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The divergence-free time-independent velocity field has been determined so as to
maximise heat transfer between two parallel plates with a constant temperature
difference under the constraint of fixed total enstrophy. The present variational
problem is the same as that first formulated by Hassanzadeh et al. (J. Fluid Mech.,
vol. 751, 2014, pp. 627–662); however, the search range for optimal states has been
extended to a three-dimensional velocity field. A scaling of the Nusselt number
Nu with the Péclet number Pe (i.e., the square root of the non-dimensionalised
enstrophy with thermal diffusion time scale), Nu ∼ Pe2/3, has been found in the
three-dimensional optimal states, corresponding to the asymptotic scaling with the
Rayleigh number Ra, Nu ∼ Ra1/2, expected to appear in an ultimate state, and
thus to the Taylor energy dissipation law in high-Reynolds-number turbulence. At
Pe ∼ 100, a two-dimensional array of large-scale convection rolls provides maximal
heat transfer. A three-dimensional optimal solution emerges from bifurcation on the
two-dimensional solution branch at Pe ∼ 101, and the three-dimensional solution
branch has been tracked up to Pe ∼ 104 (corresponding to Ra ≈ 2.7 × 106). At
Pe & 103, the optimised velocity fields consist of convection cells with hierarchical
self-similar vortical structures, and the temperature fields exhibit a logarithmic-like
mean profile near the walls.

Key words: Bénard convection, mixing enhancement, variational methods

1. Introduction

What is a flow maximising heat transfer? We have explored an answer to this
naive question. For buoyancy-driven convection, i.e. Rayleigh–Bénard convection,
the maximal heat transfer has been discussed for more than half a century (Malkus
1954; Howard 1963; Busse 1969). Kraichnan (1962) has predicted the asymptotic
scaling of the Nusselt number Nu with the Rayleigh number Ra as Nu∼ Ra1/2 with
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a logarithmic correction for very high Ra. In 1990s, a new variational approach
called ‘the background method’ was invented by Doering & Constantin (1992),
and the method has triggered remarkable advancements in rigorous upper bounds
on the Nusselt number Nu (Doering & Constantin 1996; Kerswell 2001; Otero
et al. 2002; Plasting & Kerswell 2003; Doering, Otto & Reznikoff 2006; Whitehead
& Doering 2011, 2012). In these theoretical works, rigorous upper bounds, e.g.
Nu − 1 6 0.02634Ra1/2 (Plasting & Kerswell 2003), have been derived at Ra � 1.
The ‘ultimate’ scaling Nu∼Ra1/2 corresponds to the Taylor law of energy dissipation
in high-Reynolds-number turbulence. It has not been demonstrated as yet what
flow structure achieves the ultimate scaling Nu ∼ Ra1/2. Recently, meanwhile,
Hassanzadeh, Chini & Doering (2014) have numerically maximised a wall heat
flux within a two-dimensional velocity field bounded by two parallel plates with
a constant temperature difference. They formulated a variational problem to find a
velocity field maximising heat transfer under the constraint of fixed total enstrophy,
and found optimal states consisting of an array of large-scale convection rolls for
free-slip boundary conditions. The maximal scaling is represented by Nu ∼ Ra5/12,
corresponding to the rigid upper bound derived by the background method for
free-slip conditions (Whitehead & Doering 2011, 2012). For no-slip conditions, on
the other hand, the velocity fields numerically optimised within a two-dimensional
field also exhibit large-scale circulation rolls, and the found scaling is Nu ∼ Ra0.37

(Souza 2016). Such scalings observed in the two-dimensional optimal states are
quite distinct from the ultimate scaling Nu ∼ Ra1/2. The scalings observed by both
Hassanzadeh et al. (2014) and Souza (2016) cannot also persist asymptotically at
high Péclet number Pe (corresponding to high Ra) because, as Tobasco & Doering
(2017) rigorously proved, the scaling of two-dimensional flow should be given by
Ra1/2 with logarithmic corrections, and hence their found states cannot be optimal
asymptotically.

