(x, t)) dx = N. (2.3)

We then establish the global existence and boundedness results for the model.

Theorem 2.1. Suppose that (H1) holds. Then the solution (S(x, t), I(x, t)) of prob-
lem (2.1), (2.2) exists uniquely and globally. Moreover, there exists a positive con-
stant M depending on the initial data and maxx∈Ω̄{γ(x)/β(x)} such that

0 < S(x, t), I(x, t) � M for x ∈ Ω̄, t ∈ (0,∞). (2.4)

Proof. Let (Ŝ(x, t), Î(x, t)) be the local solution of the following problem:

Ŝt = dS∆Ŝ + γ(x)Î , x ∈ Ω, t > 0,

Ît = dI∆Î + β(x)ŜÎ − γ(x)Î , x ∈ Ω, t > 0,

∂Ŝ

∂n
=

∂Î

∂n
= 0, x ∈ ∂Ω, t > 0,

Ŝ(x, 0) = S(x, 0), Î(x, 0) = I(x, 0), x ∈ Ω̄.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.5)

Then (Ŝ(x, t), Î(x, t)) and (0, 0) are a pair of coupled upper and lower solutions
of (2.1), (2.2), and it follows that there exists a unique solution (S(x, t), I(x, t))
of (2.1), (2.2) for x ∈ Ω̄ and t ∈ [0, Tmax), where Tmax is the maximal existence
time (see [16]). Moreover, by the maximum principle, the solution is positive in
Ω̄ × (0, Tmax). We now consider the problem for S(x, t) in Ω × (0, Tmax):

St = dS∆S + (γ(x) − β(x)S)I, x ∈ Ω, t ∈ (0, Tmax),
∂S

∂n
= 0, x ∈ ∂Ω, t ∈ (0, Tmax).

⎫⎬
⎭ (2.6)

Choose M1 = max{maxx∈Ω̄ S(x, 0), maxx∈Ω̄{γ(x)/β(x)}}. Then, for any non-nega-
tive function I(x, t), M1 and 0 are a pair of upper and lower solutions of prob-
lem (2.6). By the comparison principle, one can see that S(x, t) � M1 in Ω̄ ×
[0, Tmax). Since

∫
Ω

I(x, t) dx � N , in view of [1, theorem 3.1] (or see [8, 9]), there
exists a positive constant M2 depending on I(x, 0) such that I(x, t) � M2 in
Ω̄ × [0, Tmax). Hence, it follows from the standard theory for semilinear parabolic
systems that Tmax = ∞.

3. Equilibria

We now consider the equilibria of problem (2.1), (2.2), that is, the solutions of the
following semilinear elliptic system:

dS∆S̄ − βS̄Ī + γĪ = 0,

dI∆Ī + βS̄Ī − γĪ = 0,

}
x ∈ Ω, (3.1)
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with boundary conditions

∂S̄

∂n
=

∂Ī

∂n
= 0, x ∈ ∂Ω. (3.2)

Here S̄(x) and Ī(x) are the densities of susceptible and infected individuals at
location x, respectively. In view of (2.3), we impose an additional condition:∫

Ω

(S̄ + Ī) dx = N. (3.3)

And we are only interested in non-negative solutions of (3.1)–(3.3). As with other
epidemic models, we shall focus on the disease-free equilibrium (DFE) and the
endemic equilibrium (EE). A DFE is a solution of (3.1)–(3.3) with Ī(x) = 0 for all
x ∈ Ω̄, while an EE is a solution with Ī(x) > 0 for some x ∈ Ω. To distinguish
between these two types of equilibrium, we shall denote a DFE by (S̃, 0) and an
EE by (S∗, I∗). Let |Ω| be the measure of Ω. We first show that the disease-free
equilibrium exists uniquely.

Proposition 3.1. Problem (3.1)–(3.3) has a unique DFE given by

(S̃, 0) =
(

N

|Ω| , 0
)

.

Proof. Clearly, (N/|Ω|, 0) is a DFE. Now, for any DFE (S̃, 0), by (3.1), we have that
∆S̃ = 0. Then, by the maximum principle and the boundary condition ∂S̃/∂n = 0,
S̃ must be a constant in Ω̄. It then follows from (3.3) that S̃ = N/|Ω|.

We now follow the idea of [3] to linearize (3.1) around the DFE. Let η(x, t) =
S(x, t) − N/|Ω| and ξ(x, t) = I(x, t). Using (2.1) and dropping higher-order terms,
we obtain the following system:

ηt = dS∆η −
(

N

|Ω|β − γ

)
ξ, x ∈ Ω, t > 0,

ξt = dI∆ξ +
(

N

|Ω|β − γ

)
ξ, x ∈ Ω, t > 0.

