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Abstract
To achieve autonomous all-day flight by high-altitude long-endurance unmanned aerial vehicle (HALE UAV), a
new navigation method with deep integration of strapdown inertial measurement unit (SIMU) and triple star sensors
based on atmospheric refraction correction is proposed. By analysing the atmospheric refraction model, the stellar
azimuth coordinate system is introduced and the coupling relationship between attitude and position is established.
Based on the geometric relationship whereby all the stellar azimuth planes intersect on the common zenith direction,
the sole celestial navigation system (CNS) method by stellar refraction with triple narrow fields of view (FOVs) is
studied and a loss function is built to evaluate the navigation accuracy. Finally, the new SIMU/triple star sensors
deep integrated navigation method with refraction correction upgraded from the traditional inertial navigation
system (INS)/CNS integrated method can be established. The results of simulations show that the proposed method
can effectively restrain navigation error of a HALE UAV in 24 h steady-state cruising in the stratosphere.

1. Introduction

Celestial navigation is an ancient technology which originates from sea voyages. With the development of
modern aerospace technology (e.g., the invention of star sensors), the celestial navigation system (CNS)
has become increasingly important for autonomous long-endurance flight vehicles. High-precision star
sensors can ensure the attitude accuracy for spacecraft in real time, however, for aircraft, atmospheric
influence must be considered. The successive atmospheric models established in recent decades, such
as the International Standard Atmosphere (ISA) model, the 1976 U.S. Standard Atmospheric model
and the NRLMSISE-00 atmospheric model (Honda et al., 2015; Kurzke and Halliwell, 2018), have
gradually supplemented or updated the atmospheric properties for related studies, especially in the
fields of aerophysics and aerodynamics. Stellar observation, however, is mainly concerned with two
aspects: atmospheric background radiation and atmospheric refraction (Wang et al., 2017b).

Atmospheric background radiation is mainly caused by atmospheric scattering. Under the interference
of stray light noise, especially in daytime, the star image measured by star sensor will suffer from
low centroiding accuracy or even be submerged (Wang et al., 2021b). In response to this problem,
short-wave infrared (SWIR) technology was invented, and some star observation strategies as well as
image preprocessing algorithms have been studied (Wang et al., 2017b; Wu et al., 2019). Moreover,
the hardware upgrade of all-day star sensors with strong detectivity and high precision is of vital
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importance. Thus, various research institutes have developed varieties of star sensor models, such as
HERO (High Energy Replicated Optics) system by NASA in 2000, BLAST (Balloon-borne Large-
Aperture Submillimeter Telescope) system by the University of Pennsylvania in 2005, DayStar system
by Microcosm in 2006 and EBEX (E and B Experiment) telescope by JPL in 2012 (Zheng et al., 2020).
The BLAST system with field of view (FOV) of 2°× 2·5° can observe fix stars with visual magnitude
9·0 and reach an absolute accuracy within 5′′ in daytime float condition (Rex et al., 2006). The EBEX
telescope has an accuracy up to 1·5′′ with the limiting magnitude of roughly 7·0 (Chapman et al., 2015).
It can be seen that the application of an all-day star sensor on a balloon-borne platform makes it possible
for a high-altitude long-endurance unmanned aerial vehicle (HALE UAV) to utilise the CNS method
when cruising in the stratosphere with slow attitude manoeuvres.

Atmospheric refraction is another critical factor that will cause observed deviation, resulting in two
issues: influence on star pattern recognition, which can be easily solved in practice (Ho, 2012; Wang et al.,
2017a), and the introduction of attitude error as well as position error in further calculation (Wang et al.,
2011). Therefore, it is essential to calibrate the refraction model for the specific atmospheric environment
(The Purple Mountain Observatory, 2021). Based on the given atmospheric refraction model, Ning
and Wang (2013) proposed a method of celestial altitude determination to realise the positioning of a
motionless vessel with quite high accuracy under ideal conditions. However, for the manoeuvring UAV
in flight, the attitude estimation is rough without horizontal reference, which complicates the problem
in positioning by CNS alone. Thus, other navigation systems should be integrated with CNS to meet
the demands of engineering applications.

The strapdown inertial navigation system (SINS), as a common use of inertial navigation system, is
composed of strapdown inertial measurement unit (SIMU). As a totally autonomous navigation method,
it can provide the position, velocity and attitude of the vehicle with high frequency and high accuracy in a
short time, despite its accumulation of error in the long run (Qin, 2006). Based on the existing SINS/CNS
integrated system, Zhu et al. (2018) proposed an overall optimal correction scheme for UAV integrated
navigation. However, this method only applies to near-space vehicles, as aerial vehicles cannot fly high
enough to achieve indirect horizon-sensing through the stratosphere. The best scheme to implement the
SINS/CNS method for UAV is the deep integrated mode (He et al., 2014; Ning et al., 2018).

So far, the correlational studies have mainly focused on the calibration of the atmospheric model, the
improvement of star sensor performance and the optimisation of the SINS/CNS integrated algorithm.
Nevertheless, the analytic geometric relationship of navigation parameters under the stellar refraction
condition and the corresponding effective all-day navigation algorithm still lack study. On account of
this, in this paper the authors propose a novel SIMU/triple star sensor deep integrated navigation method
with atmospheric refraction correction which applies to HALE UAV in all-day flight.

The paper is divided into six sections. After this introduction section, the atmospheric refraction
model for aircraft is analysed to establish the coupling relationship between parameters of attitude
and position in Section 2. Some correlational research on triple-FOV star sensors navigation by stellar
refraction is presented in Section 3. In Section 4, a comparison of the SIMU/triple star sensors deep
integrated method with refraction corrected and with refraction uncorrected is put forward, and the
Kalman filter is designed. Simulation verification and analysis are shown in Section 5 and conclusions
are drawn in Section 6.

2. Atmospheric refraction model analysis for aircraft

According to the law of refraction, starlight will be refracted and bent inward to the geocentre when
passing through the atmosphere. Therefore the apparent position of a star will be a little higher than its
actual one. For the certain position of a UAV, the unit vectors of the stellar apparent direction u𝒂 and
the real direction u𝒓 (reverse direction of starlight) in geocentric equatorial inertial coordinate system
(denoted as frame i), together with the zenith direction 𝜻 are coplanar, which is defined as the stellar
azimuth plane 𝜇𝑎. The angle between u𝒂 and u𝒓 is defined as the starlight refraction angle 𝜌, whose
relationship with stellar apparent zenith distance z𝑎 and real zenith distance z𝑟 is shown in Figure 1,
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Figure 1. Geometric description of atmospheric refraction (variable scale).

where R𝑒 is the radius of the Earth; h is the altitude of the vehicle; 𝜇ℎ is the local horizon plane, 𝜇ℎ⊥𝜇𝑎;
u𝒔 and u𝒎 are unit directional vectors of the sun and the moon, with the exclusion angles 𝜖 𝑠 and 𝜖𝑚.

In the body coordinate system (denoted as frame b), the UAV’s longitudinal axis is defined as the
Yb axis. The Zb axis is upward in the longitudinal plane. The coordinate conversion matrix 𝑪b

i from
frame i to frame b can be calculated by the attitude determination method, with the right ascension
𝛼, declination 𝛿 and roll angle 𝛾 of the Zb axis direction obtained from the corresponding three Euler
angles: 90°+𝛼, 90° − 𝛿 and 𝛾 in a rotation order of 3-1-3. 𝛼, 𝛿 and 𝛾 are assigned as the absolute
attitude angles of the aircraft.