In this paper, we consider the variational problem first examined by Hassanzadeh
et al. (2014) for free-slip conditions and then by Souza (2016) for no-slip conditions;
however, we extend the search range for optimal states to a three-dimensional
velocity field. We report three-dimensional optimal states capable of achieving the
ultimate scaling, and discuss the optimised flow structures. In order to satisfy the
Navier–Stokes equation the optimised divergence-free vector field needs an external
body force which is distinct from buoyancy, but hereafter we refer to it as a ‘velocity’
field.

2. Formulation

Let us consider heat transfer in a three-dimensional, time-independent and
incompressible velocity field between two parallel plates, u′(x′, y′, z′) = u′ex + v

′ey +

w′ez, satisfying the continuity equation

∇
′
· u′ = 0, (2.1)

where a prime (·)′ represents a dimensional variable, and ex and ey are mutually
orthogonal unit vectors in the wall-parallel directions while ez is a unit vector in
the wall-normal direction. The configuration of the velocity and temperature fields is
shown in figure 1. The two parallel plates are positioned at z′= 0 and z′=H, and the
domain of the flow is periodic in the x′- and y′-directions with periods L′x and L′y. The
upper (or lower) wall surface is held at lower (or higher) constant temperature T ′= 0
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Maximal heat transfer between two parallel plates
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FIGURE 1. Configuration of the velocity and temperature fields.

(or T ′ =1T > 0). We suppose that the temperature field T ′(x′, y′, z′) is determined as
a solution to an advection–diffusion equation

(u′ · ∇′)T ′ = κ∇ ′2T ′, (2.2)

supplemented by the boundary conditions

u′(z′ = 0)= u′(z′ =H)= 0; T ′(z′ = 0)=1T, T ′(z′ =H)= 0, (2.3a−c)

where κ denotes a thermal diffusivity. The strength of the velocity field is measured
by the Péclet number Pe, defined, in terms of the total enstrophy (or the averaged
square of velocity gradient tensor), as

Pe=
〈|ω′|2〉

1/2H2

κ
=
〈|∇

′u′|2〉1/2H2

κ
, (2.4)

where ω′=∇′×u′, |∇′u′|2=∇′u′ : ∇′u′ and 〈·〉 is a volume average. The wall-normal
convective heat transfer is characterised by the Nusselt number, defined as the ratio
of the convective heat flux to the conductive heat flux,

Nu= 1+
〈w′T ′〉
κ1T/H

. (2.5)

In this study, we explore a three-dimensional velocity field maximising Nu for
fixed Pe. The constrained optimisation is relevant to the maximisation of the objective
functional

F =
〈

wθ − θ∗(x)
[
(u · ∇)θ −∇2θ −w

]
+ p∗(x) (∇ · u)+

µ

2

(
Pe2
− |∇u|2

)〉
(2.6)

(see Hassanzadeh et al. 2014), where p∗(x), θ∗(x) and µ are Lagrange multipliers. The
variables in (2.6) have been non-dimensionalised as

x=
x′

H
, θ =

θ ′

1T
, u=

u′

κ/H
, p∗ =

p∗′

ρκ2/H2
, θ∗ =

θ∗′

1T
, (2.7a−e)

where ρ is the constant mass density of the fluid and θ = T − (1− z) is a temperature
fluctuation about a conductive state. Stationary points of F are determined by the
Euler–Lagrange equations

δF
δu
≡−∇p∗ + θ∇θ∗ +µ∇2u+ (θ + θ∗)ez = 0, (2.8)
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δF
δθ
≡ (u · ∇)θ∗ +∇2θ∗ +w= 0, (2.9)

δF
δθ∗
≡−(u · ∇)θ +∇2θ +w= 0, (2.10)

δF
δp∗
≡∇ · u= 0, (2.11)

∂F
∂µ
≡

1
2
〈Pe2
− |∇u|2〉 = 0. (2.12)

3. Numerical optimisation

Solutions to equations (2.8)–(2.11) depend only on µ for fixed periods (Lx, Ly). For
given µ, the solutions correspond to stationary points of the alternative functional

G =
〈

wθ −
µ

2
|∇u|2 − θ∗(x)

[
(u · ∇)θ −∇2θ −w

]
+ p∗(x) (∇ · u)

〉
. (3.1)