Let (η(x, t), ξ(x, t)) = (e−λtφ(x), e−λtψ(x)). We then derive an eigenvalue problem:

dS∆φ −
(

N

|Ω|β − γ

)
ψ + λφ = 0,

dI∆ψ +
(

N

|Ω|β − γ

)
ψ + λψ = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x ∈ Ω, (3.4)

with boundary conditions

∂φ

∂n
=

∂ψ

∂n
= 0, x ∈ ∂Ω. (3.5)

In view of (2.3) and proposition 3.1, we impose an additional condition∫
Ω

(φ + ψ) dx = 0. (3.6)

https://doi.org/10.1017/S0308210515000864 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000864


934 K. Deng and Y. Wu

Then, similarly to [3], there exists a least eigenvalue λ∗ with its corresponding
eigenvector ψ∗, where λ∗ is a real number, ψ∗ is strictly positive on Ω and (λ∗, ψ∗)
satisfies

dI∆ψ∗ +
(

N

|Ω|β − γ

)
ψ∗ + λ∗ψ∗ = 0, x ∈ Ω, and

∂ψ∗

∂n
= 0, x ∈ ∂Ω. (3.7)

Moreover, the eigenvalue λ∗ is given by the variational formula

λ∗ = inf
{ ∫

Ω

(
dI|∇ϕ|2 +

(
γ − N

|Ω|β
)

ϕ2
)

dx : ϕ ∈ H1(Ω) and
∫

Ω

ϕ2 dx = 1
}

.

We then consider the existence of the endemic equilibrium. To this end, we define
a basic reproduction number R0. The variational formula suggests that we can
define R0 as follows:

R0 = sup
{

(N/|Ω|)
∫

Ω
βϕ2 dx∫

Ω
(dI|∇ϕ|2 + γϕ2) dx

: ϕ ∈ H1(Ω) and ϕ �= 0
}

.

We now state a result which is similar to [3, lemmas 2.2 and 2.3].

Proposition 3.2. The following statements about λ∗ and R0 hold:

(a) R0 > 1 when λ∗ < 0, R0 = 1 when λ∗ = 0 and R0 < 1 when λ∗ > 0;

(b) if ∫
Ω

N

|Ω|β dx �
∫

Ω

γ dx,

then λ∗ � 0 for all dI > 0;

(c) if (N/|Ω|)β − γ changes sign on Ω and if∫
Ω

N

|Ω|β dx <

∫
Ω

γ dx,

then there exists d∗
I > 0 such that λ∗ = 0 when dI = d∗

I , λ∗ < 0 when dI < d∗
I

and λ∗ > 0 when dI > d∗
I .

Remark 3.3. Clearly, by the variational formula, if∫
Ω

N

|Ω|β dx >

∫
Ω

γ dx,

then λ∗ < 0.

The following proposition shows that the stability of the DFE relies on the mag-
nitude of R0, and it can be proved analogously to [3, lemma 2.4].

Proposition 3.4. The DFE is stable if R0 < 1, and it is unstable if R0 > 1.

We then study the existence of the endemic equilibrium. We first convert prob-
lem (3.1)–(3.3) to a more approachable problem.
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Lemma 3.5. The pair (S̄, Ī) is a non-negative solution of problem (3.1)–(3.3) if
and only if it is a non-negative solution of the following problem:

dI∆Ī + Ī

(
N

|Ω|β − γ −
(

1 − dI

dS

)
β

|Ω|

∫
Ω

Ī dx − dIβ

dS
Ī

)
= 0, x ∈ Ω, (3.8)

S̄ =
N

|Ω| −
(

1 − dI

dS

)
1

|Ω|

∫
Ω

Ī dx − dI

dS
Ī , x ∈ Ω, (3.9)

∂Ī

∂n
= 0, x ∈ ∂Ω. (3.10)

Proof. Through routine calculations, one can easily check that (S̄, Ī) is a non-
negative solution of problem (3.1)–(3.3) if and only if it solves the following problem:

dSS̄ + dIĪ = K, x ∈ Ω̄, (3.11)

dI∆Ī + Ī(βS̄ − γ) = 0, x ∈ Ω, (3.12)

∂S̄

∂n
=

∂Ī

∂n
= 0, x ∈ ∂Ω, (3.13)∫

Ω

(S̄ + Ī) dx = N, (3.14)

where K is some positive constant that is independent of x ∈ Ω. Thus, we only
need to show the equivalence between problems (3.11)–(3.14) and (3.8)–(3.10). On
the one hand, suppose that (S̄, Ī) is a non-negative solution of (3.11)–(3.14). By
(3.11), we have S̄ = (K − dIĪ)/dS. Substituting it into (3.14), we find

K =
1

|Ω|

(
dSN − (dS − dI)

∫
Ω

Ī dx

)
.

It then follows from (3.11) that

S̄ =
K − dIĪ

dS
=

N

|Ω| −
(

1 − dI

dS

)
1

|Ω|

∫
Ω

Ī dx − dI

dS
Ī ,

which is (3.9). Substituting this S̄ into (3.12), we obtain (3.8).
On the other hand, suppose that (S̄, Ī) is a non-negative solution of problem

(3.8)–(3.10). Taking a normal derivative of both sides of (3.9) and using (3.10), we
find ∂S̄/∂n = 0, which verifies (3.13). Furthermore, by (3.9), we have that

dI

dS
Ī =

N

|Ω| −
(

1 − dI

dS

)
1

|Ω|

∫
Ω

Ī dx − S̄,

and substitution of this into (3.8) gives (3.12). We then integrate both sides of
(3.9) over Ω to obtain (3.14). Applying the Laplace operator to both sides of (3.9),
we find that dS∆S̄ + dI∆Ī = ∆(dSS̄ + dIĪ) = 0. Since ∂/∂n(dSS̄ + dIĪ) = 0, the
maximum principle implies that dSS̄ + dIĪ is a constant. In view of (3.14), this
constant must be positive, which yields (3.11).

