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Abstract

This paper contributes to the study of Engel structures and their classification. The
main result introduces the notion of a loose family of Engel structures and shows that
two such families are Engel homotopic if and only if they are formally homotopic. This
implies a complete h-principle when auxiliary data is fixed. As a corollary, we show
that Lorentz and orientable Cartan prolongations are classified up to homotopy by
their formal data.

1. Introduction

Let M be a smooth n-dimensional manifold. By definition, an m-dimensional smooth distribution
E Ă TM is a smooth section of the Grassmannian bundle GrmpTMq ÝÑ M . Distributions
are a core geometric structure in the modern perspective of differential geometry and control
theory [BH93, GV87, Mon02, MZ09], which in particular subsumes the smooth dynamics of non-
vanishing vector fields, the theory of foliations, and contact geometry. The integrability of
geometric structures, including the existence of complex structures, and the symmetries (and
solvability) of differential equations are part of the theory of distributions [Car01, Car24, GV87].

Cartan addressed in [Car01] the existence of a local normal form for a generic distribution,
that is,the lack of local invariants when the distribution is given by an open condition. The main
result [Car01, Mon93, Mon99] is that a generic distribution E Ă TM has a unique local normal
form if and only if it belongs to one of the following families: smooth line fields, contact structures
(even or odd), or Engel structures. The study of the first two geometries, smooth dynamics and
contact topology, has been of major interest and activity in the last four decades.

Engel structures, maximally non-integrable 2-distributions in 4-manifolds, have proven
themselves more elusive: in [EM02, Intrigue F], Eliashberg and Mishachev identified the
classification of Engel structures as an outstanding problem in the theory of h-principles. The
first modern breakthrough in Engel geometry was the existence theorem proven by Vogel [Vog09,
Theorem 6.1]. In the last two years, the study of Engel structures has seen further significant
developments [CdP18, CPdPP17, CPV18, dP18, dPV18, KV18, Mit18, Pia19, Yam18, Zha18a,
Zha18b], exhibiting unique properties of Engel structures and connections with smooth dynamics
and contact and symplectic geometry. In particular, the authors proved the parametric existence
h-principle for Engel structures in [CPdPP17], and the first two authors developed the complete
h-principle for non-singular Engel knots in [CdP18].

The present paper continues this work by providing a classification h-principle for a class of
Engel structures called loose (see § 3.1 for a definition). Our result should be compared (see the
Appendix) to the work in [dPV18], which defines and classifies another class of Engel structures,
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Loose Engel structures

called overtwisted. The latter is closer in behaviour to the class of overtwisted contact structures,
which were shown to satisfy a complete h-principle in [BEM15].

Let us now state the main theorems of this paper in precise terms.

1.1 Main results
Let M be a closed smooth 4-manifold, E pMq the space of Engel structures on M , and E fpMq
its formal counterpart [CPdPP17, Gro86, dPV18] (see § 2.1 for a definition). It was proven in
[CPdPP17] that the scanning map given by the inclusion

E pMq ÝÑ E fpMq

induces a surjection in homotopy groups.
The aim of the present work is to show that every homotopy class in πkpE

fpMqq can be
represented by a k-dimensional sphere in E pMq which is unique up to Engel homotopy, that is,
there is a subgroup LkpMq Ă πkpE pMqq isomorphic to πkpE

fpMqq that can be characterized in
a geometric fashion. This is the content of our two main results.

Theorem 1. Let M be a smooth 4-manifold, K a compact CW-complex, and N a positive
integer. Then any family D : K ÝÑ E fpMq is formally homotopic to an N -loose family.

We strengthen the existence h-principle in Theorem 1 to the following uniqueness h-principle.

Theorem 2. Let M be a smooth 4-manifold and K a compact CW-complex. There exists a
positive integer N0, depending only on dimpKq, such that any two N -loose families D0,D1 :
K ÝÑ E pMq, N ě N0, are Engel homotopic if they are formally homotopic. In addition, the
resulting Engel homotopy pDtqtPr0,1s can be realized as an pN ´ N0q-loose K ˆ r0, 1s-family of
Engel structures.

Theorem 1 provides existence and Theorem 2 shows uniqueness. The notion of looseness for
a family of Engel structures will be introduced in Definition 19, § 3. Roughly, it is a quantitative
property which measures the rotation of the Engel plane field D with respect to a line field Y ĂD,
captured by a positive integer N . In particular, if a family of Engel structures D : K ÝÑ E fpMq
is N2-loose, then it is N1-loose for any N1 ď N2. By definition, the line field Y is called the
certificate and a family that is N -loose with N ě N0, with N0 as in the statement of Theorem 2,
is said to be simply loose.

Let E fpM,Y q be the space of formal Engel structures containing some fixed Y ĂD transverse
to the formal kernel W. If Y has no periodic orbits, Theorem 1 can be strengthened to yield
families that are N -loose for all N . Such a family is said to be 8-loose. We denote by L pM,Y q
the subspace of Engel structures having Y as their certificate of 8-looseness. Using Theorems 1
and 2, we can deduce the following complete h-principle.

Theorem 3. Let M be a closed smooth 4-manifold and Y a line field without periodic orbits.
Then the forgetful inclusion L pM,Y q ÝÑ E fpM,Y q is a weak homotopy equivalence.

In § 4 we compare these statements with other recent developments regarding flexibility in
Engel topology. In § 4.1 we define the notion of Cartan/Lorentz prolongation and we prove the
following result which subsumes one of the main results in [dP18].

Corollary 4. Any family of Lorentz or orientable Cartan prolongations is loose, up to Engel
homotopy. In particular, such families are classified, up to Engel homotopy, by their formal data.
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In § 4.2 we prove that the Engel structures produced in [CPdPP17] are homotopic to loose
ones, and that those constructed using Engel open books in [CPV18] are loose.

The paper is organized as follows. Section 2 is dedicated to convexity in Engel topology,
including all the basic theory needed for our results. Section 3 defines and explores Engel
looseness. The proof of Theorems 1, 2, and 3 is structured in two parts: existence of loose families
(§ 3.3) and uniqueness (§ 3.4). Section 4 contains applications, including the proof of Corollary 4.
Appendix A provides a detailed discussion comparing flexibility phenomena for Engel structures
and contact structures. In particular, we discuss the relation between the present paper and the
work in [dPV18].

2. Engel structures and convexity

In this section we state the basic facts and techniques used in the study of Engel structures. We
focus on the interaction between Engel structures and families of convex curves in the 2-sphere.
This relationship will allow us to prove Theorems 1, 2, and 3.

We use the notation OppAq to denote an arbitrarily small neighbourhood of the subset A.

2.1 Engel structures
The central objects of study are the following geometric structures.

Definition 5. An Engel structure is a maximally non-integrable 2-plane field D Ă TM . That
is, E “ rD,Ds is an everywhere non-integrable 3-distribution (i.e. TM “ rE , Es).

The distribution E is said to be an even-contact structure. It contains a line field W uniquely
defined by the equation rW, Es Ă E . The line field W is said to be the kernel of E .

It follows from its definition that the line field W is contained in the Engel structure D. In
consequence, an Engel structure D induces a complete flag W Ă D Ă E on the 4-manifold M
[CPdPP17]. In addition, the Lie bracket induces two canonical bundle isomorphisms:

detpDq – E{D, (1)

detpE{Wq – TM{E . (2)

Decoupling the differential relation that determines Engel structures leads us to define their
formal counterpart as follows: a formal Engel structure is a complete flag W Ă D Ă E Ă TM
endowed with bundle isomorphisms as in equations (1) and (2). In this case there is no differential
relationship between the different distributions that constitute the flag. We will often refer to W
as the formal kernel of the formal even-contact structure E .

