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In multidimensional tests, the identification of latent traits measured by each item is crucial. In addi-
tion to item–trait relationship, differential item functioning (DIF) is routinely evaluated to ensure valid
comparison among different groups. The two problems are investigated separately in the literature. This
paper uses a unified framework for detecting item–trait relationship and DIF in multidimensional item
response theory (MIRT) models. By incorporating DIF effects in MIRT models, these problems can be
considered as variable selection for latent/observed variables and their interactions. A Bayesian adaptive
Lasso procedure is developed for variable selection, in which item–trait relationship and DIF effects can be
obtained simultaneously. Simulation studies show the performance of ourmethod for parameter estimation,
the recovery of item–trait relationship and the detection of DIF effects. An application is presented using
data from the Eysenck Personality Questionnaire.

Key words: Bayesian adaptive Lasso, item–trait relationship, differential item functioning, multidimen-
sional item response theory model, regularization.

1. Introduction

Inmodern psychological and educational tests, multiple latent traits are often assessed collec-
tively from a bundle of item responses. To model the probability of an item response as a function
of an individual’s multiple latent traits and item characteristics, a variety of multidimensional item
response theory (MIRT) models have been proposed (Reckase, 2009) . Most MIRT models are
confirmatory, i.e., the latent traits associated with each item are pre-specified by prior knowledge
(Janssen & De Boeck, 1999; Mckinley, 1989) . Various estimation methods have been developed
for confirmatoryMIRTmodels, including marginal maximum likelihood estimation (Bock et al.,
1988) and Bayesian estimation (Béguin & Glas, 2001) . However, if the item–trait relationship
in the confirmatory analysis is misspecified, model lack of fit and erroneous parameter estimation
will occur (da Silva et al., 2019; Jin & Wang, 2014) .

A conventional approach to explore the item–trait relationship is exploratory item factor
analysis (IFA; Bock et al., 1988), which is data driven and could avoid the problems caused by
the erroneous item–trait specification. Exploratory IFA aims to identify the optimal number of
latent traits as well as the entire item–trait relationship. Nevertheless, exploratory IFA cannot
be applied without drawbacks. Since little prior knowledge or constraints on the null relations
among items and latent traits are utilized in exploratory IFA, the resulting estimation may include
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redundant parameters. Previous studies have shown that unnecessary model parameters can yield
less efficient estimators and lower the generalizability of exploratory IFA (Browne & Cudeck,
1989; Huang et al., 2017) .

The confirmatory and exploratory approaches lie on two ends of the input of item–trait
relationship in MIRT models. To be more flexible on the substantive continuum, latent variable
selection using regularization approaches has been developed on the basis of the confirmatory
analysis. Sun et al. (2016) proposed a sparse estimation of the item–trait relationship in MIRT
models by using the expectation–maximization (EM) algorithm to maximize the L1 penalized
log-likelihood. Chen (2020) used the Bayesian Lasso to estimate within-item dimensionality
(loading) and residual structure inMIRTmodels under a partially confirmatory framework. Further
developments of latent variable selection inMIRTmodels can be seen inXu et al. (2022) andZhang
andChen (2022).With the same identifiability conditions given inSun et al. (2016),Xuet al. (2022)
optimized the L0 penalized log-likelihood by updating the model (i.e., item–trait relationship)
and the model parameters simultaneously in each iteration, and the estimation accuracy of the
item–trait relationship is improved. Zhang and Chen (2022) gave a quasi-Newton stochastic
proximal algorithm for maximizing an objective function based on a marginal likelihood/pseudo-
likelihood, possiblywith constraints and/or penalties on parameters, and theirmethod can enhance
the computational efficiency of the L1 penalized log-likelihood proposed by Sun et al. (2016).

The latent variable selection methods in MIRT models can identify the sparsity of item–trait
relationship, but the above studies do not incorporate individual characteristics, such as gender
and age. In heterogeneous populations, differential item functioning (DIF) is routinely examined
to judge whether item responses are related to individual characteristics. Generally, DIF refers
to the condition in which persons from different groups with the same latent traits have unequal
probabilities of endorsing an item. As a result of DIF, a biased item provides either a constant
advantage for a particular group (i.e., uniform DIF) or an advantage varying in magnitude and/or
direction across the latent trait continuum (i.e., non-uniform DIF). If either type of DIF is present
but not correctly addressed, biased estimates and specious treatment differences will arise, and
the fairness of test is threatened (Bauer, 2017; Millsap & Everson, 1993; Teresi et al., 2008) .

In multidimensional tests with confirmatory item–trait relationship, several approaches have
been proposed for DIF detection, and they are mostly multidimensional extensions of unidi-
mensional DIF detection approaches, such as multidimensional SIBTEST (Stout et al., 1997) ,
multidimensional differential item functioning of items and tests (Oshima et al., 1997) , logistic
regression (Mazor et al., 1998) , item response theory likelihood ratio (IRT-LR) test (Suh &
Cho, 2014) and multiple indicators multiple causes (MIMIC) model (Lee et al., 2017) . These
approaches have in common that a test statistic is performed for each item separately and the item
is regarded as DIF if the test statistic exceeds a critical threshold. When DIF test statistics are
separately computed for each item, some problems such as multiple testing and a contaminated
anchor set may arise (Kim & Oshima, 2013; Woods, 2009) .

In recent years, regularization methods have been proposed for DIF detection, where DIF
effects are simultaneously examined for all items on the basis of a statistical model (e.g., IRT
model).Magis et al. (2015) used the Lasso (least absolute shrinkage and selection operator; Tibshi-
rani, 1996) approach for identifyingDIF in a logistic regressionmodel and found theLassomethod
outperformed the logistic regression and Mantel–Haenszel methods in terms of false positive and
true positive rates for small samples. Tutz and Schauberger (2015) and Schauberger and Mair
(2020) both introduced multiple DIF-inducing covariates, and then computed the penalized max-
imum likelihood estimators for simultaneously detecting DIF effects from different covariates
in Rasch models and generalized partial credit models, respectively. Belzak and Bauer (2020)
investigated Lasso regularization for identifying DIF in two-parameter logistic (2PL) models,
and found the Lasso regularization had better control of type I error than the likelihood ratio test
method when DIF was pervasive and sample size was large. Furthermore, Bayesian regularization
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methods with a variety of penalized priors have been investigated for DIF detection in moderated
nonlinear factor analysis models, and Lasso and spike-and-slab priors were found to outperform
the other priors (Bauer et al., 2020; Brandt et al., 2023; Chen et al., 2022). The above regularization
approaches are all aimed at unidimensional DIF detection.