Problem (3.8)–(3.10) is more approachable, since (3.8) and (3.10) are independent
of S̄. In addition, the following result indicates that we can actually focus on a non-
local elliptic problem that involves only Ī.
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Lemma 3.6. If Ī ∈ C2(Ω) ∩ C1(Ω̄) is a non-negative solution of the non-local
elliptic problem

dI∆Ī + Ī

(
N

|Ω|β − γ −
(

1 − dI

dS

)
β

|Ω|

∫
Ω

Ī dx − dIβ

dS
Ī

)
= 0, x ∈ Ω, (3.15)

∂Ī

∂n
= 0, x ∈ ∂Ω, (3.16)

then we have that(
1 − dI

dS

)
1

|Ω|

∫
Ω

Ī dx +
dI

dS
Ī(x) � N

|Ω| for all x ∈ Ω̄. (3.17)

Proof. If Ī is trivial, then the claim holds. If Ī is not identically zero on Ω̄, we
assume to the contrary that the claim is false. Since Ī is continuous on Ω̄, it attains
its maximum value on Ω̄, say, Ī(x0) = maxx∈Ω̄ Ī(x) > 0 for some x0 ∈ Ω̄. Under
the assumption, one must have that(

1 − dI

dS

)∫
Ω

Ī dx

|Ω| +
dI

dS
Ī(x0) >

N

|Ω| . (3.18)

If x0 ∈ Ω, we can choose a closed ball B centred at x0 such that B ⊂ Ω. By (3.15)
and (3.18), we can make the ball so small that dI∆Ī > 0 in B. Since Ī attains its
maximum at an interior point x0 of B, by the strong maximum principle, Ī must
be a constant in B. But this is impossible, since dI∆Ī > 0 in B. So x0 ∈ ∂Ω,
and I(x0) > I(x) for all x ∈ Ω. Then we can find a closed ball B̂ ⊂ Ω such
that B̂ ∩ Ω̄ = {x0}. Again, by (3.15) and (3.18), we can make the ball so small
that dI∆Ī > 0 in the interior of B̂. It then follows from the Hopf lemma that
∂Ī/∂n(x0) > 0, which is also impossible by virtue of (3.16).

In view of lemma 3.6, if there is a non-negative solution Ī of the non-local elliptic
problem (3.15), (3.16), then one can define

S̄ ≡ N

|Ω| −
(

1 − dI

dS

)
1

|Ω|

∫
Ω

Ī dx − dI

dS
Ī for x ∈ Ω̄,

which is non-negative by (3.17). Then it follows that the pair (S̄, Ī) solves prob-
lem (3.8)–(3.10).

Let Y = {z ∈ C2,α(Ω̄) : ∂z/∂n = 0 on ∂Ω}. For simplicity, we introduce

f(τ, Ī) =
N

|Ω|β − γ −
(

1 − dI

dS

)
β

|Ω|τ − dIβ

dS
Ī ,

and define a mapping F : R
+ × Y → Cα(Ω̄) by

F (τ, Ī) = dI∆Ī + Īf(τ, Ī).

We then consider an eigenvalue problem:

dI∆ϕ + f(τ, 0)ϕ + λϕ = 0, x ∈ Ω,

∂ϕ

∂n
= 0, x ∈ ∂Ω,

⎫⎬
⎭ (3.19)
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and let λτ be the principal eigenvalue of (3.19). Note that λ0 = λ∗, where λ∗ is the
principal eigenvalue of (3.7).

We now state a well-known result about the existence of positive solutions of an
elliptic problem.

Lemma 3.7. Suppose that τ � 0 and consider the problem

dI∆Ī + Īf(τ, Ī) = 0, x ∈ Ω,

∂Ī

∂n
= 0, x ∈ ∂Ω.

⎫⎬
⎭ (3.20)

Then the following statements hold:

(a) if λτ � 0, the only non-negative solution of (3.20) is Ī = 0;

(b) if λτ < 0, there is a unique positive solution Ī ∈ Y of (3.20).

Using the implicit function theorem (cf. [6]), we then prove the following result.

Lemma 3.8. Suppose that λ∗ < 0 and dS > dI. Then there exists a smooth curve
(τ, Īτ (x)) in R

+ × Y such that F (τ, Īτ ) = 0. And there is a T > 0 such that
Īτ (x) > 0 for all x ∈ Ω̄ and τ ∈ [0, T ) and ĪT = 0. Moreover, Īτ is decreasing and
continuously differentiable in τ on (0, T ).

