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Geostrophic adjustment with gyroscopic waves:
barotropic fluid without the traditional

approximation
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We study geostrophic adjustment in rotating barotropic fluid when the angular speed
of rotation Ω does not coincide in direction with the acceleration due to gravity; the
traditional and hydrostatic approximations are not used. Linear adjustment results in
a tendency of any localized initial state towards a geostrophically balanced steady
columnar motion with columns parallel to Ω . Nonlinear adjustment is examined
for small Rossby numbers Ro and aspect ratio H/L (H and L are the layer depth
and the horizontal scale of motion), using multiple-time-scale perturbation theory. It
is shown that an arbitrary perturbation is split in a unique way into slow and fast
components evolving with characteristic time scales (Rof )−1 and f−1, respectively,
where f is the Coriolis parameter. The slow component does not depend on depth
and is close to geostrophic balance. On times O(1/f Ro) the slow component is not
influenced by the fast one and is described by the two-dimensional fluid dynamics
equation for the geostrophic streamfunction. The fast component consists of long
gyroscopic waves and is a packet of inertial oscillations modulated by an amplitude
depending on coordinates and slow time. On times O(1/f Ro) the fast component
conserves its energy, but it is coupled to the slow component: its amplitude obeys
an equation with coefficients depending on the geostrophic streamfunction. Under the
traditional approximation, the inertial oscillations are trapped by the quasi-geostrophic
component; ‘non-traditional’ terms in the amplitude equation provide a meridional
dispersion of the packet on times O(1/f Ro), and, therefore, an effective radiation
of energy from the initial perturbation domain. Another important effect of the
non-traditional terms is that on longer times O(1/f Ro2) a transfer of energy between
the fast and the slow components becomes possible.

Key words: quasi-geostrophic flows, rotating flows, waves in rotating fluids

1. Introduction
Gyroscopic waves (GW) exist owing to rotation (e.g. LeBlond & Mysak 1978); no

stratification or gravity are necessary, although both of these factors strongly affect
the structure and properties of these waves. In a ‘pure’ form the GWs occur in a
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FIGURE 1. Schematic representation of the barotropic fluid layer of constant depth H
rotating at the angular speed Ω .

barotropic fluid layer of constant depth, bounded by two rigid lids and rotating as a
whole at a constant angular speed whose direction can be different from gravity (see
figure 1).

Under the traditional approximation (TA) when the horizontal component of the
Coriolis force is neglected, the GWs in the barotropic layer are sub-inertial, i.e. their
frequencies σ do not exceed the vertical component of twice the angular speed of
rotation f = 2Ω sin φ0 (see figure 1), i.e. σ 6 f ; without the TA both sub-inertial and
super-inertial GWs with σ > f are possible (e.g. Brekhovskikh & Goncharov 1994;
Kasahara 2003). In stably stratified fluid under the TA the sub-inertial GWs exist
together with super-inertial internal waves only if the minimal buoyancy frequency
Nmin < f (e.g. Kamenkovich 1977). In strongly stratified fluid, i.e. for Nmin > f ,
only super-inertial internal waves are possible. However, without the TA sub-inertial
waves (so-called internal inertio-gravity waves) occur even in strongly stratified fluid
(Kasahara 2003; Gerkema & Shrira 2005; Gerkema et al. 2008). Like the GWs these
waves cannot exist without rotation.

Up to now, studies of geostrophic adjustment have taken into account only surface
and/or internal gravity waves (Reznik, Zeitlin & Ben Jelloul 2001; Zeitlin, Reznik &
Ben Jelloul 2003, see e.g.). Our aim is to include in the analysis gyroscopic waves. In
the present paper we examine the geostrophic adjustment of a barotropic fluid layer
where GWs are the only possible wave motion. An example of stratified fluid where
GWs co-exist with internal waves was considered by Reznik (2013a,b).

The paper is organized as follows. In § 2 the governing equations with boundary and
initial conditions are presented. In § 3 linear gyroscopic waves are discussed. Linear
adjustment is examined in § 4. In §§ 5–9 nonlinear adjustment of the long-wave (L�
H) initial state is analysed. Non-dimensional equations and the asymptotic procedure
for finding the solution are given in § 5. The lowest-order solution as a sum of a depth-
independent quasi-geostrophic (QG) component and modulated inertial oscillations is
represented in § 6. In § 7 the first-order solution is analysed and slow evolution of the
QG flow and inertial oscillations is described. The behaviour of the QG flow on times
longer than a typical geostrophic time is discussed in § 8. The role of the β-effect is
considered in § 9. Section 10 contains a discussion and conclusions. The majority of
the results below are obtained by direct analytic calculations. As sometimes they are
rather cumbersome, in order to simplify the presentation many technical details are
relegated to appendices A and B.
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Geostrophic adjustment with gyroscopic waves 587

2. Governing equations
The equations of motion for the barotropic fluid layer represented in figure 1 can

be written in the form:

ut + uux + vuy +wuz − fv + fsw=−px/ρ0, (2.1a)
vt + uvx + vvy +wvz + fu=−py/ρ0, (2.1b)

wt + uwx + vwy +wwz − fsu=−pz/ρ0, (2.1c)
ux + vy +wz = 0. (2.1d)

Here u, v, w are the velocity components associated with the x, y, z axes, respectively,
the z-axis being directed upward parallel to gravity (origin at the upper surface); ρ0
is the fluid density, p the deviation of pressure from the hydrostatic one, f and fs are
the vertical and horizontal components of twice the angular speed Ω , respectively:

f = 2Ω sin φ0, fs = 2Ω cos φ0. (2.2a,b)

The velocity field obeys the no-flux conditions at the surface and bottom:

w|z=0,−H = 0, (2.3)

and the initial conditions

(u, v,w)t=0 = (uI, vI,wI)(x, y, z); wI =−
∫ z

−H
(∂xuI + ∂yvI) dz. (2.4a,b)

In a geophysical context (2.1) represent the so-called non-traditional f -plane
approximation; in this case φ0 is the reference latitude around which the west–east,
south–north and vertical Cartesian coordinates x, y, z are introduced (see figure 1). For
a ‘non-traditional’ β-plane, Grimshaw (1975) showed that, for dynamical consistency
(angular momentum and vorticity conservation) the term fs should be constant and
the next-order term linear in y should be included only in the vertical component f ,
i.e.

fs = 2Ω cos φ0, f = 2Ω sin φ0 + βy, β = 2Ω cos φ0/a, (2.5a–c)

where a is the Earth’s radius (see also Gerkema et al. 2008, and references therein).
The following analysis uses primarily the f -plane model with constant f , fs given

by (2.2). The influence of the β-effect is discussed at the end of the paper in § 9. The
ratio q= fs/f = cot φ0 is assumed to be of the order of unity,

q=O(1), (2.6)

which corresponds to the mid-latitudes.