Let E pMq be the space of Engel structures endowed with the C0-topology, and E fpMq the
space of formal Engel structure endowed with the C2-topology. The present work focuses on
the homotopy theoretic nature of the inclusion

s : E pMq ÝÑ E fpMq.

This forgetful inclusion is continuous with the chosen topologies. This map is classically called
the scanning map [CPdPP17, Gro86] and it is the main focus in the study of h-principles [EM02].

2.2 Engel flowboxes and convexity
Let us explain a useful method to construct Engel structures locally. For reference, a 2-plane
in a smooth 3-manifold is maximally non-integrable (i.e. a contact structure) if and only if the
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contact planes strictly rotate with respect to a foliation by Legendrian lines [Gei08]. In the same
vein, the Engel condition can be geometrically described in terms of a flowbox for a line field
contained in the Engel structure, as follows.

Fix coordinates pp, tq in the product D3 ˆ r0, 1s and consider the bundle isomorphism

dpp,tqπ : Tpp,tqpD3 ˆ ttuq ÝÑ TpD3,

where π : D3ˆr0, 1s ÝÑ D3 is the projection onto the first factor. Any given fibrewise identification
of the projectivized bundle PpTD3q with RP2 obtained by fixing a framing of TD3 can be lifted
to an identification

dpp,tqπ : PTpp,tqpD3 ˆ ttuq ÝÑ RP2.

We focus on the 2-distributions D of the form xBt, Xptqy, with Xptq a vector field tangent to
the slice D3 ˆ ttu. The vector field X can be regarded as a D3-family of curves

Xp : r0, 1s ÝÑ RP2,

Xpptq “ dpp,tqπprXpp, tqsq,

where r´s denotes the associated line. The characterization of the Engel condition for D then
reads as follows.

Proposition 6 [CPdPP17]. The module E “ rD,Ds is a 3-distribution on Oppp, tq if and only
if the curve Xp is immersed at time t.

The 2-plane field D is an Engel structure on a neighbourhood of the point pp, tq if and only
if, additionally, at least one of the following two conditions holds:

(A) the curve Xpptq has no inflection point at time t;

(B) the 2-distribution xXpq, tq, X 1pq, tqy is a contact structure in Opppq ˆ ttu.

If D is Engel, its kernel W is spanned by Bt at the point pp, tq if and only if the curve Xp has an
inflection point at time t.

By definition, t is an inflection point for the curve Xpptq if Xp has a tangency at t of order at
least 2 with the great circle xXpptq, X

1
pptqy. We will focus on assumption (A), that is, the curves

Xp will be everywhere convex (or concave); in particular, Bt will be transverse to the kernel.

Remark 7. The techniques developed in [CPdPP17] are based on the interaction between
conditions (A) and (B). For completeness, we prove in § 4.2 that the families constructed in
[CPdPP17] are loose.

2.3 Convex curves and little wiggles
Proposition 6 connects the study of Engel structures with the theory of convex curves in RP2.
The classical results in this direction [Lit70, Sal15] are stated for convex curves into the 2-sphere
S2, but they easily translate to the RP2 setting. Let us explain this in detail.

Fix a 1-manifold I. Let IpIq be the space of immersions of I into RP2, endowed with the
C1-topology. Consider the space I fpIq of formal immersions of I into RP2, endowed with the C0-
topology, and the subspace LpIq Ă IpIq of locally convex curves, endowed with the C2-topology.
The inclusion of LpIq into IpIq is continuous and the formal counterpart of LpIq is homotopy
equivalent to I fpIq [EM02, Gro86].

The following notion will be important to us.
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Definition 8. A curve g P IpIq has a wiggle in the interval ra, bs Ĺ I if gpaq “ gpbq, and, after
identifying endpoints, g|ra,bs is a smooth closed convex embedded curve.

The curve g has n wiggles if there are n intervals tIi Ĺ Iuni“1, each of them a wiggle of g.
We require the interiors of these intervals to be pairwise disjoint, but we allow their endpoints
to agree. When this happens, we say that the wiggles are concatenated.

Remark 9. Suppose n wiggles tIiu
n
i“1 are concatenated. Then one may be able to choose some

other interval I 1 Ă I different from them, contained in their union, which is also a wiggle. Due
to the embeddedness of a wiggle, we deduce that I 1 either is one of the Ii or intersects exactly
two of the original intervals.

We depict wiggles in several figures. For clarity, we often do so up to a small homotopy
through convex curves.

2.3.1 Adding wiggles to curves. Let K be a compact manifold, n P N a positive integer, and
fix maps f : K ÝÑ IpIq and t : K ÝÑ I. From this data, we construct a new map

f rn#ts : K ÝÑ IpIq

as follows: for each k PK, we cut the curve fpkq at the point fpkqptpkqq and we add n small convex
loops, smoothing the result. This defines the map f rn#ts, which has (as least) n concatenated
wiggles. We can and do assume that the two maps f and f rn#ts agree as parametrized curves
outside of an arbitrarily small neighbourhood of the inserted loops. The insertion of wiggles can
be done over different points as long as we have functions t0, . . . , tm : K ÝÑ I with disjoint
images; we then write f rn0#t0,...,nm#tms for the resulting family.

Work by Little [Lit70] implies that the space of wiggles passing through a point with a given
direction is contractible. Therefore, our cutting process is unique up to a convex homotopy of
the added wiggle.

Remark 10. Wiggles which are concatenated may have different images (unlike in the
construction just provided). However, again invoking the contractibility result due to Little,
we deduce that we can make the images be the same by a homotopy through convex curves.

2.3.2 Achieving convexity. The purpose of adding wiggles is that they provide convexity.
The first ingredient we need is that any immersed curve f P IpIq is homotopic to a curve with
sufficiently many wiggles.

Lemma 11 [Lit70, Sal15]. Let f : K ÝÑ IpIq be a K-family of immersed curves and t0 P I. Then
the families f rn0#t0s and f rn0`2#t0s are homotopic through immersions. The homotopy can be
assumed to have support in a small neighbourhood pt0 ´ ε, t0 ` εq of the cutting point t0.

The homotopy of immersed curves described in Lemma 11 is shown in Figure 1.
The key result in [Lit70], explained in detail in [Sal15, § 6], states that if f is already convex

and one extra loop is introduced, additional wiggles may be added using a homotopy through
convex curves.

Lemma 12 [Lit70, Sal15]. Let f : K ÝÑ LpIq be a K-family of convex curves and t0 P I. Then
the families f rn0#t0s and f rn0`2#t0s are homotopic through convex curves as soon as n0 ą 0.
The homotopy can be assumed to have support in a small neighbourhood pt0 ´ ε, t0 ` εq of t0
containing the existing wiggle.
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Figure 1. Homotopy of immersed curves where two wiggles are introduced. In the last step, we
take the concave wiggle and we push it around RP2 so that it appears as a convex wiggle.

Figure 2. (Colour online) Little’s homotopy for convex curves in S2. The closed curves
correspond to great circles. The first figure shows a convex curve with a little wiggle. By pushing
the wiggle down, it can be taken to the second figure. It is convex because it is comprised of
three segments that are slight push-offs of equators whose corners have been rounded to preserve
convexity. The same is true for the third and fourth figures. In the last two images we push
towards the opposite hemisphere, yielding a curve with three wiggles. As shown, this process is
relative, in the domain, to the complement of a small neighbourhood of the wiggle.

This homotopy of convex curves from Lemma 12 is shown in Figure 2; we refer to it as Little’s

homotopy.

The last remark we need is that, given any curve f P IpIq and any sufficiently dense

collection of points t0, . . . , tm : K ÝÑ I, the curve f r1#t0,...,1#tms will be homotopic to a convex

curve. Furthermore, the C1-size of the homotopy needed to achieve convexity will be inversely

proportional to the number of wiggles introduced. This is the content of the following proposition,

which is the crucial geometric ingredient behind Theorem 3.