For identifying DIF in the simple-structure multidimensional 2PLmodels,Wang et al. (2023)
found that the adaptive Lasso outperformed the Lasso, and both regularizationmethods performed
better than the likelihood ratio test in most conditions. In Wang et al. (2023)’s study, the simple
structure means that each item simply measures one latent trait, and the item–trait structure is
confirmatory and known in advance. In practical applications, some items may correlated with
more than one latent trait in a test. As shown in Asparouhov and Muthén (2009), when nonzero
cross-loadings are misspecified as zero in confirmatory factor analysis (CFA), it will result in
substantial bias in the rest of the parameter estimates (i.e., overestimated factor correlations) as
well as poor confidence interval coverage. In order to add modeling flexibility and reduce the bias
of parameter estimates from the misspecification of factor loadings in a confirmatory measure-
ment model, exploratory structural equation modeling (ESEM) is introduced by Asparouhov and
Muthén (2009). In an ESEM model, an exploratory factor analysis (EFA) measurement model is
used, instead of a CFA measurement model in a structural equation model. Examples of ESEM
models include but are not limited to multiple-group EFA with measurement invariance testing,
and test-retest (longitudinal) EFA.

In anMIRTmodel,when the item–trait relationship is not correctly specified (e.g., small cross-
loadings are misspecified as zero for a simple structure), what impact will it have on subsequent
parameter estimation and DIF detection? Consider a simple example with two latent traits, each
of which was measured by five test items. The item discriminations were set with two cross-
loadings 0.3 for each latent trait. Two groups of persons were investigated, and small uniformDIF
effects were assumed for items 4 and 8. More details about the example can be seen in Section
“A heuristic simple example”. We found that eliminating all small cross-loadings and using a
confirmatory item–trait structure resulted in substantial bias in the estimates of discriminations,
DIF parameters and trait correlation as well as poor confidence interval coverage. Two exploratory
methods for identifying the item–trait structure were also examined in the example. One was first
identifying the item–trait structure by the EML1 method given by Sun et al. (2016) and then used
the structure as confirmatory in the subsequent DIF detection; the other was our proposed method
for simultaneously detecting item–trait relationship and DIF effects. Our proposed method had
the smallest bias and highest credible interval coverage for the estimates of discriminations, DIF
parameters and trait correlation, as shown in Table 1.

Given the effectiveness of Bayesian regularization methods for analyzing complex models
and data types in psychological and behavioral studies (Brandt et al., 2023; Chen et al., 2021,
2022; Feng et al., 2017; Pan et al., 2017) , we propose a Bayesian adaptive Lasso approach for
simultaneously detecting item–trait relationship and DIF effects in MIRT models. By incorpo-
rating DIF-inducing covariates in MIRT models, the detection of item–trait relationship and DIF
effects can be solved jointly latent/observed variables and their interactions as variable selection
for latent/observed variables and their interactions. The contribution of this study is twofold.
First, we will explore the simultaneous detection of item–trait relationship and DIF effects in the
context of MIRT models. Compared toWang et al. (2023)’s study, the main difference is that they
used the simple-structure multidimensional 2PL models, where the item–trait relationship was
confirmatory and no cross-loadings were allowed. Our proposed method explores the item–trait
relationship for non-anchor items, which can load on more than one latent trait. Second, we use
Bayesian adaptive Lasso (a type of Bayesian regularization method) to estimate item discrimi-
nations in addition to DIF parameters. In Belzak and Bauer (2020) and Chen et al. (2022), no
regularization was used for the baseline item discriminations, since they focused on unidimen-
sional factor models for DIF analysis. In addition, we study DIF effects for both categorical and
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metric covariates, extending the multiple types of DIF-inducing covariates investigated in the
unidimensional factor models.

The rest of the article is organized as follows. First, the two-parameter compensatory MIRT
models incorporating DIF effects are introduced. Then, we describe the Bayesian estimation with
the adaptive Lasso for the proposed models. Next, a comprehensive simulation study is conducted
and a real data analysis is reported. Finally, we conclude the article with discussion.

2. MIRT Models Incorporating DIF Effects

In multidimensional tests that intentionally measure two or more latent traits, MIRT models
are often used to model the response probability of an item as a function of item characteristics
and individual’s multiple latent traits (Reckase, 2009) . Consider a test containing J items and
K latent traits. There are N persons, who respond to all J items. In this paper, all responses
are dichotomous. Let yi j be the response of person i to item j , with yi j = 1 denoting a correct
response and yi j = 0 otherwise. Following the notation of Wang et al. (2023), a two-parameter
compensatory MIRT model incorporating DIF effects can be described as:

p(yi j = 1|θ i ) = F(aTj θ i + d j + xTi β j + xTi γ jθ i ), (1)

where p(yi j = 1|θ i ) is the probability of a correct response for person i to item j , θ i =
(θi1, · · · , θi K )T is a K -dimensional vector of latent traits for person i , F : R → [0, 1] is a
pre-specified non-decreasing function, a j = (a j1, · · · , a jK )T is a K -dimensional vector of dis-
criminations for item j , d j is an intercept of item j , xi = (xi1, · · · , xi P )T is a P-dimensional
covariate vector for person i that can contain both categorical variable (i.e., gender) and metric
variable (i.e., age), β j = (β j1, · · · , β j P )T is a P-dimensional vector of regression coefficients
implying the main effects of each covariate on item j , and γ j = (γ j pk) is a P-by-K matrix
of regression coefficients with element γ j pk denoting the interaction effect of the pth covariate
and the kth latent trait on item j . For the illustration of DIF effects on an item, take gender as a
covariate. If the β coefficient of gender is unequal to zero, this represents a consistent advantage
for males or females (i.e., uniformDIF) on that item; if the γ coefficient of the interaction between
gender and a latent trait is unequal to zero, this implies a varying advantage across the latent trait
for males or females (i.e., non-uniform DIF).

In Eq. (1), item j is related to latent trait k if a jk �= 0. The latent trait vector θ i follows
a multivariate normal distribution of θ i ∼ MVN(αi ,� i ), where both the mean vector and the
covariance matrix are person-specific. Following the models given by Bauer (2017), the mean of
each latent trait k (k = 1, · · · , K ) can be represented as

αki = αk0 + ϒ
′
kxi , (2)

where αk0 is the baseline mean when xi = 0, and ϒk is a P-dimensional vector that captures
the linear dependence on xi . For the covariance matrix � i , it can be rewritten as � i = �i	i�i ,
where 	i is the correlation matrix, and �i is a diagonal matrix consisting of standard deviations.
The standard deviation of each latent trait k (k = 1, · · · , K ) can be expressed as a log-linear
function of xi (Chen et al., 2022) :

�(kk)i = �(kk0) exp(η
′
(kk)xi ), (3)
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where �(kk0) is the baseline standard deviation when xi = 0, and η(kk) is a P-dimensional vector
indicating the differences in the standard deviation as a function of xi . For each off-diagonal
correlation in 	i , its Fisher’s z-transformation can be modeled as a linear moderation function
of xi , and the details can be found in Bauer (2017). In the following, 	i is assumed to be
constant across persons for simplicity, i.e.,	i = 	. Any nonzero elements inϒk or η(kk) indicate
differences in the distribution of the individual latent traits. Such differences, also called impacts,
may exist regardless of whether there is DIF or not.