The apparent stellar direction and real stellar direction in frame b are assigned as v𝒂 and v𝒓 . v𝒂 can be
measured by star sensor in the star sensor coordinate system (denoted as frame s) and then transferred
to frame b by the installed matrix 𝑴s

b. When the identified star is given and the attitude is determined,
v𝒓 can be obtained through u𝒓 and 𝑪b

i . Thus,

𝜌 = arccos(𝒖T
𝒂𝒖𝒓 ) = arccos(𝒗T

𝒂𝒗𝒓 ) = arccos(𝒗T
𝒂𝑪

b
i 𝒖𝒓 ) (1)

In practical application, z𝑎 can be calculated through refraction tables or empirical formulae based
on the refraction angle and the ambient condition of the vehicle. In this paper, the empirical formula
provided by the Chinese Astronomical Almanac (The Purple Mountain Observatory, 2021) is chosen to
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analyse the problem as follows:

𝜌0 =
𝜌

1 + 𝛼𝐴𝑀𝐴 + 𝑁𝐴
(2)

𝑀𝐴 =
−0·00383𝑇𝑐

1 + 0·00367𝑇𝑐
(3)

𝑁𝐴 =
𝑃

133·322 × 760
− 1 (4)

𝑃 = 𝑃′ [1 − 0·00264 cos 2𝜑 − 0·000163(𝑇 ′
𝑐 − 𝑇𝑐)] (5)

𝑧𝑎 = arctan
𝜌0

60·2′′
(6)

where 𝜌0 is the mean atmospheric refractivity; M𝐴, N𝐴 and 𝛼𝐴 (𝛼𝐴 = 1 generally; when z𝑎 is large,
𝛼𝐴 will be adjusted) are modified parameters; T𝑐 is ambient centigrade temperature; P is ambient
barometric pressure in units of Pa; T𝑐

′ is measuring centigrade temperature of mercury in the barometer;
P′ is measuring barometric pressure in units of Pa. Ambient barometric pressure and thermodynamic
temperature T of a standard day are described by the ISA (Kurzke and Halliwell, 2018). In the range of
aircraft actual flight altitude, P and T satisfy

𝑃 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
101, 325 ×

(
1 − 0·0225577 ×

ℎ

1000

)5·25588

Pa, ℎ < 11, 000 m

22, 632 × 𝑒
11000−ℎ
6341·62 Pa, 11, 000 m ≤ ℎ ≤ 25, 000 m

(7)

𝑇 =

⎧⎪⎪⎨⎪⎪⎩
288·15 K − 6·5 ×

ℎ

1000
, ℎ < 11, 000 m

216·65 K, 11, 000 m ≤ ℎ ≤ 25, 000 m
(8)

Therefore,

𝑧𝑟 = 𝑧𝑎 + 𝜌 (9)

The empirical formulae of Equations (2) to (9) have directly established the functional relation
among z𝑟 , z𝑎 and 𝜌. For this, Ning and Wang (2013) demonstrated that the zenith error Δ𝜁 increases
with increasing celestial altitude (i.e., 90°−z𝑟 ) by curve-fitting method simulation. The next step is to
analyse its spherical geometry.

When u𝒓 is identified, through the atmospheric refraction model, the estimated zenith direction 𝜻̂
is determined by the estimated stellar apparent direction 𝒖̂𝒂 with the error Δu𝑎 which is affected by
attitude accuracy, as shown in Figure 2.

The spherical triangles satisfy

cos 𝜌̂ = cos 𝜌 cosΔ𝑢𝑎 + sin 𝜌 sinΔ𝑢𝑎 cos 𝜂 (10)
sin 𝛽

sinΔ𝑢𝑎
=

sin 𝜂
sin 𝜌̂

(11)

cosΔ𝜁 = cos 𝑧𝑟 cos 𝑧𝑟 + sin 𝑧𝑟 sin 𝑧𝑟 cos 𝛽 (12)

where

𝑧𝑟 = 𝜌̂ + arctan
𝜌̂

60·2′′(1 + 𝑀𝐴 + 𝑁𝐴)
(13)
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Figure 2. Geometric relationship of error ranges projected onto the celestial sphere.

Particularly in 𝜇𝑎 direction, the estimated real zenith distance 𝑧𝑎𝑟 satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑧𝑎𝑟 min = 𝜌 − Δ𝑢𝑎 + arctan

𝜌 − Δ𝑢𝑎
60·2′′(1 + 𝑀𝐴 + 𝑁𝐴)

(𝜂 = 𝛽 = 0)

𝑧𝑎𝑟 max = 𝜌 + Δ𝑢𝑎 + arctan
𝜌 + Δ𝑢𝑎

60·2′′(1 + 𝑀𝐴 + 𝑁𝐴)
(𝜂 = 180◦, 𝛽 = 0)

(14)

Thus

Δ𝑧𝑎𝑟 = 𝑧𝑎𝑟 max − 𝑧
𝑎
𝑟 min = 2Δ𝑢𝑎 + arctan

𝜌 + Δ𝑢𝑎
60·2′′(1 + 𝑀𝐴 + 𝑁𝐴)

− arctan
𝜌 − Δ𝑢𝑎

60·2′′(1 + 𝑀𝐴 + 𝑁𝐴)
(15)

dΔ𝑧𝑎𝑟
d𝜌

=
60·2′′(1 + 𝑀𝐴 + 𝑁𝐴)

(60·2′′(1 + 𝑀𝐴 + 𝑁𝐴))
2 + (𝜌 + Δ𝑢𝑎)

2 −
60·2′′(1 + 𝑀𝐴 + 𝑁𝐴)

(60·2′′(1 + 𝑀𝐴 + 𝑁𝐴))
2 + (𝜌 − Δ𝑢𝑎)

2 < 0 (16)

This indicates that the zenith error range shrinks with increasing 𝜌 (equivalent to z𝑎 or z𝑟 ). The whole
result will be given in Section 5.1.