Proposition 13. Let K be a compact manifold, A Ă K a closed submanifold, and 0 ă a ă 1{2

a positive real constant. Suppose that f : K ÝÑ Ipr0, 1sq is a family of immersions such that

fpAq Ă Lpr0, 1sq and there exists F : K ÝÑ Lpr0, asYr1´a, 1sq such that fpkqptq “ F r1#aspkqptq.

Then there exists a family f : K ˆ r0,8q ÝÑ Ipr0, 1sq such that the following statements hold.
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Figure 3. (Colour online) We use Little’s homotopy to create several wiggles from a given one.
These wiggles are then distributed along the curve to achieve convexity everywhere.

– For s large enough fpk, sq is everywhere convex.

– fpk, sqptq “ fpkqptq if s “ 0, k P A, or t P r0, a{2s Y r1´ a, 1s.

– The number of wiggles of fpk, sq in ra, 1 ´ as goes to infinity as s ÝÑ 8 if k R OppAq.
The maximum distance between two consecutive wiggles in this segment is Op1{sq and the

radius of each wiggle is Op1{sq.

Figure 3 depicts the content of Proposition 13. The density of wiggles goes to infinity as s

does, as we will see in the proof, while their size has order Op1{sq.

Proof of Proposition 13. We construct fpk, sq in each interval s “ pn, n ` 1q by induction on

n P N. For s P rn, n` 1s and k in the complement of an arbitrarily small neighbourhood OppAq
of A, we obtain the following properties.

– fpk, nq “ fpkqr1#a,1#pa`p1{2nqp1´2aqq,...,1#pa`pp2n´1q{2nqp1´2aqq,1#p1´aqs.

– fpk, n` 1q “ fpkqr1#a,1#pa`p1{p2n`2qqp1´2aqq,...,1#pa`pp2n`1q{p2n`2qqp1´2aqq,1#p1´aqs.

– There are 2n paths sliding the last 2n wiggles of fpk, nq to the last 2n wiggles of fpk, n`1q.

We change the insertion points from t “ a ` pj{2nqp1 ´ 2aq to t “ a ` ppj ` 2q{p2n` 2qq

p1´ 2aq, j “ 1, . . . , 2n, by linear interpolation.

– The radius of those 2n wiggles is exactly 1{s.

– In OppAq, fpk, sq remains convex. Moreover, fpk, sq “ fpk, 0q for k P A.

Indeed, this is simple to build: the only geometrically non-trivial part corresponds to the

family in the interval t P pa, a ` p2{2nqp1 ´ 2aqq. In the parameter interval s P pn, n ` 1{2q we

use Little’s homotopy to produce three wiggles out of the existing wiggle at time t “ a, always

ensuring that they have radius 1{n. For s P pn ` 1{2, n ` 1q, we linearly move the insertion

points to place them at times a, a` p1{p2n` 2qqp1´ 2aq, a` p2{p2n` 2qqp1´ 2aq for s “ n` 1.
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Since convexity is preserved during Little’s homotopy, we can assume that the insertion of the

additional wiggles is done relative to A by cutting off Little’s homotopy for k P OppAq \A.

To conclude the argument we need to distribute the convexity of the wiggles to make fpk, sq

everywhere convex for s large enough. For that, use only half of the wiggles to create convexity,

that is, the ones placed in even positions with respect to the order provided by the insertion time.

As explained before, this makes the new family convex for s large. Moreover, the odd wiggles

are unaffected by this process. Therefore, the number of wiggles is Opsq and they are uniformly

distributed. l

2.4 The development map

Let us now introduce the notion of development map, which is used in order to define loose Engel

structures. Geometrically, the development map allows us to intrinsically describe the turning of

an Engel structure D with respect to a line field Y contained inside it. Note that this time we

are not resorting to the use of charts/flowboxes, as in § 2.2. The development map is well known

in the particular case where the line field is the kernel, and under this assumption it was first

studied by Montgomery [Mon99].

Since the development map encodes how the 2-plane D moves along Y in terms of the linear

holonomy of Y , it is natural to define it using the language of groupoids. The monodromy

groupoid [MM03] is defined as follows.

Definition 14. Let pM,Y q be a foliated manifold. The monodromy groupoid MonpM,Y q is

the set of triples pp, q, αq where p and q belong to the same leaf of Y and α is a homotopy class

of leafwise paths connecting p with q.

The monodromy groupoid is endowed with the following operations:

– source and target maps s, t : MonpM,Y q ÝÑM defined by spp, q, αq “ p, tpp, q, αq “ q;

– a partially defined multiplication map MonpM,Y q ˆM MonpM,Y q ÝÑM

pp, q, αq ˆ pq, q1, α1q ÞÝÑ pp, q1, α . α1q,

where . denotes concatenation of homotopy classes of paths;

– unit map M ÝÑ MonpM,Y q that takes p to pp, p, rpsq, the class of the constant path at p;

– inverse map MonpM,Y q ÝÑ MonpM,Y q that takes pp, q, αq to pq, p, α´1q;

– a partially defined action ‚ : MonpM,Y q ˆM M ÝÑM on M defined as pp, q, αq ‚ p “ q.

By construction, the orbit of a point p P M under the action is exactly the leaf L of Y in

which it is contained. The following result [MM03] states that MonpM,Y q can be endowed with

a smooth structure,

Lemma 15. MonpM,Y q is a Lie groupoid, that is, it is a smooth manifold, possibly non-

Hausdorff and non-second-countable, with smooth structure maps. Its dimension is dimpY q `
dimpMq.

The linear holonomy of pp, q, αq in MonpM,Y q is the identification of the normal fibre

pTM{Y qp with pTM{Y qq provided by parallel transport along α using Y . Globally, this

translates into the action MýMMonpM,Y q lifting to an action PpTM{Y qýMMonpM,Y q on

the projective normal bundle, which is projective linear between fibres.
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Let us focus on the Engel structure D. In this case M is four-dimensional and Y Ă D is a
line field. Over each point p PM the Engel structure determines a point PpD{Y qp Ă PpTM{Y qp.
This line can be transported using the action PpTM{Y qýMMonpM,Y q described previously:

γY pDqp : s´1ppq ÝÑ PpTM{Y qp, γY pDqppp, q, αq “ pq, p, α´1q ‚ PpD{Y qq.

Note that the domain s´1ppq of the curve γY pDqp is diffeomorphic to R.

Definition 16. The smooth map γY pDq : MonpM,Y q ÝÑ PpTM{Y q obtained by gluing the

collection of all maps γY pDqp is called the development map of D along Y .

In § 2.2 we explained how the 2-plane field D can be described as a family of curves in
RP2. The development map provides an intrinsic description of the same phenomenon. By
construction, the map γY pDq is equivariant for the action PpTM{Y qýMMonpM,Y q:

γY pDqpp, q, αq “ pp1, p, α1q ‚ γY pDqppp1, p, α1q . pp, q, αqq.

That is, the curve γY pDqp Ă PpTM{Y qp is obtained from the curve γY pDqp1 Ă PpTM{Y qp1
using the linear holonomy identification between the two spaces. Condition (A) in Proposition 6

implies the following lemma.

Lemma 17. The module rD,Ds is a 3-distribution if and only if each curve γY pDqp is an

immersion. Furthermore, if the curves γY pDqp have no inflection points, D is an Engel structure.

In Definition 8 we defined a wiggle as an immersion of the interval into RP2 which closes up

to a smooth, convex, embedded curve. As such, wiggles are defined in terms of self-intersections

and tangencies, implying that being a wiggle is well defined up to projective transformations of

RP2. This allows us to speak of intervals of γY pDqp being wiggles in an intrinsic manner, without

referring to any particular identification of PpTM{Y qp with RP2. This fact will be important

for our arguments.