To identify our model defined in Eqs. (1)-(3), some assumptions need to be satisfied. Extend-
ing Sun et al. (2016)’s conditions for latent variable selection and Wang et al. (2023)’s conditions
for multidimensional DIF detection, the identifiability conditions of our model are as follows:

(1) the N -by-(1 + P) matrix with rows (1, xT1 ), · · · , (1, xTN ) is full rank.
(2) θ i has mean vector 0 when xi = 0, i.e., αk0 = 0 for k = 1, · · · , K .
(3) there are K DIF-free (anchor) items, loading on each dimension separately with unity

loadings.

Condition (1) is in line with Wang et al. (2023) for multidimensional DIF detection. Condition
(2) and the fixed loadings for each dimension in condition (3) are used to constrain the scale of
baseline latent traits. Following Wang et al. (2023), Eq. (1) is identifiable when there are K DIF-
free items, one for each dimension separately. Furthermore, latent variable selection in MIRT
models requires K items that load on each dimension separately (Sun et al., 2016) . For the
third condition, without loss of generality, we assume that the first K items are DIF-free and
load on each of the K dimensions separately with unity loadings, i.e., a j j = 1 and a jl = 0 for
1 ≤ j �= l ≤ K . Under the identifiability conditions, there are (J−K )K item discriminations and
J item intercepts for estimation. In addition, there are totally (J −K )P + (J −K )K P additional
parameters introduced to the conventional MIRT models, representing the possible uniform and
non-uniform DIF effects of covariates on non-anchor items.

3. Model Estimation by Bayesian Adaptive Lasso

Regularization methods have been well developed in statistics and machine learning (Hastie
et al., 2009; Wellner & Zhang, 2012; Tibshirani et al., 2021) . Tibshirani (1996) introduced the
famous Lasso estimates for linear regression, which are least squares estimates with the L1 norm
penalty. The L1 penalty shrinks more weakly related coefficients to zero faster and results in
sparse estimates. The Bayesian version of Lasso is later proposed by Park and Casella (2008).
From a Bayesian perspective, the Lasso estimates can be interpreted as the posterior modes
with a Laplace prior assigned to all coefficients. Since the Lasso procedure imposes the same
penalty for all coefficients, it may lead to appreciable bias for the resulting estimates. To solve
this problem, Zou (2006) developed the adaptive Lasso procedure, which uses adaptive weights
for penalizing different coefficients. The adaptive Lasso imposes relatively higher penalties for
zero coefficients and lower penalties for nonzero coefficients, so it shrinks zero coefficients more
efficiently and produces better estimation for nonzero coefficients than Lasso does. The Bayesian
adaptive Lasso is proposed by Leng et al. (2014) with independent Laplace priors imposed on
different coefficients. Furthermore, many other regularization methods have been studied with
sparsity as a primary driving force (Fan & Li, 2001; Polson & Sokolov, 2019; Tibshirani et al.,
2021; Zhang, 2010) .

Recently, the idea of regularization is introduced to the fields of psychometrics, clinical psy-
chology, psychiatry and so on (Dwyer et al., 2018; Epskamp & Fried, 2018) . In addition to the
regularization methods used in latent variable selection and DIF detection, regularization espe-
cially Bayesian regularization has been successfully developed in structural equation modeling
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(Chen et al., 2021; Huang, 2018; Jacobucci et al., 2016; Pan et al., 2017; Serang et al., 2017)
. Compared with frequentist regularization, Bayesian regularization is highly efficient and easy
to implement for complex models and data types (Alhamzawi et al., 2012; Feng et al., 2017)
. Due to the advantages of Bayesian adaptive Lasso, we use it for the simultaneous detection of
item–trait relationship and DIF effects in MIRT models.

3.1. Bayesian Adaptive Lasso

In the framework of frequentist statistics, regularization is a general approach for reducing
the complexity of a model for meaningful interpretation. By adding a penalty term to the usual
likelihood, regularization approaches can shrink unimportant model parameters to exactly zero.
Suppose the observed data are denoted by y, and the set of parameters in a model M is denoted
by β with elements βk (k = 1, · · · , r). The adaptive Lasso approach uses the following objective
function:

PL(β|M) = log(p( y|β, M)) +
r∑

k=1

λk |βk | = LL(β|M) +
r∑

k=1

λk |βk |,

where PL(β|M) and LL(β|M) are respectively the penalized and the usual log-likelihoods based
onmodelM , and λk ≥ 0 is a penalty parameter for βk . A larger λk tends to increase the penalty for
βk . Using adaptive weights for penalizing different coefficients, the adaptive Lasso can shrink zero
coefficients more efficiently and produce better estimation for nonzero coefficients than Lasso
(Zou, 2006) .

The crucial quantity for Bayesian statistics is the posterior distribution p(β| y, M) ∝
p( y|β, M) × p(β|M), where p(β|M) is the prior distribution. Compared with a frequentist
approach, the prior p(β|M) is an important connection to a regularization approach such as the
adaptive Lasso. Following Leng et al. (2014), the adaptive Lasso estimates can be interpreted
under the Bayesian framework when βks are assigned independent Laplace priors

λk
2 e

−λk |βk |. For
a small value of λk , the Laplace distribution is wide and no shrinkage is imposed. As the value of
λk increases, the probability density function tends to be more concentrated around zero, leading
to a larger penalty (Pan et al., 2017) . Moreover, the Bayesian framework provides a flexible
way of estimating the penalty parameters, and hyperpriors can be used for the λks. Specifically,
λks for Bayesian adaptive Lasso are assigned with the Gamma priors λk ∼ Gamma (αk0, δk0)

(k = 1, · · · , r), where αk0 and δk0 are hyperparameters with pre-assigned values. Following
the suggestions of previous studies (Brandt et al., 2023; Chen et al., 2022; Feng et al., 2017) ,
dispersed hyperpriors are often adopted.

3.2. Bayesian Model Implementation

To implement Bayesian adaptive Lasso for identifying item–trait relationship andDIF effects,
independent Laplace priors are assigned to the discriminations and DIF parameters of the last
J − K items. For the other parameters, commonly used priors are adopted for convenience. The
priors and hyperpriors are given below.