3. Linear gyroscopic waves
Greenspan (1968) discusses the general characteristics of the linear waves and

geostrophic flow in a homogeneous rotating fluid where the container walls are not
perpendicular to the rotation vector. In §§ 3 and 4 we will examine these in our
more geophysical context as a basis for the study of the nonlinear evolution of the
geostrophic flow and its interactions with gyroscopic waves.
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588 G. M. Reznik

For β = 0 and in the absence of a free surface and stratification the only
wave-making mechanism is the rotation, i.e. only gyroscopic waves are possible
here. Linearized equations (2.1) can be reduced to one equation for the vertical
velocity (e.g. Miropol’sky 2001):

(∂tt + f 2)wzz +∇2
h wtt + 2 f fswyz + f 2

s wyy = 0, w|z=0,−H = 0, (3.1a,b)

where ∇2
h = ∂2

x + ∂2
y . The wave solution

w=W(z) exp[i(kx+ ly− σ t)] (3.2)

is determined by the equations (κ =√k2 + l2):

(f 2 − σ 2)Wzz + 2i f fslWz + (κ2σ 2 − f 2
s l2)W = 0, W|z=0,−H = 0. (3.3a,b)

Non-trivial solutions to the eigenvalue problem (3.3) exist only for

σ 6= f (3.4)

and have the form
W = eλ

+z − eλ
−z, λ± = a± ib, (3.5a,b)

a=− i f fsl
f 2 − σ 2

, b= σκ∣∣f 2 − σ 2
∣∣√f 2 − σ 2 + f̄ 2

s , f̄s = fs
|l|
κ
. (3.6a–c)

The solution (3.5) satisfies the boundary conditions (3.3b) if b is real, i.e. the

frequency σ cannot exceed the limit value σ0 =
√

f 2 + f̄ 2
s ,

σ 6 σ0, (3.7)

and if sin bH = 0, i.e.

b= bn = nπ/H, n= 1, 2, . . . . (3.8)

Inequality (3.7) means that the frequencies of the gyroscopic waves cannot exceed
twice the angular speed 2Ω; Greenspan (1968) showed that this limitation is valid
for oscillations of fluid in a reservoir of arbitrary shape.

It follows from (3.6b) and (3.8) that

(1+ b̄2
n)(f

2 − σ 2)2 − (f 2 − f̄ 2
s )(f

2 − σ 2)− f 2 f̄ 2
s = 0, b̄n = nπ

κH
, (3.9a,b)

whence we find (e.g. Brekhovskikh & Goncharov 1994; Kasahara 2003) the dispersion
relation σ = σ(k, l, n) consisting of the sub-inertial branches σ sub

n :

σ sub
n =

{
f 2 − 1

2(1+ b̄2
n)

[
(f 2 − f̄ 2

s )+
√
σ 4

0 + 4b̄2
nf 2 f̄ 2

s

]}1/2

, (3.10a)

and the super-inertial branches σ sup
n :

σ sup
n =

{
f 2 + 1

2(1+ b̄2
n)

[
−(f 2 − f̄ 2

s )+
√
σ 4

0 + 4b̄2
nf 2 f̄ 2

s

]}1/2

. (3.10b)

The branches are presented in figure 2.
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FIGURE 2. Dispersion relation for the barotropic gyroscopic waves.

We now consider in more detail the case when the horizontal scale of motion L
greatly exceeds its vertical scale H. In the long-wave approximation κH� 1 both the
sub- and super-inertial frequencies (3.10) are close to the inertial frequency f ; in this
case

σ sub
n = f − fsH

2nπ
|l| + f O(b̄−2

n ), σ sup
n = f + fsH

2nπ
|l| + f O(b̄−2

n ). (3.11a,b)

The long-wave asymptotics (3.11) are universal in the sense that they remain valid
in stratified fluid too (Gerkema & Shrira 2005). We emphasize that the gyroscopic
waves are close to inertial oscillations if L� H; this is not the case for the surface
and internal gravity waves which are nearly inertial if L� LR where LR is the Rossby
scale. Reznik (2013a) showed that this property of GWs is valid also in stratified fluid.
Usually LR � H, therefore the presence of GWs results in the existence of inertial
oscillations with shorter horizontal scales L 6 LR.

Using the scales L and H, and f−1 as the time scale, we write (3.1) in the non-
dimensional form:

(∂tt + 1)wzz + 2δqwyz + δ2(∇2
h wtt + q2wyy)= 0, w|z=0,−1 = 0, (3.12a,b)

where δ = H/L� 1 and q = fs/f = cot φ0. The smallness of δ allows a solution to
(3.12) to be sought in the following asymptotic form:

w=w0(x, y, z, t, T1, . . .)+ δw1(x, y, z, t, T1, . . .)+ · · · , (3.13)

where Tn = δnt, n= 1, 2, . . . are the slow times.
Substitution of (3.13) into (3.12) gives in the lowest order:

(∂tt + 1)w0zz = 0, w|z=0,−1 = 0, (3.14a,b)

whence we have:
w0 =W0(x, y, z, T1, . . .)e−it + c.c.; (3.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

59
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.59


590 G. M. Reznik

c.c. denotes complex-conjugate value. Thus, the lowest-order solution is inertial
oscillations modulated by the arbitrary amplitude W0(x, y, z, T1, . . .), which depends
on the coordinates and slow time. Obviously, the existence of the approximate
solution (3.15) is related to the fact that all the modes σ sub

n , σ sup
n , independently of

their number n, degenerate into inertial oscillations ∝ e−ift in the long-wave limit.
The amplitude W0 is determined from the first-order equation:

(∂tt + 1)w1zz =−2∂tT1w0zz − 2qw0yz. (3.16)

The correction w1 is bounded in the ‘fast’ time t if the right-hand side of (3.16) is
zero whence one obtains:

∂T1W0zz + iqW0yz = 0. (3.17)

Equation (3.17) should be solved under the boundary conditions

W0|z=0,−1 = 0, (3.18)

and the initial condition

W0|T1=0 =WI = 1
2 wI(x, y, z). (3.19)

Representing the derivative W0z as the Fourier series

W0z =
n=∞∑

n=−∞
Ŵn(x, y, T1)ei2nπz, (3.20)

and substituting (3.20) into (3.17) one obtains:

ŴnT1 +
q

2nπ
Ŵny = 0, (3.21)

i.e. the Fourier amplitudes in (3.20) have the form:

Ŵn = Ŵn

(
x, y− q

2nπ
T1

)
. (3.22)

Finally, by virtue of (3.20) and (3.22) the amplitude W0 is given by the formula:

W0 = i
2π

n=∞∑
n=−∞

1
n

Ŵn

(
x, y− q

2nπ
T1

) (
1− ei2nπz

)
. (3.23)

The solution (3.23) describes an along-meridional (along the y-axis) dispersive
spreading of the perturbation: each vertical mode with number n travels along the
y-axis at the group velocity q/2nπ that, obviously, agrees with the asymptotics (3.11).
The group velocity does not depend on the horizontal wavenumbers k, l, therefore
the modes Ŵn(1− ei2nπz)/n in the series (3.23) uniformly translate one after another
conserving their shapes (see figure 3). With increasing n the group velocity decreases,
i.e. at a fixed point x, y the velocity field has a tendency to become more and more
small-scale in the vertical direction. Under the TA (q= 0) the meridional dispersion
at time T1∼ 1 disappears; in this case the inertial oscillations disperse in all allowable
directions on the longer time T2 ∼ 1.