For the purpose of calculating the zenith direction, the stellar azimuth coordinate system (denoted
as frame a) is established, with the Xa axis oriented to the stellar real direction and Ya axis upward in
plane 𝜇𝑎, as shown in Figure 1. Obviously,

𝜻 a =
[
cos 𝑧𝑟 sin 𝑧𝑟 0

]T (17)

The vector-matrices V and W are established as

𝑽 =
[
𝑽1 𝑽2 𝑽3

]
𝑽1 = 𝒗𝒓 𝑽2 = 𝒗𝒂 𝑽3 =

𝒗𝒓 × 𝒗𝒂
|𝒗𝒓 × 𝒗𝒂 |

(18)

𝑾 =
[
𝑾1 𝑾2 𝑾3

]
𝑾1 = 𝑿a =

⎡⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎦ 𝑾2 =

⎡⎢⎢⎢⎢⎣
cos 𝜌
sin 𝜌

0

⎤⎥⎥⎥⎥⎦ 𝑾3 = 𝒁a =

⎡⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎦ (19)

Hence, the orthogonalised coordinate conversion matrix 𝑪b
a is

𝑪b
a =

1
2
(3𝑰 − 𝑪T

0𝑪0)𝑪
T
0 (20)

𝑪0 = 𝑾𝑽T(𝑽𝑽T)−1 (21)
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where C0 is the non-orthogonal matrix.
𝜆𝑏 and 𝜑𝑏 are the longitude and latitude coordinates of zenith direction in frame b, which satisfy

𝜻b =
[
cos 𝜑𝑏 cos𝜆𝑏 cos 𝜑𝑏 sin𝜆𝑏 sin 𝜑𝑏

]T
= 𝑪b

a𝜻 a (22)

Through calculating the real-time Greenwich hour angle of Aries AΥ, the conversion matrix 𝑪e
i

from frame i to geocentric equatorial rotating coordinate system (denoted as frame e) can be obtained.
Therefore, the geographical longitude 𝜆 and latitude 𝜑 can be solved by[

cos 𝜑 cos𝜆 cos 𝜑 sin𝜆 sin 𝜑
]T

= 𝑪e
i𝑪

i
b𝜻b (23)

Assigning the east-north-zenith (E-N-U) coordinate system (denoted as frame n) as the navigation
coordinate system, the conversion matrix 𝑪e

n can be calculated through the two Euler angles −(90° −

𝜑) and −(90°+𝜆) in a rotation order of 1-3. Thus the conversion matrix 𝑪b
n can be deduced by 𝑪b

i , 𝑪e
i

and 𝑪e
n, with three Euler angles named respectively as yaw angle -𝜓, pitch angle 𝜃 and roll angle 𝜙 in a

rotation order of 3-1-2. 𝜓, 𝜃 and 𝜙 are assigned as the relative attitude angles of the aircraft.
The analysis above presents the relation between the position and attitude parameters of the UAV.

However, neither the precise attitude nor position information can be directly measured by CNS alone in
refractive conditions. High accuracy attitude and position determinations are key problems. In Sections
3 and 4, these will be further discussed.

3. Research on triple-FOV star sensors navigation by stellar refraction

Generally, for spacecraft, if the observed stars are successfully identified by image matching algorithm,
then attitude with high accuracy can be ensured by high-precision star sensor and optimised attitude
determination method. However, for aircraft, the atmosphere will absorb, scatter and refract the starlight.
This may seriously decrease the light intensity and increase background noise, making starlight harder
to detect, especially in daytime. As a result, both the star pattern recognition and attitude determination
accuracy will be affected.

To solve these problems, the narrow FOV star sensor has been developed to improve the sensitivity
of CCD (Charge Coupled Device) arrays by sacrificing the detection range. Thus, the application of
multiple-FOV star sensors is necessary to ensure both the observability and the precision (Wu et al.,
2015, 2019). On this basis, we can extract the refractive images from combined star map and increase
the matching tolerance to maintain the recognition rate. This can be much easier or even unnecessary
when sensors are working in tracking mode (Li et al., 2015; Wang et al., 2017a).

The identified stars in combined FOV are shown in Figure 3, where S 𝑗 (j = 1, 2, 3) are boresight
projections on the celestial sphere corresponding to star sensor I, II or III. For each observed star, the
projections of u𝒂 𝑙 , u𝒓 𝑙 and 𝜻 are on the arc where the celestial sphere meets with 𝜇𝑎𝑙 (l= 1, 2, 3. . . ).

Obviously, 𝜻 is the common intersecting line of all the stellar azimuth planes. When the precise 𝜻
is calculated, the position can be acquired. However, according to Section 2, calculations of the zenith
direction and attitude are coupled. So the following two schemes are designed to seek the efficient
method.

3.1. Coplanar distribution scheme

When a UAV is cruising straight and level, the Zb axis can be considered as orienting to the zenith. That
means that, if the observed starlight orientation is close to the Zb axis (Star 1 and 2 in Sensor I), then
𝜌 will be very small, i.e., {

𝒖𝒂𝑙 ≈ 𝒖𝒓𝑙

𝒗𝒂𝑙 ≈ 𝒗𝒓𝑙
(𝑙 = 1, 2) (24)
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Figure 3. Geometric relationship of multiple FOVs and stars projected onto the celestial
sphere.

Figure 4. Installation of the coplanar distribution scheme.

Therefore the absolute attitude of the vehicle can be directly determined by at least two identified stars
in theory (Shuster and Oh, 1981; Zhu et al., 2017). Based on this, a coplanar distribution scheme by
three star sensors is designed to analyse the problem, as shown in Figure 4, where 𝛼𝑠 (0 ≤ 𝛼𝑠 ≤ 90°) is
marked as the strapdown installation angle.

Sensor I is used to measure the ‘non-refracted’ stars and estimate the attitude, whereas Sensors II
and III, in a symmetrical distribution, are utilised to observe the refracted stars and calculate the geo-
graphical coordinates by the atmospheric refraction model with 𝑪̂

b
i provided by Sensor I. Furthermore,
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I

II III

II III

Figure 5. Flowchart of the coplanar distribution scheme.

sensors on both sides can increase the observation scope and ensure the FOVs do not scan blind areas
(e.g. the sun and the moon) simultaneously. The flowchart is presented in Figure 5.

However, this scheme has two disadvantages. First, limited by the FOV of Sensor I, the detection
probability is low and the angular distance between different starlight vectors is rather small, which may
lead to big errors in attitude. Second, when the aircraft manoeuvres in flight, boresight of Sensor I will
deviate from the zenith direction and refraction cannot be ignored. Therefore, general cases should be
studied.

3.2. Triangular distribution scheme

The universality of triple-FOV star sensors in triangular distribution can enhance the practicability of
CNS. These are installed, as shown in Figure 6, to satisfy the omnibearing observation.

Through derivation of the Jacobi identity (see Appendix part in details),

(𝒗𝒂 × 𝒗𝒓 ·𝜻b)
2 = 1 − (𝒗𝒂 ·𝒗𝒓 )

2 − (𝒗𝒓 ·𝜻b)
2 − (𝜻b·𝒗𝒂)

2 + 2(𝒗𝒂 ·𝒗𝒓 )(𝒗𝒓 ·𝜻b)(𝜻b·𝒗𝒂) = 0 (25)

Based on this, the loss function (Wang et al., 2021a) is established as

𝐹 (𝑪b
i , 𝜻b) =

𝑛∑
𝑙=1

𝑎𝑙 (𝒗𝒂𝑙 × 𝒗𝒓𝑙 ·𝜻b)
2

=
𝑛∑
𝑙=1

𝑎𝑙 (1 − (𝒗T
𝒂𝑙𝑪

b
i 𝒖𝒓𝑙)

2
− (𝜻T

b𝑪
b
i 𝒖𝒓𝑙)

2
− (𝜻T

b 𝒗𝒂𝑙)
2
+ 2(𝒗T

𝒂𝑙𝑪
b
i 𝒖𝒓𝑙)(𝜻

T
b𝑪

b
i 𝒖𝒓𝑙)(𝜻

T
b 𝒗𝒂𝑙)) (26)

where n is the total number of observed stars, a𝑙 (l= 1,. . . ,n) are a set of nonnegative weights satisfying

𝑛∑
𝑙=1

𝑎𝑙 = 1 (27)

Obviously, the less estimated errors of 𝑪̂b
i and 𝜻̂b are, the smaller function value is. Combined with

Equation (22), variables of the loss function are converted into two scalars (𝜆𝑏 and 𝜑𝑏) and one matrix,
which cannot be solved by existing classical methods on account of strong nonlinearity. Now we try to
establish a conjugate gradient iterative algorithm to testify the improvement of navigation accuracy by
reducing the loss function value.
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Figure 6. Installation of the triangular distribution scheme.