For each element of the discrimination vectors aK+1, · · · , aJ , independent Laplace priors
are assigned and expressed as:

p(aK+1, · · · , aJ ) ∝ exp

⎛

⎝−
J∑

j=K+1

K∑

k=1

λajk |a jk |
⎞

⎠ ,

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 08:30:44, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


NA SHAN, PING-FENG XU 1343

where λajk is the penalty parameter for a jk .
For each intercept d j ( j = 1, · · · , J ), the normal prior is adopted as:

d j ∼ N (μd j0, σ
2
d j0),

where μd j0 and σ 2
d j0 are hyperparameters with pre-assigned values, denoting the mean and vari-

ance of the normal distribution.
For each uniformDIF parameter in β1, · · · ,β J , independent Laplace priors can be expressed

as:

p(β1, · · · ,β J ) ∝ exp

⎛

⎝−
J∑

j=1

P∑

p=1

λβ j p|β j p|
⎞

⎠ ,

where λβ j p is the penalty parameter for β j p.
For each non-uniform DIF parameter in γ 1, · · · , γ J , independent Laplace priors can be

expressed as:

p(γ 1, · · · , γ J ) ∝ exp

⎛

⎝−
J∑

j=1

P∑

p=1

K∑

k=1

λγ j pk |γ j pk |
⎞

⎠ ,

where λγ j pk is the penalty parameter for γ j pk .
For the penalty parameters λajk , λβ j p and λγ j pk , the Gamma priors can be assigned as:

λ2ajk ∼ Gamma
(
αajk0, δajk0

)
,

λ2β j p ∼ Gamma
(
αβ j p0, δβ j p0

)
,

λ2γ j pk ∼ Gamma
(
αγ j pk0, δγ j pk0

)
,

where αajk0, δajk0, αβ j p0, δβ j p0, αγ j pk0 and δγ j pk0 are hyperparameters whose values are pre-
assigned.

For each �(kk0) ( j = 1, · · · , K ), the half-Cauchy prior is assigned as (Gelman, 2006) :

�(kk0) ∼ C+(0, ιk0),

where ιk0 is the hyperparameter for the half-Cauchy distribution.
The LKJ correlation distribution is used for the prior of 	 with the density (Lewandowski

et al., 2009)

LkjCholesky(	) ∝ det(	)ν−1,

where det(·) denotes the determinant and ν is the shape parameter.
For each element ϒkp in ϒk , the normal prior is adopted as:

ϒkp ∼ N (μϒkp0, σ
2
ϒkp0),
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where μϒkp0 and σ 2
ϒkp0

are hyperparameters with pre-assigned values.
For each element η(kk)p in η(kk) (k = 1, · · · , K ), the normal prior is adopted as:

η(kk)p ∼ N (μη(kk)p0, σ
2
η(kk)p0),

where μη(kk)p0 and σ 2
η(kk)p0

are hyperparameters with pre-assigned values.
With the prior and hyperprior distributions given above, the posterior inference can be con-

ducted by sampling from the joint posterior distribution, and the posterior means are used to
estimate the unknown parameters. Though the joint posterior distribution is intractable in general,
the Bayesian inference can be feasibly implemented in an available Bayesian software package,
such as Stan (Carpenter et al., 2017) or Jags (Plummer, 2017) . In our study, the rstan package
(Carpenter et al., 2017; Stan Development, 2023) in R (R Core Team, 2022) was used to
implement the Bayesian adaptive Lasso estimation. When posterior means are used as estimates,
the Bayesian adaptive Lasso does not shrink any parameter to exactly zero, and a variable selec-
tion criterion should be applied for determining the significance of the unknown parameters. As
proposed by Brandt et al. (2023), the 95% posterior credible intervals (CIs) were used in this
paper.

4. A Simple Heuristic Example

In this section, a simple hypothetical example is provided to illustrate the motivation of our
study. Consider two latent traits, each of which was measured by five test items. Two groups of
persons were investigated and coded by a binary covariate, with 0 for the reference group and
1 for the focal group. The mean vector of latent traits in the reference group was set as (0, 0)

′
,

and the mean vector of latent traits in the focal group was set as (0.5,−0.5)
′
. For both groups,

the variances of latent traits were 1 and the correlation between latent traits was 0.5. The item
intercepts were all set at 0 for simplicity, and the item discriminations were given as

(
1 0 1 1 1 1 0 0 0.3 0.3
0 1 0 0 0.3 0.3 1 1 1 1

)
.

We assumed that items 4 and 8 had uniformDIF effects with β41 = 0.3 and β81 = 0.3. The sample
size was 500, divided evenly into the two groups. Data were generated with 50 replications.

Our proposed model was compared with two alternative models. The first one used a con-
firmatory simple-structure MIRT model for DIF detection, with small cross-loadings fixed to 0;
the second one first identified the item–trait structure by the EML1 method given by Sun et al.
(2016), and then used the structure as confirmatory for DIF detection. In the three models, except
for the item discriminations, the other model parameters were estimated using the same Bayesian
priors.

To evaluate the performance of parameter estimation, the mean absolute bias and CI coverage
were computed for each model, as shown in Table 1. The formal is the average absolute values of
bias across converged replications and interested parameters. The latter is calculated as the number
of converged replications where the equal-tailed 95% CIs covered the true values of the interested
parameters divided by the total number of converged replications and interested parameters. From
these results, we found that eliminating small cross-loadings in item–trait structure resulted in
substantial bias in the estimates of item discriminations, DIF parameters and trait correlation
as well as poor CI coverage. When the item–trait structure was first identified by the EML1
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method, most mean absolute bias decreased and the CI coverage improved. Our proposed model
performed best among the three models, with the smallest bias and highest CI coverage for item
discriminations, DIF parameters and trait correlation.

5. Simulation Studies

Two simulation studieswere conducted to evaluate the empirical performance of theBayesian
adaptive Lasso for uniform DIF (study 1) and non-uniform DIF (study 2) conditions. For both
studies, the model defined in Eqs. (1)-(3) was used. The total number of items J was fixed at
15, and the number of latent traits K was fixed at 2. Table 2 gives the two discriminations for
each item that reflected a common range of them, and the item intercepts were generated from
the standard normal distribution (Wang et al., 2023) . Four covariates xi1, xi2, xi3 and xi4 were
considered. xi1 and xi2, having DIF effects on some items, were independently generated from
the standard normal distribution and the Bernoulli distribution with a success probability 0.5. xi3
and xi4, having no DIF effects on any items, were jointly generated from a multivariate normal
distribution with a mean vector 0 and a correlation matrix with off-diagonal elements 0.5. The
baseline means of latent traits were α10 = α20 = 0 for identification, and the mean impacts were
set at ϒ1 = (0, 0.5, 0, 0)

′
and ϒ2 = (0,−0.5, 0, 0)

′
, indicating the latent mean differences only

related to the second covariate. The baseline standard deviations were set at�(110) = �(220) = 1,
and no standard deviation impacts were set with η(11) = η(22) = (0, 0, 0, 0)

′
. The correlation

between two latent traits 	(12) was set at 0.5, reflecting a moderate degree of correlation.
Three factors were manipulated: (a) the sample size N , (b) the percentage of DIF items, and

(c) the magnitude of DIF. Two levels of sample size were evaluated: N = 500 and N = 1000,
which was in line with previous studies (Sun et al., 2016; Xu et al., 2022). Two percentages of DIF
items (20% and 60%) and two levels of the magnitude of DIF (small and large) were considered,
and these choices were similar to the study of Wang et al. (2023).