By virtue of (3.5), (3.8) the horizontal velocities u, v and pressure p in the GW
always depend on the vertical coordinate z, therefore the assumption that motion does
not depend on depth (which is frequently used in the barotropic models under the TA)
is equivalent to the filtering of GWs. In what follows we assume that the initial fields
uI, vI in (2.4) depend on all coordinates.
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y

FIGURE 3. Schematic representation of dispersion spreading of a horizontally localized
initial field (solid circle); n denotes the number of corresponding vertical modes (dashed
circles).

4. Geostrophic mode and linear adjustment
In the linear approximation (2.1) take the form:

ut − fv + fsw=−px/ρ0, vt + fu=−py/ρ0, (4.1a,b)
wt − fsu=−pz/ρ0, ux + vy +wz = 0. (4.1c,d)

Besides the gyroscopic waves with frequency σ > 0 considered in § 3, there exists
another eigenfunction of the system (4.1): the so-called geostrophic mode which does
not depend on time (Greenspan 1968). This mode is related to a special invariant of
the system (4.1) with the boundary conditions (2.3).

To derive the invariant we introduce the new variables:

x′ = x, y′ = y− qz, z′ = z. (4.2)

The coordinates (4.2) are not orthogonal; the planes y′ = y − qz = const are parallel
to the angular speed Ω (see figure 4). We emphasize that only the coordinates
are transformed, the velocity components are determined by the geometry of the
boundaries as before. In the coordinates (4.2), (4.1) are written as

ut − fv + fsw=−px′/ρ0, vt + fu=−py′/ρ0, (4.3a,b)
wt − fsu=−(pz′ − qpy′)/ρ0, ux′ + vy′ +wz′ − qwy′ = 0. (4.3c,d)

Excluding p from (4.3a,b) and using the continuity equation (4.3d) one obtains the
following equation for the vertical vorticity:

(vx′ − uy′)t = fwz′ . (4.4)

The transformation (4.2) does not change the no-flux condition (2.3), i.e.

w|z′=0,−H = 0, (4.5)

therefore the following conservation integral is obtained from (4.4):∫ 0

−H
(vx′ − uy′) dz′ = Ω̄ (z′)

I (x′, y′). (4.6)

The right-hand side of (4.6) is determined by the initial conditions (2.4):

Ω̄
(z′)
I (x′, y′)=

∫ 0

−H
Ω
(z)
I (x

′, y′ + qz′, z′) dz′, (4.7)
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y

z

WavesWaves

FIGURE 4. The coordinates (4.2) and schematic representation of linear geostrophic
adjustment of an initial perturbation (thick long-dashed lines) to a z′-independent vortex
state (thick dot-dashed lines) oriented along Ω .

where Ω (z)
I is the initial vertical vorticity:

Ω
(z)
I =Ω (z)

I (x, y, z)= ∂xvI − ∂yuI. (4.8)

The conservation law (4.6) expresses a conservation of z′-averaged circulation along
the so-called geostrophic contours (Greenspan 1968). The compact form of the integral
is related to the fact that in our simple geometry any closed contour lying in one of
the boundary planes z′ = 0,−H, is a geostrophic contour.

The gyroscopic wave (3.2) is a solution to the system (4.3) with the boundary
condition (4.5), therefore the invariant (4.6) also exists for the wave. One can
readily see, however, that any linear invariant should be zero for any wave solution
harmonically depending on time; otherwise the invariant harmonically depends on
time, i.e. it is not an invariant. In our case this general principle implies that for the
gyroscopic wave u(w)(r, t), p(w)(r, t)∫ 0

−H
(v
(w)
x′ − u(w)y′ ) dz′ = 0, (4.9)

where the bold u and r denote the velocity and radius vectors, the superscript (w) the
wave solution.

This property of waves allows the solution to the linear problem (4.1), (2.3), (2.4)
to be represented as a sum of a stationary component ū(r), p̄(r) with non-zero
conservation integral (4.6) and a wave component ũ(r, t), p̃(r, t) with the zero
invariant:

(u, p)= (ū, p̄)+ (ũ, p̃). (4.10)

The stationary component obeys the equations:

− f v̄ + fsw̄=−p̄x′/ρ0, f ū=−p̄y′/ρ0, (4.11a,b)

fsū= (p̄z′ − qp̄y′)/ρ0, ūx′ + v̄y′ + w̄z′ − qw̄y′ = 0. (4.11c,d)

From (4.11b,c) one obtains p̄z′ = 0, and from (4.11a,b,d), w̄z′ = 0. By virtue of the
boundary conditions (4.5) we have w̄= 0.
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Thus the stationary solution is a geostrophic mode (Greenspan 1968) which does
not depend on the depth z on the planes parallel to the angular speed Ω:

ū=− 1
fρ0

p̄y′ v̄ = 1
fρ0

p̄x′, w̄= 0, p̄z′ = 0. (4.12)

The geostrophic mode is characterized by a columnar motion, the column axes
being directed along the rotation speed Ω so that the motion is parallel to the rigid
boundaries and the vertical velocity is zero (see figure 4). Geostrophic pressure p̄ is
found from (4.6) and (4.12):

∇2
h p̄= fρ0

H
Ω̄
(z′)
I (x′, y′). (4.13)

The wave component of solution obeys (4.1):

ũt − f ṽ + fsw̃=−p̃x/ρ0, ṽt + f ũ=−p̃y/ρ0, (4.14a,b)
w̃t − fsũ=−p̃z/ρ0, ũx + ṽy + w̃z = 0, (4.14c,d)

with the boundary conditions (2.3) and the initial conditions

(ũI, ṽI)= (uI − ū, vI − v̄). (4.15)

In addition, the conservation integral (4.6) for the wave component is zero, i.e.∫ 0

−H
(ṽx′ − ũy′) dz′ = 0. (4.16)

Solution to the problem (4.14)–(4.16), (2.3) is a superposition of the gyroscopic
waves considered in § 3. The waves are dispersive, therefore for localized initial
conditions (when uI, vI→ 0 r =√x2 + y2→∞) the wave solution ũ, p̃ decays with
increasing time at a fixed point in space and the full solution (4.10) tends to the
geostrophic mode (4.12), (4.13). In other words, any localized initial state tends
with time to a geostrophically balanced localized vortex with axis parallel to Ω
(see figure 4). This tendency to columnar motion seems to be very persistent and is
observed, for example, in laboratory experiments with turbulence in rotating tanks
(see e.g. Davidson, Staplehurst & Dalziel 2006; Staplehurst, Davidson & Dalziel
2008, and references therein).