I
II III

Figure 7. Flowchart of the triangular distribution scheme.

Actual observed stars are measured in the combined FOV of I, II and III, so a rough attitude 𝑪̂b
i can be

estimated without refraction compensation, thereby obtaining 𝜆̂𝑏 and 𝜑̂𝑏 in a similar way. Regarding 𝑪̂
b
i

as a constant matrix in each iteration, the loss function can be processed by conjugate gradient iterative
method to update attitude and position information, as shown in Figure 7 (Rivaie et al., 2015; Liu et al.,
2018).

The gradient function satisfies

𝒈 =

[
𝜕𝐹

𝜕𝜆𝑏

𝜕𝐹

𝜕𝜑𝑏

]T

(28)

𝜕𝐹

𝜕𝜆𝑏
=
𝜕𝜻T

b
𝜕𝜆𝑏

·
𝜕𝐹

𝜕𝜻b
=

[
− cos 𝜑̂𝑏 sin 𝜆̂𝑏 cos 𝜑̂𝑏 cos 𝜆̂𝑏 0

]
·
𝜕𝐹

𝜕𝜻b
(29)

𝜕𝐹

𝜕𝜑𝑏
=
𝜕𝜻T

b
𝜕𝜑𝑏

·
𝜕𝐹

𝜕𝜻b
=

[
− sin 𝜑̂𝑏 cos 𝜆̂𝑏 − sin 𝜑̂𝑏 sin 𝜆̂𝑏 cos 𝜑̂𝑏

]T
·
𝜕𝐹

𝜕𝜻b
(30)

𝜕𝐹

𝜕𝜻b
= (−2) ·

[
𝑛∑
𝑙=1

𝑎𝑙𝒗𝒂𝑙𝒗
T
𝒂𝑙 + 𝑪̂

b
i

(
𝑛∑
𝑙=1

𝑎𝑙𝒖𝒓𝑙𝒖
T
𝒓𝑙

)
𝑪̂

i
b −

𝑛∑
𝑙=1

𝑎𝑙𝒗
T
𝒂𝑙𝑪̂

b
i 𝒖𝒓𝑙 (𝒗𝒂𝑙 (𝑪̂

b
i 𝒖𝒓𝑙)

T
+ 𝑪̂

b
i 𝒖𝒓𝑙𝒗

T
𝒂𝑙)

]
·𝜻̂b

(31)
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Therefore, the conjugate gradient iterative method contains the following steps:
Step 1: When ‖g𝑘 ‖ ≤ 𝜖 (k = 0, 1, 2. . . , 𝜖 is the specified precision), iteration algorithm stops.
Step 2: Determine the iteration step length 𝛼𝑘 by Armĳo line search method (Nocedal and Wright,

2006). Then, [
𝜆̂𝑏
𝜑̂𝑏

]
𝑘+1

=

[
𝜆̂𝑏
𝜑̂𝑏

]
𝑘

+ 𝛼𝑘 𝒅𝑘 (32)

where the initial search direction d0 =−g0.
Step 3: Revise the refracted starlight by (𝜆̂𝑏, 𝜑̂𝑏)𝑘+1 through atmospheric refraction model and update

the attitude 𝑪̂
b
i .

Step 4: Compute F𝑘 + 1 and g𝑘 + 1 by 𝑪̂
b
i and (𝜆̂𝑏 , 𝜑̂𝑏)𝑘+1.

Step 5: Compute 𝛽𝑘 + 1 by

𝛽𝑘+1 =
𝒈T
𝑘+1(𝒈𝑘+1 − 𝒈𝑘 − 𝒅𝑘 )

| |𝒅𝑘 | |
2 (33)

Step 6: Compute d𝑘 + 1 by

𝒅𝑘+1 = −𝒈𝑘+1 + 𝛽𝑘+1𝒅𝑘 −
𝒈T
𝑘+1𝒅𝑘

| |𝒅𝑘 | |
2 𝐹𝑘 (34)

Step 7: Set k := k + 1, go to step 1.
The authors expected to obtain an accurate result by the gradient iterative algorithm above. However,

the iteration cannot efficiently converge to the given nominal condition, when ignoring the influence of
attitude on gradient. Its uncertainty will be demonstrated in Section 5.2.

Indeed, the common principle of the double schemes above is to correct the position through a rough
attitude provided by CNS. It can be easily verified that the tiny attitude error will be amplified by the
atmospheric refraction model and then seriously affect the positon accuracy. If an initial location can
be given, through the reverse process, a precise attitude will be acquired. Maybe SINS can do this.

4. SIMU/triple star sensors deep integrated method in refractive effect

The traditional INS/CNS deep integrated method without refraction correction can be designed as in
Figure 8. In the INS section, specific forces f𝐸 , f𝑁 , f𝑈 along the three axes can be calculated through
𝝎b

ib provided by gyroscope and 𝜶b
ib provided by accelerometer. On the basis of dynamic relationship,

position parameters 𝜑̂, 𝜆̂, ℎ̂ and attitude parameters 𝜃, 𝜙, 𝜓̂ can be acquired, thus obtaining 𝜻̂b (fused
with initial location and horizontal reference) and matrix of misalignment angle M𝑺 . Owing to the
non-damping and instability in altitude channel of INS (Qin, 2006), as well as the non-observability of
altitude in CNS, the nominal altitude h𝑟 will be directly given by altimeter in this paper.

In the CNS section, to ensure high-precision navigation in long-endurance flight, three (or two at
least) FOVs should be available to detect stars, whose numbers of observed stars are N1, N2 and N3.
Thus, the identified u𝒓 𝑙 and the measured v𝒂 𝑙 can determine 𝑪̂

b
i then calculate position parameters 𝜑, 𝜆

and attitude parameters 𝜃, 𝜙, 𝜓 through 𝜻̂b provided by INS.
Now, the new deep integrated method with refraction correction is shown as Figure 9.
Based on the atmospheric refraction model, 𝑪̂b

i determined by the identified u𝒓 𝑙 and the corrected
𝒗̂𝒓𝑙 is more precise. The updated v𝒓 𝑙 (calculated by 𝑪̂

b
i and u𝒓 𝑙) and the measured v𝒂 𝑙 can then determine

the corrected 𝜻bl of each observed star. Calculate 𝜻̄b as

𝜻̄b =

∑𝑁1+𝑁2+𝑁3
𝑙=1 𝜻b𝑙��∑𝑁1+𝑁2+𝑁3
𝑙=1 𝜻b𝑙

�� (35)
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Figure 8. Flowchart of SIMU/triple star sensors deep integrated without refraction correction.

