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Abstract. Wieler has shown that every irreducible Smale space with totally disconnected
stable sets is a solenoid (i.e., obtained via a stationary inverse limit construction). Using
her construction, we show that the associated stable C∗-algebra is the stationary inductive
limit of a C∗-stable Fell algebra that has a compact spectrum and trivial Dixmier–Douady
invariant. This result applies in particular to Williams solenoids along with other examples.
Beyond the structural implications of this inductive limit, one can use this result to, in
principle, compute the K -theory of the stable C∗-algebra. A specific one-dimensional
Smale space (the aab/ab-solenoid) is considered as an illustrative running example
throughout.
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1. Introduction
In [29] Williams showed that an important class of attractors can be realized via an explicit
stationary inverse limit construction. These dynamical systems are examples of Axiom
A basic sets [23] and fit within Ruelle’s framework of Smale spaces [22]. Based on
Williams’ construction, Wieler [27] showed that every irreducible Smale space with totally
disconnected stable sets can be realized via an explicit stationary inverse limit satisfying
certain natural axioms, see §3 for the precise statement. Based on Wieler’s result, we refer
to such Smale spaces as Wieler solenoids.

Ruelle, Putnam, and Spielberg [16, 18, 22] have constructed and studied C∗-algebras
associated to a Smale space. Up to Morita equivalence, the stable C∗-algebra of a Smale
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space is the groupoid C∗-algebra of an étale groupoid defined using the stable equivalence
relation, as in [18]. In the present paper, we study the structure of this stable C∗-algebra
for a Wieler solenoid. We use the inverse limit structure considered by Wieler to obtain a
stationary inductive limit structure of the stable C∗-algebra.

Our construction is very much inspired by a construction of Gonçalves [7, 8] (also see
Mingo [15], Williamson [30], and the recent paper [9]) in the special case of tilings. In
addition, we have been influenced by the work of Renault [21], Thomsen [24, 25], and
Yi [33]. Of course, the idea that an inverse limit of spaces should lead to an inductive limit
of C∗-algebras is both natural and well studied. Another starting point for this work is the
first listed author’s work with Goffeng, Mesland, and Whittaker [5] and with Strung [6].

Let us briefly recall the construction of the stable C∗-algebra of a (mixing) Smale space
(X, ϕ) as defined by Putnam and Spielberg in [18]. Section 2 contains more details on
their construction along with relevant definitions. We first fix a finite ϕ-invariant subset P
of X ; the points in P are periodic with respect to the homeomorphism ϕ. Then we consider
the set Xu(P) of all points in X that are unstably equivalent to some point in P. On the set
Xu(P), we consider the stable equivalence relation ∼s , viewed as a groupoid

Gs(P) := {(x, y) ∈ Xu(P)× Xu(P) | x ∼s y}.

The groupoid Gs(P) has an étale topology, and the stable C∗-algebra of (X, ϕ) is the
groupoid C∗-algebra C∗(Gs(P)).

In the case where X is a Wieler solenoid, we use the inverse limit structure to define a
subrelation ∼0 of ∼s . There is a corresponding subgroupoid

G0(P) := {(x, y) ∈ Xu(P)× Xu(P) | x ∼0 y}

of Gs(P). The equivalence relation ∼0 is constructed so that G0(P) is open in Gs(P), and
therefore G0(P) is étale. Building on this, we use the fact that the inverse limit is stationary
to prove the following result.

THEOREM 1.1. There is a nested sequence of étale subgroupoids

G0(P)⊂ G1(P)⊂ G2(P)⊂ . . .

of Gs(P) such that Gs(P)=
⋃
∞

k=0 Gk(P) and each Gk(P) is isomorphic to G0(P) in a
natural way.

This allows one to reduce the study of Gs(P) to G0(P), which is easier to understand. To
see why it is easier, first note that the space Xu(P) has a natural topology, which coincides
with the topology of the diagonal subspace of Gs(P). Note we never consider the subspace
topology of Xu(P) it inherits from X , as Xu(P) is dense as a subset of X . Likewise
the topology defined on Gs(P) is not the same as the subspace topology it inherits as a
subspace of Xu(P)× Xu(P). However, the topology of G0(P) does coincide with the
subspace topology from Xu(P)× Xu(P).

This last observation places G0(P) into the framework of [4, 11], from which it follows
that C∗(G0(P)) is a Fell algebra. A Fell algebra can be viewed as a generalization of
a continuous-trace C∗-algebra in which the spectrum is not necessarily Hausdorff, but
is locally Hausdorff. In particular, the notion of a Dixmier–Douady invariant can be
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generalized to Fell algebras. This extension was introduced in [11] (while for more on the
original notion see [19]). More precisely, the results from [4, 11] imply that the quotient
map q : Xu(P)→ Xu(P)/∼0 is a local homeomorphism and the C∗-algebra C∗(G0(P)) is
a Fell algebra with spectrum Xu(P)/∼0 and trivial Dixmier–Douady invariant.

The nested sequence of groupoids induces an inductive limit of C∗-algebras
C∗(Gs(P))∼= lim

−→
C∗(Gk(P)). The isomorphism C∗(Gk(P))∼= C∗(G0(P)) is such that

this inductive sequence is isomorphic to a stationary inductive sequence whose connecting
homomorphism ψ : C∗(G0(P))→ C∗(G0(P)) can be described in terms of the dynamics
of the Wieler solenoid. The following theorem below is our main result. Note that by C∗-
stable, we mean stable in the C∗-algebraic sense (that is, absorbs the compact operators on
a separable Hilbert space).

THEOREM 1.2. (See Theorem 4.17) The stable C∗-algebra C∗(Gs(P)) of an irreducible
Wieler solenoid is isomorphic to the stationary inductive limit lim

−→
(C∗(G0(P)), ψ) where

C∗(G0(P)) is a C∗-stable Fell algebra that has a compact, locally Hausdorff spectrum
and trivial Dixmier–Douady invariant.

The case of the tiling spaces studied by Gonçalves [7, 8] fits within the framework of
this result (see [7, Proposition 5.7]) and as mentioned was one of our starting points. Our
main result is also a generalization of results in [21, 24]. In the notation of Definition 3.1,
the case when g is a local homeomorphism is considered in [21, 24].

One consequence of our inductive limit is that it allows one to compute the K -theory of
the stable algebra as a stationary inductive limit of abelian groups

K∗(C∗(Gs(P)))∼= lim
−→
(K∗(C∗(G0(P))), ψ∗).

The main tool we use for computing K0(C∗(Gs(P))) as an inductive limit is a natural
family of traces on Cc(G0(P)), parametrized by the quotient space Xu(P)/∼0. These
traces are densely defined on C∗(G0(P)), but nevertheless induce homomorphisms
K0(C∗(G0(P)))→ Z because Cc(G0(P)) is closed under holomorphic functional calculus
in C∗(G0(P)). We prove general results about these traces, which allow for the
computation of this inductive limit provided that the family of traces separates the elements
of K0(C∗(G0(P))). We illustrate the techniques for doing this in the example of the
‘aab/ab-solenoid’, a specific example of a Williams solenoid constructed from a certain
map on a wedge sum of two circles. The reader should be aware that the K -theory of this
example (and any one-dimensional Williams solenoid) is well known, see [33] (and also
[24, 25]). Our techniques are also applicable to any one-dimensional Williams solenoid.
We would be remiss not to mention that, for higher dimensional examples, the computation
of the K -theory from the inductive limit becomes increasingly difficult. The reader can see
such examples (even in dimension two) in [8, 9].

Nevertheless, in future work, the present authors will use the techniques from the
present paper to compute the K -theory in a number of examples. In particular, the K -
theory of the stable algebra of the p/q-solenoids studied in [3] will be computed.

Another consequence of the inductive limit structure is that it leads to a new proof of
the fact that C∗(Gs(P)) has finite nuclear dimension (in the special case when the stable
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sets are totally disconnected). This result holds in general (that is, without any assumption
on the stable sets) and is the main result of [6].

Our inductive limit structure also has consequences on the structure of general Smale
spaces (again, without any assumption on the stable sets). In work in progress, the main
result of the present paper is used by the present authors and Goffeng to study the existence
of projections for general Smale space C∗-algebras. It is worth noting that these results
seems to require the full generality of Theorem 1.2. In other words, we do not believe they
can be obtained by just considering examples such as tiling spaces [7–9, 15] and the case
when g is a local homeomorphism (see any of [5, 21, 24]).

A summary of the structure of the paper is as follows. Section 2 contains background
material on general Smale spaces along with the associated stable groupoid and stable
C∗-algebra. Wieler’s results on Smale spaces with totally disconnected stable sets
are reviewed in §3. In addition to the general theory of Wieler solenoids, a number
of examples are introduced and an explicit description of the stable relation is given.
Sections 4, 5 and 6 contain the main theoretical results of the paper. In these sections
(respectively) the subgroupoid G0(P) and the inductive limit decomposition of C∗(Gs(P))
are considered, the associated compact, locally Hausdorff space Xu(P)/∼0 is studied
and the structure of C∗(G0(P)) is discussed. In §7 we prove that G0(P) has dynamic
asymptotic dimension zero and hence C∗(G0(P)) has finite nuclear dimension. It also
follows that Cc(G0(P)) is closed under holomorphic functional calculus in C∗(G0(P)).
Sections 8 and 9 contain technical results, which culminate in the construction of certain
traces on Cc(G0(P)). These traces are used in §10 to compute K -theory. The main
example is the ‘aab/ab’-solenoid but some general results (e.g., Theorem 10.3) and other
examples (e.g., Examples 10.5 and 10.6) are also considered. In the appendix, the stable
and unstable C∗-algebras associated to a Smale space via Putnam and Spielberg’s method
are shown to be C∗-stable. This result seems to be known to experts but we could not
find a reference so we have included a proof. The key tool in the proof is the main result
of [12].

2. Smale spaces
Definition 2.1. A Smale space is a metric space (X, d) along with a homeomorphism
ϕ : X→ X with the following additional structure: there exists global constants εX > 0
and 0< λ < 1 and a continuous map, called the bracket map,

[ · , · ] : {(x, y) ∈ X × X : d(x, y)≤ εX } → X,

such that the following axioms hold:
B1 [x, x] = x ;
B2 [x, [y, z]] = [x, z] when both sides are defined;
B3 [[x, y], z] = [x, z] when both sides are defined;
B4 ϕ[x, y] = [ϕ(x), ϕ(y)] when both sides are defined;
C1 for x, y ∈ X such that [x, y] = y, d(ϕ(x), ϕ(y))≤ λd(x, y);
C2 for x, y ∈ X such that [x, y] = x , d(ϕ−1(x), ϕ−1(y))≤ λd(x, y).
We denote a Smale space simply by (X, ϕ).
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Examples of Smale spaces and an introduction to their basic properties can be found
in [16]. Throughout we assume that X is infinite. For the most part, the Smale spaces
considered in this paper will be of a special form, which we discuss in the next section.
However, we require a few general facts.

Definition 2.2. Suppose (X, ϕ) is a Smale space. If x and y are in X , then
we write x ∼s y (respectively, x ∼u y) if limn→∞ d(ϕn(x), ϕn(y))= 0 (respectively,
limn→∞ d(ϕ−n(x), ϕ−n(y))= 0). The s and u stand for stable and unstable, respectively.

The global stable and unstable set of a point x ∈ X are defined to be

X s(x)= {y ∈ X | y ∼s x} and Xu(x)= {y ∈ X | y ∼u x}.

Given, 0< ε ≤ εX , the local stable and unstable set of a point x ∈ X are defined,
respectively, to be

X s(x, ε)= {y ∈ X | [x, y] = y and d(x, y) < ε} (1)

and

Xu(x, ε)= {y ∈ X | [y, x] = y and d(x, y) < ε}. (2)

The following is a standard result, see for example [16, 22].