This is because G = F − (µ/2)Pe2 and thus the Euler–Lagrange equations for G are
also given by (2.8)–(2.11). In our previous work on a different functional in a different
configuration (Motoki, Kawahara & Shimizu 2018), we have developed a numerical
approach to find local maxima of a functional kindred to G by a combination of the
steepest ascent method and the Newton–Krylov method. Using the same procedures,
we obtain an optimal state (uopt, θopt, θ

∗

opt, p∗opt) maximising G for given µ. Since F
has the gradients common to G, the optimal state gives the maximum of F at Pe=
〈|∇uopt|

2
〉

1/2. Thus the optimal states of F can be obtained without fixing Pe in the
process of the optimisation.

Only when we fix Pe, maximal points for a specific value of Pe (say, Pe0) are
calculated by updating µ as

µnew =µ+ ε(〈|∇uopt|
2
〉 − Pe2

0), (3.2)

taking account of the fact that the decrease (or increase) in µ corresponds to the
increase (or decrease) in Pe, where ε is a small positive constant to be taken as ε ∼
10−5. Equations (2.8)–(2.11) are discretised by employing the spectral Galerkin method
based on Fourier–Chebyshev expansions (for more details, see § 3 and appendix A in
Motoki et al. 2018).

In this paper, we present the optimal states in the square wall-parallel domain of
(Lx, Ly, Lz)= (π/2,π/2, 1). By increasing or decreasing the wall-parallel domain size
to (Lx,Ly,Lz)= (2, 2, 1) or (π/(2

√
2),π/(2

√
2), 1), we have confirmed that the effects

of the domain size are insignificant on the scaling of Nu with Pe at Pe& 103 as well
as the spatial structures in the optimal states, which will be described in the following
sections. The numerical computations are carried out on 643 grid points for Pe6 500
and 1283 grid points for Pe> 500. It has been validated in comparison with 2563 grid
points that the results presented in this paper are independent of the spatial resolution.
The dependence on domain size and spatial resolution is shown in appendix A.

4. Ultimate scaling

Figure 2(a) shows the maximal Nu as a function of Pe. At large Pe (&103), we
observe the scaling of Nu with Pe, Nu − 1 ≈ 0.082Pe2/3. The scaling Nu ∼ Pe2/3
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FIGURE 2. (a) Nusselt number Nu as a function of Péclet number Pe in the optimal states.
The blue and red circles denote two-dimensional and three-dimensional optimal states,
respectively. The dashed line indicates the power fit Nu− 1= 0.0821Pe2/3 determined in
the range 5× 103 < Pe< 104. The solid line represents the scaling Nu− 1= 0.0885Pe2/3

evaluated from the rigorous upper bound Nu − 1 = 0.02634Ra1/2 (Plasting & Kerswell
2003) assuming the identity Pe2

=Ra(Nu− 1) (Hassanzadeh et al. 2014). The inset shows
the compensated Nu. (b,c) Nu as a function of (b) much larger µ (much smaller Pe) and
(c) larger µ (smaller Pe). The blue and red curves respectively show the two-dimensional
and three-dimensional solutions, and the black line is a conductive solution. The solid (or
dashed) line denotes an optimal (or saddle) solution.

corresponds to the ultimate scaling Nu ∼ Ra1/2 in the Rayleigh–Bénard problem,
provided that the total energy budget is given by the Boussinesq equation, that
is Pe2

= Ra(Nu − 1) (Hassanzadeh et al. 2014), where Ra = gβ1TH3/(νκ) is the
Rayleigh number, g, β and ν being the acceleration due to gravity, the thermal
expansion coefficient of the fluid and the kinematic viscosity, respectively. The
thick solid line indicates the rigorous upper bound derived by using the background
method (Plasting & Kerswell 2003). The obtained maximal scaling is close to the
upper bound, but the prefactor is approximately 7.2 % less than that of the bound. We
have confirmed that the optimal states in the different domains, (Lx, Ly, Lz)= (2, 2, 1)
and (π/(2

√
2),π/(2

√
2), 1), exhibit consistent scaling Nu− 1≈ 0.082Pe2/3 at Pe& 103

(as can be seen in figure 8 in appendix A).
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Supposing that Nu∼ Pe2/3 and choosing the reference velocity as U= (gβ1TH)1/2,
we have the scaling with respect to the energy dissipation as