thus obtaining 𝜑̄, 𝜆̄ (i.e., 𝜑, 𝜆) followed with 𝜃, 𝜙, 𝜓.
Kalman filter is utilised to realise the data fusion (Pan et al., 2013). The navigation deviations are

denoted as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿𝜃 = 𝜃 − 𝜃

𝛿𝜙 = 𝜙 − 𝜙

𝛿𝜓 = 𝜓̂ − 𝜓

𝛿𝜑 = 𝜑̂ − 𝜑

𝛿𝜆 = 𝜆̂ − 𝜆

𝛿ℎ = ℎ̂ − ℎ𝑟

(36)

So the misalignment angles𝛷𝑥 ,𝛷𝑦 ,𝛷𝑧 can be determined by (Zhu et al., 2018)

⎡⎢⎢⎢⎢⎣
𝛷𝑥

𝛷𝑦

𝛷𝑧

⎤⎥⎥⎥⎥⎦ = 𝑴𝑺

⎡⎢⎢⎢⎢⎣
𝛿𝜃
𝛿𝜙
𝛿𝜓

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
− cos 𝜓̂ − sin 𝜓̂ cos 𝜃 0
sin 𝜓̂ − cos 𝜓̂ cos 𝜃 0

0 − sin 𝜃 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛿𝜃
𝛿𝜙
𝛿𝜓

⎤⎥⎥⎥⎥⎦ (37)

According to the error equations of SINS, build the 15-dimensional state model as follows

𝑿 =
[
𝛿𝑣𝐸 𝛿𝑣𝑁 𝛿𝑣𝑈 𝛷𝑥 𝛷𝑦 𝛷𝑧 𝛿𝜑 𝛿𝜆 𝛿ℎ 𝜀𝑥 𝜀𝑦 𝜀𝑧 ∇𝑥 ∇𝑦 ∇𝑧

]T (38)
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Figure 9. Flowchart of SIMU/triple star sensors deep integrated with refraction correction.

where 𝛿v𝐸 , 𝛿v𝑁 , 𝛿v𝑈 are velocity deviations; 𝜖 𝑥 , 𝜖 𝑦 , 𝜖 𝑧 are gyroscope drifts; ∇𝑥 , ∇𝑦 , ∇𝑧 are
accelerometer biases. The state equation is

	𝑿 = 𝑭𝑿 + 𝑮𝑾SINS (39)

𝑭 =

[
𝑭𝑵 (9×9) 𝑭𝑺 (6×6)

06×9 09×6

]
(40)

𝑮 =

⎡⎢⎢⎢⎢⎣
03×3 𝑪n

b
−𝑪n

b 03×3
09×3 09×3

⎤⎥⎥⎥⎥⎦ (41)

𝑾SINS =
[
𝜔𝜀𝑥 𝜔𝜀𝑦 𝜔𝜀𝑧 𝜔∇𝑥 𝜔∇𝑦 𝜔∇𝑧

]T (42)

where𝜔𝜖 𝑥 ,𝜔𝜖 𝑦 ,𝜔𝜖 𝑧 are gyroscope noises;𝜔∇x,𝜔∇y,𝜔∇z are accelerometer noises. Non-zero elements
of F𝑵 are (Qin, 2006; Li et al., 2018)

𝑭𝑵 (1, 1) =
𝑣𝑁 tan𝜑̂ − 𝑣𝑈

𝑅𝑁 + ℎ̂
, 𝑭𝑵 (1, 2) = 2𝜔𝑖𝑒 sin 𝜑̂ +

𝑣𝐸 tan𝜑̂
𝑅𝑁 + ℎ̂

,

𝑭𝑵 (1, 3) = −

(
2𝜔𝑖𝑒 cos 𝜑̂ +

𝑣𝐸

𝑅𝑁 + ℎ̂

)
, 𝑭𝑵 (1, 5) = − 𝑓𝑈 , 𝑭𝑵 (1, 6) = 𝑓𝑁 ,

𝑭𝑵 (1, 7) = 2𝜔𝑖𝑒 (𝑣𝑈 sin 𝜑̂ + 𝑣𝑁 cos 𝜑̂) +
𝑣𝐸𝑣𝑁 sec2𝜑̂

𝑅𝑁 + ℎ̂
, 𝑭𝑵 (1, 9) =

𝑣𝐸𝑣𝑈 − 𝑣𝐸𝑣𝑁 tan𝜑̂

(𝑅𝑁 + ℎ̂)
2 ,

𝑭𝑵 (2, 1) = −𝑭𝑵 (1, 2), 𝑭𝑵 (2, 2) = −
𝑣𝑈

𝑅𝑀 + ℎ̂
, 𝑭𝑵 (2, 3) = −

𝑣𝑁

𝑅𝑀 + ℎ̂
, 𝑭𝑵 (2, 4) = 𝑓𝑈 ,
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𝑭𝑵 (2, 6) = − 𝑓𝐸 , 𝑭𝑵 (2, 7) = −