Proof. Suppose that (τ0, Īτ0) ∈ R
+ × Y satisfies F (τ0, Īτ0) = 0 and Īτ0(x) > 0 on

Ω̄. The Fréchet derivative of F with respect to the second variable at (τ0, Īτ0)
is Fy(τ0, Īτ0)w = dI∆w + (f(τ0, Īτ0) − (dI/dS)βĪτ0)w for all w ∈ Y . To see that
Fy(τ0, Īτ0) is invertible, for any h ∈ Cα(Ω̄), consider the following problem:

dI∆w +
(

f(τ0, Īτ0) − dI

dS
βĪτ0

)
w = h, x ∈ Ω,

∂w

∂n
= 0, x ∈ ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (3.21)

Let στ0 be the principal eigenvalue of the problem

dI∆ϕ +
(

f(τ0, Īτ0) − dI

dS
βĪτ0

)
ϕ + σϕ = 0, x ∈ Ω,

∂ϕ

∂n
= 0, x ∈ ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (3.22)

By the Fredholm alternative, (3.21) has a unique solution for every h ∈ Cα(Ω̄) if 0
is not an eigenvalue of (3.22). To show this, we note that, since F (τ0, Īτ0) = 0, Īτ0

is an eigenvector of the eigenvalue problem

dI∆ϕ + f(τ0, Īτ0)ϕ + σϕ = 0, x ∈ Ω,

∂ϕ

∂n
= 0, x ∈ ∂Ω,

⎫⎬
⎭ (3.23)

for the eigenvalue σ = 0. Then by the Krein–Rutman theorem, the positivity of
Īτ0 implies that σ = 0 is the principal eigenvalue of (3.23). Since f(τ0, Īτ0) −
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(dI/dS)βĪτ0 < f(τ0, Īτ0), it follows that στ0 > 0. So all the eigenvalues of prob-
lem (3.22) are positive, which yields the unique solvability of (3.21). The conti-
nuity of the inverse of Fy(τ0, Īτ0) follows from the classical C2,α estimates. Since
λ0 = λ∗ < 0, by lemma 3.7, there exists a unique positive Ī0 ∈ Y such that
F (0, Ī0) = 0. Then, by the implicit function theorem, there is a unique Īτ ∈ Y
such that F (τ, Īτ ) = 0 for τ ∈ [0, τ ′) with τ ′ > 0, and this Īτ is continuously
differentiable with respect to τ .

To show that Īτ is decreasing with respect to τ , we may consider 0 < τ1 < τ2 < τ ′.
Since dS > dI, we have that F (τ1, Īτ2) > 0, and hence Īτ2 is a lower solution of
the equation F (τ1, Ī) = 0. On the other hand, we can choose a sufficiently large
number as an upper solution. Then the method of upper/lower solutions and the
uniqueness of the positive solution of F (τ2, Ĩ) = 0 imply Īτ1 > Īτ2 .

The curve (τ, Īτ ) with Īτ > 0 continues as long as λτ < 0. By the variational for-
mula, λτ is increasing with respect to τ and λτ > 0 for large τ . Thus, by lemma 3.7,
there is no positive solution of F (τ, Ī) = 0 if τ is large. Let [0, T ) be the maximal
interval of existence of τ such that Īτ > 0. Then ĪT = 0.

An analogous result in the case dS < dI can also be proved.

Lemma 3.9. Suppose that λ∗ < 0 and dS < dI. Then there exists a smooth curve
(τ, Īτ (x)) in R

+ × Y such that F (τ, Īτ ) = 0 with Īτ (x) > 0 for all x ∈ Ω̄ and
τ ∈ (0,∞). Moreover, Īτ is increasing and continuously differentiable in τ on
(0,∞), and it satisfies the following estimate:∫

Ω

Īτ dx � dS

dI
N +

(
1 − dS

dI

)
τ.

Proof. The existence and continuity of the curve (τ, Īτ ) follow from a similar argu-
ment as in the proof of lemma 3.8. Since dS < dI, one can see that Īτ is increasing
with respect to τ , and thus the curve continues as τ → ∞. It then remains to show
the estimate. For any τ > 0, one can check that

Î =
dSN

dI|Ω| +
(

1 − dS

dI

)
τ

|Ω|

is an upper solution of F (τ, Ī) = 0. On the other hand, Ǐ = Īτ̌ with τ̌ < τ is a lower
solution of F (τ, Ī) = 0. Then the method of upper/lower solutions implies that

Īτ � dSN

dI|Ω| +
(

1 − dS

dI

)
τ

|Ω| ,

which, upon integration over Ω, yields the estimate.

We are now in a position to prove the existence of the endemic equilibrium.

Theorem 3.10. If R0 > 1, then there exists a unique EE.