The typical time Tw of the wave adjustment can be defined as Tw = L/cg where L
is the typical horizontal scale of the initial perturbation and cg is the typical group
velocity of radiated waves. It readily follows from the dispersion relations (3.10) and
(3.11) that for the large and moderate scales L>H the group velocity cg=O(f H) and
for the small scales L� H in the super-inertial (sub-inertial) range cg = O(f L3/H2)
(cg =O(f L2/H)), i.e.

Tw = L
H

f−1 for δ = H
L
6 1, (4.17a)

Tw >
H
L

f−1 for δ = H
L
� 1. (4.17b)

Thus the typical time of the wave adjustment is of the order of the inertial time f−1

for perturbations of moderate scales with L∼H and greatly exceeds this time in the
large-scale (L�H) and short-scale (L�H) domains.
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Nonlinear adjustment at small Rossby number Ro=U/fL� 1 (U is the horizontal
velocity scale) results in a slow (as compared to the inertial time f−1) evolution of
the geostrophic component on the advective time Ta = O(1/Rof ). Scenario of the
adjustment depends on the relationship between the advective time Ta and the wave
adjustment time Tw. In the case Tw � Ta the group velocity cg greatly exceeds the
flow velocity U, i.e. the waves rapidly run away from the initial perturbation and
do not interact effectively with the geostrophic mode. The residual flow left behind,
after all the waves have been propagated away, slowly changes on the advective time
and is close to geostrophic balance. This scenario is realized for perturbations with
moderate scale L∼H since in this case Tw=O(f−1)�Ta=O(Ro−1f−1). For large-and
small-scale perturbations the time Tw� f−1, therefore in these scale domains the waves
can effectively interact with the geostrophic mode if Tw > Ta and, therefore, cg 6 U.
The moderate and small-scale cases will be considered elsewhere; in the rest of paper
we examine the nonlinear evolution of large-scale perturbations with L�H assuming
the advective time Ta and the wave time Tw from (4.17a) to be of the same order. This
assumption means that the group velocity cg is of the order of the flow velocity U:

cg =O(fH)∼U. (4.18)

5. Non-dimensional equations and asymptotic procedure
We now write the system (2.1) in the coordinates (4.2) and then in non-dimensional

form using the scales L, H, f−1, U and the scales of vertical velocity W = (H/L)U
and of pressure P= ρ0fUL (the primes are omitted):

ut + Ro(uux + vuy +wuz − δqwuy)− v + δqw=−px, (5.1a)
vt + Ro(uvx + vvy +wvz − δqwvy)+ u=−py, (5.1b)

δ2wt + δ2Ro(uwx + vwy +wwz − δqwwy)− δqu=−pz + δqpy, (5.1c)
ux + vy +wz − δqwy = 0; (5.1d)

in the boundary and initial conditions (2.3), (2.4) the depth H is replaced by 1, and
x, y, z in (2.3), (2.4a) are replaced by the variables (4.2). In terms of the small Rossby
number Ro=U/fL and parameter δ =H/L the condition (4.18) means that

Ro= δ� 1. (5.2)

Solution to the problem (5.1), (2.3), (2.4) is represented in an asymptotic form
analogous to (3.13):

(u, v,w, p)= (u0, v0,w0, p0)(x, y, z, t, T1, . . .)+ δ(u1, v1,w1, p1)+ · · · . (5.3)

Substitution of (5.3) into (5.1), (2.3), and (2.4) gives at the first three orders: for δ0

u0t − v0 =−p0x, v0t + u0 =−p0y, p0z = 0, u0x + v0y +w0z = 0, (5.4 a–d)

w0|z=0,−1 = 0, (u0, v0)t=0 = (uI, vI)(x, y, z); (5.5a,b)

for δ1

u1t − v1 =−u0T1 −N(0)
u − qw0 − p1x, (5.6a)

v1t + u1 =−v0T1 −N(0)
v − p1y, (5.6b)
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p1z = q(u0 + p0y), u1x + v1y +w1z − qw0y = 0, (5.6c,d)

w1|z=0,−1 = 0, (u1, v1)t=0 = 0, (5.7a,b)

N(0)
u = (u2

0)x + (u0v0)y + (w0u0)z, N(0)
v = (u0v0)x + (v2

0)y + (w0v0)z; (5.8a,b)

for δ2

u2t − v2 =−u0T2 − u1T1 −N(1)
u − qw1 − p2x, (5.9a)

v2t + u2 =−v0T2 − v1T1 −N(1)
v − p2y, (5.9b)

p2z = q(u1 + p1y)−w0t, u2x + v2y +w2z − qw1y = 0, (5.9c,d)

w2|z=0,−1 = 0, (u2, v2)t=0 = 0, (5.10a,b)

N(1)
u = u0u1x + u1u0x + v0u1y + v1u0y +w0u1z +w1u0z − qw0u0y, (5.11a)

N(1)
v = u0v1x + u1v0x + v0v1y + v1v0y +w0v1z +w1v0z − qw0v0y. (5.11b)

For n> 1 the nth-order set of equations constitutes a linear system for the nth-order
fields with right-hand sides depending on the fields of previous orders. Analysis of the
nth-order system consists of two steps (e.g. Reznik et al. 2001; Zeitlin et al. 2003).
First, the dependence on the slow times of the previous order fields is determined from
conditions of absence of secular terms in the right-hand sides. Second, the dependence
on the coordinates and fast time t of the nth-order solution is determined from the
corresponding system free of secular terms. Below we sequentially analyse the systems
(5.4)–(5.11); cumbersome calculations are given in corresponding appendices A and B.

6. The lowest-order solution: slow QG flow and inertial oscillations

Here and below we use the representation of a physical field a as the sum of the
depth-averaged component and the component with zero mean over depth:

a= ā(x, y)+ â(x, y, z), ā=
∫ 0

−1
a dz

∫ 0

−1
â dz= 0. (6.1a–c)

Let us write the horizontal velocities u0, v0 in the form (6.1); in this case one
obtains from (5.4), (5.5) the following equations:

ū0t − v̄0 =−p0x, v̄0t + ū0 =−p0y, ū0x + v̄0y = 0; (6.2a–c)

(ū0, v̄0)t=0 = (ūI, v̄I)(x, y)=
∫ 0

−1
(uI, vI) dz; (6.2d)

û0t − v̂0 = 0, v̂0t + û0 = 0, û0x + v̂0y +w0z = 0; (6.3a–c)

w0|z=0,−1 = 0, (û0, v̂0)t=0 = (uI, vI)− (ūI, v̄I). (6.3d,e)

It readily follows from (6.2a–c) that:

ζ̄0 = v̄0x − ū0y = ζ̄0(x, y, T1, . . .), ū0 =−ψ̄0y, v̄0 = ψ̄0x, (6.4a–c)

where ζ̄0 is the depth-averaged vorticity and ψ̄0 the streamfunction which can be
introduced in view of (6.2c). It is seen from (6.4) that the depth-averaged zero-order
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horizontal velocities ū0, v̄0 do not depend on the fast time t, and, therefore, by virtue
of (6.2a,b) they satisfy geostrophic relations, i.e. one can set