(
2𝜔𝑖𝑒𝑣𝐸 cos 𝜑̂ +

𝑣2
𝐸 sec2𝜑̂

𝑅𝑁 + ℎ̂

)
,

𝑭𝑵 (2, 9) =
𝑣𝑁 𝑣𝑈

(𝑅𝑀 + ℎ̂)
2 +

𝑣2
𝐸 tan𝜑̂

(𝑅𝑁 + ℎ̂)
2 , 𝑭𝑵 (3, 1) = 2𝜔𝑖𝑒 cos 𝜑̂ +

2𝑣𝐸
𝑅𝑁 + ℎ̂

, 𝑭𝑵 (3, 2) =
2𝑣𝑁

𝑅𝑀 + ℎ̂
,

𝑭𝑵 (3, 4) = − 𝑓𝑁 , 𝑭𝑵 (3, 5) = 𝑓𝐸 , 𝑭𝑵 (3, 7) = −2𝜔𝑖𝑒𝑣𝐸 sin 𝜑̂,

𝑭𝑵 (3, 9) = −
𝑣2
𝑁

(𝑅𝑀 + ℎ̂)
2 −

𝑣2
𝐸

(𝑅𝑁 + ℎ̂)
2 , 𝑭𝑵 (4, 2) = −

1
𝑅𝑀 + ℎ̂

, 𝑭𝑵 (4, 5) = 𝜔𝑖𝑒 sin 𝜑̂ +
𝑣𝐸 tan𝜑̂
𝑅𝑁 + ℎ̂

,

𝑭𝑵 (4, 6) = −𝜔𝑖𝑒 cos 𝜑̂ −
𝑣𝐸

𝑅𝑁 + ℎ̂
, 𝑭𝑵 (4, 9) =

𝑣𝑁

(𝑅𝑀 + ℎ̂)
2 , 𝑭𝑵 (5, 1) =

1
𝑅𝑁 + ℎ̂

,

𝑭𝑵 (5, 4) = −𝑭𝑵 (4, 5), 𝑭𝑵 (5, 6) = 𝑭𝑵 (2, 3), 𝑭𝑵 (5, 7) = −𝜔𝑖𝑒 sin 𝜑̂,

𝑭𝑵 (5, 9) = −
𝑣𝐸

(𝑅𝑁 + ℎ̂)
2 , 𝑭𝑵 (6, 1) =

tan𝜑̂
𝑅𝑁 + ℎ̂

, 𝑭𝑵 (6, 4) = −𝑭𝑵 (4, 6), 𝑭𝑵 (6, 5) = −𝑭𝑵 (2, 3),

𝑭𝑵 (6, 7) = 𝜔𝑖𝑒 cos 𝜑̂ +
𝑣𝐸 sec2𝜑̂

𝑅𝑁 + ℎ̂
, 𝑭𝑵 (6, 9) = −

𝑣𝐸 tan𝜑̂

(𝑅𝑁 + ℎ̂)
2 , 𝑭𝑵 (7, 2) = −𝑭𝑵 (4, 2),

𝑭𝑵 (7, 9) = −𝑭𝑵 (4, 9), 𝑭𝑵 (8, 1) =
sec𝜑̂
𝑅𝑁 + ℎ̂

, 𝑭𝑵 (8, 7) = 𝑣𝐸 tan𝜑̂𝑭𝑵 (8, 1),

𝑭𝑵 (8, 9) = 𝑭𝑵 (5, 9) sec𝜑̂, 𝑭𝑵 (9, 3) = 1,

where R𝑀 is the main radius of curvature of the meridian; R𝑁 is the main radius of curvature of prime
vertical; 𝜔𝑖𝑒 is the rotational angular velocity of the Earth.

𝑭𝑺 =

[
03×3 𝑪n

b
−𝑪n

b 03×3

]
(43)

Build the six-dimensional measurement model as follows

𝒁 =
[
𝛷𝑥 𝛷𝑦 𝛷𝑧 𝛿𝜑 𝛿𝜆 𝛿ℎ

]T (44)

The measurement equation is

𝒁 = 𝑯𝑿 + 𝑽𝒎 (45)
𝑯 =

[
06×3 𝑰6×6 06×6

]
(46)

where V𝒎 is measuring noise.
Generally, the data output rate of the SIMU is higher than the star sensor. During the interval of

CNS output, INS alone calculates and updates the navigation parameters and matrix P in Kalman filter.
Otherwise, data fusion proceeds and the final filtering result X will be feedback to INS and compensate
for the state errors. Then X will be reset to zero until the next filtering moment.

5. Simulation verification and analysis

In this section, simulation of the zenith error range located by different zenith distances will be given first.
Then, both the static simulations of CNS with the coplanar distribution scheme (assigned as Scheme 1)
and the triangular distribution scheme (assigned as Scheme 2), as well as the dynamic simulations of
SINS/CNS deep integrated with Scheme 2, will be discussed.
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Figure 10. Zenith error ranges with different zenith distances.

5.1. Simulation of the zenith error range

According to Figure 2, assign 𝜇𝑎 as the celestial equator, u𝒓 orienting to the vernal equinox, (𝛼̂𝜁 , 𝛿𝜁 )
as the right ascension and declination of 𝜻̂ , then 𝜻(z𝑟 , 0). Obviously,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
cos 𝛿𝜁 cos 𝛼̂𝜁 cos 𝛿𝜁 sin 𝛼̂𝜁 sin 𝛿𝜁

]
·
[
1 0 0

]T
= cos 𝑧𝑟[

cos 𝛿𝜁 cos 𝛼̂𝜁 cos 𝛿𝜁 sin 𝛼̂𝜁 sin 𝛿𝜁
]
·
[
cos 𝑧𝑟 sin 𝑧𝑟 0

]T
= cosΔ𝜁

sgn(𝛿𝜁 ) = sgn(𝛽)

Therefore, combined with Equation (12),{
𝛼̂𝜁 = arctan(tan𝑧𝑟 cos 𝛽)
𝛿𝜁 = sgn(𝛽)arccos

√
sin2𝑧𝑟 cos2𝛽 + cos2𝑧𝑟

SettingΔu𝑎 = 1′′, h= 15 km, then the zenith error ranges in various conditions are shown in Figure 10.
It can be seen that both the error range and Δ𝜁max decrease with increasing zenith distance. However,

even if Δ𝜁 is about 25′ (e.g. z𝑎 = 80°, Δ𝜁max = 25·3′), the position error will be up to 46 km (one arc
minute gives an error in coordinates of approximately one nautical mile, i.e., 1.852 km) on the Earth’s
surface, let alone the larger Δu𝑎 in actual flight.

It should be noted that refraction effects in the vicinity of the horizon are more complicated (Yu et al.,
2015). Therefore, the optimal navigation star for positioning should be located high enough above the
horizon.

5.2. Static simulation of CNS

In static simulations without any measurement noise, the Monte Carlo method with 200 times indepen-
dent repeated experiments will be used to calculate the root mean square error (RMSE) of navigation
parameters. Setting h= 15 km, 𝛼𝑠 = 70°, corresponding 𝛼𝐴 = 1·009 (The Purple Mountain Observatory,
2021), 𝑪e

i = I3×3.

5.2.1. Precision analysis with Scheme 1
On the condition that the Zb axis orients to the zenith, 𝜆, 𝜑 and 𝜓 are randomly generated. According to
Fan and Li’s study (2011), the initial limiting magnitude (denoted as M) of star sensors I, II and III was
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(a) (b) (c)

Figure 11. Absolute attitude RMSE: (a) right ascension error (b) declination error (c) roll error.

(a) (b) (c)

Figure 12. Position RMSE: (a) longitude error (b) latitude error (c) total position error.

(a) (b) (c)

Figure 13. Relative attitude RMSE: (a) pitch error (b) roll error (c) yaw error.

set as 8·0, with FOV 3°× 3°. Then, the FOV of Sensor I was changed from 3°× 3° to 9°× 9°, and M1
from 8·0 to 6·0. Sensors II and III remain unchanged. The simulation results are shown in Figures 11–13.

Obviously, with the decrease of M1 and FOV1, which indicate fewer stars being detected, both
the attitude error and position error tend to increase. Besides, as shown in Figure 10, 𝜌 < 4·2′′ when
z𝑎 < 10°, h= 15 km. Although the absolute attitude RMSE is strictly limited within 1′′, the position
RMSE and relative attitude RMSE, however, are still big enough especially for positioning, let alone
with manoeuvre or measurement noise in calculation. This indicates that Scheme 1 has low engineering
feasibility.

5.2.2. Precision and loss function analyses with Scheme 2
Sensors I, II and III with FOV 3°× 3° are equivalent. M 𝑗 (j = 1, 2, 3) is reduced from 8·0 to 6·0. The
observation results are shown in Figure 14 where the success ratio of attitude determination is the
percentage that at least two stars can be observed in 200 samples. It can be seen that both the number
of observed stars and the success ratio decrease with reducing M. Ensuring the detectivity of each star
sensor is vitally important in actual flight. Therefore, 𝑀 𝑗 ≥ 6.4, 𝑁̄ 𝑗 > 1 (j = 1, 2, 3) with success ratio
higher than 90% should be satisfied in practice to ensure real-time accuracy, as set out in Section 5.3.

For each sample where attitude was successfully determined, the attitude determination method
without refraction corrected is assigned as Case 1, the method with only two FOVs available with
refraction corrected is assigned as Case 2 and the method with all three FOVs available with refraction
corrected as Case 3. Thereinto, the nominal location is given in Case 2 and Case 3. The simulation
results of the absolute attitude error are shown in Figure 15 and Table 1.

https://doi.org/10.1017/S037346332100093X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332100093X


The Journal of Navigation 719

Figure 14. Mean number of observed stars and success ratio of attitude determination.