Remark 18. Definition 16 recovers the notion introduced by Montgomery in [Mon99]. Indeed,

if D is Engel and Y is the kernel W, its linearized holonomy preserves the planes pE{Wqp. In

consequence, the monodromy groupoid MonpM,Y q acts on the projectivized bundle PpE{Wq.
Since D Ă E , the development map takes values in PpE{Wq and therefore the Engel condition

(B) in Proposition 6 implies that each curve γWpDqp is an immersion.

3. h-principle for loose Engel families

In the theory of h-principles [EM02, Gro86] there is particular value in finding the correct

subclass of structures adhering to an h-principle [BEM15, CdP18, Eli89]. In the present paper,

the h-principle is a consequence of the flexibility provided by a global dynamical property called

looseness. This notion is given in Definition 19 (§ 3.1).

Then we prove our existence and uniqueness theorems: Theorem 1 (§ 3.3) and the uniqueness

Theorem 2 (§ 3.4), respectively. Bringing the two of them together allows us to deduce Theorem 3

(§ 3.5).
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3.1 Loose Engel structures

Lemma 12 implies that adding enough loops to an immersed curve in RP2 makes it convex

(after a suitable modification in-between the cutting points). In line with other h-principles

[BEM15, Gro86], once the curve is convex and a loop is added, arbitrarily many new loops can

be introduced while preserving convexity. These two phenomena have direct implications in the

world of Engel structures.

First, given a 2-plane distribution in a smooth 4-manifold M , we can make it Engel by

adding sufficiently many wiggles to its development map, proceeding carefully over a covering

of M . Secondly, if convexity has been achieved and there are enough wiggles available, we can

add arbitrarily many more while keeping the development map convex. These are the two main

ingredients to prove a relative h-principle for this particular class of Engel structures.

The precise definition of this subclass can be detailed as follows. Let M be a smooth 4-

manifold, K a compact CW-complex, and N a positive integer. Consider a continuous family of

Engel structures D : K ÝÑ E pMq and line fields pY pkqqkPK with Y pkq Ă Dpkq. Let γY pkqpDpkqq
denote the corresponding development maps.

Definition 19. A family of Engel structures D is N -loose with certificate Y if:

– the development curves γY pkqpDpkqqp are convex and

– for each k P K and p PM , there is a segment γ Ă γY pkqpDpkqqp containing N wiggles that

projects to an embedded curve tpγq under the target map.

The family D is said to be 8-loose if this holds for every positive N .

The convexity condition for the development map implies that the line field Y pkq is

always transverse to the kernel of the Engel structure Dpkq. The embedding condition for the

segment γ implies that 8-looseness can only hold for line fields Y pkq with no closed orbits; see

Proposition 28.

Remark 20. In [Sal15], Saldanha describes the homotopy type of the space of convex curves

in S2. He shows that convex curves behave flexibly as soon as a loop is introduced. He called

such families of curves loose. We have decided to name our flexible families of Engel structures

accordingly. The geometric intuition we have is that the flexibility of loose Engel structures is a

manifestation of the flexibility displayed by convex curves.

Remark 21. In [Sal15, Lemma 4.1] it is proven that certain bounds on the total curvature imply

that a convex curve has a wiggle (up to homotopy through convex curves). In Definition 19

we introduce looseness using wiggles, but one could define it instead by requiring that the

development map has sufficiently large total curvature. This would in fact yield a larger class of

Engel structures that would, nonetheless, be weakly homotopy equivalent to the one presented

here.

3.2 Convex shells

In our proof of Theorem 1 we first upgrade M. Gromov’s Engel h-principle for open manifolds

[Gro86] to a quantitative statement. This is the content of Proposition 24. This effectively reduces

the proof to a extension problem for Engel germs in BD4 to the interior of D4. Following the

geometric set-up explained in § 2.2, we introduce the following definition.
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Definition 22. A convex shell is a 2-distribution D “ xBt, Xy in D3ˆr0, 1s such that the curves
Xp are immersed for all p and convex at time t whenever pp, tq P OppBpD3 ˆ r0, 1sqq.

In particular, D is everywhere non-integrable and defines a germ of Engel structure along
the boundary. A convex shell is said to be solid if D is everywhere Engel.

The quantitative version reads as follows. Let N be a positive integer. A convex shell is
N -convex if there exist:

– a constant ε P p0, 1q,

– functions pti : D3 ÝÑ p0, εqqi“1,...,n with 0 ă t1ppq ă ¨ ¨ ¨ ă tnppq ă ε, and

– a D3-family of convex curves pfp : r0, εs ÝÑ RP2qpPD3 such that Xp “ f
r1#t1ppq,...,1#tN ppqs
p .

The definition of parametric families of N -convex shells is given by the natural extension to
higher-dimensional families of curves.

3.3 Existence of loose Engel families
In this subsection we solve the parametric extension problem for convex shells. We will prove
the following version of Theorem 1.

Proposition 23. Let M be a smooth 4-manifold, K a compact CW-complex, and N a positive
integer. Then any family D0 : K ÝÑ E fpMq is formally homotopic to an N -loose family D1.

Fix a family of line fields Y “ pY pkqqkPK with Y pkq Ă D0pkq transverse to the kernel W0pkq.
Then D1 can be assumed to have Y as its certificate of N -looseness. Additionally, the constant
N can be taken to be 8 if the Y pkq have no closed orbits.

Proposition 23 is proven in two stages, following the structure in h-principles of reducing to a
standard model and then extending the boundary germ to the interior. The first step is achieved
in the following proposition.

Proposition 24. Let M be a smooth 4-manifold, K a compact CW-complex, and N a positive
integer. Consider a family of formal Engel structures D0 : K ÝÑ E fpMq and line fields Y pkq Ă
D0pkq transverse to the formal kernel W0pkq. Then there exist a collection of disjoint balls
tBiuiPI ĂM ˆK and a homotopy

Ds : K ÝÑ E fpMq, s P r0, 1s,

such that Y pkq Ă Dspkq is transverse to the formal kernel Wspkq, and

– for each i P I, D1|Bi is a DdimpKq-family of N -convex shells with respect to Y ,

– D1pkq is Engel in p PM if pp, kq P pM ˆKq \
Ť

iPI Bi.

We will prove Proposition 24 by using the following auxiliary lemma.

Lemma 25. Let M be a smooth 4-manifold, K a compact CW-complex. Consider a family of
formal Engel structures D0 : K ÝÑ E fpMq and line fields Y pkq Ă D0pkq transverse to the formal
kernel W0pkq. Then there is a homotopy

Ds : K ÝÑ E fpMq, s P r0, 1s,

such that Y pkq Ă Dspkq is transverse to the formal kernel Wspkq and the formal even-contact
structure E1pkq is given by rD1pkq,D1pkqs.
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Proof. Let us assume first that K is a compact manifold. Consider a triangulation T of M ˆK.

Regard the family of line fields Y as a line field in MˆK. Then assume that the triangulation T is

in general position [Thu74, Thu76] with respect to Y and the foliation by fibres of MˆK ÝÑK.

In particular, all lower-dimensional simplices are transverse to the line field Y .

Now, to each simplex σ of T we associate a Y -flowbox Upσq such that:

– the set of all such flowboxes is a covering of M ˆK;

– two flowboxes only intersect each other if one of the simplices is contained in the other;

– if σ is top-dimensional, Upσq is obtained from σ by a C0-small shrinking;

– if σ is not top-dimensional, any Y -interval in Upσq is either fully contained or completely

disjoint from the flowboxes corresponding to subsimplices.

These Y -flowboxes are constructed in [CPdPP17, Proposition 29]. In short, Upσq is obtained

by shrinking σ and then thickening in the directions complementary to σ.