Proof. By lemmas 3.5 and 3.6, it suffices to show that problem (3.15), (3.16) has
a unique positive solution. The case dS = dI follows directly from lemma 3.7.
We then consider the case dS > dI. By lemma 3.8, there exists a smooth curve

https://doi.org/10.1017/S0308210515000864 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000864


Dynamics of an SIS epidemic reaction–diffusion model 939

(τ, Īτ ) for τ ∈ [0, T ) with F (τ, Īτ ) = 0. By the definition of F , Īτ is a solution of
problem (3.15), (3.16) if τ =

∫
Ω

Īτ dx. Since

0 <

∫
Ω

Ī0 dx and T >

∫
Ω

ĪT dx = 0,

the continuity and monotonicity of Īτ in τ implies that there exists a unique τ0 ∈
[0, T ) such that τ0 =

∫
Ω

Īτ0 dx. Hence, problem (3.15), (3.16) has a unique positive
solution.

We now consider the case dS < dI. By lemma 3.9, there exists a smooth curve
(τ, Īτ ) with F (τ, Īτ ) = 0. Since 0 <

∫
Ω

Ī0 dx, by the continuity and monotonicity in
Īτ , and using the estimate of

∫
Ω

Īτ dx in lemma 3.9, we can see that there exists a
unique τ0 > 0 such that τ0 =

∫
Ω

Īτ0 dx.

We then discuss the non-existence of the endemic equilibrium.

Theorem 3.11. If dS � dI, then the EE does not exist when R0 � 1; if dS < dI,
then the EE does not exist when R0 � dS/dI. Furthermore, if dS < dI and γ(x) =
rβ(x) with r a positive constant, then the EE does not exist when R0 � 1.

Proof. The case dS = dI follows directly from lemma 3.7. We then consider the
case dS > dI with R0 � 1. Assume to the contrary that an EE, (S∗, I∗), exists.
Then there is a τ∗ > 0 such that τ∗ =

∫
Ω

I∗ dx and F (τ∗, I∗) = 0, and it follows
from lemma 3.7 that λτ∗ < 0. Since f(τ, 0) is decreasing in τ when dS > dI, by the
variational formula, λ∗ = λ0 � λτ∗ < 0. This implies R0 > 1 by proposition 3.2,
which is a contradiction.

We now consider the case dS < dI with R0 � dS/dI. Assume to the contrary
that an EE (S∗, I∗) exists. Let τ∗ =

∫
Ω

I∗ dx. Then F (τ∗, I∗) = 0, and this implies
λτ∗ < 0 by lemma 3.7. On the other hand, by lemma 3.6, one can see that, for all
x ∈ Ω, (

1 − dI

dS

)
1

|Ω|

∫
Ω

I∗ dx +
dI

dS
I∗(x) � N

|Ω| .

Integrating the above inequality over Ω then gives

τ∗ =
∫

Ω

I∗ dx � N.

Since f(τ, 0) is increasing in τ when dS < dI, λN � λτ∗ < 0. Note that λN is the
principal eigenvalue of the following problem:

dI∆ϕ +
(

dIN

dS|Ω|β − γ

)
ϕ + λϕ = 0, x ∈ Ω,

∂ϕ

∂n
= 0, x ∈ ∂Ω.

Similarly to R0, one can define R′
0 as follows:

R′
0 = sup

{(
dIN

dS|Ω|

∫
Ω

βϕ2 dx

)( ∫
Ω

(dI|∇ϕ|2 + γϕ2) dx

)−1

:

ϕ ∈ H1(Ω) and ϕ �= 0
}

.
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Then λN < 0 if and only if R′
0 > 1. Since R′

0 = dI/dSR0, λN < 0 implies R0 >
dS/dI, which is a contradiction.

We then consider the case dS < dI with R0 � 1 for γ(x) = rβ(x). Assume to the
contrary that an EE (S∗, I∗) exists. Proceeding as in the proof of lemma 3.6, one
can see that, for all x ∈ Ω,(

1 − dI

dS

)
1

|Ω|

∫
Ω

I∗ dx +
dI

dS
I∗(x) � N

|Ω| − r.

Integrating the above inequality over Ω then gives∫
Ω

I∗ dx � N − r|Ω|,

and it follows that I∗ is a lower solution of the problem:

dS∆Ĩ + Ĩ

(
N

|Ω|β − γ − βĨ

)
= 0, x ∈ Ω,

∂Ĩ

∂n
= 0, x ∈ ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (3.24)

On the other hand, it is easy to see that M = N/|Ω| is an upper solution of
problem (3.24). Then, by the upper/lower solution argument, there exists a unique
positive solution of (3.24). However, since R0 � 1, λ∗ � 0 by proposition 3.2. It
then follows from the variational formula of λ∗ and γ(x) = rβ(x) that γ � Nβ/|Ω|.
Thus, problem (3.24) has no positive solution. This leads to a contradiction.

4. Global attractivity

In this section, we consider the global attractivity of the disease-free equilibrium
and the endemic equilibrium. As for most SI models, one may expect that the
DFE is globally attractive when R0 � 1, while the EE is globally attractive when
R0 > 1. However, it is generally difficult to establish such results for reaction–
diffusion models with variable coefficients. For the model (1.1), global attractivity
analysis is conducted only for the case dS = dI and the case γ(x) = rβ(x) (the
second case is equivalent to the case that β and γ are constants) (see [18, 20]).
Here, for our model (2.1)–(2.3), we are also able to establish such results for these
two cases.