ψ̄0 = p0. (6.4d)

System (6.3) is also readily solved:

û0 + iv̂0 = A0(x, y, z, T1, . . .)e−it, û0 = 1
2 A0e−it + c.c., v̂0 =− 1

2 iA0e−it + c.c.,
(6.5a–c)

w0 =− 1
2 e−it

∫ z

−1
s(A0) dz+ c.c. (6.5d)

Here the operator s is
s= ∂x − i∂y, (6.6)

and the amplitude A0 obeys the conditions∫ 0

−1
A0 dz= 0, A0(x, y, z, 0)= ûI + iv̂I. (6.7a,b)

Thus, the zero-order solution is the sum of a depth-independent slow geostrophic
component and fast ageostrophic inertial oscillations modulated by amplitude which
depends on the coordinates and slow times. Equations to determine the geostrophic
streamfunction ψ̄0 and the amplitude A0 follow from analysis of the next-order
approximations.

7. The first-order solution and slow evolution of QG flow and inertial oscillations
7.1. Derivation of slow evolution equations

Using (5.6c) and (6.4b,d) the pressure p1 is represented in the form (6.1):

p1 = p̄1 + p̂1, (7.1)

where the depth-averaged pressure p̄1 = p̄1(x, y, t) is still unknown and the deviation
p̂1 is

p̂1 = q
(∫ z

−1
û0 dz+

∫ 0

−1
zû0 dz

)
. (7.2)

Representing all fields in (5.6) in the form (6.1) one obtains from (5.6)–(5.8) the
equations for the depth-averaged and zero-mean components:

ū1t − v̄1 =−ū0T1 − N̄(0)
u − qw̄0 − p̄1x, (7.3a)

v̄1t + ū1 =−v̄0T1 − N̄(0)
v − p̄1y, (7.3b)

ū1x + v̄1y − qw̄0y = 0; (7.3c)

û1t − v̂1 =−û0T1 − N̂(0)
u − qŵ0 − p̂1x, (7.4a)

v̂1t + û1 =−v̂0T1 − N̂(0)
v − p̂1y, (7.4b)

û1x + v̂1y +w1z − qŵ0y = 0. (7.4c)

Here we have:

N̄(0)
u = (u2

0)x + (u0v0)y, N̄(0)
v = (u0v0)x + (v2

0)y, (7.5a,b)

N̂(0)
u = (u2

0 − u2
0)x + (u0v0 − u0v0)y + (w0u0)z, (7.6a)

N̂(0)
v = (u0v0 − u0v0)x + (v2

0 − v2
0)y + (w0v0)z. (7.6b)
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Elimination of p̄1 from (7.3a,b) taking into account (7.3c) gives the first-order
vorticity equation:

ζ̄1t =−ζ̄0T1 − (∂xN̄(0)
v − ∂yN̄(0)

u ), ζ1 = v1x − u1y. (7.7a,b)

One can show (see appendix A) that:

∂xN̄(0)
v − ∂yN̄(0)

u = J(ψ̄0, ζ̄0)− 1
4

[
e−2itL

(
A2

0

)
+ c.c.

]
, (7.8)

where J is the Jacobian and

L= is2 = 2∂xy + i(∂xx − ∂yy). (7.9)

It readily follows from (7.7a), (6.4) and (7.8) that the vorticity ζ̄1 is bounded as t→∞
only if

ζ̄0T1 + J(ψ̄0, ζ̄0)= 0, ζ̄0 =∇2
h ψ̄0. (7.10a,b)

Using (7.10a) and (7.8) one obtains ζ̄1 from (7.7a):

ζ̄1 =Π1(x, y, T1, . . .)+ 1
8 i
[
e−2itL

(
A2

0

)
− c.c.

]
, (7.11)

where Π1 is a still unknown function of the horizontal coordinates and slow times.
To determine the deviations û1, v̂1 we write (7.4a,b) as one complex equation:

Û1t + iÛ1 =−[Û0T1 + N̂(0)
u + iN̂(0)

v + p̂1x + ip̂1y + qŵ0], (7.12)

where
Û0 = û0 + iv̂0, Û1 = û1 + iv̂1. (7.13a,b)

Obviously, the complex velocity Û1 is bounded if secular terms proportional to e−it

are absent from the right-hand side of (7.12). It follows from (6.5d) that

w̄0 = 1
2 e−it

∫ 0

−1
zs(A0) dz+ c.c., ŵ0 =− 1

2 e−it

[∫ z

−1
s(A0) dz+

∫ 0

−1
zs(A0) dz

]
+ c.c.

(7.14a,b)
Using (7.2) and (7.14b) one finds:

p̂1x + ip̂1y + qŵ0 = e−itiq
(∫ z

−1
A0dz+

∫ 0

−1
zA0 dz

)
y

. (7.15)

It is shown in appendix A that:

N̂(0)
u + iN̂(0)

v = e−it[J(ψ̄0, A0)+ 1
2 i∇2

h ψ̄0A0] +NR; (7.16)

here and below NR denotes non-resonant terms. Now using (7.15), (7.16), and (6.5a)
one concludes that the resonant terms on the right-hand side of (7.12) are absent under
the condition

A0T1 + J(ψ̄0, A0)+ 1
2 i∇2

h ψ̄0A0 + iq
(∫ z

−1
A0dz+

∫ 0

−1
zA0 dz

)
y

= 0. (7.17)
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7.2. Discussion of the slow evolution
Equations (7.10) and (7.17) describe the slow evolution of the zero-order fields on
times t∼ 1/δ (T1∼ 1). Equation (7.10) expresses conservation of the quasi-geostrophic
potential vorticity ζ̄0 = ∇2

h ψ̄0 and coincides here with the two-dimensional fluid
dynamics equation. Importantly, the slow QG component does not depend on the
fast ageostrophic inertial oscillations and is determined only by (7.10) and the initial
conditions (6.2d).

Evolution of the amplitude of inertial oscillations is determined by equation (7.17),
and depends strongly on the QG streamfunction ψ̄0. At the same time one can readily
show that

∂

∂T1

∫
dx dy|A0|2 = 0,

∂

∂T1

∫
dx dy(∇ψ̄0)

2 = 0, (7.18)

i.e. on times t ∼ 1/δ both the fast and the slow components conserve their total
energies. In the next section we show that an energy transfer between the inertial
oscillations and QG flow is possible on times t∼ 1/δ2.