THEOREM 2.3. Suppose (X, ϕ) is a Smale space and x, y are in X with d(x, y) < εX .
Then the following hold for any 0< ε ≤ εX :
(1) X s(x, ε) ∩ Xu(y, ε)= {[x, y]} or is empty;
(2) X s(x)=

⋃
n∈N

ϕ−n(X s(ϕn(x), ε));

(3) Xu(x)=
⋃
n∈N

ϕn(Xu(ϕ−n(x), ε)).

A Smale space is mixing if for each pair of non-empty open sets U , V , there exists N
such that ϕn(U ) ∩ V 6= ∅ for all n ≥ N . When (X, ϕ) is mixing, Xu(x) and X s(x) are
each dense as subsets of X . However, one can use this theorem to give Xu(x) and X s(x)
locally compact, Hausdorff topologies. The details of this construction are discussed in,
for example, [13, Theorem 2.10].

Following [18], we construct the stable groupoid of (X, ϕ). Let P denote a finite ϕ-
invariant set of periodic points of ϕ and define

Xu(P)= {x ∈ X | x ∼u p for some p ∈ P}

and
Gs(P) := {(x, y) ∈ Xu(P)× Xu(P) | x ∼s y}.

Still following [18], a topology is defined on Gs(P) by constructing a neighborhood base.
Suppose (x, y) ∈ Gs(P). Then there exists k ∈ N such that

ϕk(x) ∈ X s
(
ϕk(y),

εX

2

)
.

Since ϕ is continuous there exists δ > 0 such that

ϕk(Xu(y, δ))⊆ Xu
(
ϕk(y),

εX

2

)
.
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Using this data, we define a function h(x,y,δ) : Xu(y, δ)→ Xu(x, εX ) via

z 7→ ϕ−k([ϕk(z), ϕk(x)])

and have the following result from [18].

THEOREM 2.4. The function h = h(x,y,δ) is a homeomorphism onto its image and (by
letting x, y, and δ vary) the sets

V (x, y, h, δ) := {(h(z), z) | z ∈ Xu(y, δ)}

form a neighborhood base for an étale topology on the groupoid Gs(P). Moreover, the
groupoid Gs(P) is amenable, second countable, locally compact, and Hausdorff.

Example 2.5. (An example of an open set in Gs(P)) One way to construct an open set in
Gs(P) is to take x , x ′ ∈ Xu(P) such that

x ′ ∈ X s
(

x,
εX

2

)
and form

V :=
{
([y, x ′], y) | y ∈ X s

(
x,
εX

2

)}
.

V is an open set (this is the special case k = 0 discussed in the paragraphs before this
example). In fact, it is an open neighborhood of the point (x ′, x) ∈ Gs(P).

A further special case occurs when x = x ′. These open sets give the topology on the
unit space of Gs(P), which is Xu(P) (the topology on this space is the one discussed just
after Theorem 2.3).

Definition 2.6. Let C∗(Gs(P)) denote the C∗-algebra associated to the étale groupoid
Gs(P). (The choice of completion does not affect the C∗-algebra because the groupoid
is amenable.) This C∗-algebra is called the stable algebra of (X, ϕ).

A Smale space is irreducible if for each pair of non-empty open sets U , V , there exists
n such that ϕn(U ) ∩ V 6= ∅. We will for the most part only consider the case of mixing
Smale spaces. (Recall that a Smale space is mixing if for each pair of non-empty open sets
U , V , there exists N such that ϕn(U ) ∩ V 6= ∅ for all n ≥ N .)

To generalize results from the mixing to the irreducible case one uses Smale’s
decomposition theorem [22]. The C∗-algebraic implication of this theorem is that if (X, ϕ)
is an irreducible Smale space, then its stable C∗-algebra is isomorphic to a finite direct sum
of stable C∗-algebras associated to mixing Smale spaces. For more on this construction
see, for example, [13, §2.5]. This direct sum decomposition implies that in many of our
results (in particular, Theorem 4.17) we need only prove the mixing case.

3. Wieler solenoids
The Smale spaces considered in this paper are all solenoids (i.e., obtained via an inverse
limit construction). In this section, we review Wieler’s work [27], which (among other
results) implies that a natural class of Smale spaces are actually solenoids in a quite explicit
way, see Theorem 3.4 for the precise statement.
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Definition 3.1. (Wieler’s axioms) Let (Y, dY ) be a compact metric space, and g : Y → Y
be a continuous surjective map. Then, (Y, dY , g) satisfies Wieler’s axioms if there exists
constants β > 0, K ∈ N+, and 0< γ < 1 such that the following hold.
Axiom 1. If x, y ∈ Y satisfy dY (x, y)≤ β, then

dY (gK (x), gK (y))≤ γ K dY (g2K (x), g2K (y)).

Axiom 2. For all x ∈ V and 0< ε ≤ β

gK (B(gK (x), ε))⊆ g2K (B(x, γ ε)).

Remark 3.2. We will assume that Y is infinite. This implies that g is not a
homeomorphism. This can be proved using [5, Lemma 2.7] and the fact that if a compact
metric space admits a positively expanding homeomorphism then it must be finite but we
omit the details of the proof.

Definition 3.3. Suppose (Y, dY , g) satisfies Wieler’s axioms. Then on the inverse limit
space

X := lim
←−
(Y, g)= {(yn)n∈N = (y0, y1, y2, . . .) | g(yi+1)= yi for each i ≥ 0}

we let ϕ : X→ X be defined via

ϕ(x0, x1, x2, . . .)= (g(x0), g(x1), g(x2), . . .)= (g(x0), x0, x1, . . .).

We take the metric dX on X defined via

dX ((xn)n∈N, (yn)n∈N)=
K∑

i=0

γ i d ′X (ϕ
i (xn)n∈N, ϕ

i (yn)n∈N),

where d ′X ((xn)n∈N, (yn)n∈N)= supn∈N(γ
ndY (xn, yn)). We refer to (X, dX , ϕ) as a Wieler

solenoid.

THEOREM 3.4. [27, Theorems A and B on p. 4] If (Y, dY , g) satisfies Wieler’s axioms,
then the associated Wieler solenoid (X, dX , ϕ) is a Smale space with totally disconnected
stable sets. The constants in Wieler’s definition give Smale space constants: εX = β/2 and
λ= γ . Moreover, if x= (xn)n∈N ∈ X and 0< ε ≤ β/2, the locally stable and unstable sets
of (X, dX , ϕ) are given by

X s(x, ε)= {y= (yn)n∈N | ym = xm for 0≤ m ≤ K − 1 and dX (x, y)≤ ε}

and

Xu(x, ε)= {y= (yn)n∈N | dY (xn, yn) < ε ∀n and dX (x, y)≤ ε},

respectively.
Conversely, if (X, ϕ) is any irreducible Smale space with totally disconnected stable

sets, then there exists (Y, dY , g) satisfying Wieler’s axioms such that (X, ϕ) is conjugate
to the Wieler solenoid associated to (Y, dY , g).

Remark 3.5. Wieler’s axioms and the previous theorem should be compared with work of
Williams [29]. An important difference between the two is that Wieler’s are purely metric
space theoretic.
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FIGURE 1. aab/ab pre-solenoid.

If g : Y → Y satisfies Wieler’s axioms, then g is finite-to-one by [27, Lemma 3.4]. In
addition, given (Y, g) satisfying Wieler’s axioms, [27, Theorem A on p. 2068] states that
the associated Wieler solenoid is irreducible if and only if (Y, g) is non-wandering and g
has a dense orbit in Y .

We will occasionally consider the special case in which g is also a local
homeomorphism. This case was studied in detail in [5]. In particular, it was shown that
if g satisfies Wieler’s axioms and either g is open or gK is locally expanding, then g is a
local homeomorphism [5, Lemmas 2.7 and 2.8].

3.1. Examples of Wieler solenoids. A few examples of Wieler solenoids are discussed
in this section. The main example we will consider in this paper is the aab/ab-solenoid.
As such, the other examples are only discussed briefly. Nevertheless, we hope to convince
the reader that many interest dynamical systems fit within Wieler’s framework.

Example 3.6. (Subshifts of finite type) In [27] (see [26] for the details), Wieler shows
that any irreducible two-sided subshift of finite type can be obtained by applying her
construction to a suitable one-sided subshift of finite type. In this example, g is the
shift map, which is a local homeomorphism. It is worth noting that Williams’ solenoid
construction does not apply to this example.

Example 3.7. (n-solenoid) Consider the unit circle S1
⊆ C with the arc length metric,

rescaled so that the total circumference is 1. For a fixed integer n > 1, define g : S1
→ S1

via z 7→ zn . Then (S1, g) satisfies Wieler’s axioms with K = 1, γ = 1/n, β = 1/2n2.
Hence the associated inverse limit is a Smale space. Note that g is a local homeomorphism.

Example 3.8. (aab/ab-solenoid) We shall consider the following example throughout the
paper. Let Y = S1

∨ S1 be the wedge sum of two circles, see Figure 1.
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The map g : Y → Y is defined as follows. We consider the outer circle to be the a-circle
and the inner circle to be the b-circle. Each line segment labeled with a is mapped onto
the a-circle (i.e., the outer circle); while, each line segment labeled with b is mapped onto
the b-circle (i.e., the inner circle). The mapping is done in an orientation-preserving way,
provided we have oriented both circles the same way, say clockwise. Note that g is not
a local homeomorphism in this example. For more details on this specific example and
one-solenoids in general, see [25, 28, 33].

More generally, any Williams solenoid [29] can be studied using the constructions in
the present paper (both of the two previous examples are Williams solenoids). However,
there are examples of Wieler solenoids that do not fit into Williams’ framework (e.g., the
subshifts of finite type example above).

Example 3.9. (Tilings) As we mentioned in the introduction, one of our starting points
for this paper was the work of Gonçalves [7, 8] on C∗-algebras associated to tiling spaces.
Results in [1] link tiling space theory with Smale space theory. As such, there is more than
one C∗-algebra associated to a tiling space. Gonçalves studies the stable algebra in [7, 8],
while the unstable algebra is studied in [1]. For more on these different algebras in the
tiling space case, see [9] and references therein. In the present paper, we are interested in
the stable algebra. In particular, see [1, §4] for the construction of the relevant inverse limit
in this case. Computations of the K -theory groups of many interesting tiling examples can
be found in [8, 9].

Example 3.10. (Gasket example) See example 3 on pp. 2070–2071 of [27] for an
interesting example of a map g : Y → Y that satisfies Wieler’s axioms. Here, the space
Y is formed by gluing six copies of the Sierpinski gasket together. This construction is
also discussed in greater detail in [26, §4.3].

3.2. The stable relation. The stable equivalence relation in the case of a Wieler solenoid
has a particularly nice description in terms of the inverse limit structure.

LEMMA 3.11. Suppose (Y, dY , g) satisfies Wieler’s axioms, (X, ϕ) is the associated
Wieler solenoid, and P is a finite ϕ-invariant set in X. Let (xn)n∈N and (yn)n∈N denote
elements of Xu(P). Then, (xn)n∈N ∼s (yn)n∈N if and only if there exists k ∈ N such that
gk(x0)= gk(y0).

Proof. We only prove one of the two directions. Assume that (xn)n∈N ∼s (yn)n∈N. Then
there exists N ∈ N such that, for all n ≥ N ,

dY (gn(x0), gn(y0)) < β.

Using this inequality, Wieler’s first axiom and a short induction argument, we have that for
any positive integer m,

dY (gN+K (x0), gN+K (y0))≤ γ
mK dY (gN+(m+1)K (x0), gN+(m+1)K (y0)).

Since γmK tends to zero as m tends to +∞ and

dY (gN+(m+1)K (x0), gN+(m+1)K (y0)) < β

we have that gN+K (x0)= gN+K (y0) as required. �
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FIGURE 2. Xu(P) for the aab/ab-solenoid.