4.1. The case of constant coefficients

We first consider the case that the coefficients β and γ are positive constants. In
this case, we can see that the DFE equals (S̃, 0) = (N/|Ω|, 0) and the EE equals
(S∗, I∗) = (γ/β, N/|Ω|−γ/β) if it exists. To conduct our discussion, we shall mainly
rely on the LaSalle invariance principle for nonlinear dynamical systems (see [13]).
Let X = Lp(Ω) with p > m. We define a closed linear operator A with dense
domain D(A) given by

Au = −∆u, D(A) =
{

u ∈ W 2,p(Ω) and
∂u

∂n
= 0 on ∂Ω

}
.

https://doi.org/10.1017/S0308210515000864 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000864


Dynamics of an SIS epidemic reaction–diffusion model 941

Then −A generates an analytic semigroup e−tA on X. Let Xα (0 � α � 1) be the
fractional power space of X with respect to A. Since the embedding Xα ⊂ C1,µ(Ω̄)
is compact if 1 + µ < 2α − m/p, we choose α close to 1 and p large such that Xα

compactly embedded into C1,µ(Ω̄). Let P ⊂ Xα be the cone of all non-negative
functions of Xα with non-empty interior. We introduce

D =
{

(u, v) ∈ Xα × Xα :
∫

Ω

(u + v) dx = N and u, v ∈ P

}
.

Then D is a closed subset of Xα×Xα, and the solution (S, I) of problem (2.1)–(2.3)
induces a nonlinear dynamical system {Φ(t), t ∈ R

+} on D given by

Φ(t)(S0, I0) := (S(t), I(t)), t ∈ R
+,

where (S, I) is the solution of (2.1)–(2.3) with the initial condition (S0, I0) ∈ D.

Theorem 4.1. If β and γ are positive constants, then the following statements
hold:

(a) if R0 � 1, then the DFE is globally attractive;

(b) if R0 > 1, then the EE is globally attractive.

Proof. If β and γ are constants, then R0 = Nβ/(|Ω|γ). Suppose that R0 � 1,
i.e. γ/β − N/|Ω| � 0. Define a continuously differentiable real-valued function
V : D → R by

V (S, I) = 1
2

∫
Ω

(S − S̃)2 dx + B

∫
Ω

I dx

for all (S, I) ∈ D with B a non-negative constant to be determined. We can check
that, for all (S, I) ∈ D ∩ (D(A) × D(A)),

V̇ (S, I) = lim sup
t→0+

V (Φ(t)(S, I)) − V (S, I)
t

=
∫

Ω

((S − S̃)(dS∆S + I(−βS + γ))) dx + B

∫
Ω

(dI∆I + I(βS − γ)) dx

= −dS

∫
Ω

|∇S|2 dx −
∫

Ω

I(βS − γ)(S − S̃ − B) dx

= −dS

∫
Ω

|∇S|2 dx −
∫

Ω

I(βS − γ)
(

S − γ

β

)
dx

� 0,

where B = γ/β − S̃ = γ/β − N/|Ω|. Since V is continuously differentiable and
D ∩ (D(A) × D(A)) is dense in D, we find that

V̇ (S, I) = −dS

∫
Ω

|∇S|2 dx − β

∫
Ω

I

(
S − γ

β

)2

dx � 0 for all (S, I) ∈ D.

Thus, V is a Lyapunov functional on D.
Let E := {(S, I) ∈ D : V̇ (S, I) = 0} and M be the largest positively invariant

subset of E. It follows from theorem 2.1 and standard arguments (see [12,13]) that
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the orbit {(S(t), I(t)), t > 0} is pre-compact in D. So by the LaSalle invariance
principle, we have that

lim
t→∞

dist(Φ(t)(S0, I0), M) = 0.

In view of V̇ ,
∫

Ω
|∇S|2 dx = 0 implies that S is a constant, and

∫
Ω

I(S − γ/β)2 dx =
0 implies that either I = 0 or S = γ/β. If S = γ/β, then∫

Ω

I dx = N − |Ω|γ
β

� 0,

which yields I = 0. Thus, we must have I = 0, and so E = {(S̃, 0)}. Hence,
M = {(S̃, 0)}, and it follows that the DFE is globally attractive.