We evaluated the performance of our method in terms of (1) the accuracy of parameter
estimation, (2) the correct rate (CR), false positive rate (FPR) and false negative rate (FNR) for
latent variable selection, and (3) the true positive rate (TPR) and FPR for DIF detection. The
results were computed on the basis of 50 replications for each condition. DIF effects were kept
constant across replications with a given condition, which can avoid the mixture of within- and
between-condition variability of DIF effects (Belzak and Bauer, 2020; Wang et al., 2023). For the
accuracy of parameter estimation, the mean-squared error (MSE) for each parameter is computed
as

MSE(κ) = 1

Z

Z∑

z=1

(κ̂ z − κ)2,

where κ̂ z denotes an estimate of κ based on the zth converged replication, and Z is the number
of converged replications. For summarizing our simulation results, MSE is displayed by each
parameter type below. For example, the MSE for item discriminations is the average MSE of all
estimated item discrimination parameters. The CR for latent variable selection is defined by the
recovery of the unknown elements in the incidence matrix � = (ξ jk), where ξ jk = I (a jk �= 0),
and it is given as

CR = 1

Z(J − K )K

Z∑

z=1

J∑

j=K+1

K∑

k=1

I (ξ̂ zjk = ξ jk),
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where ξ̂ zjk is an estimate of the true ξ jk based on the zth converged replication. FPR for latent
variable selection refers to the ratio of incorrectly detected nonzero incidence relations among
all true zero incidence relations and converged replications, and the FNR for latent variable
selection refers to the ratio of incorrectly detected zero incidence relations among all true nonzero
incidence relations and converged replications. For DIF detection, in order to avoid the mixture of
the impact of different covariates on DIF, TPR and FPR are calculated in terms of item–covariate
combinations (Chen et al., 2022; Schauberger & Mair, 2020) . Specifically, TPR and FPR are
calculated as the proportions of item–covariate combinations in which a covariate is detected
as having significant uniform or non-uniform DIF parameters for an item across all converged
replications and item–covariate combinations that do or do not have DIF, respectively.

In the simulation studies, data generation and parameter estimation were all implemented in
R statistical programming software. The R codes are available at https://github.com/Shann285/
LdDIFMIRT. We ran all R codes on the Windows 10 64-bit platform with an Inter(R) Core(TM)
i9-9900 CPU at 3.10 GHz and 32 GB memory. Our Bayesian models were fitted with 3 chains
of Hamiltonian Markov Chain Monte Carlo (MCMC) samples using the R package rstan. Each
Hamiltonian MCMC chain had 4000 iterations with the first 2000 iterations as a burn-in period.
The convergence of the chainswasmonitored by zero divergent transitions in the sampling process
and “Rhat” indices less than 1.05. The convergence rates varied depending on the data and prior
assignments, and they can be improved by adding the number of iterations and thinning (Chen et
al., 2022).

5.1. Simulation Study 1

In this study, only uniform DIF effects were considered, i.e., all γ coefficients were fixed at
0. The β coefficients were set as 0.3 and 0.6 for small and large magnitude of DIF, respectively.
Specifically, β41, β82, β13,1 and β13,2 were equal to 0.3 (or 0.6) for the 20% DIF condition, and
β31, β41, β51, β72, β82, β92, β12,1, β12,2, β13,1, β13,2, β14,1 and β14,2 were equal to 0.3 (or 0.6)
for the 60% DIF condition. These choices were similar to those used in Wang et al. (2023).

Following the suggestions of the existing literature (Feng et al., 2017; Pan et al., 2017; Chen
et al., 2022; Brandt et al., 2023), the prior and hyperprior distributions were chosen as follows: the
normal priors used the normal distribution N (0, 22), the hyperpriors for the penalty parameters
were the Gamma distribution Gamma(9, 3), the half-Cauchy distribution wasC+(0, 2.5), and the
LKJ correlation distribution was set with ν = 2. The initial values were generated similarly to
those used in Chen et al. (2022). DIF in an item due to a specific covariate was assumed if the
95% CI for the respective element in β did not include zero.

The Bayesian adaptive Lasso for uniform DIF detection achieved preferable convergence
rates, all above 95%. Though non-convergence might be modified with further adjustments, we
did not do this and simply used the converged replications for the results. The running times for
different conditions varied, mainly depending on the sample size. For the sample size N = 500,
the average CPU times were less than 1000s for each condition. The average CPU times increased
to more than 2000s when the sample size was N = 1000. The specific values of the average CPU
times are shown in Table 8 of Appendix A.

Figure1 shows MSE as a combination of squared bias and variance for estimating item
discriminations a, item intercepts d, uniform DIF parameters β, mean impacts ϒk , baseline
standard deviations �(kk0), standard deviation impacts η(kk), and the correlation between latent
traits denoted as �(12). And the MSEs for each parameter estimate are provided in Table 9 of
AppendixA.We found thatmostmodel parameters could be recoveredwell.WhenDIF percentage
was 60%, the bias ofmost estimates increased. In contrast, themagnitude ofDIFhad little influence
on the estimates. The estimates of mean impacts, baseline standard deviations, standard deviation
impacts and the correlation changed little under different percentage andmagnitude ofDIF effects.
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Figure 1.
MSEs of the model parameter estimates in study 1.
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Figure 2.
CI coverage for different parameters in study 1.

As sample size increased, most MSEs reduced. The CI coverage rates were calculated to evaluate
the uncertainty of the estimates for the population parameters, as shown in Fig. 2. The coverage
rates under all conditions were above 80%, which were similar to the results of Brandt et al.
(2023) and Chen et al. (2022).

Table 3 summarizes the results for recovering the incidence matrix and detecting DIF effects
over 50 independent datasets in each simulated condition. For the incidence matrix �, the CRs,
FPRs and FNRs were calculated in each condition. The CRs were all above 0.98, and the FPRs
and FNRs did not exceed 0.05. The percentage and magnitude of DIF had little impacts on the
recovery of �. For DIF detection, TPRs and FPRs are shown at the bottom of Table 3. Consistent
with previous research (Belzak and Bauer, 2020; Schauberger and Mair, 2020), small magnitude
of DIF effects was difficult to detect. The TPRs reduced when DIF percentage was 60%. All TPRs
grew as sample size increased. Our method produced acceptable FPRs for any study conditions,
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Table 3.
Results of latent variable selection and DIF detection in study 1

Small DIF Large DIF
20% DIF 60% DIF 20% DIF 60% DIF
N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000

� CR 0.982 0.988 0.982 0.984 0.986 0.989 0.982 0.987
FPR 0.036 0.029 0.034 0.044 0.029 0.029 0.026 0.036
FNR 0.009 0.005 0.010 0.003 0.008 0.003 0.015 0.002

DIF TPR 0.422 0.568 0.302 0.467 0.734 0.969 0.635 0.781
FPR 0.023 0.026 0.024 0.029 0.023 0.025 0.033 0.034

which was in concert with previous findings that regularization methods have good control of
type I errors (Brandt et al., 2023; Chen et al., 2022; Wang et al., 2023).