The 2-distribution D0 can be modified over each Upσq inductively in the dimension of σ,

relatively to previous steps. Let us denote by E0 the K-family of 3-distributions which is part

of the formal data. Note that, over each flowbox, the Engel family D0 can be regarded as a

D3 ˆ DdimpKq-family of formal immersions of the interval into the projective plane. Indeed, the

2-distribution D0 provides a family of curves into RP2 and the 3-distribution E0 provides a great

circle at each point of the curves. The isomorphism detpD0q ” E0{D0 encoded in the formal

data (equation (1)) provides an orientation1 of each great circle. Then the relative nature of the

Smale–Hirsch theorem [EM02, Gro86] implies that we can modify the curves so that they become

immersions, relative to previous flowboxes. In terms of the formal Engel structure this means

that D0 is formally homotopic to a family of non-integrable plane fields that bracket-generate a

3-distribution homotopic to E0.
This proves the claim. For K an arbitrary CW-complex, we proceed cell by cell as just

explained, using again the fact that the Smale–Hirsch theorem is relative both in parameter and

domain. l

Proof of Proposition 24. We use the set-up explained in the proof of Lemma 25: we may assume

that K is a compact manifold. We fix a triangulation T of MˆK in general position with respect

to Y and the fibres of M ˆK ÝÑ K. This allows us to cover M ˆK by Y -flowboxes. By the

lemma, we can assume that rD0,D0s is the 3-distribution E0 given by the formal data.

Now we modify the 2-distribution D0 over each flowbox Upσq, inductively in the dimension of

σ for dimpσq ă dimpMˆKq. We regard the restriction D0|Upσq to each flowbox as a D3ˆDdimpKq-

family of immersions Xp,k of the interval I into RP2. The isomorphism detpE0{W0q ” TM{E0
provided by the formal data (equation (2)) provides a local orientation2 of RP2; we want the

curves Xp,k to be convex with respect to this orientation.

In line with Proposition 13, we first use Lemma 12 to add arbitrarily many wiggles to each

Xp,k close to the endpoints BI and then we distribute them evenly in the interior I \ OppBIq.
This is done parametrically in the band t1´ε ď |p|, |k| ď 1u, with ε ą 0 arbitrarily small. Hence,

1 The isomorphism detpD0q ” E0{D0 tells us that E0 is canonically oriented globally. In each flowbox we make
a choice of orientation for Y , which automatically orients E0{Y . Its projectivization is the great circle under
consideration, which inherits an orientation.
2 The isomorphism detpE0{W0q ” TM{E0 provides a canonical orientation for the bundle TM{W0. In the flowbox
we choose an auxiliary orientation for Y . Since Y is contained in D0 and transverse toW0, we obtain an orientation
of TM{D0. This yields the local orientation of RP2.
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we can assume that Xp,k is convex and has arbitrarily many wiggles away from its endpoints if
t|p|, |k| ď 1´ εu. Note that the behaviour of Xp,k will be quite complicated close to BI.

This process is relative to the boundary of the flowbox and it can also be made relative
to previous flowboxes: by assumption, the development map of the 2-distribution D0 along a
Y -curve Xp,k contained in a previous flowbox is already convex. Since the development map is
intrinsically defined, we have precise control over how many wiggles such a Xp,k has. In particular,
it can be assumed to be arbitrarily large by evenly introducing sufficiently many wiggles in the
previous steps. Proposition 13 can be applied relative to the set of these curves.

The argument can now be repeated until we reach the top-dimensional cells. The collection of
balls tBiuiPI in the statement of Proposition 24 is taken to be the collection of flowboxes Upσq Ă σ
with σ top-dimensional. Since we have added arbitrarily many wiggles along the codimension-1
skeleton, the formal Engel structure is a genuine Engel structure in the boundary of each ball
Bi, for all i P I. In addition, each ball Bi is a DdimpKq-family of N -convex shells as required for
the statement. Finally, observe that Y has remained fixed during this formal homotopy, which
concludes the proof. l

Proposition 24 solves the reduction process for Proposition 23. Let us now address the
extension problem.

Consider the DdimpKq-families of shells tBiuiPI produced by Proposition 24. Observe that
the restriction of the 2-distribution D1|Bi can be regarded as a D3 ˆ Ddimpkq-family of curves
Xp,k satisfying the hypothesis of Proposition 13. Here D3 ˆ Ddimpkq plays the role of K and A
is its boundary. From this we deduce that there is a deformation, relative to the boundary of
the model, that makes all curves convex. This implies that there is an Engel family D2 that is
formally homotopic to D1. Additionally, D2|Bi is an pN ´ 1q-convex shell, since we only needed
to use one of the wiggles during the homotopy. This argument proves the following proposition.

Proposition 26. Let K be a compact CW-complex. Any family pD3ˆr0, 1s,DkqkPK of N -convex
shells is homotopic to a family of solid pN ´ 1q-convex shells. This is relative to the boundary of
the shells, and relative to the parameter region in which they are already solid.

Proof of Proposition 23 and Theorem 1. Consider the shells Bi constructed in Proposition 24.
Since these are obtained by shrinking a top-dimensional simplex of the triangulation T of MˆK,
every orbit of Y must intersect some ball Bi in the collection. An application of Proposition 26
turns each Bi into a solid pN ´ 1q-convex shell, and therefore D2 is pN ´ 1q-loose. This proves
Theorem 1.

Assume now that Y has no closed orbits. Then every orbit accumulates somewhere and
therefore intersects one of the Bi infinitely many times. Since wiggles are intrinsically defined
using the development map, we deduce that each orbit of Y has infinitely many of them and
therefore D1 is 8-loose. l

This concludes the existence h-principle for the class of 8-loose Engel structures, as stated
in Theorem 3. In particular, we have an existence h-principle refining our previous result
[CPdPP17], which we will now further improve to a uniqueness h-principle.

3.4 Uniqueness of loose Engel families
In this subsection we show that the N -loose Engel families constructed in Theorem 1 are unique
up to homotopy if N is large enough. This is precisely the content of Theorem 2; its quantitative
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nature is in line with other quantitative phenomena appearing in higher-dimensional contact
flexibility [BEM15, CMP19]. We have included a discussion on this in § 4.

Theorem 2 will be proven by first showing that any loose family can be homotoped to resemble
a family produced by Theorem 1. This is the content of the following proposition.

Proposition 27. Let M be a smooth 4-manifold and K a compact CW-complex. There exists
a positive integer N0, depending only on the dimension of K, such that for any

– N -loose family D0 : K ÝÑ E pMq, N ě N0, with certificate Y ,

– triangulation T of M ˆK in general position with respect to Y and M ˆK Ñ K,

– covering tUpσquσPT as in Proposition 24,

– non-negative integer N1,

there is a homotopy Ds : K ÝÑ E pMq satisfying

– Y pkq Ă Dspkq is transverse to the kernel Wspkq,

– Ds is pN ´N0q-loose for all s, with Y as its certificate of looseness,

– for any top-dimensional simplex σ P T , D1|Upσq is a family of solid N1-convex shells.

We will say that a family of Engel structures is simply loose if it is N0-loose. During the
proof we will provide a bound for the constant N0.

Proof. Since the Engel structure D0 is N -loose, at any point pp, kq P M ˆ K we can find an
embedded interval γ ĂMˆtku tangent to Y , containing pp, kq, and whose development map has
N wiggles. By thickening such intervals, we find a covering tUiu ofMˆK by solidN -convex shells.
It is sufficient for us to show that there is an Engel homotopy pDsqsPr0,1s through pN ´N0q-loose
Engel structures such that the development map of D1 has arbitrarily many uniformly distributed
wiggles. This can be achieved by modifying the development map inductively over each element
Ui of the covering, as follows.