ν〈|∇′u′|2〉
U3/H

∼ Pr−1/2, (4.1)

where Pr is the Prandtl number. Thus the scaling Nu ∼ Pe2/3 means that the
energy dissipation normalised by U3/H is independent of the Reynolds number,
in accord with the Taylor’s scaling view for turbulent energy dissipation. Although
the Taylor dissipation law does not hold in turbulent shear flows over a smooth-wall
surface, the Reynolds-number-independent skin-friction coefficient can be observed
in high-Reynolds-number rough-wall turbulence, implying the emergence of the
Taylor law. The ultimate scaling Nu∼ Ra1/2 has not also been observed in turbulent
Rayleigh–Bénard convection between smooth horizontal plates, i.e. the same boundary
conditions as in the present study. For homogeneous turbulent convection without
thermal and velocity boundary layers, e.g. in three-dimensional periodic boundary
box with the vertical mean temperature gradient (Lohse & Toschi 2003), the ultimate
scaling Nu∼ Ra1/2 has been observed. However, it is still an open question whether
or not the ultimate scaling can be found in high-Ra convective turbulence between
two parallel plates with surface roughness (Roche et al. 2001; Zhu et al. 2017).

5. Appearance of three-dimensional solution

At large µ (small Pe), a two-dimensional array of convection rolls gives maximal
heat transfer. The solution arises from supercritical pitchfork bifurcation on a
conductive solution at µ ≈ 1.703 × 10−2 (Pe ≡ 0) (figure 2b), and it satisfies the
reflection symmetry

[u, v,w, θ ](x, y, z)= [−u, v,w, θ ](−x, y, z) (5.1)

and the shift-and-reflection symmetry

[u, v,w, θ ](x, y, z)= [u, v,−w,−θ ](x+ Lx/2, y, 1− z) (5.2)

(see figure 3a). Figure 3(a,b) visualise isosurfaces of the temperature field T and of
the second invariant of the velocity gradient tensor

Q=−
1
2
∂ui

∂xj

∂uj

∂xi
. (5.3)

As µ decreases further, the second pitchfork bifurcation occurs on the two-dimensional
solution branch at µ≈ 3.028× 10−3 (Pe≈ 79.2, corresponding to Ra≈ 5.11× 103 via
Pe2
= Ra(Nu− 1)) (figure 2c). Subsequently, the two-dimensional solution becomes a

saddle solution, and a three-dimensional optimal solution with the shift-and-reflection
symmetry

[u, v,w, θ ](x, y, z)= [u, v,−w,−θ ](x+ Lx/2, y+ Ly/2, 1− z) (5.4)

appears (see figure 3b). In order to identify a qualitative change in the velocity field
through the second bifurcation, we introduce the one-dimensional energy spectra Ew
of the wall-normal velocity w defined as

Ew(kx, z)=
K∑

ky=−K

|w̃(kx, ky, z)|2, Ew(ky, z)=
K∑

kx=−K

|w̃(kx, ky, z)|2, (5.5a,b)

851 R4-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.557


Maximal heat transfer between two parallel plates

1
0

0(a) (b)1
T

0 1
T

0

y

x

π/2

π/2
0

z

1
0

0

y

x

π/2

π/2
0

z

FIGURE 3. (a) Two-dimensional saddle and (b) three-dimensional optimal solutions at
Pe = 80.0. The orange objects show the isosurfaces of the temperature, T = 0.75, and
the light grey tube-like objects are the vortex structures visualised by the positive second
invariant of the velocity gradient tensor, Q= 2560. The contours represent the temperature
field in the plane y=π/2.

where K is a positive integer representing the truncation, and w̃ is the Fourier
coefficient such that

w(x, y, z)≈
K∑

kx=−K

K∑
ky=−K

w̃(kx, ky, z) exp
[

i
{

2πkx

Lx
x+

2πkx

Ly
y
}]
. (5.6)