5.2. Simulation Study 2

In the second study, non-uniform DIF effects were evaluated for DIF items. The item param-
eters were the same as simulation study 1. For DIF parameters, β were set as 0.3 and 0.6 for small
and large magnitude DIF, and γ were set as −0.3 and −0.6 for small and large magnitude DIF.
For the 20% DIF condition, β41, β82, β13,1 and β13,2 were equal to 0.3 (or 0.6), and γ411, γ822,
γ13,11 and γ13,22 were equal to −0.3 (or −0.6). For the 60% DIF condition, β31, β41, β51, β72,
β82, β92, β12,1, β12,2, β13,1, β13,2, β14,1 and β14,2 were equal to 0.3 (or 0.6), and γ311, γ411, γ511,
γ722, γ822, γ922, γ12,11, γ12,22, γ13,11, γ13,22, γ14,11 and γ14,22 were equal to −0.3 (or −0.6). The
above choices were similar to the study of Wang et al. (2023).

Different from the uniform DIF models considered in study 1, the non-uniform DIF models
had unknown γ coefficients for non-anchor items. Since the non-uniform DIF models had more
DIF parameters than the uniform DIF models, stronger penalty was used to achieve adequate
convergence rates. The hyperpriors of the penalty parameters were set with Gamma(27, 3). The
other priors and initial values were the same as those used in study 1.

The Bayesian adaptive Lasso for non-uniform DIF models achieved reasonable convergence
rates, ranging from 84% to 98%with an average above 92%. Convergence below 90% occurred in
the small DIF magnitude and high DIF percentage conditions, which were in concert with Chen
et al. (2022). Only the converged replications were used for evaluating the estimated results. The
running times for non-uniform DIF models all exceeded 3500s. For the sample size N = 500,
the average CPU times were about an hour. When the sample size was N = 1000, the average
CPU times were nearly two hours. The average CPU times for non-uniform DIF conditions are
also shown in Table 8 of Appendix A.

Figure3 shows the MSEs of the estimated parameters for non-uniform DIF conditions. And
theMSEs for each parameter estimate can be found at https://github.com/Shann285/LdDIFMIRT.
The MSEs of item discriminations were larger than those of other parameters and the MSEs in
study 1, reflecting the increased uncertainty due to the unknown γ coefficients. The bias of
most estimates increased when DIF percentage was 60%. The magnitude of DIF had no obvious
impact on the estimates when DIF percentage was low, but may lead to larger bias when DIF was
pervasive. Most MSEs reduced as sample size increased. The CI coverage rates for all conditions
in study 2 were above 80%, as shown in Fig. 4.

Table 4 presents the results for the incidence matrix and DIF detection under the non-uniform
DIF conditions. For recovering the incidence matrix, the overall CRs were above 94% and the
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Figure 3.
MSEs of the model parameter estimates in study 2.
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Figure 4.
CI coverage for different parameters in study 2.

FPRs did not exceed 0.02, but the FNRs were slightly above 0.05 when the DIF percentage
was 60%. Small magnitude of DIF effects was more difficult to detect in the non-uniform DIF
conditions, and this may be due to the increased number of model parameters. In contrast, the
TPRs for largeDIF conditions were larger than those in study 1, indicating that large γ coefficients
were helpful for identifying DIF items. Similar to the results of study 1, the TPRs reduced when
DIF was pervasive, and all TPRs grew as sample size increased. We had acceptable control of the
FPRs, slightly exceeding 0.05 in the 60% DIF percentage.
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Table 4.
Results of latent variable selection and DIF detection in study 2

Small DIF Large DIF
20% DIF 60% DIF 20% DIF 60% DIF
N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000

� CR 0.967 0.988 0.962 0.984 0.971 0.987 0.943 0.985
FPR 0.003 0.013 0.003 0.018 0.005 0.016 0.003 0.013
FNR 0.046 0.012 0.053 0.015 0.040 0.011 0.082 0.016

DIF TPR 0.296 0.511 0.138 0.278 0.864 1.000 0.682 0.948
FPR 0.034 0.039 0.040 0.057 0.040 0.045 0.057 0.060

6. Real Data Analysis

A real data set from the Eysenck Personality Questionnaire (EPQ) data given in Eysenck
and Barrett (2013) was used to further illustrate the performance of our method. Three factors
of Psychoticism (P), Extraversion (E) and Neuroticism (N) were initially investigated by Xu et
al. (2022) from this data. Since the psychometric weaknesses in the P scale of the EPQ, only
Extraversion (E) and Neuroticism (N) were focused in our analysis. In line with Xu et al. (2022),
two items in E were deleted, because their corrected item–total correlation values were less than
0.2 (Kline, 1986). As a result, 42 items were selected, including 19 items corresponding to E and
23 items corresponding to N. The initial design of EPQ is confirmative and each item is associated
to only one factor. The used items and their original indices are listed in Table 5.

Two covariates were considered for detecting DIF effects, among of which age was a con-
tinuous variable representing age of the person and gender was a binary categorical variable.
Moreover, only the ages of 18, 19, 20 and 21 were included, since the number of persons in other
age groups was small. After eliminating persons with missing data, our analysis was based on
843 individuals from Canada. The model defined in Eqs. (1)-(3) with K = 2 and P = 2 was
applied to analyze the real data. In addition, the person-specific correlation between latent traits
was modeled as

	(12)i = exp(2(ω(12)0 + ω
′
(12)xi )) − 1

exp(2(ω(12)0 + ω
′
(12)xi )) + 1

,

which indicated that the Fisher’s z-transformation of 	(12)i was a linear function of xi (Bauer,
2017). The priors of the above model parameters also used the normal distribution N (0, 22),
and the other priors and initial values for the real data analysis were similar to those used in
the simulation studies. For model identification, following the study of Xu et al. (2022), items 1
and 20 were designated for E and N separately, and they were assumed as DIF-free items. Both
uniform and non-uniform DIF models were fitted, respectively. For each model estimation, three
chains of Hamiltonian MCMC samples were used, and each chain had 5000 iterations with the
first 2500 iterations as burn-in. The convergence of the chains was checked. We only reported the
results for uniform DIF detection, as the vast majority of the γ coefficients in the non-uniform
DIF model were not significant. The running time for the uniform DIF detection was nearly two
hours.