Start with the first shell U0, where D0 is considered as a family of convex intervals
pXp,kqpp,kqPD3ˆDdimpkq , and fix ε ą 0 arbitrarily small. Since we have N wiggles, we can apply
Proposition 13 to one of them to produce arbitrarily many more wiggles in the region t|p|,
|k| ď 1 ´ εu. These wiggles can be assumed to be uniformly distributed in the domain. Note
that in doing this, the wiggle we chose in the region t1´ ε ď |p|u Y t1´ ε ď |k|u disappears as
Little’s homotopy is performed. In particular, U0 is only an pN ´ 1q-convex shell for the new
Engel structure.

Now consider U1 and suppose that it intersects U0. From the perspective of U1, the homotopy
in U0 could have destroyed two wiggles. Indeed, the wiggle we used for the homotopy in U0 may
intersect at most two wiggles in U1 (see Remark 9). However, if we assume that N ą 2, there is at
least one wiggle remaining and we can repeat the argument above. This allows us to arbitrarily
increase the number of wiggles in the interior of U1. It is natural to proceed by repeating this
process inductively over the covering index i. In order to do that, denote the projection to the
orbit space by π : Ui ÝÑ Ui “ Ui{Y , where each Ui is diffeomorphic to D3 ˆ DdimpKq.

The main geometric ingredient in the proof is showing that the covering tUiu can be chosen
such that:

(I) only N0 ´ 1 of the wiggles of a given shell Ui get destroyed by previous homotopies;

(II) there exists a continuous section Ui ÝÑ Ui that provides a marked wiggle in each flowline.
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For that, fix a cover tViu using the process described in the first paragraph, and write

πi : Vi ÝÑ Vi “ Vi{Y
for the canonical projection. The intersection πipBVi1

Ş

Viq defines a codimension-1 submanifold
Si1 Ă Vi, and by a small perturbation of the flowboxes tVi1u, we can assume that the submanifolds
tSi1ui1‰i of Vi intersect transversely. In particular, a point in Vi may only lie in C “ dimpKq ` 4
different manifolds Si1 . In the previous steps (i1 ă i) of the induction, Little’s homotopy destroyed
two wiggles in each region OppBVi1q. Hence, by setting N0 ě 2C ` 1, it follows that each Y |Vi

flowline contains still one wiggle, so condition (I) holds.
In order to show that the wiggles can be chosen in a continuous way (condition (II)), we

construct a finer covering tU ji u of M ˆK. This is done inductively on i as follows. Set U0
0 “ V0

and fix some continuous choice of wiggle V0 ÝÑ V0. Suppose that we have already subdivided
all Vi1 with i1 ă i, yielding some partial covering tU ji1ui1ăi with corresponding choices of wiggles

tπi1pU ji1q ÝÑ U ji1u. Now choose a very fine triangulation Ti of Vi and fix small contractible open

neighbourhoods tU ji u of each simplex in Ti. Then tU ji “ π´1i pU
j
i qu is a covering of Vi by flowboxes

and we claim that this is enough to conclude.
Indeed, using transversality as above, we can assume that each point in πipU ji q Ă Vi meets

at most C of the manifolds tπipBU j
1

i1 X U ji qui1ăi. Additionally, there is a constant D, depending
only on dimpKq, bounding from above the number of simplices of Ti intersecting a given simplex.

Therefore, U ji intersects at most D of the flowboxes tU j
1

i uj1‰j . Condition (I) then holds by setting

N0 ě 2C ` 2D ` 1. Additionally, if Ti is fine enough, each element U ji is a neighbourhood of a
point so it is possible to make a continuous choice of wiggle. l

We will need one more ingredient before we prove Theorem 2.

Proposition 28 [PdPP16]. Denote by XpMq the space of line fields on a manifold M . Denote by
Xn.o.pMq Ă XpMq the subset of line fields without periodic orbits. The inclusion Xn.o.pMq Ă XpMq
induces a weak homotopy equivalence provided that dimpMq ě 3.

This result relies on the existence of parametric versions of the plugs of Wilson and
Kuperberg. In particular, it states that the choice of a line field without periodic orbits in
the statement of Theorem 3 is not a restriction from a homotopical point of view.

Proof of Theorem 2. Let Yi Ă Di be the certificate of N -looseness of Di, and fix

D̃ : K ˆ r0, 1s ÝÑ E fpMq

a family of formal Engel structures connecting D0 and D1. Write W̃ for the formal kernel of D̃.
Fix a family of line fields Y Ă D̃ connecting Y0 and Y1 and transverse to W̃. Construct a
triangulation T of M ˆK ˆ r0, 1s in general position with Y , in general position with M ˆK ˆ
r0, 1s ÝÑ K ˆ r0, 1s, and restricting to triangulations Ti on M ˆK ˆtiu also in general position
[CPdPP17, Thu76].

Then apply Proposition 27 to achieve that for any top-dimensional simplex σ P Ti, the
restriction Di|Upσq is a family of solid N1-convex shells. This allows us to apply the reduction
in Proposition 24 relative to the ends M ˆ K ˆ t0, 1u. Then Proposition 26 can be used to
achieve the Engel condition in the interior of the top cells. Following the proof of Theorem 1,
we have deformed the 2-distribution D̃ to a family of Engel structures D : K ˆ I ÝÑ E pMq. By
construction, the 2-distribution D restricts to Di in M ˆKˆtiu as desired. Finally, if Y0 and Y1

have no periodic orbits, the same can be assumed about Y after an application of Proposition 28.
Therefore, if the Engel structure Di is 8-loose, the same holds for the homotopy D. l

426

https://doi.org/10.1112/S0010437X19007759 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007759


Loose Engel structures

3.5 Proof of Theorem 3
Consider a family D : pDk, BDkq ÝÑ pE fpM,Y q,L pM,Y qq. Theorem 1 implies that Dp0q can
be homotoped to be 8-loose. Then we can regard D as a formal homotopy between the family
D|BDk and the constant family Dp0q. Applying Theorem 2 shows that D can be homotoped to
have image in L pM,Y q, as desired. l

This concludes the h-principle for loose Engel structures.

4. Applications

In this section we prove Corollary 4 on Engel prolongations, and discuss two additional families
of examples of loose Engel structures. It follows from Theorem 2 that these families satisfy the
h-principle, and thus exhibit completely flexible behaviour.

4.1 Prolongations
Cartan introduced in [Car24] the notion of prolongation for contact structures and Lorentzian
metrics, which we exploited in recent work [CPdPP17] to manipulate Engel structures locally.
Let us review these two constructions and prove Corollary 4.

Let V be a smooth oriented 3-manifold and ξ an oriented 2-plane distribution. By definition,
the associated oriented formal Cartan prolongation pMpξq,Dpξqq is the sphere bundle Mpξq :“
Spξq π

ÝÑ V endowed with the tautological distribution

Dpξqpp, lq “ π˚rls. (3)

The distribution is Engel if and only if ξ is a contact distribution. Indeed, this is condition (B)
in Proposition 6. In this case, the Engel structure pMpξq,Dpξqq is called the Cartan prolongation
of the contact structure ξ.

Suppose instead that the 3-manifold manifold V is endowed with a Lorentzian metric g. The
kernel Cg of the Lorentzian metric, known as the light cone, defines a sphere bundle Mpgq :“

PpCgq
π
ÝÑ V endowed with a tautological distribution Dpgq defined again by equation (3). This

distribution is always an Engel structure, since it satisfies condition (A) in Proposition 6. By
definition, the Engel structure pMpgq,Dpgqq is the Lorentz prolongation of g.