Under the TA, i.e. for q = 0, (7.17) is substantially simplified, especially if the
QG streamfunction ψ̄0 is axisymmetric and, therefore, it does not depend on time as
follows from (7.10), i.e. ψ̄0 = ψ̄0(r). In this case the solution to (7.17) has the form:

A0 = exp
(− 1

2 i∇2
h ψ̄0T1

)
AI

(
r, θ − ψ̄ ′0

r
T1

)
, (7.19)

where the prime means differentiation with respect to r and AI(r, θ) is the initial
amplitude (6.7b) written in polar coordinates. The exponential factor in (7.19) shifts
the inertial frequency f to the so-called effective inertial frequency f + ζ̄0/2 (Kunze
1985). The factor AI(. . .) describes advection of the inertial oscillations by the QG
flow, the radial gradients of the amplitude becoming sharp due to the differential
rotation. In accordance with (7.19) the inertial oscillations are trapped by the QG
vortex, (7.19) displaying no asymmetry between cyclonic and anticyclonic vortices in
their ‘trapping ability’ (cf. Kunze 1985). This lack of asymmetry is related to the lack
of dispersion of the long gyroscopic waves here: under the TA the dispersion becomes
significant on longer times T2 ∼ 1.

It is seen from (7.19) that the magnitude |A0| behaves exactly like a passive scalar
in the steady QG flow. For q = 0 the same is valid for any ψ̄0 since by virtue of
(7.17) we have:

|A0|T1
+ J(ψ̄0, |A0|)= 0. (7.20)

Equation (7.20) means that under the TA the inertial oscillations are trapped by the
QG velocity field ū0, v̄0.

At q 6= 0 the ‘non-traditional’ term in (7.17) changes the situation. In the absence of
the slow component, i.e. for ψ̄0= 0, (7.17) is similar to (3.17) considered above in § 3
(one can readily see this by differentiating (7.17) with respect to z, setting ψ̄0= 0 and
applying the operator (6.6) to the resulting equation). Therefore, the non-traditional
term in (7.17) produces a tendency for the meridional (along the y-axis) propagation
of the inertial oscillations. To analyse the general case ψ̄0 6= 0, q 6= 0 we represent the
solution to (7.17) in a form analogous to (3.20):

A0 =
n=∞∑

n=−∞
Ân(x, y, T1, . . .)ei2nπz. (7.21)
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The equation for the Fourier amplitude Ân is written as

ÂnT1 + J(ψ̄0, Ân)+ 1
2 i∇2

h ψ̄0Ân + q
2nπ

Âny = 0. (7.22)

The equation for the module |Ân| analogous to (7.20) simply follows from (7.22):

|Ân|T1 + J
(
ψ̄n, |Ân|

)
= 0. (7.23)

Here ψ̄n is the sum of ψ̄0 and a superimposed constant meridional flow (q/2nπ)x:

ψ̄n = ψ̄0 + q
2nπ

x. (7.24)

Thus, the field |Ân| behaves as a passive scalar in the velocity field ūn =−ψ̄ny, v̄n =
ψ̄nx. Let the QG component ψ̄0 contain intense vortices with closed streamlines; in
this case the streamline field (7.24) consists of the closed streamlines related to the
vortices, and unclosed ones, each of the unclosed streamlines tending to the straight
line ψ̄n= (q/2nπ)x= const as y→±∞. If the QG flow is time-independent then the
module |Ân| is trapped in the domains with the closed streamlines and travels away
from the initial disturbance location along the unclosed streamlines. The ‘propagation
ability’ depends on the mutual strength of the field ψ̄0 and the superimposed flow
(q/2nπ)x and decreases with increasing n. In the case of time-dependent QG flow
the situation is more complicated since Lagrangian trajectories do not coincide with
the streamlines. However, one can assume that the time-dependent ψ̄0, at least, does
not reduce the ‘propagation ability’ of the inertial oscillations since in this case the
Lagrangian trajectory can escape from the closed streamlines (e.g. Aref 1984).

An analogue of (7.17) in stratified fluid was derived by Young & Ben Jelloul
(1997), and analysed by Balmforth, Llewellyn Smith & Young (1998), Balmforth
& Young (1999), Klein & Llewellyn-Smith (2001) and Klein, Llewellyn-Smith &
Lapeyre (2004): the QG flow in these works was assumed to be prescribed. In the
context of geostrophic adjustment an analogue of (7.17) was derived by Reznik et al.
(2001) (for barotropic shallow water with a free surface) and by Zeitlin et al. (2003)
(for stratified fluid). In all these works, the TA was used and the inertial oscillations
were long gravity (surface or internal) waves with horizontal scales greatly exceeding
the corresponding Rossby scales.

In the theory presented here, no special constraints on the initial states (2.4) are
required: for example, decay of the motion at infinity is unnecessary. For horizontally
periodic flows, a more rigorous theory has been developed (see e.g. Wingate et al.
2011, and references therein). It is shown that the spatially periodic motion, too, is
split into the slow QG and fast wave components. The main result of these studies
is that the fast–fast interactions (i.e. interactions between the fast waves) do not
contribute to the slow component at least on times O(1/f Ro) (longer times were not
considered).

8. Long-term evolution of QG flow
We now proceed to the problem (5.9), (5.10) and (5.11). We are interested in

corrections to (7.10) for the slow QG component, therefore we integrate (5.9a,b,d)
over the depth to derive the equations for ū2, v̄2, p̄2:

ū2t − v̄2 =−ū0T2 − ū1T1 − N̄(1)
u − qw̄1 − p̄2x, (8.1a)
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v̄2t + ū2 =−v̄0T2 − v̄1T1 − N̄(1)
v − p̄2y, (8.1b)

ū2x + v̄2y − qw̄1y = 0. (8.1c)

Like the preceding section we use the vorticity equation following from (8.1a,b)
(cf. (7.7)):

ζ̄2t =−ζ̄1T1 − ζ̄0T2 − (∂xN̄(1)
v − ∂yN̄(1)

u ), ζ2 = v2x − u2y. (8.2a,b)

Averaging (8.2a) over the fast time t gives:

ζ̄0T2 +
〈
ζ̄1
〉

T1
+ 〈∂xN̄(1)

v − ∂yN̄(1)
u

〉= 0, (8.3)

where the average is defined as

〈a〉 = lim
1
T0

∫ T0

0
a dt as T0→∞. (8.4)

Using (7.3c), (7.7b) and (7.14a) one finds:〈
ζ̄1
〉=∇2

h ψ̄1, 〈ū1〉 =−ψ̄1y, 〈v̄1〉 = ψ̄1y. (8.5a–c)

The third term in (8.3) is calculated in appendix B:〈
∂xN̄(1)

v − ∂yN̄(1)
u

〉= J(ψ̄0,
〈
ζ̄1
〉
)+ J(ψ̄1, ζ̄0)+G(ψ̄0, A0)+ qH(A0) (8.6a)

where
G(ψ̄0, A0)= 1

2

(
M(ψ̄0)|A0|2

)
xy
− 1

2 M
(
ψ̄0xy|A0|2

)
, (8.6b)

H(A0)=− 1
4 is
[∫ 0

−1
dzA0

∫ z

−1
s∗(A∗0) dz

]
y

+ c.c., (8.6c)

and the operator M= ∂xx − ∂yy.
Equation (8.3) together with (8.5) and (8.6) describe the next-order correction to

equation (7.10a) which should be taken into account when studying the slow evolution
of the QG component for times much longer than 1/δ. Combining (7.10a) with (8.3)
(see also Reznik et al. 2001) one derives the ‘refined’ QG equation valid on times of
the order of 1/δ2 (the subscripts are omitted):

ζ̄T + J(ψ̄, ζ̄ )+ δ[G(ψ̄, A)+ qH(A)] = 0, (8.7)

where ζ̄ =∇2
h ψ̄ and T = δt.