Table 6 shows the estimated item discriminations and intercepts after rescaling the baseline
latent trait variances to be unity. We found that most items remained associated with one single
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Table 5.
The Eysenck Personality Questionnaire with items for E and N

1 E5 Are you a talkative person?
2 E10 Are you rather lively?
3 E14 Can you usually let yourself go and enjoy yourself at a lively party?
4 E17 Do you enjoy meeting new people?
5(R) E21 Do you tend to keep in the background on social occasions?
6 E25 Do you like going out a lot?
7(R) E29 Do you prefer reading to meeting people?
8 E32 Do you have many friends?
9 E36 Would you call yourself happy-go-lucky?
10 E40 Do you usually take the initiative in making new friends?
11(R) E42 Are you mostly quiet when you are with other people?
12 E45 Can you easily get some life into a rather dull party?
13 E49 Do you like telling jokes and funny stories to your friends?
14 E52 Do you like mixing with people?
15 E60 Do you like doing things in which you have to act quickly?
16 E64 Do you often take on more activities than you have time for?
17 E70 Can you get a party going?
18 E82 Do you like plenty of bustle and excitement around you?
19 E86 Do other people think of you as being very lively?
20 N3 Does your mood often go up and down?
21 N7 Do you ever feel “just miserable" for no reason?
22 N12 Do you often worry about things you should not have done or said?
23 N15 Are you an irritable person?
24 N19 Are your feelings easily hurt?
25 N23 Do you often feel “fed-up"?
26 N27 Are you often troubled about feelings of guilt?
27 N31 Would you call yourself a nervous person?
28 N34 Are you a worrier?
29 N38 Do you worry about awful things that might happen?
30 N41 Would you call yourself tense or “highly-strung"?
31 N47 Do you worry about your health?
32 N54 Do you suffer from sleeplessness?
33 N58 Have you often felt listless and tired for no reason?
34 N62 Do you often feel life is very dull?
35 N66 Do you worry a lot about your looks?
36 N68 Have you ever wished that you were dead?
37 N72 Do you worry too long after an embarrassing experience?
38 N75 Do you suffer from “nerves"?
39 N77 Do you often feel lonely?
40 N80 Are you easily hurt when people find fault with you or the work you do?
41 N84 Are you sometimes bubbling over with energy and sometimes very sluggish?
42 N88 Are you touchy about some things?

“R" Denotes the negatively worded items in the original questionnaire.
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Table 6.
The estimated item discriminations and intercepts for the real data

A d A d A d

1 1.044∗ 0.000 0.689 15 0.463∗ -0.154∗ 0.222 29 -0.027 0.734∗ 0.293
2 0.933∗ 0.003 1.388 16 0.315∗ 0.119∗ 0.323 30 0.034 0.855∗ -0.895
3 0.841∗ -0.097 1.180 17 1.105∗ -0.051 0.445 31 0.077 0.469∗ 0.193
4 0.665∗ -0.167∗ 1.555 18 0.654∗ -0.085 0.865 32 0.004 0.490∗ -0.264
5 0.930∗ -0.201∗ 0.460 19 1.007∗ -0.048 0.872 33 -0.048 0.660∗ 0.487
6 0.519∗ 0.029 0.794 20 0.000 0.807∗ 0.523 34 -0.173∗ 0.521∗ -0.638
7 0.643∗ -0.086 1.259 21 -0.015 0.562∗ 0.566 35 0.079 0.621∗ 0.459
8 0.641∗ -0.042 1.343 22 -0.042 0.821∗ 1.309 36 -0.132∗ 0.388∗ 0.018
9 0.528∗ -0.273∗ -0.025 23 0.031 0.531∗ -0.738 37 −0.136∗ 0.811∗ 0.433
10 0.872∗ -0.085 0.355 24 -0.047 0.825∗ 0.718 38 -0.031 1.012∗ -0.529
11 1.028∗ -0.056 0.612 25 -0.086 0.866∗ 0.270 39 -0.160∗ 0.689∗ -0.157
12 1.138∗ 0.011 -0.020 26 -0.022 0.871∗ 0.219 40 -0.124 0.720∗ 0.582
13 0.457∗ -0.074 1.253 27 -0.174∗ 0.673∗ -0.343 41 -0.014 0.526∗ 1.157
14 1.067∗ -0.148 1.840 28 -0.045 1.117∗ 0.715 42 0.077 0.465∗ 1.223

∗ denotes the significance of item discriminations.

trait. There are more items associated with both latent traits than those found in Xu et al. (2022),
and most of the cross-loadings were sensible. For example, item 5 (E21) was also related to
neuroticism, the same as the results of Sun et al. (2016) and Xu et al. (2022). Item 9 (E36) and
item 15 (E60) were also related to neuroticism, and these were in line with Xu et al. (2022). Item
27 (N31) was also related to extraversion and it was consistent with Sun et al. (2016). Moreover,
item 39 (N77 ‘Do you often feel lonely?’) was newly found to be related to both extraversion
and neuroticism, which was in accordance with Buecker et al.’s (2020) findings that extraversion
and neuroticism were significantly related to loneliness, and the average lonely person was rather
introverted and neurotic than the average non-lonely person.Moreover, the mean impact of age on
the trait N was −0.243, indicating that the average neuroticism in males was significantly lower
than that in females. But the other impacts were not significant.

For DIF detection, our results are compared with a commonly used IRT-LR test (Suh and
Cho, 2014), where both age and gender were considered as grouping covariates. The IRT-LR
test was implemented by the R package mirt, and items 1 and 20 were also assigned as anchor
items for DIF detection in IRT-LR. The results of Bayesian adaptive Lasso and IRT-LR for DIF
detection are provided in Table 7. Most DIF items identified by Bayesian adaptive Lasso were
also identified as DIF by IRT-LR. In addition, IRT-LR identified more DIF items, especially for
gender. As pointed out by previous studies (Belzak and Bauer, 2020; Wang et al., 2023), IRT-LR
leads to high false positive rates when DIF is pervasive.