4. The subrelation ∼0 and inductive limit structure
As above, suppose (Y, dY , g) satisfies Wieler’s axioms, (X, ϕ) is the associated Wieler
solenoid (which is a Smale space), and P is a finite ϕ-invariant set of points of X . Elements
in X are denoted by

x= (x0, x1, x2, . . .)= (xn)n∈N,

where xn ∈ Y . It is important to note that we do not consider Xu(P) with the subspace
topology it inherits from X . Instead, we identify Xu(P) with the diagonal {(x, x) | x ∈
Xu(P)} ⊆ Gs(P), and give Xu(P) the subspace topology inherited from Gs(P). We
assume that (X, ϕ) is mixing (see the discussion just before §3 for more on how to
generalize to the irreducible case).

Consider the map

π0 : Xu(P)→ Y, π0(x0, x1, x2, . . .)= x0.

It follows from the structure of the local unstable sets given in Theorem 3.4 that π0 is
continuous and locally injective. Since Xu(P) is locally compact and Y is Hausdorff, π0 is
locally an embedding. Moreover, it follows from the fact that Xu(P) is dense as a subset
of X and g is surjective that π0 is also surjective.

Define an equivalence relation on Xu(P) by x∼naive y if and only if π0(x)= π0(y). By
Lemma 3.11, x∼naive y implies x∼s y. Let

Gnaive(P)= {(x, y) ∈ Xu(P)× Xu(P) | π0(x)= π0(y)}

be the corresponding subgroupoid of Gs(P). The following example illustrates a
fundamental problem with Gnaive(P): it is not open in Gs(P) and therefore it is not étale.

Example 4.1. Consider the aab/ab-solenoid example. We take P to be the set containing
the single fixed point p= (p, p, p, . . .). Here, Xu(P) is homeomorphic to the real line,
and is pictured in Figure 2.

Intervals labeled with a (respectively, b) are mapped by π0 to the outer (respectively,
inner) circle in Y . Identifying the endpoints of these intervals as Z, we describe ∼naive as
follows: all integer points are equivalent (e.g., p, q, and r are equivalent) and non-integer
points x and y are equivalent if and only if they are in intervals with the same label and
x− y ∈ Z. That Gnaive(P) is not open can be seen by noting that neither (p, q) nor (p, r)
has an open neighborhood in Gs(P) contained in Gnaive(P). The point (p, r) is isolated
in Gnaive(P), whereas an open neighborhood of (p, q) in Gnaive(P) is homeomorphic to
a half-open, half-closed interval. Neither is open in Gs(P), because Gs(P) is étale and
locally homeomorphic to Xu(P)∼= R.

Based on the previous example, we need to refine this naive equivalence relation so as
to obtain an open (hence étale) subgroupoid of Gs(P). Essentially, we do this by excluding
pairs such as (p, q) and (p, r) in the example above. This process is similar in spirit to
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the collaring construction done in [1], though it is not the same. The process in [1] always
outputs a Hausdorff space, while ours does not. In the aab/ab-solenoid example, the
collaring construction in [1] introduces duplicates of the a tile.

Before giving the general definition of our relation, some lemmas are required. Recall
that K , β, γ are the constants from Wieler’s axioms. The next lemma follows directly
from the definition of the metric on X so we omit the proof. (The proof is easiest to see in
the case when one has K = 1, but holds in general.)

LEMMA 4.2. There exists K0 ∈ N such that:
(1) K0 ≥ K ;
(2) if x and y are in X and xi = yi for all i ≤ K0, then d(x, y) < β/4.

LEMMA 4.3. Suppose K0 is a fixed natural number satisfying the conclusion of the
previous lemma. Then there exists 0< εY < β/4 such that, for any x ∈ X,

ϕK0(Xu(x, εY ))⊆ Xu
(
ϕK0(x),

β

4

)
.

We emphasize that εY is independent of x; it does depend on K0.

Proof. By the definition of the metric on X , there exists 0< ε < β/4 such that if x and y
satisfy dY (xn, yn) < ε for all n ∈ N, then dX (x, y) < β/4. Moreover, since g is continuous
and Y is compact, g is uniformly continuous. Hence, there exists 0< δ ≤ ε, such that, for
each 1≤ i ≤ K0, dY (gi (w), gi (z)) < ε whenever dY (w, z) < δ.

Taking εY = δ, we have the required properties. Fix x ∈ X . Then,

Xu(x, εY )= {y ∈ X | dY (xn, yn) < εY ∀n and dX (x, y)≤ εY }.

Let y ∈ Xu(x, εY ). Then, dY (xn, yn) < δ for each n ∈ N. We must show ϕK0(y) ∈
Xu(ϕK0(x), β/4). By definition,

ϕK0(y)= (gK0(y0), gK0−1(y0), . . . , g(y0), y0, y1, . . .)

and likewise

ϕK0(x)= (gK0(x0), gK0−1(x0), . . . , g(x0), x0, x1, . . .).

By the construction of εY (note: εY = δ) and the fact that dY (x0, y0) < δ, we have that,
for each 1≤ i ≤ K0, dY (gi (x0), gi (y0)) < ε < β/4. Furthermore, since δ < β/4, we have
that dY (xn, yn) < β/4 for each n ∈ N. Thus, to complete the proof, we need only show
that d(ϕK0(x), ϕK0(y)) < β/4. This follows from the first line of the proof and the fact
that εY < δ ≤ ε. �

We now fix K0 and εY satisfying the conditions of the previous two lemmas. We can
now state our main definition.
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FIGURE 3. The ∼0 relation for the aab/ab solenoid.

Definition 4.4. Suppose x and y are in Xu(P). Then x∼0 y if
(1) π0(x)= π0(y) (i.e., x0 = y0);
(2) there exists 0< δx < εY and open set U ⊆ Xu(y, εY ) such that

π0(Xu(x, δx))= π0(U ).

Let G0(P)= {(x, y) | x∼0 y}.

Before proceeding with the general theory, let us consider what ∼0 is in our main
examples.

Example 4.5. In the special case when g : Y → Y is a local homeomorphism, [5, Theorem
3.12] implies that π0 : Xu(P)→ Y is a covering map. It then follows that (1) implies (2),
so we have x∼0 y if and only if π0(x)= π0(y). That is,∼0 is the naive equivalence∼naive

in this case.

Example 4.6. For the aab/ab-solenoid, the relation∼0 can be described using the diagram
in Figure 3.

For the non-integer points, the relation is the same as in Example 4.1. However, two
integer points are equivalent if and only if the intervals to the left and right are labeled
the same. For example, p, q, and r are all inequivalent, but p and p′ are equivalent. In
this example, the integer points split into three different equivalence classes, namely the
equivalence classes of p, q, and r.

Returning to the general case, if (x, y) ∈ G0(P), then we let hx : Xu(x, δx)→

Xu(y, εY ) be defined via

w 7→ ϕ−K0([ϕK0(w), ϕK0(y)]).

We note that hx is well defined by the conditions that K0 and εY satisfy and the construction
of the étale topology on Gs(P) discussed in and just before Theorem 2.4. Moreover, it is a
homeomorphism onto its image.

LEMMA 4.7. If x∼0 y with δx satisfying the conditions of Definition 4.4, then for
any w ∈ Xu(x, δx), π0(w)= π0(hx(w)). Moreover, if V ⊆ Xu(x, δx) is open, then
π0(V )= π0(hx(V )); we note that hx(V ) is open.

Proof. Suppose w ∈ Xu(x, δx). Then there exists z ∈U ⊆ Xu(y, εY ) such that

w0 = π0(w)= π0(z)= z0.

On the one hand, by Lemma 4.3, ϕK0(z) ∈ Xu(ϕK0(y), β/4); on the other, by Theorem 3.4
and Lemma 4.2, ϕK0(z) ∈ X s(ϕK0(w), β/4). Thus, using Theorem 2.3,

ϕK0(z) ∈ X s
(
ϕK0(w),

β

4

)
∩ Xu

(
ϕK0(y),

β

4

)
= {[ϕK0(w), ϕK0(y)]}.
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Hence, ϕK0(z)= [ϕK0(w), ϕK0(y)]. It follows that hx(w)= z and that

π0(hx(w))= π0(z)= z0 = w0

as required.
The ‘Moreover’ part of the lemma follows directly from the first statement. �

COROLLARY 4.8. If x∼0 y, then the set hx(Xu(x, δx)) satisfies the requirements of the
set U in the definition of ∼0.

PROPOSITION 4.9. G0(P) is an equivalence relation.

Proof. It is clear that∼0 is reflexive. We will show that it is also symmetric and transitive.
Suppose x∼0 y. By assumption, x0 = y0. Moreover, by Lemma 4.2,

d(ϕK0(x), ϕK0(y)) <
β

4
and by Corollary 4.8, the open set U = hx(Xu(x, δx))⊆ Xu(y, εY ) satisfies the conditions
required in Definition 4.4. In particular, y ∈U . Hence, there exists 0< δy < εY such that
Xu(y, δy)⊆U . Since hx is a homeomorphism onto its image and Xu(y, δy) is contained
in its image, we have that V := h−1

x (Xu(y, δy)) is an open subset of Xu(x, εY ). Moreover,
by Lemma 4.7, π0(V )= π0(Xu(y, δy)). Thus V satisfies the conditions required in the
definition of ∼0 and y∼0 x.

Finally, suppose x∼0 y and y∼0 z. By the definition of ∼0,

x0 = y0 = z0.

Since hx is a homeomorphism onto its image (which contains y) there exists 0< δ < δx

such that
hx(Xu(x, δ))⊆ Xu(y, δy).

Then, (hy ◦ hx)(Xu(x, δ))⊆ Xu(z, εY ) and moreover, using Lemma 4.7 twice,

π0((hy ◦ hx)(Xu(x, δ))= π0(hx(Xu(x, δ))= π0(Xu(x, δ)).

Hence, the set U := (hy ◦ hx)(Xu(x, δ)) satisfies the requirements in Definition 4.4 and
x∼0 z. �

PROPOSITION 4.10. G0(P) is an open subgroupoid of Gs(P). In particular, G0(P) is
étale.

Proof. If x∼0 y, then x0 = y0. Lemma 3.11 implies that x∼s y. To see that G0(P) is
open, still assuming x∼0 y, we recall that hx leads to an open set in Gs(P) by taking

V := {(w, hx(w)) | w ∈ Xu(x, δx)}.

Lemma 4.7 implies that V ⊆ G0(P). In more detail, the first part of Lemma 4.7 implies
that π0(w)= π0(hx(w)) and the second part of Lemma 4.7 implies the second condition
in Definition 4.4 holds. �

PROPOSITION 4.11. The subspace topology on G0(P) obtained as a subspace of Gs(P)
coincides with the subspace topology obtained from G0(P)⊆ Xu(P)× Xu(P).
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Proof. For each k, the topology on the set

(ϕ−k
× ϕ−k)

({
(x, y) ∈ Xu(P)× Xu(P)

∣∣∣ y ∈ X s
(

x,
β

4

)})
obtained from the topology on Gs(P) and the subspace space topology obtained from
Xu(P)× Xu(P) coincide. By Lemma 4.2 and Theorem 3.4, G0(P) is contained in

(ϕ−K0 × ϕ−K0)
({
(x, y) ∈ Xu(P)× Xu(P)

∣∣∣ y ∈ X s
(

x,
β

4

)})
. �

LEMMA 4.12. If x and y are in Xu(P) and xi = yi for 0≤ i ≤ K0, then x∼0 y.

Proof. By the defining properties of K0 (see the statement of Lemma 4.2), we have the
following:
(1) xn = yn for 0≤ n ≤ K where K is the constant in Definition 3.1;
(2) d(x, y) < β/4.
Theorem 3.4 then implies that y ∈ X s(x, β/4). In particular, for some 0< δ < β/4, the
bracket map defines a map from Xu(x, δ) to Xu(y, εY ) via

w 7→ [w, y].

We denote this map by h and consider U = h(Xu(x̃, δ)), which is an open subset of
Xu(ỹ, εY ). Moreover, if z ∈U , then by the definition of the bracket, z ∈ X s(w, β/2) and
by Theorem 3.4, z0 = w0. It follows that π0(U )= π0(Xu(x̃, δ)) and hence that x∼0 y. �

PROPOSITION 4.13. For any x ∈ Xu(P), the equivalence class [x]0 is an infinite discrete
set.