Now suppose that R0 > 1. Then we have that βN/|Ω| − γ > 0 and the EE equal
to

(S∗, I∗) =
(

γ

β
,

N

|Ω| − γ

β

)
exists. Define another continuously differentiable real-valued function W : D → R

by

W (S, I) = 1
2

∫
Ω

((S − S∗) + (I − I∗))2 dx + 1
2B

∫
Ω

(S − S∗)2 dx

for all (S, I) ∈ D with B a positive constant to be determined. We can check that,
for all (S, I) ∈ D ∩ (D(A) × D(A)),

Ẇ (S, I) = lim sup
t→0+

W (Φ(t)(S, I)) − W (S, I)
t

=
∫

Ω

((S − S∗) + (I − I∗))(dS∆S + dI∆I) dx

+ B

∫
Ω

(S − S∗)(dS∆S + I(−βS + γ)) dx

= −
∫

Ω

(dS|∇S|2 + (dS + dI)∇S · ∇I + dI|∇I|2) dx

− BdS

∫
Ω

|∇S|2 dx − Bβ

∫
Ω

I(S − S∗)2 dx

= −
∫

Ω

(|B1∇S +
√

dI∇I|2) dx − dS

∫
Ω

|∇S|2 dx − Bβ

∫
Ω

I(S − S∗)2 dx

� 0,

where B1 = (dS + dI)/(2
√

dI) and B = B2
1/dS. Since W is continuously differen-

tiable and D ∩ (D(A) × D(A)) is dense in D, we find that Ẇ (S, I) � 0 for all
(S, I) ∈ D. Thus, W is a Lyapunov functional on D.

Let E′ := {(S, I) ∈ D : Ẇ (S, I) = 0} and M ′ be the largest positively invariant
subset of E′. Then, by the LaSalle invariance principle, we have that

lim
t→∞

dist(Φ(t)(S0, I0), M ′) = 0.

In view of Ẇ , one can see that

E′ = {(S∗, I∗)} ∪ {(S̃, 0)}.
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It follows that either (S(t), I(t)) → (S∗, I∗) or (S(t), I(t)) → (S̃, 0) as t → ∞.
Assume that (S(t), I(t)) → (S̃, 0). Since βS̃ − γ > 0, we can choose ε > 0 so small
that βS̃ − εβ − γ > 0. For this ε, there exists a T > 0 such that S(x, t) > S̃ − ε for
all (x, t) ∈ Ω̄ × [T, ∞). By (2.1)2, the following inequality holds:

It − dI∆I � β(S̃ − ε)I − γI for (x, t) ∈ Ω × [T, ∞). (4.1)

We now consider a related problem:

Jt = dI∆J + β(S̃ − ε)J − γJ, x ∈ Ω, t ∈ (T, ∞),
∂J

∂n
= 0, x ∈ ∂Ω, t ∈ (T, ∞),

J(x, T ) = min
x∈Ω̄

I(x, T ) ≡ Im(T ), x ∈ Ω̄.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

Then the comparison principle yields that I � J on Ω̄ × [T, ∞), and it is easy to
check that J = Im(T ) exp((βS̃ − εβ − γ)t). Since J → ∞ as t → ∞, so does I,
which contradicts the fact that I is bounded. Hence, we must have that

(S(t), I(t)) → (S∗, I∗) as t → ∞.

4.2. The case dS = dI

We then consider the case dS = dI ≡ d. In this case, the EE exists if and only if
R0 > 1. Adding up the two equations in (2.1), we have that (S + I)t = d∆(S + I),
and it follows from condition (2.3) that S(x, t) + I(x, t) → N/|Ω| uniformly for
x ∈ Ω̄. Similarly to the case of constant coefficients, a result about the global
attractivity of the equilibria can be established.

Theorem 4.2. If dS = dI = d, then the following statements hold:

(a) if R0 � 1, then the DFE is globally attractive;

(b) if R0 > 1, then the EE is globally attractive.

Proof. Suppose that R0 < 1. Let ε > 0 be given. Since S(x, t) + I(x, t) → N/|Ω|
as t → ∞, there exists a T > 0 such that S(x, t) � N/|Ω| + ε − I(t) for all t > T .
Then by (2.1), (2.2), I satisfies the following:

It − d∆I � I

((
N

|Ω| + ε

)
β − γ − βI

)
, x ∈ Ω, t ∈ (T, ∞),

∂I

∂n
= 0, x ∈ ∂Ω, t ∈ (T, ∞).

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

Let Ĩ be the solution of a related problem:

Ĩt − d∆Ĩ = Ĩ

((
N

|Ω| + ε

)
β − γ − βĨ

)
, x ∈ Ω, t ∈ (T, ∞),

∂Ĩ

∂n
= 0, x ∈ ∂Ω, t ∈ (T, ∞),

Ĩ(x, T ) = I(x, T ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4)
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Then the comparison principle yields that I(x, t) � Ĩ(x, t) on Ω̄ × (T, ∞). Let λ(ε)
be the principal eigenvalue of d∆ϕ + ϕ((N/|Ω| + ε)β − γ) + λϕ = 0, subject to the
homogeneous Neumann boundary condition. Proceeding as in [6,7], one can see that
problem (4.4) has a unique positive and globally attractive equilibrium if λ(ε) < 0,
while it has no positive equilibrium and all solutions decay to 0 if λ(ε) � 0. Since
R0 < 1, we have that λ(0) = λ∗ > 0, which implies that λ(ε) > 0 if ε is small. Hence,
I(x, t) → 0 uniformly for x ∈ Ω̄. It then follows from S(x, t)+ I(x, t) → N/|Ω| that
S(x, t) → N/|Ω| uniformly for x ∈ Ω̄.