Figure 15. Attitude RMSE in the three cases.

Table 1. Attitude RMSE in the three cases.

M 8·0 7·6 7·2 6·8 6·4 6·0

Δ𝛼/′′ 17·77 17·04 53·84 95·53 168·22 256·41
Case 1 Δ𝛿/′′ 1·77 10·80 32·83 45·06 67·00 206·35

Δ𝛾/′′ 14·59 9·43 43·49 77·12 145·46 132·83

Δ𝛼/′′ 1·89× 10−3 1·65× 10−3 1·87× 10−3 2·84× 10−3 2·55× 10−3 8·71× 10−3

Case 2 Δ𝛿/′′ 2·95× 10−4 7·72× 10−4 1·18× 10−3 2·96× 10−3 2·93× 10−3 5·37× 10−3

Δ𝛾/′′ 1·37× 10−3 7·19× 10−4 1·18× 10−3 2·45× 10−3 1·89× 10−3 7·10× 10−3

Δ𝛼/′′ 7·42× 10−5 8·26× 10−5 1·77× 10−4 9·39× 10−5 2·17× 10−4 1·20× 10−4

Δ𝛿/′′ 2·99× 10−5 4·39× 10−5 4·91× 10−5 5·55× 10−5 7·28× 10−5 7·32× 10−5
Case 3

Δ𝛾/′′ 6·55× 10−5 6·91× 10−5 1·68× 10−4 7·00× 10−5 2·05× 10−4 9·45× 10−5

Obviously, the attitude precision determined by Case 1 is rough. Case 2 is worse than Case 3, despite
its computational attitude RMSE with finite bit capacity of the processor in algorithm simulation having
already been equal to zero under the ideal conditions. In the long-endurance flight condition, Case 2
can be considered as an alternative.

The next step is to verify the feasibility of the conjugate gradient iterative method mentioned in
Section 3.2. Set M = 8·0. Assign 𝜆𝑏0 = 151·22° and 𝜑𝑏0 = 85·39°, solved by a random flight status as the
nominal location. Then, separately plot the loss function in the domain around (𝜆𝑏0, 𝜑𝑏0) with attitudes
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(a) (b)

Figure 16. Loss function simulation: (a) attitude determined by Case 1, (b) attitude determined by
Case 3.

Figure 17. Real kinematic parameters of UAV.

determined by Case 1 and Case 3, as in Figure 16, where a𝑙 = 1/(N1 +N2 +N3) (l= 1,. . . , N1 +N2 +N3).
It can be seen that the loss function is non-convex when the rough attitude (Case 1) is given. Only if the
precise attitude (Case 3) is acquired can (𝜆̂𝑏, 𝜑̂𝑏) converge to (𝜆𝑏0, 𝜑𝑏0) with loss function minimised.
However, this is difficult to realise in application with refraction influence.

5.3. Dynamic simulation of SINS/CNS

5.3.1. Environment settings
A simplified nominal flight trajectory with manoeuvring in the stratosphere is designed to verify the
integrated method. One flight cycle is set at 4 h with time nodes t0, t1, t2, t3, t4 at intervals of 1 h.
The UAV’s velocity is set at 60 m/s constantly orienting to the Yb axis (attack angle is 0°, sideslip
angle is 0°) and the initial real (nominal) kinematic parameters satisfy (𝜑𝑟 (t0), 𝜆𝑟 (t0))= (40°, 120°),
h𝑟 (t0)= 15 km, 𝜃𝑟 (t0)= 𝜙𝑟 (t0)= 0°, 𝜓𝑟 (t0)= 90°. The initial Greenwich hour angle of the vernal equinox
AΥ(t0)= 59·03°. The designed kinematic parameters vary as shown in Figure 17.

The simulation parameters of various navigational apparatus are shown in Table 2. In addi-
tion, 𝛼𝑠 = 70°, 𝛼𝐴 = 1·009, FOV 3°× 3° and 𝛿v𝐸 ,N,U(t0)= 0·1 m/s, 𝛷𝑥 ,y,z(t0)= 1′′, 𝛿𝜑(t0)= 𝛿𝜆(t0)= 1′′,
𝛿h(t0)= 50 m.

5.3.2. Flight simulation within 4 h
In one 4 h flight cycle, the constant M = 8·0. For the proposed deep integrated method with refraction
corrected and the traditional method with refraction uncorrected, the real-time simulation errors of
navigation parameters are estimated as shown in Figures 18–21. The RMSEs of the navigation parameters
are shown in Table 3.
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Table 2. Simulation parameters of navigational apparatus.

Apparatus Precison Sampling period

Gyroscope constant drift 0·01°/h, random drift 0·005°/h (1 𝜎) 0·1 s
Accelerometer constant bias 10 𝜇g, random bias 5 𝜇g (1 𝜎) 0·1 s
Star sensor measurement error 2′′ (1 𝜎) 0·5 s

Figure 18. Attitude error within 4 h.

Figure 19. Velocity error within 4 h.
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Figure 20. Geographical coordinate error within 4 h.

Figure 21. Total position error within 4 h.

Table 3. Navigation parameter RMSE of 4 h flight.

Refraction uncorrected Refraction corrected

(Δ𝜃, Δ𝜙, Δ𝜓)/′′ (28·07, 43·95, 31·59) (4·59, 5·45, 4·89)
(Δvex, Δvey, Δvez)/(m/s) (0·82, 0·55, 0·90) (0·08, 0·08, 0·09)
(Δ𝜑, Δ𝜆)/′′ (42·72, 38·31) (4·07, 4·32)
Total position error (m) 1604 162
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Figure 22. Loss function within 4 h.

It can be seen that, under the influence of atmospheric refraction, all the navigation error data of
the traditional integrated method without correction oscillate or even diverge, while the proposed deep
integrated method with correction can eliminate the influence of tight coupling between attitude and
position on navigation accuracy, and thus effectively restrain navigation error within a limited range
even in manoeuvring flight.

The real-time loss functions of the two methods are plotted in Figure 22. Although the orders of
magnitude are so small that the numerical value may overflow in calculation, it does verify that smaller
function value indicates higher navigation accuracy.

5.3.3. Flight simulation within 24 h
For the purpose of simulating the decrease of limiting magnitude with enhancing atmospheric back-
ground radiation in long-endurance flight, M is respectively set to 8·0, 7·7, 7·4, 7·1, 6·8 and 6·5 in six
continuous flight cycles (i.e., 24 h flight). The final results of the proposed deep integrated method are
shown in Figure 23.

It can be seen that, with the decrease of limiting magnitude together with the number of observed
stars among different flight cycles, the navigation accuracy tends to be worse. Nevertheless, the position
RMSE in each hour can still be restrained within 1·5 km and the attitude real-time error can be restrained
within 70′′ even after 24 h manoeuvring flight with limiting magnitude above 6·5. Obviously, the
proposed method can overcome the problem of unreliability of CNS operating by itself. When better
conditions are satisfied, e.g., all the sensors are available to detect stars all the time, higher navigation
accuracy can be achieved, and thus the cruising ability of the UAV can be ensured.