A particular case which is of interest to us is as follows. Consider an orientable and
coorientable plane field ξ. Endow it with a metric gξ and pick a complementary vector field ν.
Then the pair pgξ, νq defines a family of Lorentz metrics pgrqrPR` by declaring the vector field ν
to be orthogonal to ξ and of norm ´r. As r goes to infinity, the light cone Cgr converges to
the plane field ξ. We can apply the prolongation construction parametrically in r. This allows
us to think of the structures pMpgrq,Dpgrqq as convex push-offs [dP18] of the formal Cartan
prolongation pMpξq,Dpξqq.

Conversely, given any Lorentz structure g and any space-like plane field ξ, there exists a
unique line complement such that g is a push-off of a metric in ξ by the recipe above.

Corollary 4 states that these Engel structures are all loose. The key ingredient is the
observation that the light-cone intersects the unit sphere in a convex curve which is embedded
(i.e. a wiggle).

Proof of Corollary 4. Let K be a compact parameter space, D a K-family of Lorentz
prolongations, and ξ a K-family of plane fields in V such that Dpkq is a convex push-off of
Dpξpkqq given by a family of functions rpkq (and a corresponding family of metrics in the plane
fields ξpkq). By performing an Engel homotopy, given by increasing the real numbers rpkq, we
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can assume that dπpDpkqq is arbitrarily close to νpkq, where νpkq : V ÝÑ TV , k P K, is a vector
field transverse to ξpkq.

Now consider a family of line fields Yspkq Ă Dpkq, s P r0, 1s, spanned by vector fields Yspkq,
with Y0pkq contained in the fibre direction and all others transverse to it. Over any 3-disc in V
(lifted to the fibre bundle by taking a section), the vector fields Yspkq provide a family of return
maps φk,s, with φk,0 the identity.

We claim that, for any fixed N P N, the iterates of the return maps

φ
pjq
k,s, j “ 1, . . . , N,

have no fixed points if s ‰ 0 is close enough to 0. Indeed, since we have pushed the prolongations

to be very convex, φ
pjq
k,s becomes a map that approximates an arbitrarily short time flow of νpkq.

By compactness of V , the map cannot have fixed points. Now the claim follows by taking N larger
than the universal constant N0 corresponding to a family of dimension dimpKq: the resulting
family of Engel structures is N -loose. This proves the claim in the Lorentz case. Suppose now
that D is family of orientable Cartan prolongations. Then D is homotopic to a family of Lorentz
prolongations by a convex push-off, which proves the statement as desired. l

A striking consequence of Corollary 4 is that, given two non-isotopic contact structures
homotopic as plane fields, their Cartan prolongations are Engel homotopic. In particular, any
non-formal contact invariant becomes formal by taking Cartan prolongations.

Remark 29. In the literature (see, for instance, [dP18]) a more general notion of Cartan
prolongation is considered. Assume, imposing the obvious condition on the Euler class, that
there is a sphere bundle E that m : 1 covers Spξq. We can then define Engel structures on E by
pulling back Dpξq; similarly, we can construct m : 1 coverings of Lorentzian prolongations. The
general statement is then that, given D : K Ñ E pMq and π : M̂ Ñ M a m : 1 cover, we can
construct a family π˚D : K Ñ E pMq by pull-back. If D is N -loose, then π˚D is mN -loose.

4.2 Other loose families in the literature
In this subsection we show that the families of Engel structures constructed in [CPdPP17] and
[CPV18] are loose. This is shown for the former class in the following proposition.

Proposition 30. Let M be a closed 4-manifold and let K be a compact manifold. Any family
of Engel structures D : K ÝÑ E pMq constructed using the h-principle in [CPdPP17] is loose up
to Engel homotopy.

Proof. The construction in [CPdPP17] produces a family D : K ÝÑ E pMq of Engel structures
with corresponding line fields Y : K ÝÑ XpMq, Y pkq Ă Dpkq, such that the associated
development maps γY pkqpDpkqq satisfy the following requirements.

– The curves γY pkqpDpkqqp are immersed and weakly convex.

– There is a finite number of disjoint 3-weakly convex shells Ui that together cover the orbit
space pM ˆKq{Y .

A curve in RP2 is said to be weakly convex if its curvature is greater than or equal to zero.
Weakly convex wiggles and N -weakly convex shells are defined in the natural manner. The balls
Ui are of the form introduced in Proposition 24: they are flowboxes obtained by shrinking the
top cells of a triangulation of M ˆK in general position with respect to Y .
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It follows from Proposition 6 that Y pkqp “ Wpkqp if and only if the development map has
an inflection point at p. This implies that the tangencies, defined by Y pkq “ Wpkq, are all
degenerate and there is a C8-perturbation Y 1 Ă D of Y that is everywhere transverse to W.
The development map of D along Y 1 is everywhere convex. We can then perturb the collection
tUiu to a collection of Y 1-flowboxes tU 1iu covering the orbit space pM ˆKq{Y 1 such that U 1i is
a 3-convex shell. By applying Proposition 13 we can deform the Engel structure on each U 1i so
that it becomes a solid N -convex shell, with N arbitrarily large. This produces a new family
D1 : K ÝÑ E pMq. Since each orbit of Y 1 intersects at least one Ui, we obtain that the family is
loose with Y 1 its certificate of looseness. l

Remark 31. The following is a technical observation. The Engel structures constructed in
[CPdPP17] depend on a real parameter E ą 0 that needs to be chosen large enough. There
is also an increasing function N : R` ÝÑ Z`, such that limEÝÑ8NpEq “ 8. Now, the families
of Engel structures D : K ÝÑ E pMq constructed using the h-principle in [CPdPP17] satisfy
that the open balls U 1i are NpEq-convex shells. Hence, for E large enough, the original family is
already loose, without having to deform it.

The recent article [CPV18] constructs Engel structures adapted to open books, in line with
the contact Giroux correspondence. Away from the binding, which is a disjoint union of tori, the
structures can be understood as Cartan prolongations of a contact manifold with trivial Euler
class. The following statement is proven in [CPV18].

Proposition 32. The Engel structures constructed in [CPV18] are loose.

Proof. The construction in [CPV18] depends on a constant k P Z` which measures the number
of turns performed by the Engel structure in terms of a Legendrian framing on the page. We
denote by Dk the Engel structure that turns k times. In order to extend it to the binding we need
a canonical model on it that requires k to be odd. Little’s homotopy implies that Dk and Dk`2

are homotopic. For k large enough the structure is loose, since the number k precisely accounts
for the turning of Dk in terms of the development map. l
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Appendix A. Flexibility in Engel and contact topology

In this appendix we discuss the interaction between Engel structures [CdP18, CPdPP17],
contact structures [Eli89, Gei08], and the h-principle [EM02, Gro86]. Our aim is to study the
manifestations and subtleties of the h-principle as seen from the recent new perspectives [BEM15,
CPdPP17, dPV18, Vog18]. Let us start with contact structures as the prism through which we
are used to looking at the h-principle.
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A.1 Contact flexibility
Even though contact structures do not abide by the h-principle [Gei08], there is a subset of
overtwisted contact structures whose behaviour is flexible, that is, their classification up to
homotopy is governed by the underlying formal data. This display of flexibility is precise at the
π0-level, but for higher homotopy groups the picture is more subtle, as we explain.

Let N be a closed orientable p2n ` 1q-manifold, C fpN,∆q the space of almost contact
structures with overtwisted disc ∆ [Gro86], and COTpN,∆q the subspace of contact structures
also overtwisted with disc ∆. The main result in [BEM15, Eli89] is that the forgetful inclusion

COTpN,∆q ÝÑ C fpN,∆q

is a weak homotopy equivalence. This is where the first subtlety arises: the overtwisted disk ∆
has been fixed. Recently, it has been shown that the space of overtwisted contact structures does
not necessarily have the homotopy type of the space of formal contact structures [Vog18]. This
failure of flexibility is precisely related to the homotopy type of the space of overtwisted discs in
a fixed contact structure.