Figure 4(a–d) show the premultiplied energy spectra kxEw(kx, z) (or kyEw(ky, z)) at
the Péclet number Pe = 79.2, just after the onset of the three-dimensional solution,
as a function of the distance to the wall, z and the x- (or y-) component of the
‘wavenumber’ vector, kx (or ky). In the optimised velocity field (figure 4a) within a
two-dimensional field, there exist only the modes for odd kx representing a pair of
counterrotating large-scale rolls around z= 1/2 fully extending to the periodic box in
the x-direction (see figure 3a for the rolls at higher Pe). It is also the case even at
higher Péclet number Pe∼ 103. Figure 4(b) shows the spectrum as a function of the
other component ky for the three-dimensional velocity field at Pe= 79.2. In the spectra
kyEw, the only fundamental mode for ky = 1 is dominant, since the solution has been
obtained just after the bifurcation point (the onset of the three-dimensional solution).
In kxEw, the modes for even kx also appear as a result of the emergence of smaller-
scale three-dimensional structures in addition to the large-scale rolls (figure 4c). In
order to extract the deviation from the original two-dimensional velocity field, the
spectrum of the velocity difference between the two solutions at Pe= 79.2 is shown
in figure 4(d). The leading mode is at kx= 2, and the spectral component has a peak
at z= 1/4 (half the distance between one of the two walls and the midplane). That is
to say, the smaller-scale vortical structures for kx = 2, half the size of the large-scale
rolls, emerge at z= 1/4, closer to the wall. In figure 4(e), the relevant structures are
visualised by the difference in the y-component of vorticity, ω3D

y −ω
2D
y . The extracted

structure is characterised in terms of a three-dimensional mode (kx, ky)= (2, 1), and
exhibits an array of vortices arranged in a wall-parallel plane around z=1/4 (and 3/4).
The onset of the smaller three-dimensional vortical structures near the walls brings
about the bending of the original larger two-dimensional rolls and associated vortex
tubes (figure 3b), enhancing heat transfer.
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FIGURE 4. (a–d) One-dimensional premultiplied energy spectra of the wall-normal
velocity w, kxEw (kx, z) and kyEw (ky, z), at Pe = 79.2. The spectrum of (a) the
two-dimensional solution w2D, (b,c) the three-dimensional solution w3D, and (d) their
difference w3D

− w2D. The lateral axis denotes the distance to the wall z, and the
longitudinal axis is the wavenumber component (a,c,d) kx in the x-direction and (b) ky
in the y-direction. (e) Spatial distribution of the difference in the y-component of vorticity
ωy between the three- and two-dimensional solutions, ω3D

y −ω
2D
y at Pe= 79.2. The red/blue

objects respectively show the isosurfaces of ω3D
y − ω

2D
y = ±0.12. The contours represent

ω3D
y −ω

2D
y in the plane y=π/2.
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FIGURE 5. Optimal states at Péclet number (a) Pe= 508, (b) Pe= 1006, (c) Pe= 5041
and (d) Pe= 10 009. The orange objects show the isosurfaces of T = 0.75. The light grey
tube-like structures are the isosurfaces of (a) Q= 8.0× 104, (b) Q= 4.8× 105, (c) Q=
1.6× 107 and (d) Q= 1.6× 108 (note that only those in the lower half of the domain are
shown for visualisation of the near-wall structures). The contours represent temperature
field in the planes x= 0 and y=π/2.

In the velocity field optimised within a two-dimensional field, such smaller-scale
structures closer to the walls have not been found even at higher Pe. In the three-
dimensional optimal velocity field, on the other hand, the three-dimensional smaller-
scale structures with the higher wavenumber emerge closer to the walls, as mentioned
above. This is a crucial difference between the two- and three-dimensional optimal
fields.