Proof. Since the equivalence relation ∼0 is étale, the set [x]0 is discrete. Using
Theorem 3.4 and the previous result, we have the following inclusions:

ϕK0(X s(x, εX )) ∩ Xu(P)⊆ {y ∈ Xu(P) | yK0 = xK0} ⊆ [x]0.

Moreover, the set ϕK0(X s(x, εX )) ∩ Xu(P) is infinite because (X, ϕ) is mixing. The result
then follows. �

PROPOSITION 4.14. Given x ∈ Y , there are finitely many equivalence classes of the form
[x]0 where π0(x)= x.

Proof. Fix x ∈ Y . Since g : Y → Y is finite-to-one (by [27, Lemma 3.4]) the set g−K0{x}
is finite. If x satisfies π0(x)= x , then xK0 ∈ g−K0{x}. By Lemma 4.12 if [x]0 6= [y]0, then
xK0 6= yK0 . It follows that the cardinality of {[x]0 | π0(x)= x} is less than or equal to the
cardinality of g−K0({x}), which is finite. �

We now use our equivalence relation∼0 to define an increasing sequence of equivalence
relations.

Definition 4.15. For each k ∈ N, we define

Gk(P) := {(x, y) ∈ Xu(P)× Xu(P) | ϕk(x)∼0 ϕ
k(y)}.

and write x∼k y when (x, y) ∈ Gk(P).
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FIGURE 4. ∼0 for aab/ab solenoid.

FIGURE 5. ∼1 for aab/ab solenoid.

In the special case of the aab/ab-solenoid, recall that ∼0 has the form shown in
Figure 4. Drawn on the same scale, the relation ∼1 (in this special case) takes the form
shown in Figure 5. Observe that p 6∼0 q, but p∼1 q. These two tilings of the line Xu(P)
are the same, up to homeomorphism.

Returning to the general case, the next result follows directly from the definitions and
by construction.

PROPOSITION 4.16. For each k ∈ N, Gk(P) is an open subgroupoid of Gs(P) and
Gk(P)⊆ Gk+1(P). Moreover, the map ϕk

× ϕk
: Gk(P)→ G0(P) is an isomorphism of

topological groupoids.

THEOREM 4.17. As topological groupoids,⋃
k∈N

Gk(P)= Gs(P),

where we take the inductive limit topology on the left-hand side. Moreover, C∗(Gs(P)) is
isomorphic to the stationary inductive limit:

lim
−→
(C∗(G0(P)), ψ),

whereψ is obtained as the composition of the inclusion C∗(G0(P))⊆ C∗(G1(P)) followed
by the isomorphism C∗(G1(P))∼= C∗(G0(P)).

Proof. Using Proposition 4.16 (i.e., the previous proposition) the inductive limit
decomposition of C∗(Gs(P)) follows once we obtain the groupoid decomposition⋃

k∈N
Gk(P)= Gs(P).

Therefore, we need only show that if x∼s y, then there exists k ∈ N such that x∼k y.
As such, suppose x∼s y. Then there exists l ∈ N such that gl(x0)= gl(y0). Then
ϕl+K0(x)∼0 ϕ

l+K0(y) by Lemma 4.12 and hence that x∼l+K0 y. �

Let us be more explicit about ψ , which is the composition

ψ : C∗(G0(P))
ι

−−−−→ C∗(G1(P))
(ϕ−1
×ϕ−1)∗

−−−−−−−→ C∗(G0(P)),
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FIGURE 6. Xu(P)/∼0 for the aab/ab solenoid.

where ι is induced by the open inclusion G0(P) ↪→ G1(P) (extending functions by zero)
and the second map is the isomorphism induced by pulling back functions via the groupoid
isomorphism ϕ−1

× ϕ−1. On a function f ∈ C∗(G0(P)), ψ is explicitly given by

ψ( f )(x, y)= f (ϕ−1(x), ϕ−1(y)).

Note that we may have ϕ−1(x)∼1 ϕ
−1(y) and yet ϕ−1(x) 6∼0 ϕ

−1(y). Here it is
understood that f (ϕ−1(x), ϕ−1(y))= 0.

5. The quotient space Xu(P)/∼0

In this section, we will prove that the quotient space Xu(P)/∼0 is a compact,
locally Hausdorff space, and we will establish properties of various maps between
Xu(P), Xu(P)/∼0, and Y . Before proceeding with the general theory, we consider the
case when g is a local homeomorphism and then our running example (i.e., the aab/ab-
solenoid).

Example 5.1. Consider the case where g : Y → Y is a local homeomorphism. As
discussed in Example 4.5, π0 : Xu(P)→ Y is a covering map in this case, and
consequently x∼0 y if and only if π0(x)= π0(y). Thus Xu(P)/∼0 ∼= Y .

Example 5.2. The aab/ab-solenoid is an example where Xu(P)/∼0 is not Hausdorff. The
quotient space is pictured in Figure 6.

The point p ∈ Y split into three non-Hausdorff points, denoted ab, ba, aa. These points
correspond to the three different ∼0-equivalence classes for ‘integer’ points, as seen in
Figure 3. Open neighborhoods of these three points are pictured in Figure 7.

PROPOSITION 5.3. The quotient map q : Xu(P)→ Xu(P)/∼0 is a local homeomorphism.
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FIGURE 7. Open neighborhoods of the three non-Hausdorff points in Xu(P)/∼0 for the aab/ab solenoid.

Proof. The groupoid G0(P) is étale by Proposition 4.10. Hence [4, Lemma 4.2] implies
that q is a local homeomorphism. �

COROLLARY 5.4. The quotient space Xu(P)/∼0 is locally metrizable. In particular, it is
locally Hausdorff.

Proof. The space Xu(P) is metrizable because its topology is locally compact and
Hausdorff, see, for example, [13, Theorem 2.10]. The result follows because q is a local
homeomorphism. �

Definition 5.5. We let r : Xu(P)/∼0→ Y be the map defined via

[(xi )i∈N] 7→ x0.

Note that r is well defined by the first condition in the definition of ∼0. Moreover,
r ◦ q = π0 : Xu(P)→ Y , where q denotes the quotient map Xu(P)→ Xu(P)/∼0. By
Proposition 4.14, r is finite-to-one. Since q is a local homeomorphism and π0 is a local
embedding, it follows that r is a local embedding.

Definition 5.6. We let g̃ : Xu(P)/∼0→ Xu(P)/∼0 be the map defined via

[x]0 7→ [ϕ(x)]0, equivalently [(xi )i∈N]0 7→ [(g(xi ))i∈N]0.

THEOREM 5.7. The map g̃ defined in the previous definition is a finite-to-one, surjective,
local homeomorphism. Moreover, it fits into the following commutative diagram:

Xu(P)
ϕ

−−−−→ Xu(P)

q
y q

y
Xu(P)/∼0

g̃
−−−−→ Xu(P)/∼0

r
y r

y
Y

g
−−−−→ Y

Proof. If x∼0 y, then x∼1 y because G0(P)⊆ G1(P). So ϕ(x)∼0 ϕ(y) and consequently
g̃ is well defined. The commutativity of the diagram is immediate. The stated properties of
g̃ follow from the commutativity of the diagram and the properties of the other maps: ϕ is
a homeomorphism, q is a surjective local homeomorphism, and r and g are finite-to-one.

�

Example 5.8. Recall that the quotient space for the aab/ab-solenoid has the form shown
in Figure 8.

The map g̃ is exactly like g for all points excluding s, t, v, ab, ba, aa. For these points,

g̃(s)= aa, g̃(t)= g̃(v)= ab, g̃(ab)= g̃(ba)= g̃(aa)= ba.
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FIGURE 8. Xu(P)/∼0 for the aab/ab solenoid.

We need some lemmas before proving Xu(P)/∼0 is compact.

LEMMA 5.9. There exists K1 > 0 such that the map

π0|ϕK1 (Xu(P,β/4)) : ϕ
K1(Xu(P, β/4))→ Y

is onto.

Proof. Since (X, ϕ) is mixing, Xu(P) is dense in X and hence, the map π0|Xu(P)
is onto. Secondly, using Theorem 2.3 and the fact that P is ϕ-invariant, Xu(P)=⋃

k∈N ϕ
k(Xu(P, β/2)). For each y ∈ Y , let ky be the smallest natural number such that

B
(

y,
β

4

)
⊆ π0

(
ϕky

(
Xu
(

P,
β

4

)))
.

Then {B(y, β/4)}y∈Y is an open cover of Y and since Y is compact it has a finite subcover,
which we denote by {B(yi , β/4)}mi=1. Then K1 =max{kyi | 1≤ i ≤ m} has the required
property. �

LEMMA 5.10. There exists K2 > 0 such that, for any x ∈ Xu(P), there exists x̃ ∈
ϕK2(Xu(P, β/2)) and x∼0 x̃.

Proof. Let K1 be as in the previous lemma. We show K2 = K0 + K1 + 1 has the required
property. Suppose x ∈ Xu(P). Then xK0 ∈ Y and there exists y ∈ Xu(P, β/2) such that
π0(ϕ

K1(y))= xK0 . It follows that

x̃ := (x0, x1, . . . , xK0 , gK1−1(y0), . . . , g(y0), y0, y1, . . .)

is an element of ϕK2(Xu(P, β/2)). Moreover, by Lemma 4.12, x̃∼0 x. Thus K2 has the
required property. �
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The previous result somewhat informally implies that the relation ∼0 is ‘local’; more
precisely, we have the following result.

COROLLARY 5.11. There exists an étale equivalence relation on Xu(P, εX ) with respect
to the subspace topology such that the associated C∗-algebra is Morita equivalent to
C∗(G0(P)).

In specific cases the local unstable set (i.e., Xu(P, εX )) is quite tractable. For example,
in the case of a Williams solenoid it is always a finite disjoint union of open balls in
Euclidean space.

PROPOSITION 5.12. The topological space Xu(P)/∼0 is compact.

Proof. Let {Uα}α∈3 be an open cover of Xu(P)/∼0. We show it has a finite subcover.
As above, q : Xu(P)→ Xu(P)/∼0 denotes the quotient map. By the definition of the
quotient topology, {q−1(Uα)}α∈3 is an open cover of Xu(P). Suppose K2 > 0 satisfies
the conditions of the previous lemma and note that {q−1(Uα)}α∈3 is an open cover of the
compact set ϕK2(Xu(P, β/2)). As such there is a finite subcover of ϕK2(Xu(P, β/2)), we
denote it by {q−1(Uαi )}

m
i=1.

We show that {Uαi }
m
i=1 covers Xu(P)/∼0. Suppose [x] ∈ Xu(P)/∼0. By the previous

lemma there exists x̃ ∈ ϕK2(Xu(P, β/2)) and x̃∼0 x. Since {q−1(Uαi )}
m
i=1 covers

ϕK2(Xu(P, β/2)), there exists αi0 such that x̃ ∈ q−1(Uαi0
). Hence [x]0 = [̃x]0 ∈Uαi0

as
required. �

6. The structure of C∗(G0(P))
We now consider the structure of C∗(G0(P)) in more detail.

THEOREM 6.1. The C∗-algebra, C∗(G0(P)) is a Fell algebra with trivial Dixmier–
Douady invariant and spectrum Xu(P)/∼0.

Proof. The quotient map q : Xu(P)→ Xu(P)/∼0 is a local homeomorphism. Therefore
G0(P) is the groupoid of an equivalence relation induced by a local homeomorphism, as
in [4]. The statement then follows from [4, Theorem 6.1]. �

COROLLARY 6.2. Suppose that Xu(P)/∼0 is Hausdorff. Then, we have that

C∗(G0(P))∼= C(Xu(P)/∼0)⊗K(H).