The articles [BEM15, Eli89] actually prove a stronger result, in which the overtwisted disc
is allowed to vary. Let ξ0, ξ1 : K ÝÑ C pNq be two K-families of contact structures, with K a
compact CW-complex. Let ∆0,∆1 be corresponding K-families of overtwisted discs and assume
that there is a homotopy of pairs pξt,∆tq with ξt : K ÝÑ C fpNq having ∆t as overtwisted discs.
Then the families ξ0 and ξ1 are homotopic through contact structures relative to ∆t. Conversely,
if ξt : K ÝÑ C pNq is a homotopy between ξ0 and ξ1, and ξ0 admits a family of overtwisted discs
∆0, we deduce from Gray stability that ξt lifts to a homotopy of pairs pξt,∆tq.

That is, the K-family ξ0 exhibits flexible behaviour if a choice of ∆0 exists. This leads us
to introduce the following definition, formalizing a ubiquitous idea in the theory of h-principles
[EM02].

Definition A.1. Let ξ0 be a K-family of contact structures. A continuous choice of ∆0 is said
to be a certificate of overtwistedness for the overtwisted family ξ0.

A.1.1 Overtwisted classes. The h-principle in contact geometry does not hold without the
mediation of a certificate, and the central obstruction is its homotopy type. At the most basic
level, the family ξ0 might not even admit a continuous choice of certificate ∆0, even if all the
structures are individually overtwisted. This is known to happen [Vog18]: there exists a formally
contractible loop of overtwisted contact structures in S3 that admits no certificate and therefore
is not contractible geometrically.

Two overtwisted families of contact structures may be formally homotopic but have
certificates in different homotopy classes. However, there is a stable range in which this
obstruction vanishes and an algebraic form of the h-principle holds: recall the forgetful inclusion
i : C pNq ÝÑ C fpNq, and fix an overtwisted basepoint ξ P C pNq Ă C fpNq. We consider the
homotopy groups πkpC pNqq and πkpC

fpNqq based at ξ. A class α P πkpC pNqq is said to be
overtwisted if it can be represented by an overtwisted family.

Proposition A.2. Let N be a closed p2n ` 1q-manifold. Consider the subgroup OTkpNq Ă
πkpC pNqq consisting of overtwisted classes, for 0ď k ď 2n. Then the inclusion πkpiq : OTkpNq ÝÑ
πkpC

fpNqq is a group isomorphism.

Proof. Let ξ : Sk ÝÑ C pNq be an overtwisted family of contact structures with certificate ∆.
Since k ă 2n ` 1, after an isotopy we may assume that there is a point p P N which is not

430

https://doi.org/10.1112/S0010437X19007759 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007759


Loose Engel structures

contained in any of the overtwisted discs ∆paq, a P Sk. This allows us to use the h-principle to
introduce an overtwisted disc at p, for all ξpaq. Even if they are all based at the same point, the
family of overtwisted discs might be non-trivial, but this non-triviality is carried by the formal
type of the family ξ encoded by the value of the distribution ξpaq at the point p. Any formal
homotopy between overtwisted families having overtwisted discs centred at a fixed point lifts to
a homotopy of pairs, concluding the proof. l

We say that a class not belonging to the overtwisted subgroup OTkpNq is a tight class.
T. Vogel’s loop of overtwisted contact structures [Vog18] is the first instance of a one-dimensional
tight family of individually overtwisted contact structures.

A.1.2 Tight classes. One can also observe that the tight classes have a natural group
structure. First, we claim that TightkpNq “ πkpC pNqq{OTkpNq is a group, k ą 0. For this
to hold, we must show that OTkpNq is a normal subgroup. If 2 ď k ď 2n, this is true since the
groups are abelian. For k “ 1, we have the following sequence of inclusions:

OT1pNq Ñ π1pC pNqq
π1piq
Ñ π1pC

fpNqq » OT1pNq.

And therefore Tight1pNq is the kernel of the map π1piq. Then we may interpret the quotient
TightkpNq as a subgroup of πkpC pNqq: it corresponds precisely to the homotopy classes of contact
spheres that are homotopically trivial as almost contact spheres. Left multiplication with the
overtwisted representative identifies the fibres over any other formal class, and therefore all
the fibres of the map πkpiq are conjugated subgroups.

This stands in sharp contrast to the case k “ 0: the projection map π0pC pS3qq Ñ OT0pS3q
has one element in each fibre except for the fibre containing the standard contact structure,
which contains two [Eli89, Eli92].

A.2 Engel flexibility
We can now look at the same concepts through the lens of Engel topology.

A.2.1 Local and global. Engel looseness differs from contact overtwistedness in that the
definition of certificate we have given is not local. The contact overtwisted disc is a particular
model in a ball (or a particular contact germ over a 2n-disc). In contrast, Engel looseness must
be checked globally on the manifold M using the line field Y .

In [dPV18] a local Engel overtwisted disc is defined. It allows flexibility to be proven
in a manner that is analogous to the contact case. The main result there reads as follows.
Let EOTpM,∆q be the space of Engel structures on M having ∆ as a (local) overtwisted disc.
Let E fpM,∆q be the corresponding formal space. Then the inclusion EOTpM,∆q Ñ E fpM,∆q
is a weak homotopy equivalence. Statements where the overtwisted disc is allowed to move
parametrically also hold and overtwisted homotopy subgroups can be defined as well.

This leads to a surprising situation. On the one hand, Engel flexibility holds once a particular
local model is found in the manifold; this is a consequence of the fact that the overtwisted disc
appears to be the necessary ingredient to solve the Engel extension problem for any germ on BD4.
On the other hand, families that seemingly do not possess this local model might still behave
flexibly if they ‘turn sufficiently with respect to some line field’, that is, they are loose.

We then observe that looseness cannot yield an h-principle relative in the domain, as
overtwistedness does. The reason behind this is that the reduction process (achieving enough
convexity in the codimension-1 skeleton, Proposition 24) cannot be completed when the Engel
structure is already fixed in some part of the domain (possibly having very little convexity).
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In particular, the problem of extension of a germ in BD4 to the interior cannot be solved in full
generality using looseness.

Using the relative nature of the h-principle, one can show that an overtwisted Engel structure
contains all possible local models up to Engel homotopy. From this one can deduce that any two
definitions of local overtwistedness are equivalent. However, since looseness is a global property,
it cannot be compared to overtwistedness. In particular, looseness has no known analogue in
contact topology.

A.2.2 Loose classes. Recall the forgetful inclusion E pMq ÝÑ E fpMq and fix a loose
basepoint D P E pMq. We may look at the groups πkpE pMqq and πkpE

fpMqq based at D.
A class α P πkpE pMqq is loose if it can be represented by a loose family. Note that conjugating
by a loose loop takes loose classes to loose classes.

In the h-principle for loose Engel structures, the homotopy type of the certificate is encoded
in the formal type (since the certificate is always transverse to the kernel of the Engel structure).
From this, we deduce the h-principle in its algebraic form for all homotopy groups (and not just
in some stable range). This is yet another significant difference between loose Engel structures
and overtwisted contact structures; see Proposition A.2.

Corollary A.3. Given a closed 4-manifold M , let LkpMq Ă πkpE pMqq be the subgroup of
loose classes. Then LkpMq ÝÑ πkpE

fpMqq is a group isomorphism.

Similarly, in [dPV18] it is shown that overtwisted Engel families yield subgroups OTkpMq Ă
πkpE pMqq in the range 0 ď k ď 3 (where the basepoint is instead taken to be overtwisted). We
may then speak of tight classes: those that may not be represented by either loose or overtwisted
families. We do not know whether tight classes actually exist or whether loose and overtwisted
classes might actually coincide in some cases (after conjugating).
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