If R0 = 1, i.e. λ∗ = 0, then λ(ε) < 0 and Ĩ(x, t) converges to Ĩ∗(x), where Ĩ∗ is
the corresponding positive equilibrium. On the other hand, Ĩ∗ → 0 as ε → 0 since
λ∗ = 0. Hence, I(x, t) → 0 and S(x, t) → N/|Ω| uniformly for x ∈ Ω̄.

Now suppose that R0 > 1, i.e. λ∗ < 0. Since S(x, t) + I(x, t) → N/|Ω|, there
exists a T > 0 such that N/|Ω| − ε − I(x, t) � S(x, t) � N/|Ω| + ε − I(x, t) for all
t > T . Then by (2.1), I satisfies the following inequality:

I

((
N

|Ω| − ε

)
β − γ − βI

)
� It − d∆I � I

((
N

|Ω| + ε

)
β − γ − βI

)
(4.5)

for (x, t) ∈ Ω × (T, ∞). Let Ǐ and Î solve the following two related problems,
respectively:

Ǐt − d∆Ǐ = Ǐ

((
N

|Ω| − ε

)
β − γ − βǏ

)
, x ∈ Ω, t ∈ (T, ∞),

∂Ǐ

∂n
= 0, x ∈ ∂Ω, t ∈ (T, ∞),

Ǐ(x, T ) = I(x, T )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

and

Ît − d∆Î = Î

((
N

|Ω| + ε

)
β − γ − βÎ

)
, x ∈ Ω, t ∈ (T, ∞),

∂Î

∂n
= 0, x ∈ ∂Ω, t ∈ (T, ∞),

Î(x, T ) = I(x, T ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.7)

By the comparison principle, we find that Ǐ(x, t) � I(x, t) � Î(x, t) on Ω̄ × (T, ∞).
If ε is small, we have that λ(±ε) < 0, and it then follows that Ǐ(x, t) → Ǐ∗(x)
and Î(x, t) → Î∗(x), where Ǐ∗ and Î∗ are the corresponding positive equilibria,
respectively. Letting ε → 0 yields that I(x, t) → Ī(x) uniformly for x ∈ Ω̄, where Ī
is the positive solution of the problem

d∆Ī + Ī

(
N

|Ω|β − γ − βĪ

)
= 0, x ∈ Ω,

∂Ī

∂n
= 0, x ∈ ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (4.8)

Again by S(x, t) + I(x, t) → N/|Ω|, we have that limt→∞ S(x, t) = N/|Ω| − Ī(x)
uniformly for x ∈ Ω̄. Let S̄ = N/|Ω̄| − Ī. Since S(x, t) is non-negative, so is S̄.
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And it is easy to see that (S̄, Ī) satisfies (3.1), (3.2). The uniqueness of the EE then
implies that (S∗, I∗) = (S̄, Ī).

5. Discussion

In this paper, we proposed an SIS reaction–diffusion population model and estab-
lished the global existence and boundedness results. We then considered the disease-
free equilibrium and the endemic equilibrium of the model. For this purpose, we
defined a basic reproduction number R0 and proved that a unique endemic equilib-
rium exists if R0 > 1. We then conducted analysis on the global attractivity of the
disease-free equilibrium and the endemic equilibrium of the model for two cases.

We now briefly discuss some implications of these results on the model dynamics
and disease control. First, it is interesting to compare our model with the model
(1.2) in [11,15,22], which is a generalization of the classical Kermack–McKendrick
model. In the model (1.2), after the infected individuals recovered (or died), they
no longer became infected. It is then predicted that the disease becomes extinct in
the long run. However, in our model, after the infected individuals recovered, they
become susceptible immediately, and consequently the disease may not become
extinct. To be more specific, similar to the definition in [3], we call the domain Ω
a high-risk domain if ∫

Ω

Nβ

|Ω| dx >

∫
Ω

γ dx

and a low-risk domain if ∫
Ω

Nβ

|Ω| dx <

∫
Ω

γ dx.

By remark 3.3, the basic reproduction number R0 is greater than 1 if Ω is a high-
risk domain, and hence an epidemic equilibrium always exists by theorem 3.10.
Then the disease should persist in the long run. This has been shown for two cases:

• if the disease transmission and recovery rates are constants;

• if the diffusion rate of the susceptible individuals is equal to the diffusion rate
of the infected individuals.

In a low-risk domain, there exists a threshold value d∗
I for the diffusion rate of the

infected individuals. If dI > d∗
I , the basic reproduction number R0 is less than 1,

and it is expected that the disease will die out, while if dI < d∗
I , R0 is greater than 1,

and then the disease would persist. Moreover, as for disease control, the variational
formula suggests that decreasing the disease transmission rate β or increasing the
recovery rate γ would lessen the likelihood of the persistence of the disease, which
is consistent with the expectation.

In [3] for model (1.1), it has been demonstrated that when the endemic equilib-
rium exists, its I component approaches zero as the mobility of susceptible individ-
uals approaches zero. Such a result has important implications for disease control.
For model (2.1), however, due to the non-locality of (3.8), the discussion seems to
become more complicated, and establishing a similar result will be left as future
work.
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