Proof. Since Xu(P)/∼0 is Hausdorff, C∗(G0(P)) is a continuous-trace C∗-algebra with
trivial Dixmier–Douady invariant. Using this and the fact that Xu(P)/∼0 is compact, we
have that C∗(G0(P)) is Morita equivalence to C(Xu(P)/∼0). Finally, C∗(G0(P)) is stable
(see Appendix A), which implies the result. �

Example 6.3. If g : Y → Y is a local homeomorphism, then by Example 5.1
Xu(P)/∼0 = Y and the previous corollary then implies that in this special case
C∗(G0(P))∼= C(Y )⊗K(H).

Returning to the case of an arbitrary Wieler solenoid, we have the following theorem.
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THEOREM 6.4. There exist finitely many ideals I1, . . . , IN of C∗(G0(P)) that generate
C∗(G0(P)), each of which has the form

Ii ∼= C0(X i )⊗K(H)
for some locally compact Hausdorff space X i .

Proof. The space Xu(P)/∼0 is compact and locally Hausdorff. As such, there exists
a finite open cover {Ui }

N
i=1 such that Ui is Hausdorff in the subspace topology. Let

q : Xu(P)→ Xu(P)/∼0 denote the quotient map. Using the definition of the quotient
topology, {q−1(Ui )}

N
i=1 is an open cover of Xu(P). Moreover, for each i , q−1(Ui ) is a

G0(P)-invariant subset.
General properties of étale groupoids imply that, for each i , C∗(G0(P)|q−1(Ui )

) is
an ideal in C∗(G0(P)). Using the fact that Ui is Hausdorff for each i , we have that
C∗(G0(P)|q−1(Ui )

) is a continuous-trace C∗-algebra with spectrum Ui and trivial Dixmier–
Douady invariant. Moreover, since they are ideals in a stable C∗-algebra, they are also
stable. �

Remark 6.5. The open cover {Ui }
N
i=1 of Xu(P)/∼0 in the previous theorem can be taken

to have a special form: using the same method as in Corollary 5.11, one can show that each
open set in the cover can be taken to be homeomorphic to an open subset of Xu(P, εX ).

Example 6.6. For the aab/ab-solenoid, the open cover discussed the previous theorem
and remark can be taken to be the three open sets in Figure 7 along with two more open
intervals, each one is a circle with the points aa, ab, ba removed.

7. Dynamic asymptotic dimension, nuclear dimension, and holomorphic functional
calculus

Here we will show that the étale groupoid G0(P) has dynamic asymptotic dimension
zero, as defined in [10]. It follows that there is a bound on the nuclear dimension
of C∗(G0(P)) and that the dense subalgebra Cc(G0(P)) is closed under holomorphic
functional calculus in C∗(G0(P)). Only the latter of these results will be used in the rest
of the paper. However, it follows from the former and the inductive limit in Theorem 4.17
that C∗(Gs(P)) has finite nuclear dimension. Although this is a special case of the main
result of [6], it illustrates how properties of C∗(G0(P)) pass to C∗(Gs(P)). For more on
nuclear dimension and its importance see [32] and [31]. One can also see [6] for more on
dynamic asymptotic dimension and nuclear dimension in the context of Smale spaces.

The groupoid G0(P) is an example of a groupoid of a local homeomorphism, as studied
in [4]. The results of this section hold in this more general setting. We temporarily abandon
our Smale space to consider the following situation. Let X be a second countable, locally
compact, Hausdorff topological space. Let Y be another topological space and let q : X→
Y be a surjective local homeomorphism. Then q determines an equivalence relation∼q on
X defined by x ∼q x ′ if and only if q(x)= q(x ′). Let

R(q)= {(x, x ′) ∈ X × X | q(x)= q(x ′)}

be the corresponding groupoid, topologized as a subspace of X × X . As shown in [4],
R(q) is locally compact, Hausdorff, principal, and étale. Observe that our main groupoid
G0(P) is R(q) for q : Xu(P)→ Xu(P)/∼0.
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LEMMA 7.1.
(1) Let K ⊆ X be compact. There exists N ∈ N such that, for all x ∈ X, the set {x ′ ∈ K |

x ∼q x ′} contains at most N elements.
(2) Let K̂ ⊆ R(q) be compact. There exists M ∈ N such that, for all x ∈ X, the set

{(x ′, x ′′) ∈ K̂ | x ∼q x ′ ∼q x ′′} contains at most M elements.

Proof. Since q is a local homeomorphism and K is compact, we can cover K with finitely
many open sets, say U1, . . . ,UN , such that the restriction q|Ui is a homeomorphism
onto its image. Given x ∈ X , it follows that each Ui contains at most one member of
the equivalence class [x], and this proves (1).

For (2), let s, r : R(q)→ X denote the source and range maps for the groupoid, which
are just the projections onto each coordinate. Let K1 = s(K̂ ) and K2 = r(K̂ ), both of
which are compact subsets of X . Let N1 and N2 denote the constants obtained by applying
(1) to K1 and K2, respectively, and let M = N1 N2. If (x ′, x ′′) ∈ K̂ and x ∼q x ′ ∼q x ′′,
then there are at most N1 possibilities for x ′ and N2 possibilities for x ′′. �

LEMMA 7.2. Let K̂ ⊆ R(q) be compact. Then the subgroupoid generated by K̂ is
compact.

Proof. Without loss of generality, assume K̂ is closed under inverses and units. Then the
subgroupoid generated by K̂ is

⋃
∞

n=1 K̂ n . Note that K̂ n is compact for each n. However,
if M is as in the previous lemma, then we see that

⋃
∞

n=1 K̂ n
=
⋃M

n=1 K̂ n is compact. �

As defined in [10], a groupoid has dynamic asymptotic dimension zero if and only if it
is the union of open, relatively compact subgroupoids.

PROPOSITION 7.3. The groupoid R(q) has dynamic asymptotic dimension zero.
Consequently, the nuclear dimension of C∗r (R(q)) is at most the topological covering
dimension of X.

Proof. Since R(q) is locally compact, we can write R(q)=
⋃

Vα where each Vα is a
relatively compact open subset. Let Gα be the subgroupoid generated by Vα . Note Gα is
open by [10, Lemma 5.2]. Clearly, R(q)=

⋃
Gα . Further, Gα is relatively compact as

it is contained within the subgroupoid generated by Vα , which is compact by the previous
lemma.

The assertion about nuclear dimension follows immediately from [10, Theorem 8.6].
Note that we assumed X to be second countable, which implies that strong dynamic
asymptotic dimension coincides with dynamic asymptotic dimension. �

PROPOSITION 7.4. The dense subalgebra Cc(R(q))⊆ C∗r (R(q)) is closed under the
holomorphic functional calculus. Consequently, this inclusion induces an isomorphism
K0(Cc(R(q)))∼= K0(C∗r (R(q))).

In the statement above, K0(Cc(R(q))) denotes the algebraic K0-group of Cc(R(q)).
Note that Cc(R(q)) is not a C∗-algebra, in general. Also, recall that the operator K0-group
of a C∗-algebra is isomorphic to its algebraic K0-group.
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Proof. Let f ∈ Cc(R(q)). We will show that the C∗-subalgebra generated by f is
contained in Cc(R(q)). Observe that

supp( f ∗)= (supp f )−1, supp( f ∗ g)⊆ (supp f )(supp g)

for any other g ∈ Cc(R(q)). Let H be the subgroupoid generated by supp f , which
is compact by the previous lemma. It follows that every function in the ∗-subalgebra
generated by f has support contained within H .

Since R(q) is étale, the inclusion Cc(R(q))→ C0(R(q)) extends to a continuous
inclusion C∗r (R(q))→ C0(R(q)), see [20, Proposition 4.2]. It follows that the set of
functions in Cc(R(q)) whose support is contained within H is closed in C∗r (R(q)).
Consequently, the C∗-subalgebra generated by f is contained within Cc(R(q)). Since
C∗-algebras are closed under holomorphic functional calculus, this proves that Cc(R(q))
is closed under holomorphic functional calculus. �

Returning to our groupoid G0(P), we have proved the following.

THEOREM 7.5. Let N denote the topological covering dimension of Xu(P).
(1) The groupoid G0(P) has dynamic asymptotic dimension zero.
(2) The nuclear dimension of C∗(G0(P)) is at most N .
(3) The nuclear dimension of C∗(Gs(P)) is at most N .
(4) Inclusion induces an isomorphism K0(Cc(G0(P)))∼= K0(C∗(G0(P))).

Note that the third assertion follows from our inductive limit structure and the general
behavior of nuclear dimension with respect to inductive limits [32]. Bounds on the nuclear
dimension of C∗-algebras associated to general Smale spaces were first obtained in [6].
The bound on nuclear dimension obtained in [6] also used dynamic asymptotic dimension.

8. Further remarks on the structure of the spaces
The relationships between the spaces Xu(P), Xu(P)/∼0 and Y along with the maps
between them are discussed further in this section. Recall there is a commutative diagram

Xu(P)
ϕ

−−−−→ Xu(P)

q
y q

y
Xu(P)/∼0

g̃
−−−−→ Xu(P)/∼0

r
y r

y
Y

g
−−−−→ Y

The map q : Xu(P)→ Xu(P)/∼0 is a local homeomorphism, but it is not a covering map
in general. We prove a weaker result, Theorem 8.3, which shows that q has properties
reminiscient of a covering map.

LEMMA 8.1. If y ∈ Y with r−1(y)= {r1, . . . , rl} and {Ui }
l
i=1 is a collection of Hausdorff

neighborhoods of the ri ’s, then there exists δ > 0, such that, for each 0< δ′ ≤ δ,

r−1(B(y, δ′))⊆
l⋃

i=1

Ui .
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Proof. For each i = 1, . . . , l, let Ui be a Hausdorff neighborhood of ri . Suppose that
no δ > 0 exists. Then there is a sequence (ws)s∈N in Xu(P)/∼0 such that (r(ws))s∈N
converges to y but for all s, ws /∈

⋃l
i=1 Ui . Using Lemma 5.9, there exists a sequence

(xs)s∈N in Xu(P) such that q(xs)= ws for each s and (xs)s∈N is contained in a compact
subset of Xu(P).

Hence, there exists a convergent subsequence, (xsk )k∈N. Let x denote its limit and note
that π0(x)= y. It follows that q(x) ∈ r−1({y}) and that for k large enough q(xsk )= wsk is
an element of

⋃l
i=1 Ui . This is a contradiction. �

LEMMA 8.2. For each x ∈ Xu(P) there exists δ > 0 such that, for each open set U ⊆
Xu(x, δ), we have that for each xi ∼0 x there exists maps

hi :U → Xu(xi , εY )

such that, for each i ,
(1) hi is a homeomorphism onto its image and maps x to xi ;
(2) q|U = (q ◦ hi )|U = q|hi (U );
(3) q|U is a homeomorphism onto its image in Xu(P)/∼0;
(4) hi (Xu(x, δ)) ∩ h j (Xu(x, δ))= ∅ whenever xi 6= x j .

Proof. Since q is a local homeomorphism, condition (3) can be obtained by taking δ small.
To begin, we prove the result for a single x′ ∼0 x. By the definition of ∼0 and

Lemma 4.7, there exists δ > 0 (depending on both x and x′) and map h : Xu(x, δ)→
Xu(x′, εY ) such that:
(i) h is a homeomorphism onto its image and maps x to x′;
(ii) for each z ∈ Xu(x, δ)), we have π0(z)= π0(h(z)).
In fact, because the second condition in the definition of ∼0 is an open condition, we have
that z∼0 h(z) so that q(z)= q(h(z)) for each z ∈ Xu(x, δ).

An induction argument implies that we have that conditions (1)–(4) hold for any finite
set {x1, . . . , xl} where for each i , xi ∼0 x.

Continuing, we consider another special case. Suppose x′ ∈ Xu(P) and πK0(x′)=
πK0(x). Note that in particular that it follows that x′ ∼0 x and d(x′, x) < εY (see
Lemmas 4.2 and 4.12). We will show that there is a δ > 0 (independent of the choice
of x′) and h : Xu(x, δ)→ Xu(x′, εY ) such that:
(i) h is a homeomorphism onto its image and maps x to x′;
(ii) for each z ∈ Xu(x, δ)), we have π0(z)= π0(h(z)).
For h, we take the map Xu(x, δ)→ Xu(x′, εY ) via

z 7→ [z, x′].