If all fields decay at infinity then we have∫
ψ̄G(ψ̄, A) dx dy= 0, (8.8)

therefore the energy Ē of the QG component changes in time as

∂T Ē= δq
∫
ψ̄H(A) dx dy, Ē= 1

2

∫
(∇hψ̄)

2 dx dy. (8.9a,b)
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For q 6= 0 the right-hand side of (8.9a), is, generally, non-zero whence the important
conclusion follows that without the TA a transfer of energy between the QG
component and inertial oscillations can exist.

To understand why the Coriolis force (which does not do any work) participates in
the energy transfer we represent all the fields in the form (6.1) and derive from the
system (5.1) the energy equations for the depth-averaged and zero-mean components:

∂Ē
∂t
=−δq 〈(ū+ p̄y)w̄

〉
x,y,z −QN, Ē= 1

2

〈
ū2 + v̄2

〉
x,y,z ; (8.10a,b)

∂Ê
∂t
= δq 〈(ū+ p̄y)w̄

〉
x,y,z +QN, Ê= 1

2

〈
û2 + v̂2 + δ2w2

〉
x,y,z ; (8.11a,b)

QN =−Ro
〈
ūN̄u + v̄N̄v

〉
x,y,z . (8.12)

Here N̄u, N̄v are the depth-averaged nonlinear terms in the brackets in (5.1a,b), 〈〉x,y,z
denotes integration in all three coordinates. The parameters δ and Ro in (8.10)–(8.12)
can be arbitrary. We see that the ‘non-traditional’ term δq

〈
(ū+ p̄y)w̄

〉
x,y,z provides a

redistribution of energy between the vertically averaged (QG in our case) flow and
the zero-mean (ageostrophic in our case) components; QN is the energy flux due
to nonlinear terms. We note that the redistribution of energy by non-zero fs plays
an important role in the dynamics of Ekman flows (see Gerkema et al. 2008, and
references therein).

9. Influence of the β-effect
To understand the role of the β-effect we examine the problem discussed in §§ 5–8

with variable parameter f given by (2.5b,c). In doing this one replaces the linear term
−v in (5.1a) by −(1+ δβ̄y+ δ2β̄qz)v and the term u in (5.1b) by (1+ δβ̄y+ δ2β̄qz)u.
Here β̄= (L/a)/δ and we assume that β̄=O(1). Analysis of the modified system (5.1)
is very similar to that in §§ 5–8 and only the modified slow evolution equations are
given here:

ζ̄T + J(ψ̄, ζ̄ )+ δ[G(ψ̄, A)+ qH(A)] + β̄ψ̄x = 0, (9.1)

AT + J(ψ̄, A)+ i
(

1
2∇2

h ψ̄ + β̄y
)

A+ iq
(∫ z

−1
A dz+

∫ 0

−1
zA dz

)
y

= 0. (9.2)

As seen from (9.1), the β-effect does not affect the nonlinear interaction between
the QG flow and inertial oscillations and results only in giving rise to Rossby
waves which contribute to the distortion of the slow component. As for the inertial
oscillations, the β-term appears in the third term of the modified equation (9.2);
this makes the effective inertial frequency equal to f + ζ̄ /2 as before (see § 7.2) but
with the variable parameter f given by (2.5b,c). The results on the slow evolution of
inertial oscillations represented in § 7.2 remain valid.

10. Summary and discussion
We have examined geostrophic adjustment in a rotating barotropic fluid layer of

constant depth bounded by two rigid lids. The angular speed of rotation Ω does not
coincide in direction with the gravity; the traditional and hydrostatic approximations
are not used. The only possible wave motions in our model are the gyroscopic waves
due to rotation. In the linear approximation the adjustment causes any localized
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initial state to tend to a geostrophically balanced columnar motion parallel to the
layer boundaries, the columns being parallel to Ω .

Using multiple-time-scale perturbation theory we studied the nonlinear adjustment at
small Rossby numbers and aspect ratio H/L. Similarly to the geostrophic adjustment
with gravity waves (cf. Reznik et al. 2001; Zeitlin et al. 2003), in our case an arbitrary
perturbation is split in a unique way into slow and fast components evolving with
characteristic time scales (Rof )−1 and f−1, respectively. The slow component is close
to geostrophic balance and does not depend on depth. On times t∼ (f Ro)−1 the slow
component is not influenced by the fast one and is described by the two-dimensional
fluid dynamics equation for the geostrophic streamfunction.

The fast component is a packet of inertial oscillations modulated by amplitude
depending on coordinates and the slow time. The depth-integrated horizontal flow
induced by the inertial oscillations is zero in the leading order. The inertial oscillations
are long gyroscopic waves with horizontal scale L exceeding the depth layer H. We
note that in geostrophic adjustment with gravity waves (surface or internal) the inertial
oscillations arise only if the dominating scale of the initial perturbation exceeds the
corresponding Rossby scale LR (cf. Reznik et al. 2001; Zeitlin et al. 2003). The
slow QG component in this case obeys the so-called frontal dynamics equation. If
LR � H (as in the atmosphere and the ocean) then in the presence of gyroscopic
waves ‘shorter’ inertial oscillations with scales L 6 LR are possible. The significant
vertical velocities of the near-inertial oscillations observed by van Haren & Millot
(2005) in the practically barotropic deep Western Mediterranean Sea can be related
to this property of gyroscopic waves. We note that some other regions of the deep
ocean are also characterized by a very weak stratification, as for example, the Canada
Basin in the Arctic Ocean (Timmermans, Melling & Rainville 2007), or the Pacific
Ocean near 179◦ E (Gerkema et al. 2008).

On times t ∼ (f Ro)−1 the fast component conserves its energy but it is coupled
to the slow component: its amplitude obeys an equation with coefficients depending
on the geostrophic streamfunction. In accordance with this equation, under the TA
the inertial oscillations are trapped by the QG component; dispersion of the inertial
oscillations packet occurs on much longer times t ∼ (f Ro2)−1. Without the TA the
‘non-traditional’ terms in the amplitude equation provide much faster meridional
dispersion of the packet on times t ∼ (f Ro)−1, and, therefore, cause an effective
radiation of energy from the initial perturbation domain. Another important effect of
the non-traditional terms is that on the longer times t∼ (f Ro2)−1 the slow component
ceases to be independent of the fast one, and a transfer of energy between the
components becomes possible. Preceding studies of the geostrophic adjustment use the
TA and in these works the fast ageostrophic component does not affect the slow QG
component even on times much longer than the typical geostrophic time t∼ (f Ro)−1

(cf. Reznik et al. 2001; Zeitlin et al. 2003). Therefore, it was unclear in what way
the slow QG flow could interact (if at all) with the fast ageostrophic motions. The
presence and properties of this interaction are of importance for understanding of
the still vague mechanism of dissipation of the atmospheric and oceanic mesoscale
motions. Our example shows that the ‘non-traditional’ terms in equations of motion
can play a certain role in this mechanism. It would be useful to estimate the efficiency
of these terms numerically using a non-hydrostatic model without the TA.