6. Hierarchical self-similar structures

Tree-like structures of isotherms are observed in the optimal states at small µ
(large Pe), shown in figure 5. The orange objects show isosurfaces of T = 0.75, and a
‘trunk’ of the ‘tree’ represents a hot ‘plume’ where the positive wall-normal velocity
has been found to be dominant. As Pe increases, the tree ‘roots’ grow deeper while
maintaining the large-scale trunk. The light grey objects show smallest-scale vortex
structures visualised by the positive isosurfaces of Q in the near-wall region of the
lower half of the domain (similar vortical structures exist on the upper wall). The
smaller and stronger vortices appear closer to the walls with increasing enstrophy,
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FIGURE 6. Energy spectra of the wall-normal velocity w, kxEw(kx, z), as a function of
the distance to the wall, z and the wavelength in the x-direction, λx. The dashed diagonal
indicates λx = Lxz.

i.e. Pe. The roots are seen to be generated as a consequence of upward fluid motion
induced between the roughly antiparallel nearest segments of the winding tube-like
vortices. As seen in the bifurcation of the three-dimensional solution from the
two-dimensional solution, the local folding of the larger vortices stems from the
onset of the smaller vortical structures closer to the wall.

Figure 6 shows the energy spectra of the wall-normal velocity w as a function of
the distance to the wall, z, and the wavelength in the x-direction, λx = Lx/kx, relevant
to the size of the vortical structures. It can be seen that smaller-scale structures
are generated closer to the wall as Pe is increased. At Pe = 10 009 several spectral
peaks are observed along the ‘ridge’ represented by the dashed diagonal λx = Lxz,
implying that the optimal velocity fields possess hierarchical self-similarity. As shown
in figure 7(a), the energy spectra scale with the conduction length λθ = (2Nu)−1 in the
close vicinity of the wall. The hierarchical structures exist down to z/λθ ≈ 1, where
the size of the structures is λx ≈ 5Nu−1. Since Nu scales with Pe2/3 at large Pe, the
smallest scale is estimated as λx∼Pe−2/3, much smaller than the optimal aspect ratio,
L/H∼Pe−0.371, in the two-dimensional field (Souza 2016). Figure 7(b) shows the mean
temperature profile T as a function of z/λθ . 1 − T = z/λθ holds at z/λθ � 1, where
the thermal conduction dominates over the convection. As the distance to the wall,
z increases, the hierarchical vortex structures promote the convective heat transfer.
In the region 1 . z/λθ . 10 where the self-similarity appears, the logarithmic-like
temperature profiles are observed at Pe = 1008, 5041 and 10 009. The dashed line
indicates the logarithmic fit 1− T = 0.0358 ln (z/λθ)+ 0.423 determined in the range
2 < z/λθ < 4 at Pe = 10 009. Recently, the logarithmic temperature profiles have
also been observed numerically and experimentally in turbulent Rayleigh–Bénard
convection (Ahlers et al. 2012; Ahlers, Bodenschatz & He 2014). In the region far
from the wall, 10λθ . z6 1/2, mixing by the large-scale convection cells is dominant,
and thus the temperature profile is flattened.

7. Summary and conclusions

We have found the three-dimensional optimal states which lead to the scaling
Nu ∼ Pe2/3 consistent with the ultimate scaling Nu ∼ Ra1/2 in Rayleigh–Bénard
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FIGURE 7. (a) Energy spectra kxEw(kx, z) as a function of z and λx. The energy spectra
kxEw, the distance to the wall, z and the wavelength in the x-direction, λx are normalised
by λθ = (2Nu)−1. The dashed diagonal indicates λx = Lxz. (b) Mean temperature profile
T as a function of z/λθ . The black solid curve indicates 1 − T = z/λθ , and the dashed
line represents the logarithmic fit 1− T = 0.0358 ln (z/λθ )+ 0.423 determined in the range
2< z/λθ < 4 at Pe= 10 009.

convection. The optimal heat transfer is achieved by three-dimensional convection
cells with smaller-scale vortices attached on the walls. At large Pe, the optimal
velocity field exhibits hierarchical self-similarity. The large-scale cells mix up the
temperature almost completely around the midplane between the two walls. Near
the walls, meanwhile, self-similar vortical structures locally enhance heat transfer,
and yield a logarithmic-like mean temperature distribution. Our earlier optimisation
for heat transfer in plane Couette flow (Motoki et al. 2018) provided the optimal
velocity fields in which we observed hierarchical structure consisting of a number
of streamwise vortex tubes. The logarithmic-like mean temperature profiles as well
as the ultimate scaling Nu ∼ Ra1/2 were also found in the optimal fields. It has
recently been rigorously proved that the ultimate scaling Nu∼ Ra1/2 with logarithmic
corrections can be achieved by some velocity field which is two-dimensional but
exhibits hierarchical self-similarity (Tobasco & Doering 2017). These results suggest
that self-similar hierarchy of a velocity field would be a necessary condition for
the emergence of the ultimate scaling and logarithmic-like mean temperature profile
between two parallel no-slip plates.
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In order for the optimal state achieving maximal heat transfer to fulfil the Navier–
Stokes equation we need external body force