The definition and properties of bracket for a Wieler solenoid (see [27, Lemmas 3.1 and
3.3]) imply that h has properties (i) and (ii). Again, because the second condition in the
definition of ∼0 is an open condition, we have that z∼0 h(z) so that q(z)= q(h(z)) for
each z ∈ Xu(x, δ). This implies that conditions (1)–(3) in the statement of the lemma hold
in this special case. Finally, condition (4) holds since [27, Lemma 3.3] implies that if
πK0(z)= πK0(z′) for z, z′ in Xu(x, εY ), then z= z′.
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Given x, we denote the associated constant by δx,K0 to emphasize its dependence on x
and K0 and its independence from x′.

We now prove the general case. Fix x ∈ Xu(P). Since the maps g : Y → Y and r :
Xu(P)/∼0→ Y are each finite-to-one, there exists a finite set F ⊆ [x]0 such that if x′ ∼0

x, then there exists x̂ ∈ F such that πK0(x̂)= πK0(x′).
Let δ1 > 0 be the constant obtained by applying the special case of a finite subset to the

set F . For each x̂ ∈ F we have δx̂,K0 > 0. Take δ > 0 such that:
(a) δ < δ1;
(b) δ <minx̂∈F {δx̂,K0};
(c) For each x̂ ∈ F , the map h : Xu(x, δ)→ Xu(x̂, εX ) has an image contained in

Xu(x, δx̂,K0).
Suppose U ⊆ Xu(x, δ) is an open set and x̃∼0 x. Then by construction there exists x̂ ∈ F
such that x̃K0 = x̂K0 . Hence, there exists hx̂ : Xu(x̂, δx̂,K0)→ Xu(x̃, εX ) that satisfies the
statement of the lemma. Moreover, since x̂ ∈ F there exists h : Xu(x, δ1)→ Xu(x̂, εX )

that satisfies the statement of the lemma.
We will show that hx̂ ◦ h :U ⊆ Xu(x, δ)→ Xu(x̃, εX ) satisfies conditions (1)–(4) in

the statement of the lemma. To see this note that hx̂ ◦ h is well defined by properties (a)–(c)
(i.e., the defining properties of δ) and it is the composition of two local homeomorphisms.
This implies condition (1) holds. That conditions (2) and (3) hold follows from the
two special cases discussed above. Finally, condition (4) can be obtained by possibly
decreasing δ further (note that there exists a global constant ε̂ > 0 such that if x0 = x̃0 and
x ∈ Xu(x̃, ε̂), then x= x̃). �

THEOREM 8.3. Given y ∈ Y with r−1({y})= {r1, . . . , rl} there is an open neighborhood
W of y in Y, open neighborhoods Ui of each ri in Xu(P)/∼0 and a collection of disjoint
open sets in Xu(P) {Vx}x∈π−1

0 ({y}) such that:

(1) r−1(W )=
⋃l

i=1 Ui ;
(2) x ∈ Vx for each x;
(3) π−1

0 (W )=
⋃

x∈π−1
0 ({y}) Vx;

(4) for each x ∈ π−1({y}), q|Vx is a homeomorphism onto its image and moreover this
image is Ui where q(x)= ri .

Proof. Fix y ∈ Y with r−1({y})= {r1, . . . , rl}. Since q is onto, for each i = 1, . . . , l,
we can find xi ∈ Xu(P) such that q(xi )= ri . Since q is a local homeomorphism and
Xu(P)/∼0 is locally Hausdorff, there exists a collection of disjoint open sets {Ṽi }

l
i=1 such

that:
(i) xi ∈ Ṽi for each i ;
(ii) q|Ṽi

is a homeomorphism onto its image;
(iii) for each i , the open set Ũi := q|Ṽi

(Ṽi ) is a Hausdorff neighborhood of ri ;
(iv) the conclusion of Lemma 8.2 applies to each Ṽi .
Condition (iii) implies that we can apply Lemma 8.1 to {Ũi }

l
i=1 and hence find δ > 0 such

that

r−1(B(y, δ))⊆
l⋃

i=1

Ũi .
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For each i = 0, . . . , l, let Ui := r−1(B(y, δ)) ∩ Ũi . For each x ∈ π−1
0 ({y})) there exists

a unique i such that q(x)= q(xi )= ri and by (iv) there exists homeomorphism onto its
image, h|Ṽi

: Ṽi → Xu(x, εY ). We let Vx := h|Ṽi
((q|Ũi

)−1(Ui )) where we have used (iii)
to ensure that (q|Ũi

)−1 is well defined.
We must show that the set W := B(y, δ) along with collections {Ui }

l
i=1 and

{Vx}x∈π−1
0 ({y})) satisfy (1)–(4). Condition (1) holds since r−1(B(y, δ))⊆

⋃l
i=1 Ũi and

the way we defined Ui . Condition (2) holds since given x the local homeomorphism h
maps xi to x.

The proof of condition (3) is as follows:

π−1
0 (W )= (r ◦ q)−1(W )= q−1

( l⋃
i=1

Ui

)
=

l⋃
i=1

q−1(Ui ).

For each i , q−1(Ui )=
⋃

x∈q−1(ri )
Vx by Lemma 8.2 (in particular, we are using

condition (2) in the statement of that lemma). Condition (3) now follows by taking the
union over i = 0, . . . , l.

Finally for condition (4), fix x ∈ Xu(P) such π0(x)= y. It follows that q(x)= q(xi )=

ri (for some fixed unique i). When considering Lemma 8.2 for points that are equal rather
than just equivalent we can take h to be the identity map. Hence, Vxi = (q|Ũi

)−1(Ui )

from which it follows that q|Vxi
is a homeomorphism onto its image, which is Ui . For

Vx = h|Ṽi
((q|Ũi

)−1(Ui )), we have the result since q ◦ h|Ṽi
= q|Ũi

by condition (2) in the
statement of Lemma 8.2. �

9. Traces on Cc(G0(P))
In this section, we will consider a family of traces on Cc(G0(P)), which are parametrized
by the points of Xu(P)/∼0. These traces do not extend to the C∗-algebra C∗(G0(P)),
but the induced maps on K -theory can be viewed as homomorphisms defined on
K0(C∗(G0(P))) by Theorem 7.5. This family of traces can be used as a computational
tool to understand the inductive limit structure of the K0-group of C∗(Gs(P)).

To every x ∈ Xu(P), we define a linear functional

τx : Cc(G0(P))→ C, τx( f )=
∑
y∼0x

f (y, y).

Observe that τx depends only on the equivalence class [x]0. Since [x]0 is discrete, the
sum defining τx( f ) is actually a finite sum for any compactly supported f . Note that the
expression

τx( f g)=
∑
y∼0x

∑
z∼0x

f (y, z)g(z, y)

is symmetric in f and g, showing that τx is a trace. Additionally

τx( f ∗ f )=
∑
y∼0x

∑
z∼0x
| f (z, y)|2 ≥ 0,

which shows that τx is a positive trace and τx( f ∗ f )= 0 if and only if f vanishes on the
equivalence class of x.
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Let F(Xu(P)/∼0) denote the vector space of (not necessarily continuous) complex-
valued functions on Xu(P)/∼0. Define

τ : Cc(G0(P))→ F(Xu(P)/∼0), τ ( f )([x]0)= τx( f ),

which is a trace that takes values in the vector space F(Xu(P)/∼0). Note that τ is positive
in the sense that τ( f ∗ f ) is a non-negative function, and τ is faithful in the sense that
τ( f ∗ f )= 0 if and only if f = 0. The function τ( f ) need not be a continuous function on
Xu(P)/∼0, but it retains some vestiges of continuity, as seen in Proposition 9.2 below.

We will call a point [x]0 ∈ Xu(P)/∼0 Hausdorff if every net in Xu(P)/∼0 that
converges to [x]0 has a unique limit. It follows that Xu(P)/∼0 is Hausdorff if and only if
every point in Xu(P)/∼0 is Hausdorff.

LEMMA 9.1. Any convergent net in Xu(P)/∼0 has at most finitely many limits.

Proof. All limits of a convergent net ([xλ]0)λ∈3 in Xu(P)/∼0 have the same image under
r : Xu(P)/∼0→ Y by continuity and the fact that Y is Hausdorff. The result follows
because r is finite-to-one. �

Suppose ([xn]0)n∈N is a sequence in Xu(P)/∼0 and ([xnk ]0)k∈N is a subsequence.
Then every limit of ([xn]0)n∈N is also a limit of ([xnk ]0)k∈N. However, it is possible that
([xnk ]0)k∈N has limits, which are not limits of the original sequence ([xn]0)n∈N. We shall
need to consider situations that avoid this pathology.

PROPOSITION 9.2. Suppose ([xn]0)n∈N is a convergent sequence in Xu(P)/∼0. Let L
denote the set of all limits of ([xn]0)n∈N, and assume that every subsequence of ([xn]0)n∈N
has the same set of limits. Then for any f ∈ Cc(G0(P)),

lim
n→∞

τxn ( f )=
∑
[w]0∈L

τw( f ).

Proof. Since r is continuous and Y is Hausdorff, the sequence (r([xn]0))n∈N converges
to a unique limit y ∈ Y . Write r−1

{y} = {r1, . . . , rl} where r1, . . . , rm ∈ L and
rm+1, . . . , rl /∈ L . Let W, {Ui }

l
i=1, {Vx}x∈π−1

0 {y}
be as in Theorem 8.3. We claim that

there is a positive integer N such that:
• if 1≤ i ≤ m, then [xn]0 ∈Ui for all n ≥ N ;
• if m + 1≤ i ≤ l, then [xn]0 /∈Ui for all n ≥ N .
Since each Ui is a neighborhood of ri , the first condition can easily be arranged by the
definition of limit. Suppose for a contradiction that the second condition is impossible to
arrange. It follows that for some i ∈ {m + 1, . . . , l}, the set Ui contains infinitely many
points in the sequence ([xn]0)n∈N. So we can construct a subsequence ([xn j ]0) j∈N, which
is contained entirely in Ui . But r is a local embedding, so there is an open neighborhood
U ′i ⊆Ui of ri such that r |U ′i :U

′

i → r(U ′i ) is a homeomorphism. The subsequence
(r([xn j ]0)) j∈N converges to y in r(U ′i ), which means that ([xn j ]0) j∈N converges to
ri = (r |U ′i )

−1(y). This contradicts the assumptions on ([xn]0)n∈N.
Without loss of generality, suppose [xn]0 ∈Ui for all n if 1≤ i ≤ m, and [xn]0 /∈Ui

for all n if m + 1≤ i ≤ l. Let x ∈ π−1
0 {y} and suppose q(x)= ri . If 1≤ i ≤ m, then

(q|−1
Vx
([xn]0))n∈N is a lift of the sequence ([xn]0)n∈N to Vx, which converges to x ∈ Vx. On
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the other hand, if m + 1≤ i ≤ l, then none of the points in Vx is a lift under q of a point
of the sequence ([xn]0)n∈N. Since [xn]0 ∈Ui for 1≤ i ≤ m, but not for m + 1≤ i ≤ l, it
follows that the equivalence class [xn]0 coincides with the set

{(q|Vx)
−1([xn]0) ∈ Xu(P) | q(x)= ri for some 1≤ i ≤ m}.

Now let f ∈ Cc(G0(P)). It follows from the above that

τxn ( f )=
∑

z∼0xn

f (z, z)=
m∑

i=1

∑
x∈q−1{ri }

f (q|−1
Vx
([xn]0), q|−1

Vx
([xn]0)).