Acknowledgements
I thank the anonymous reviewers for helpful comments. This work was supported

by the RFBR grants 13-05-00463, 14-05-00070.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

59
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.59


Geostrophic adjustment with gyroscopic waves 603

Appendix A. Some details of the first-order solution
Using (6.1) and (6.2c), (6.3c) we find:

N̄(0)
u = ū0ū0x + v̄0ū0y + (û2

0)x + (û0v̂0)y, (A 1a)

N̄(0)
v = ū0v̄0x + v̄0v̄0y + (û0v̂0)x + (v̂2

0)y; (A 1b)

N̂(0)
u = ū0û0x + v̄0û0y + û0ū0x + v̂0ū0y + (û2

0 − û2
0)x + (û0v̂0 − û0v̂0)y + (w0û0)z,

(A 2a)

N̂(0)
v = ū0v̂0x + v̄0v̂0y + û0v̄0x + v̂0v̄0y + (û0v̂0 − û0v̂0)x + (v̂2

0 − v̂2
0)y + (w0v̂0)z.

(A 2b)

The formula (7.8) follows from (A 1a,b) and (6.5b,c), (6.2c), and (6.4).
Substitution of the expressions (6.4b,c) for ū0, v̄0 and (6.5b,c,d) for û0, v̂0, ŵ0 into

(A 2a,b) gives after some algebra:

N̂(0)
u + iN̂(0)

v = e−itM(r) +M(0) + eitM(1) + e−2itM(2), (A 3)

M(r) = J(ψ̄0, A0)+ 1
2 i∇2

h ψ̄0A0, (A 4a)

M(0) = 1
2 s∗
(
|A0|2 − |A0|2

)
− 1

2

[
A0

∫ z

−1
s∗(A∗0) dz

]
z

, (A 4b)

M(1) =− 1
2 L∗(ψ̄0)A∗0, (A 4c)

M(2) = 1
2 s
(

A2
0 − A2

0

)
− 1

2

[
A0

∫ z

−1
s(A0) dz

]
z

. (A 4d)

Equation (7.16) readily follows from (A 3), (A 4).
Using (7.17), (7.15), and (A 3) one obtains from (7.12) the following expression for

the velocity Û1:

Û1 = A1e−it + iM(0) + 1
2 ieitM(1) − ie−2itM(2), (A 5)

where A1 is a still unknown amplitude depending on the coordinates and slow times.

Appendix B. Some details of the second-order solution

To obtain (8.6) we represent N(1)
u ,N(1)

v in the form

N(1)
u = 2(u0u1)x + (u0v1 + u1v0)y + (w0u1 +w1u0)z − q(w0u0)y, (B 1a)

N(1)
v = (u0v1 + u1v0)x + 2(v0v1)y + (w0v1 +w1v0)z − q(w0v0)y, (B 1b)

whence using (6.2c), (7.3c) we have:

∂xN̄(1)
v − ∂yN̄(1)

u = 2(v0v1 − u0u1)xy + (∂xx − ∂yy)(u0v1 + u1v0)

+ q
[
(u0w0)y − (v0w0)x

]
y , (B 2)

and 〈
∂xN̄(1)

v − ∂yN̄(1)
u

〉 = J(ψ̄0,
〈
ζ̄1
〉
)+ J(ψ̄1, ζ̄0)+ 2

〈
v̂0v̂1 − û0û1

〉
xy

+ (∂xx − ∂yy)
〈

û0v̂1 + û1v̂0

〉
+ q

[
(û0ŵ0)y − (v̂0ŵ0)x

]
y
. (B 3)
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From (6.3a,b), (7.4a) one obtains

v̂0 = û0t, û0 =−v̂0t, v̂1 = û1t + û0T1 + N̂(0)
u + qŵ0 + p̂1x, (B 4a–c)

therefore 〈
v̂0v̂1 − û0û1

〉= 〈v̂0(û0T1 + N̂(0)
u + qŵ0 + p̂1x)

〉
, (B 5a)〈

û0v̂1 + û1v̂0
〉= 〈û0(û0T1 + N̂(0)

u + qŵ0 + p̂1x)
〉
. (B 5b)

It follows from (6.5b,c) that:〈
v̂0û0T1

〉= 1
4 iA∗0A0T1 + c.c.,

〈
û0û0T1

〉= 1
4 A∗0A0T1 + c.c. (B 6a,b)

Using (6.5b,c), (A 3), (A 4) one obtains:〈
v̂0N̂(0)

u

〉
= 1

4 iA∗0
[
J(ψ̄0, A0)+ 1

2 i∇2
h ψ̄0A0 − 1

2 L(ψ̄0)A0
]+ c.c., (B 6c)

〈
û0N̂(0)

u

〉
= 1

4
A∗0
[
J(ψ̄0, A0)+ 1

2 i∇2
h ψ̄0A0 − 1

2 L(ψ̄0)A0
]+ c.c. (B 6d)

From (6.5b,c), (7.14b), (7.2) we find:

〈
v̂0ŵ0

〉=− i
4

A∗0

[∫ z

−1
s(A0)dz+

∫ 0

−1
zs(A0) dz

]
+ c.c., (B 6e)

〈
û0ŵ0

〉=−1
4

A∗0

[∫ z

−1
s(A0) dz+

∫ 0

−1
zs(A0) dz

]
+ c.c.; (B 6f )

〈
(û0ŵ0)y − (v̂0ŵ0)x

〉=− i
4

s
[

A0

(∫ z

−1
s∗(A∗0) dz+

∫ 0

−1
zs∗(A∗0) dz

)]
+ c.c. (B 6g)

〈
v̂0p̂1x

〉= i
4

qA∗0

(∫ z

−1
A0x dz+

∫ 0

−1
zA0x dz

)
+ c.c., (B 6h)

〈
û0p̂1x

〉= q
4

A∗0

(∫ z

−1
A0x dz+

∫ 0

−1
zA0x dz

)
+ c.c. (B 6k)

Using (B 5) and (B 6) and taking into account (7.17) one obtains:〈
v̂0v̂1 − û0û1

〉= 1
4(ψ̄0xx − ψ̄0yy) |A0|2 , (B 7a)〈

û0v̂1 + û1v̂0
〉=− 1

2 ψ̄0xy |A0|2 . (B 7b)

Equation (8.6) follow from (B 3), (B 7) and (B 6g).
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