f ≡−(u · ∇)u−∇p+ Pr∇2u+ PrRa(1− z+ θ)ez, (7.1)

which is different from the buoyant force in the Boussinesq equation, where (u, θ)
is an optimal solution to the Euler–Lagrange equations (2.8)–(2.12) and p is pressure
determined by the Poisson equation stemming from the Boussinesq equations. Our
preliminary study, however, demonstrates that by using homotopy from the body
force to the buoyancy the optimal state can be continuously connected to a steady
solution to the Boussinesq equation. Although the connected solution is not stable,
it reproduces the mean and root-mean-squared velocities and temperature as well
as thermal plumes in turbulent Rayleigh–Bénard convection. This steady solution to
the Boussinesq equation exhibits the usually observed scaling Nu∼ Ra1/3 rather than
the ultimate scaling Nu∼ Ra1/2. It can be stated that the optimal state identified for
maximal heat transfer in this work is relevant to convective turbulence in the sense
that its connected solution to the Boussinesq equation represents well the structure and
statistics in a turbulent state. The authors are currently working on investigating the
steady solutions in the Rayleigh–Bénard convection case and establishing a relation
between solutions of the Euler–Lagrange equations and the Boussinesq equations.
The results will be presented in a separate paper.
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Appendix A. Dependence of optimal states on domain size and spatial
resolution

Figure 8 shows the Nusselt number compensated by Pe2/3 as a function of Pe
in the optimal states for different domain sizes. The green, red and blue symbols
represent the domains (Lx, Ly, Lz) = (2, 2, 1), (π/2, π/2, 1) ≈ (1.57, 1.57, 1) and
(π/(2

√
2),π/(2

√
2), 1)≈ (1.11, 1.11, 1), respectively. In any domains, the appearance

of three-dimensional optimal states and the scaling Nu − 1 ≈ 0.082Pe2/3 at Pe & 103

can be observed. For the present optimisation problem, it is expected that there exists
a velocity field with the domain size which leads to the global optimal. However, we
predict that the improvement in prefactor by optimising the domain size would not
be significant, since it is considered that the emergence of the hierarchical small-scale
structures near the walls, which are robustly observed in different domain sizes
(figure 9), plays a key role in the heat transfer enhancement.

In figure 8, the symbols +, u and × respectively show the results obtained on
different grid points of 643, 1283 and 2563, and the effects of the spatial resolutions
on the Nusselt number and the Péclet number (i.e., the enstrophy) are minor. For the
domain (Lx, Ly, Lz)= (π/2,π/2, 1), a spatial resolution of 1283 grid points is enough
to evaluate the characteristics of the optimal states at Pe . 104; 643 grid points are
sufficient at Pe . 103.
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FIGURE 8. Nusselt number Nu compensated by Pe2/3 as a function of the Péclet number
Pe in the optimal states for different domains. The green, red and blue symbols (or
dashed curves) respectively show the domains (Lx, Ly, Lz) = (2, 2, 1), (π/2, π/2, 1) and
(π/(2

√
2), π/(2

√
2), 1) (or the two-dimensional domains (Lx, Lz) = (2, 1), (π/2, 1) and
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2), 1)). The three-dimensional (or two-dimensional) solutions are obtained on grid
points of +, 643; u, 1283; ×, 2563 (or 2562). The solid and dashed lines represent the
scaling Nu − 1 = 0.0885Pe2/3 (evaluated from the rigorous upper bound by Plasting &
Kerswell 2003) and Nu− 1= 0.0821Pe2/3 (determined from the power fit at Pe> 5× 103),
respectively.
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isosurfaces of the temperature T=0.75. The Péclet number is (a) Pe=5051, (b) Pe=5041,
(c) Pe= 5074.
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