Since f has compact support, there are only finitely many x ∈ π−1
0 {y} for which f (z, z) 6=

0 for some z ∈ Vx. Thus, the double sum above is actually a finite sum. Since f is
continuous,

lim
n→∞

τxn ( f )=
m∑

i=1

∑
x∈q−1{ri }

lim
n→∞

f (q|−1
Vx
([xn]0), q|−1

Vx
([xn]0))

=

m∑
i=1

∑
x∈q−1{ri }

f (x, x)

=

m∑
i=1

τri ( f )

as desired. �

COROLLARY 9.3. For any f ∈ Cc(G0(P)), the function τ( f ) is continuous when
restricted to the subset of Hausdorff points of Xu(P)/∼0.

Proof. Immediate from the Proposition 9.2 and the fact that Xu(P)/∼0 is locally
metrizable (so that sequential continuity implies continuity). �

Next we consider the pullbacks of these traces under the connecting homomorphism ψ

in our stationary inductive limit. Recall the map g̃ : Xu(P)/∼0→ Xu(P)/∼0, which can
be thought of as a lift of the original map g : Y → Y . The pullback of a trace τx is given in
terms of the g̃-pre-images of [x]0.

PROPOSITION 9.4. For any f ∈ Cc(G0(P)) and x ∈ Xu(P),

τx(ψ( f ))=
∑

[w]0∈g̃−1{[x]0}

τw( f ).

Proof. Using the explicit description of ψ given after Theorem 4.17, we have

τx(ψ( f ))=
∑
y∼0x

ψ( f )(y, y)

=

∑
y∼0x

f (ϕ−1(y), ϕ−1(y))

=

∑
z∈ϕ−1[x]0

f (z, z)
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=

∑
[w]0∈g̃−1{[x]0}

∑
v∼0w

f (v, v)

=

∑
[w]0∈g̃−1{[x]0}

τw( f ).

�

10. K -theory computations
Given [x]0 ∈ Xu(P)/∼0, let

Ix = { f ∈ Cc(G0(P)) | f (y, z)= 0 whenever y∼0 x∼0 z},

which is an ideal in Cc(G0(P)). Let Jx be the closure of Ix in C∗(G0(P)). Observe that the
quotient C∗(G0(P))/Jx naturally identifies with the compact operators K(`2([x]0)), and
the image of the natural homomorphism

Cc(G0(P))/Ix→ C∗(G0(P))/Jx ∼=K(`2([x]0))

consists of the set Kfin(`
2([x]0)) of all compact operators whose matrix (with respect to the

natural basis for `2([x]0)) has finitely many non-zero entries. Further, τx factors through
the usual trace tr :Kfin(`

2([x]0))→ C:

Cc(G0(P)) //

τx
''

Kfin(`
2([x]0))

tr
��

C

Although τx is not defined on all of C∗(G0(P)), we can view it as a homomorphism defined
on K0(C∗(G0(P))) by Theorem 7.5.

PROPOSITION 10.1. For any [x]0 ∈ Xu(P)/∼0, τx(K0(C∗(G0(P))))⊆ Z.

Proof. Follows from the above discussion and the fact that tr :Kfin(`
2([x]0))→ C is

integer-valued on projections. �

If Xu(P)/∼0 is Hausdorff, then K0(C∗(G0(P)))∼= K 0(Xu(P)/∼0) by Corollary 6.2.
Here, K0-classes are generated by vector bundles, and τx gives the dimension of the bundle
at a point [x]0 ∈ Xu(P)/∼0. If, additionally, Xu(P)/∼0 is connected, then [x]0 7→ τx(a) is
continuous and integer-valued for any a ∈ K0(C∗(G0(P))). Hence it is constant, and by a
slight abuse of notation we will denote the constant integer value by τ(a).

PROPOSITION 10.2. If Xu(P)/∼0 is Hausdorff and connected, then there is an integer
n ≥ 2 such that every [x]0 ∈ Xu(P)/∼0 has exactly n pre-images under g̃, and for any
a ∈ K0(C∗(G0(P))),

τ(ψ∗(a))= n · τ(a).

Proof. Consider the projection 1⊗ e ∈ C(Xu(P)/∼0)⊗K(H)∼= C∗(G0(P)), where e ∈
K(H) is a rank-one projection. We know τx(1⊗ e)= 1 for every x. By Proposition 9.4,

τx(ψ(1⊗ e))= #g̃−1
{[x]0}.
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But τx(ψ(1⊗ e)) is constant as a function of x, hence so is #g̃−1
{[x]0} =: n. If n = 1, then

g̃ is one-to-one. This implies g is one-to-one. Hence g is a homeomorphism, which is not
possible by Remark 3.2. Thus n ≥ 2.

For a general a ∈ K0(C∗(G0(P))), we apply Proposition 9.4 again and use the fact that
there are n pre-images to obtain

τ(ψ∗(a))= n · τ(a). �

THEOREM 10.3. Suppose Xu(P)/∼0 is Hausdorff and connected and n is as in
Proposition 10.2. Then there is an order-preserving surjective homomorphism

τ : K0(C∗(Gs(P)))→ Z[1/n].

In particular, K0(C∗(Gs(P))) is not finitely generated. If τ : K0(C∗(G0(P)))→ Z is an
isomorphism, then τ : K0(C∗(Gs(P)))→ Z[1/n] is an isomorphism.

Proof. The homomorphism τ : K0(C∗(G0(P)))→ Z induces a map of inductive
sequences:

K0(C∗(G0(P)))
ψ∗
−−−−→ K0(C∗(G0(P)))

ψ∗
−−−−→ K0(C∗(G0(P)))

ψ∗
−−−−→ . . .

τ

y τ

y τ

y
Z n

−−−−→ Z n
−−−−→ Z n

−−−−→ . . .

The vertical maps are surjective and order-preserving, therefore so is the induced map on
the inductive limits τ : K0(C∗(Gs(P)))→ Z[1/n]. �

The above result can be generalized to the case where Xu(P)/∼0 is Hausdorff, but
not necessarily connected. If a ∈ K0(C∗(G0(P)))∼= K 0(Xu(P)/∼0), then τ(a) is a
continuous integer-valued function on Xu(P)/∼0, and we have a surjection

τ : K0(C∗(G0(P)))→ C(Xu(P)/∼0, Z).

Using g̃, define a group homomorphism

g̃∗ : C(Xu(P)/∼0, Z)→ C(Xu(P)/∼0, Z), g̃∗(h)([x]0)=
∑

[w]0∈g̃−1{[x]0}

h([w]0),

which is well defined because g̃ is finite-to-one. Let D(Xu(P)/∼0, g̃) denote the inductive
limit of the sequence of groups

C(Xu(P)/∼0, Z)
g̃∗

−−−−→ C(Xu(P)/∼0, Z)
g̃∗

−−−−→ C(Xu(P)/∼0, Z)
g̃∗

−−−−→ · · ·

THEOREM 10.4. Suppose Xu(P)/∼0 is Hausdorff. Then there is an order-preserving
surjective homomorphism

τ : K0(C∗(Gs(P)))→D(Xu(P)/∼0, g̃).

If τ : K0(C∗(G0(P)))→ C(Xu(P)/∼0, Z) is an isomorphism, then it follows that τ :
K0(C∗(Gs(P)))→D(Xu(P)/∼0, g̃) is an isomorphism.
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Using Theorem 4.17, computing the K -theory of C∗(Gs(P)) reduces to two steps:
(1) computing the K -theory of C∗(G0(P));
(2) computing the map on K -theory induced by ψ .
Furthermore, often (when X is low dimensional. for example) Theorem 6.4 can be used
to complete the first of these two steps. The second step is usually more difficult. We will
illustrate how our results facilitate these computations in three examples: the n-solenoid,
subshifts of finite type and the aab/ab-solenoid. The first two are very well known and
easier to handle, as g is a local homeomorphism. The latter is also well known, see [33]
(and also [8, 9, 24, 25]), but the computation is much more interesting.

Example 10.5. (n-solenoid) Consider the n-solenoid, which arises from g : S1
→

S1, g(z)= zn . We take P= {(1, 1, 1, . . .)}. Here, Xu(P) is homeomorphic to R in such a
way that ∼0 is congruence mod Z and ϕ : Xu(P)→ Xu(P) is a dilation by a factor of n.

Since g is a local homeomorphism, we have C∗(G0(P))∼= C(S1)⊗K(H), and
consequently Ki (C∗(G0(P))∼= K i (S1)∼= Z for i = 0, 1. By Proposition 10.2, the con-
necting homomorphism ψ∗ : K0(C∗(G0(P)))→ K0(C∗(G0(P))) is simply multiplication
by n. Thus the map τ : K0(C∗(Gs(P)))→ Z[1/n] of Theorem 10.3 is an isomorphism.

The elements of K1(C∗(G0(P))) can all be represented by S1-valued functions on the
unit space Xu(P). The isomorphism K1(C∗(G0(P)))∼= Z is given by the winding number.
Since ϕ is an orientation-preserving dilation, we see that ψ preserves winding numbers.
So ψ∗ = id on K1(C∗(G0(P)), and consequently K1(C∗(Gs(P)))∼= Z.

Example 10.6. (Subshifts of finite type) Here Y =4 is a one-sided shift space (a
Cantor set), and g :4→4 is the shift map, which is a local homeomorphism (see
[27]). So K0(C∗(G0(P)))∼= K 0(4) and the trace τ : K0(C∗(G0(P)))→ C(4, Z) is an
isomorphism. It follows from Theorem 10.4 that K0(C∗(Gs(P)))∼=D(4, g). We leave
it to the interested reader to compute D(4, g) and reconcile it with the well-known
computation of the dimension group associated to a shift of finite type, see, for example,
[14, Ch. 7] or [17, Ch. 3]. We clearly have K1(C∗(Gs(P)))= 0 because K 1(4)= 0.

Next we will compute the K -theory groups for the stable C∗-algebra associated to the
aab/ab-solenoid. The techniques used in this example can be generalized to any one-
dimensional Williams solenoid. We note that the K -theory of such solenoids has also been
computed in [25, 30, 33].

Example 10.7. (aab/ab-solenoid) Consider the ideal J obtained from the open set
Ua ∪Ub via Theorem 6.4 where Ua and Ub are the two open sets in Example 6.6; each is
obtained by taking a circle in Y and removing p. This ideal is the completion of the space
of functions that vanish on the equivalence classes of the three non-Hausdorff points in
Xu(P)/∼0. Note that J is the C∗-algebra of the groupoid G0(P)|Ua∪Ub . We have a short
exact sequence:

0→ J → C∗(G0(P))→ C∗(G0(P))/J → 0.

By Theorem 8.3, G0(P)|Ua∪Ub is the groupoid of an equivalence relation induced by a
covering map with Hausdorff quotient Ua tUb. It follows that J = C∗(G0(P)|Ua∪Ub )

∼=

C0(Ua tUb)⊗K. Each of Ua,Ub is an open interval, so our short exact sequence
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becomes

0→ (C0(R)⊗K)⊕ (C0(R)⊗K)→ C∗(G0(P))→K⊕K⊕K→ 0.

Each K in the quotient corresponds to one of the non-Hausdorff points ba, ab, aa.
Applying K -theory and using

K0(C0(R))∼= {0}, K1(C0(R))∼= Z, K0(K)∼= Z, K1(K)∼= {0}

we obtain the following six-term exact sequence

0 −−−−→ K0(C∗(G0(P))) −−−−→ Z⊕ Z⊕ Zx δ0

y
0 ←−−−− K1(C∗(G0(P))) ←−−−− Z⊕ Z

Hence
K0(C∗(G0(P)))∼= ker(δ0) and K1(C∗(G0(P)))∼= coker(δ0)

and thus we need only to compute the boundary map δ0 (the exponential map).
To do so, it is useful to label the copies of Z with the relevant generators. We will write

K0 of the quotient algebra as Zba ⊕ Zab ⊕ Zaa . Each generator is a rank-one projection,
and the injection K0(C∗(G0|P)))→ Zba ⊕ Zab ⊕ Zaa from the diagram is given in terms
of the traces of §9 by τba ⊕ τab ⊕ τaa . In particular, these three traces completely detect
the K0-group of C∗(G0(P)).