6. Conclusions

(1) Based on the atmospheric refraction model, the introduction of a stellar azimuth coordinate system
can help to effectively establish the coupling relationship between attitude parameters and position
parameters.

(2) Based on the geometric relationship whereby all the stellar azimuth planes intersect on the
common zenith direction, the proposed loss function can be utilised to evaluate the navigation
accuracy. This can be also applicable to further intelligent navigation algorithms.

(3) The observed refracted starlight with wider zenith distance contributes to precise positioning,
while the observed refracted starlight with narrower zenith distance contributes to precise attitude
determination. Therefore, the strapdown installation of triple-FOV CNS must comprehensively
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Figure 23. Navigation error and mean number of observed stars within 24 h.

coordinate the position accuracy, attitude accuracy, application range of atmospheric refraction
model and the manoeuvring flight strategy according to the engineering requirements.

(4) CNS alone cannot ensure sufficient position accuracy by a rough attitude with refraction influence,
which is unacceptable for an aerial vehicle.

(5) The SIMU/triple star sensors deep integrated method can correct the attitude error through the
atmospheric refraction model as well as a rough location and horizontal reference provided by
SINS, acquiring a more accurate position. Based on the high-precision daytime star sensors with
strong detectivity, this method can ensure navigation accuracy by Kalman filter even for all-day
flight, which can be applicable to a HALE UAV in steady-state cruise in the
stratosphere.

Refractivity in the stratosphere is weaker than at sea level, so the precise refraction model and
horizontal reference are strictly demanded. When adjusting the refraction model for some specific
complex circumstances, the methodology proposed in this paper also applies. In addition, the acquisition
of precise altitude information and the evasion of the sun or the moon should be seriously considered in
engineering applications.
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Appendix

For Equation (25), according to the Jacobi identity in elliptic function theory, assign

𝑱 = 𝜻b × (𝒗𝒂 × 𝒗𝒓 ) + 𝒗𝒂 × (𝒗𝒓 × 𝜻b) + 𝒗𝒓 × (𝜻b × 𝒗𝒂) = 0 (A1)

Therefore,

(𝒗𝒂 × 𝒗𝒓 ) × 𝑱·𝜻b = (𝒗𝒂 × 𝒗𝒓 ) × [𝜻b × (𝒗𝒂 × 𝒗𝒓 )] · 𝜻b + (𝒗𝒂 × 𝒗𝒓 ) × [𝒗𝒂 × (𝒗𝒓 × 𝜻b)] · 𝜻b

+ (𝒗𝒂 × 𝒗𝒓 ) × [𝒗𝒓 × (𝜻b × 𝒗𝒂)] · 𝜻b = 0 (A2)

https://doi.org/10.1017/S037346332100093X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332100093X


726 Ziqian Gao et al.

As v𝒂, v𝒓 and 𝜻b are unit vectors, thus

(𝒗𝒂 × 𝒗𝒓 ) × [𝜻b × (𝒗𝒂 × 𝒗𝒓 )] · 𝜻b = 𝜻b·[(𝒗𝒂 × 𝒗𝒓 ) · (𝒗𝒂 × 𝒗𝒓 )] · 𝜻b − (𝒗𝒂 × 𝒗𝒓 ) · [(𝒗𝒂 × 𝒗𝒓 ) · 𝜻b] · 𝜻b

= [𝒗𝒓 × (𝒗𝒂 × 𝒗𝒓 ) · 𝒗𝒂] · 𝜻
2
b − [(𝒗𝒂 × 𝒗𝒓 ) · 𝜻b]

2

= [𝒗𝒂 ·(𝒗𝒓 ·𝒗𝒓 ) · 𝒗𝒂 − 𝒗𝒓 ·(𝒗𝒓 ·𝒗𝒂) · 𝒗𝒂] · 𝜻
2
b − [(𝒗𝒂 × 𝒗𝒓 ) · 𝜻b]

2

= 1 − (𝒗𝒓 ·𝒗𝒂)
2 − [(𝒗𝒂 × 𝒗𝒓 ) · 𝜻b]

2 (A3)
(𝒗𝒂 × 𝒗𝒓 ) × [𝒗𝒂 × (𝒗𝒓 × 𝜻b)] · 𝜻b = 𝒗𝒂 ·[(𝒗𝒂 × 𝒗𝒓 ) · (𝒗𝒓 × 𝜻b)] · 𝜻b − (𝒗𝒓 × 𝜻b) · [(𝒗𝒂 × 𝒗𝒓 ) · 𝒗𝒂] · 𝜻b

= 𝒗𝒂 ·[𝒗𝒓 × (𝒗𝒓 × 𝜻b) · 𝒗𝒂] · 𝜻b − [(𝒗𝒂 × 𝒗𝒓 ) · 𝒗𝒂] · (𝒗𝒓 × 𝜻b) · 𝜻b

= 𝒗𝒂 ·[𝒗𝒓 ·(𝒗𝒓 ·𝜻b) · 𝒗𝒂 − 𝜻b·(𝒗𝒓 ·𝒗𝒓 ) · 𝒗𝒂] · 𝜻b

= (𝒗𝒓 ·𝜻b) · (𝒗𝒓 ·𝒗𝒂) · (𝒗𝒂 ·𝜻b) − (𝜻b·𝒗𝒂)
2 (A4)

(𝒗𝒂 × 𝒗𝒓 ) × [𝒗𝒓 × (𝜻b × 𝒗𝒂)] · 𝜻b = 𝒗𝒓 ·[(𝒗𝒂 × 𝒗𝒓 ) · (𝜻b × 𝒗𝒂)] · 𝜻b − (𝜻b × 𝒗𝒂) · [(𝒗𝒂 × 𝒗𝒓 ) · 𝒗𝒓 ] · 𝜻b

= 𝒗𝒓 ·[𝒗𝒓 × (𝜻b × 𝒗𝒂) · 𝒗𝒂] · 𝜻b

= 𝒗𝒓 ·[𝜻b·(𝒗𝒓 ·𝒗𝒂) · 𝒗𝒂 − 𝒗𝒂 ·(𝒗𝒓 ·𝜻b) · 𝒗𝒂] · 𝜻b

= (𝒗𝒓 ·𝒗𝒂) · (𝜻b·𝒗𝒂) · (𝒗𝒓 ·𝜻b) − (𝒗𝒓 ·𝜻b)
2 (A5)

Therefore,

(𝒗𝒂 × 𝒗𝒓 ·𝜻b)
2 = 1 − (𝒗𝒂 ·𝒗𝒓 )

2 − (𝒗𝒓 ·𝜻b)
2 − (𝜻b·𝒗𝒂)

2 + 2(𝒗𝒂 ·𝒗𝒓 )(𝒗𝒓 ·𝜻b)(𝜻b·𝒗𝒂) (A6)

As v𝒂, v𝒓 and 𝜻b are coplanar, thus

(𝒗𝒂 × 𝒗𝒓 ·𝜻b)
2 = 1 − (𝒗𝒂 ·𝒗𝒓 )

2 − (𝒗𝒓 ·𝜻b)
2 − (𝜻b·𝒗𝒂)

2 + 2(𝒗𝒂 ·𝒗𝒓 )(𝒗𝒓 ·𝜻b)(𝜻b·𝒗𝒂) = 0 (A7)
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