7. Discussion

Regularization methods for latent variable selection or DIF detection come into use about a
decade ago. For either of the two purposes, regularization methods often outperform the corre-
sponding conventional methods. In frequentist statistics, the success of the regularizationmethods
depends on choosing the regularization (penalty) parameters, and some criteria, such as Bayesian
information criterion (BIC) and cross-validation (CV), can be used to select the optimal regu-
larization parameters for model fitting. From the view of Bayesian statistics, the regularization
parameters can be considered as random and assigned with appropriate prior distributions. By
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Table 7.
Comparisons of DIF detection for BaLasso and IRT-LR in the real data

Age Age Gender Gender
Item BaLasso IRT-LR Item BaLasso IRT-LR Item BaLasso IRT-LR Item BaLasso IRT-LR

1 ✓ ✓ 22 ✓ ✗ 1 ✓ ✓ 22 ✓ ✗

2 ✓ ✓ 23 ✓ ✓ 2 ✓ ✓ 23 ✓ ✓

3 ✓ ✗ 24 ✓ ✗ 3 ✓ ✓ 24 ✗ ✗

4 ✓ ✓ 25 ✓ ✗ 4 ✗ ✗ 25 ✓ ✓

5 ✓ ✓ 26 ✓ ✓ 5 ✓ ✓ 26 ✓ ✗

6 ✓ ✓ 27 ✗ ✗ 6 ✓ ✓ 27 ✓ ✗

7 ✓ ✓ 28 ✓ ✓ 7 ✓ ✓ 28 ✗ ✗

8 ✓ ✓ 29 ✓ ✓ 8 ✓ ✓ 29 ✗ ✗

9 ✓ ✓ 30 ✓ ✓ 9 ✓ ✓ 30 ✓ ✓

10 ✓ ✓ 31 ✓ ✓ 10 ✓ ✓ 31 ✗ ✓

11 ✓ ✓ 32 ✗ ✗ 11 ✓ ✓ 32 ✓ ✓

12 ✓ ✓ 33 ✓ ✓ 12 ✗ ✗ 33 ✓ ✓

13 ✓ ✓ 34 ✗ ✗ 13 ✓ ✓ 34 ✗ ✓

14 ✓ ✓ 35 ✓ ✓ 14 ✓ ✓ 35 ✓ ✓

15 ✓ ✓ 36 ✓ ✓ 15 ✗ ✗ 36 ✗ ✗

16 ✓ ✓ 37 ✓ ✓ 16 ✗ ✓ 37 ✓ ✗

17 ✓ ✓ 38 ✓ ✓ 17 ✗ ✗ 38 ✓ ✗

18 ✓ ✓ 39 ✓ ✓ 18 ✓ ✓ 39 ✓ ✓

19 ✓ ✓ 40 ✓ ✓ 19 ✓ ✓ 40 ✗ ✗

20 ✓ ✓ 41 ✓ ✓ 20 ✓ ✓ 41 ✗ ✗

21 ✓ ✓ 42 ✗ ✓ 21 ✗ ✗ 42 ✓ ✗

✓ and ✗ denote the items identified as DIF free and DIF for the corresponding covariates, respectively.

incorporating DIF-inducing covariates in MIRT models, we propose a Bayesian adaptive Lasso
approach for simultaneously detecting item–trait relationship and DIF effects.

Our simulation studies showed that our proposed method can produce good parameter esti-
mates, and performed well for the recovery of item–trait relationship. For uniform DIF detection,
our method had acceptable TPRs and good control of FPRs. These results are similar to the studies
of Bauer et al. (2020) and Wang et al. (2023). For non-uniform DIF detection, FPRs inflated a
little than the uniform DIF conditions, since the non-uniform DIF models include more model
parameters to be estimated. Moreover, it should be noted that both Tables 3 and 5 show slightly
increased FPRs when the sample size increased. Though this phenomenon is similar to some
existing researches (Belzak and Bauer, 2020; Brandt et al., 2023; Chen et al., 2022; Wang et al.,
2023), the model (variable) selection consistency in latent variable models, especially in item
response theory models, needs to be further investigated and theoretically justified in future. In
addition, the DIF effects of multiple covariates are simultaneously detected in a multidimensional
latent trait model, and it is beneficial for alleviating the problems caused by multicollinearity,
where using a method repeatedly for different covariates is not appropriate.

It is meaningful to investigate how our methods perform when no DIF effects exist. Using
the same data generation settings as in our simulation studies except for the zero DIF effects,
50 replications were generated with the sample size N = 500. With the same priors and initial
values as those in the simulation studies, the uniform and non-uniform DIF models were fitted,
respectively. The convergence rates were 98% and 94% for the uniform and non-uniform DIF
models. The MSE compositions and CI coverage rates are shown in Fig. 5 of Appendix A, which
indicated good recovery of the model parameters. The CRs, FPRs and FNRs for the incidence
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matrixwere satisfactory, with 0.982, 0.038 and 0.009 for uniformDIFmodel, and 0.976, 0.003 and
0.033 for non-uniform DIF model. Two models produced well-behaved FPRs for DIF detection,
with 0.020 and 0.030 for the uniform and non-uniform DIF models, respectively.

The current study also has some limitations and can be further improved in several aspects.
First, ourmodels are complex, especially for the non-uniformDIF conditions. Their computational
costs using Bayesian adaptive Lasso are high and the running times are long. It will be important to
improve the computational efficiency of our procedures. Second, in order to distinguish different
latent traits and place different persons on a common metric, we need to designate K DIF-free
items, loading on one dimension separately. These constraints are based on empirical knowledge
of the items and may affect the estimation results. When DIF percentage is high, finding the
right anchor items may not be easy (Wang et al., 2023). Third, our method can be developed
easily to allow for the inclusion of missing data. Standard DIF detection methods are sensitive
to missing data and the results for DIF detection are affected by different imputation methods.
However, Bayesian method can handle missing data by sampling from posterior distribution, and
no imputation is needed. Fourth, other penalty functions or regularized priors can be studied.
Several nonconvex penalties, such as SCAD (smoothly clipped absolute deviation; Fan & Li,
2001) andMCP (minimax concave penalty; Zhang, 2010), are well-known. But their performance
for simultaneously detecting item–trait relationship and DIF effects is lack of an in-depth study.
Furthermore, regularized priors with different types of mixture distributions should be thoroughly
investigated. Finally, since the indeterminacy of item–trait relationship, the interactions involving
latent traits are very complicated. Further studies for distinguishing the incidence of latent traits
and the discriminatory power of covariates need to be investigated.

Acknowledgements

We thank the editor, associate editor, and three anonymous referees for their careful review
and valuable comments. This research is partially supported by the National Natural Science
Foundation of China (No. 11871013) and the Natural Science Foundation of Jilin Province (No.
20210101152JC).

AuthorContributionsNaShancontributed to conceptualization,methodology,writing—original
draft, andwriting—reviewand editing. Ping-FengXucontributed to supervision andmethodology.

Data Availability Data sharing is not applicable to this paper as no new data were created or
analyzed in this study.

Declarations

Conflict of interest All authors declare no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed by the terms of such publishing
agreement and applicable law.

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 08:30:44, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


NA SHAN, PING-FENG XU 1357

APPENDIX

Appendix A. Additional tables and figures.

Table 8.
Average CPU times in seconds for all conditions in studies 1 and 2

Small DIF Large DIF
20% DIF 60% DIF 20% DIF 60% DIF
N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000

Uniform DIF 974.273 2406.643 990.339 2456.201 969.788 2324.013 994.945 2642.451
Non-uniform DIF 3616.052 7499.925 3641.076 7116.344 3660.076 7442.180 3594.443 7287.310
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