We write K1(J ) as ZUa ⊕ ZUb . All K1 elements can be represented by S1-valued
functions on the unit space, and the two integers correspond to winding numbers associated
to the two different intervals a and b.

Now we compute δ0. Begin with the generator of Zba . Let x ∈ Xu(P) be an element
with [x]0 = ba. We can take a positive continuous bump function f on the unit space
Xu(P), supported over a very small interval, which is 1 at x to be a self-adjoint lift of the
generator of Zba . Then exp(2π i f ) has winding number 1 around b and−1 around a. That
is, δ0(1, 0, 0)= (−1, 1). Similarly, one shows δ0(0, 1, 0)= (1,−1) and δ0(0, 0, 1)=
(0, 0). Hence

δ0 =

[
−1 1 0
1 −1 0

]
: Zba ⊕ Zab ⊕ Zaa→ ZUa ⊕ ZUb .

It follows that

K0(C∗(G0(P)))∼= ker(8)∼= Z⊕ Z and K1(C∗(G0(P))))∼= coker(8)∼= Z.

As generators of K0(C∗(G0(P))), we take α = (1, 1, 0) and β = (0, 0, 1). Observe that
τba = τab on K0 because they are equal on α and β. Hence, K0 is completely detected by
just τba and τaa .

Next, we must compute the map on K -theory obtained from the map ψ in the inductive
limit. For K0, we use the results of §9. Using Corollary 9.3, we see that the homomorphism
τx : K0(C∗(G0(P)))→ Z does not depend on the choice of [x]0 ∈Ua by continuity and the
fact that it is integer-valued. We will refer to this homomorphism as simply τa . Similarly,
we have τb for any point on Ub.
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Next, consider a sequence of points ([xn]0)n∈N ∈Ua on the left half of Ua , which
converges towards the place where the three non-Hausdorff points are. This sequence
has two limits, namely ba and aa. It follows from Proposition 9.2 that (on K0)

τa = lim
n→∞

τa = lim
n→∞

τxn = τba + τaa .

Similarly, by considering a sequence on the right half of Ua that comes in from the other
side, we get

τa = τab + τaa .

This tells us how to evaluate τa , but it also gives a second proof that τba = τab on K0. By
similarly considering sequences on Ub, we obtain

τb = τab = τba .

Now we can compute ψ∗ on K0 using Proposition 9.4 and the results of Example 5.8.
The point ba has three pre-images under g̃, so

τba ◦ ψ∗ = τba + τab + τaa = 2τba + τaa .

The point aa has one pre-image, which is on Ua , so

τaa ◦ ψ∗ = τa = τba + τaa .

(Although it is redundant, we can also compute τab ◦ ψ∗ = τa + τb = 2τba + τaa .) The
traces τba and τaa determine the entire K0-group, so we can use this to determine

ψ∗(α)= 2α + β, ψ∗(β)= α + β.

So on K0(C∗(G0(P)))∼= Z⊕ Z, ψ∗ is given by
[2 1

1 1

]
. Since ψ∗ is an automorphism, we

conclude that K0(C∗(Gs(P)))∼= Z⊕ Z.
The image of either generator of ZUa ⊕ ZUb generates K1(C∗(G0(P)))∼= Z. The

integer value is again the winding number. An argument similar to that of the n-solenoid
shows that ψ∗ is the identity on K1(C∗(G0(P))), so K1(C∗(Gs(P)))∼= Z.

Since the K0-group for the aab/ab-solenoid is finitely generated, Theorem 10.3
explains why we necessarily had a non-Hausdorff quotient Xu(P)/∼0. Consequently, we
see that this Smale space X is not conjugate to any Wieler solenoid of the form lim

←−
(Y, g)

where g : Y → Y is a local homeomorphism and Y is connected. Although it is likely
that this result is known to experts, we feel that our method (which is K -theoretic) is a
particularly nice way of showing that certain Smale spaces cannot be written in the form
lim
←−
(Y, g) where g : Y → Y is a local homeomorphism and Y is connected.

A. Appendix. C∗-stability results
The setup of this appendix is quite different from the rest of the paper. Here (X, ϕ)
is a mixing Smale space without any assumptions on the stable sets. We recall that a
C∗-algebra A is called C∗-stable if A ∼= A ⊗K, where K is the C∗-algebra of compact
operators on a separable infinite-dimensional Hilbert space. This notion is usually referred
to as ‘stable’, but we prefer ‘C∗-stable’ to avoid confusion with the dynamical term.

The goal of this appendix is to prove that C∗(Gs(P)) and C∗(G0(P)) are C∗-stable.
Note that the latter algebra only exists in the special case when the stable sets are totally
disconnected. The general plan is to use Theorem 2.1 and Proposition 2.2 of [12]. We
learnt of this type of argument from the proof of [24, Lemma 4.15].

https://doi.org/10.1017/etds.2019.17 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.17


2766 R. J. Deeley and A. Yashinski

LEMMA A.1. Suppose that G is an étale groupoid and for each f ∈ Cc(G) there exists
v ∈ Cc(G) such that

v∗v f = f and f v = 0.

Then any C∗-completion of Cc(G) is C∗-stable.

Proof. Let a be any positive element in C∗(G) and ε > 0. There exists f ∈ Cc(G) such
that

‖a − f ∗ f ‖< ε

and take v ∈ Cc(G) as in the statement of the lemma.
In the context of condition (b) in Proposition 2.2 of [12], consider

b = f ∗v∗v f = f ∗ f and c = v f f ∗v.

Hence, we have that b ∼ c (in the notation of [12]) and

bc = f ∗ f v f f ∗v = 0.

Proposition 2.2 and Theorem 2.1 of [12] can now be applied and give the result. �

THEOREM A.2. Suppose (X, ϕ) is a mixing Smale space and P is a finite ϕ-invariant set.
Then C∗(Gs(P)) and C∗(Gu(P)) are C∗-stable.

Proof. Since the stable Smale space algebra of (X, ϕ−1) is the unstable algebra of (X, ϕ),
the proof will be complete upon showing C∗(Gs(P)) is stable. Furthermore, we can
assume P satisfies Xu(p) ∩ Xu(p′)= ∅ for p 6= p′ ∈ P. Otherwise, we could replace P
with P− {p′} without changing the groupoid. (Note that if Xu(p) ∩ Xu(p′) 6= ∅, then
Xu(p)= Xu(p′).)

Our goal is to apply the previous lemma. Let f ∈ Cc(Gs(P)), Kr := r(supp( f )) and
Ks := s(supp( f )). Since these are both compact subsets of Xu(P) there exists N ∈ N such
that ϕ−N (Kr ) and ϕ−N (Ks) are contained in Xu(P, εX/2). By proceeding inductively, one
can obtain {x p}p∈P such that
(1) x p ∈ Xu(p) ∩ X s(p, εX/2);
(2) Xu(x p, εX ) ∩ Xu(P, εX )= ∅;
(3) Xu(x p, εX ) ∩ Xu(x p′ , εX )= ∅ for each p 6= p′ ∈ P.

Define Vp,x p := {([x, x p], x) | x ∈ Xu(p, εX )}. The sets Vp,x p are open (see Example
2.5) and disjoint. Let

V :=
⋃
p∈P

Vp,x p .

Then, ϕ−N (Kr )⊆ s(V ) and by construction (i.e., item (2), the fact that ϕ−N (Ks)⊆

Xu(P, εX/2), etc), ϕ−N (Ks) ∩ r(V )= ∅.
Let w ∈ Cc(Gs(P)) with support in V and v(y, x)= 1 for x ∈ ϕ−N (Kr ). Letting α

denote the action on C∗(Gs(P)) induced from ϕ, it follows that w∗wαN ( f )= αN ( f ).
Let v = α−N (w). Then f ∗ f = f ∗v∗v f . Moreover, the condition ϕ−N (Ks) ∩ r(V )= ∅

implies that αN ( f )w = 0 and hence that f α−N (w)= f v = 0. Thus v satisfies the
conditions of the previous lemma; it implies the required result. �
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The next result follows from the previous theorem, [18, Theorems 3.7 and 4.2] and
Brown’s theorem [2].

COROLLARY A.3. Suppose (X, ϕ) is a mixing Smale space and P and P′ are finite ϕ-
invariant subset of X. Then C∗(Gs(P))∼= C∗(Gs(P′)) and C∗(Gu(P))∼= C∗(Gu(P′)).

THEOREM A.4. Suppose (Y, dY , g), K , and β are as in Definition 3.1, (X, ϕ) denotes the
associated Wieler solenoid and P is a finite ϕ-invariant set. Then C∗(G0(P)) is C∗-stable.

Proof. Let f ∈ Cc(G0(P)), Kr := r(supp( f )) and Ks := s(supp( f )). Since Kr is
compact, there exists a finite subcover {Xu(xi , δxi )}

n
i=1.

Using induction and Proposition 4.13, we can find (x ′i )
n
i=1 with the following properties:

(1) xi ∼0 x ′i ;
(2) The sets Vxi ,x ′i ,hi := {(hi (z), z) | z ∈ Xu(xi , δxi )} (i = 1, . . . n) satisfy

(a) r(Vxi ,x ′i ,hi ) ∩ Ks = ∅ for each i = 1, . . . , n;
(b) r(Vxi ,x ′i ,hi ) ∩ r(Vx j ,x ′j ,h j )= ∅ for i 6= j .

For each i = 1, . . . , n define vi ∈ Cc(G0(P)) such that
(1) supp(vi )⊂ Vxi ,x ′i ,hi ;
(2) (

∑n
i=1 v

∗

i vi )|Kr = 1.
Since r(Vxi ,x ′i ,hi ) ∩ r(Vx j ,x ′j ,h j )= ∅ for i 6= j , we have that v∗j vi = 0 for i 6= j . Let v =∑n

i=1. Then,

v∗v =

( n∑
j=1

v∗j

)( n∑
i=1

v

)
=

n∑
i=1

v∗i vi .

Using the fact that (
∑n

i=1 v
∗

i vi )|Kr = 1, we have that v∗v f = (
∑n

i=1 v
∗

i vi ) f = f .
Furthermore, since r(Vxi ,x ′i ,hi ) ∩ Ks = ∅ for each i = 1, . . . , n, f vi = 0 for each

i = 1, . . . , n. Thus f v = 0 and Lemma A.1 can be applied to obtain the result. �

Acknowledgements. The authors thank Magnus Goffeng, Bram Mesland, Ian Putnam,
Adam Rennie, Aidan Sims, Karen Strung, Michael Whittaker, Rufus Willett and Robert
Yuncken for interesting and insightful discussions. We also thank the referee for a number
of useful suggestions.

REFERENCES

[1] J. E. Anderson and I. F. Putnam. Topological invariants for substitution tilings and their associated
C∗-algebras. Ergod. Th. & Dynam. Sys. 18(3) (1998), 509–537.

[2] L. G. Brown. Stable isomorphism of hereditary subalgebras of C∗-algebras. Pacific J. Math. 71(2) (1977),
335–348.

[3] N. D. Burke and I. F. Putnam. Markov partitions and homology for n/m-solenoids. Ergod. Th. & Dynam.
Sys. 37(3) (2017), 716–738.

[4] L. O. Clark, A. an Huef and I. Raeburn. The equivalence relations of local homeomorphisms and Fell
algebras. New York J. Math. 19 (2013), 367–394.

[5] R. J. Deeley, M. Goffeng, B. Mesland and M. F. Whittaker. Wieler solenoids, Cuntz-Pimsner algebras and
K -theory. Ergod. Th. & Dynam. Sys. 38(8) (2018), 2942–2988.

https://doi.org/10.1017/etds.2019.17 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.17


2768 R. J. Deeley and A. Yashinski

[6] R. J. Deeley and K. R. Strung. Nuclear dimension and classification of C∗-algebras associated to Smale
spaces. Trans. Amer. Math. Soc. 370(5) (2018), 3467–3485.
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