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Abstract. We consider an optical hypersurface 6 in the cotangent bundle τ : T ∗M → M
of a closed manifold M endowed with a twisted symplectic structure. We show that if
the characteristic foliation of 6 is Anosov, then a smooth 1-form θ on M is exact if and
only if τ ∗θ has zero integral over every closed characteristic of 6. This result is derived
from a related theorem about magnetic flows which generalizes our previous work [N. S.
Dairbekov and G. P. Paternain. Longitudinal KAM cocycles and action spectra of magnetic
flows. Math. Res. Lett. 12 (2005), 719–729]. Other rigidity issues are also discussed.

1. Introduction
Let M be a closed connected n-manifold and let τ : T ∗M → M be its cotangent bundle.
Given an arbitrary smooth closed 2-form � on M , we consider T ∗M endowed with the
twisted symplectic structure

ω := −dλ+ τ ∗�,

where λ is the Liouville 1-form. (Hence, we use the convention that the Hamiltonian vector
field X H of a Hamiltonian H is determined by iX Hω = d H .)

A smooth, closed, connected, fibrewise strictly convex hypersurface6 ⊂ T ∗M is called
optical. (For the origins of the term optical, see [2, §9].) Fibrewise strict convexity means
that 6 intersects each fibre T ∗

x M along a hypersurface whose second fundamental form
is positive definite. Denote by σ the characteristic foliation of 6, i.e. the one-dimensional
foliation tangent to the kernel of ω|T6 . Note that σ is orientable.

We shall say that an optical hypersurface 6 ⊂ T ∗M is Anosov (or hyperbolic) if the
characteristic foliation admits a (non-vanishing) tangent vector field whose flow is Anosov.
Since the flows of two such vector fields are reparametrizations of one another, the property
of being Anosov is independent of the chosen vector field (cf. [1]) and is a property of 6.
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708 N. S. Dairbekov and G. P. Paternain

In the present paper we shall study various rigidity properties of Anosov optical
hypersurfaces on cotangent bundles equipped with twisted symplectic structures. These
properties are motivated by recent results that we obtained for two-dimensional magnetic
flows [7].

Here is one of our main results.

THEOREM A. Let 6 ⊂ T ∗M be an Anosov optical hypersurface, where T ∗M is endowed
with a twisted symplectic structure −dλ+ τ ∗�. Let θ be a smooth 1-form on M. Then θ
is exact if and only if ∫

0

τ ∗θ = 0

for every closed characteristic 0 of σ .

If the closed 2-form� determines an integral class, we can introduce the notion of action
spectrum as follows. Suppose that [�] ∈ H2(M, Z). Then there exists a principal circle
bundle 5 : P → M with Euler class [�]. The bundle admits a connection 1-form α such
that dα = −2π5∗�. Let log holα : Z1(M)→ R/Z be the logarithm of the holonomy of
the connection α. Here, Z1(M) is the space of 1-cycles and for every 2-chain f :1→ M
we have

log holα(∂1)= −

∫
1

f ∗�, mod 1.

We define the action of an oriented closed characteristic 0 as

A(0) :=

∫
0

λ+ log holα(τ (0)), mod 1.

We call the set S ⊂ R/Z of values A(0) as 0 ranges over all (oriented) closed
characteristics, the action spectrum of 6.

If � does not determine an integral class, but there exists c 6= 0 such that [c�] ∈

H2(M, Z), we can still define the action spectrum by considering Rc(6) and −dλ+

cτ ∗�, where Rc(x, p) := (x, cp). The characteristic foliations of (6,−dλ+ τ ∗�) and
(Rc(6),−dλ+ cτ ∗�) are conjugate by Rc.

Suppose now that we vary the connection 1-form α. Let αr be a smooth one-parameter
family of connections for r ∈ (−ε, ε) with α0 = α. Then we can write αr − α =5∗βr ,
where βr are smooth 1-forms on M . The connection αr has curvature form −2π�+ dβr . If
we let �r =�− [1/(2π)] dβr we get a characteristic foliation σ r and an action spectrum
Sr . If the characteristic foliation σ is Anosov, then for ε small enough σ r is Anosov for all
r ∈ (−ε, ε).

COROLLARY 1. Let M be a closed connected manifold and let 6 ⊂ T ∗M be an optical
hypersurface. Let � be a closed integral 2-form and suppose that (6,−dλ+ τ ∗�) is
Anosov. If Sr = S for all r sufficiently small, then the deformation is trivial, that is,
αr = α +5∗ d Fr and �r =�, where Fr are smooth functions on M.

The proof of Corollary 1 is very similar to that of Theorem C in [7] and hence we omit it.
Theorem A will be a consequence of the following result. Let M be a closed connected

manifold endowed with a Finsler metric F . The Legendre transform `F : T M \ {0} →

T ∗M \ {0} associated with the Lagrangian 1
2 F2 is a diffeomorphism and ω0 := `∗F (−dλ)
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defines a symplectic form on T M \ {0}. Now let � be a smooth closed 2-form on M
and π : T M → M be the canonical projection. The magnetic flow of the pair (F, �) is
the Hamiltonian flow φ of 1

2 F2 with respect to the symplectic form ω0 + π∗�. We shall
consider φ restricted to the unit sphere bundle SM := F−1(1). A curve γ : R → M given
by γ (t)= π(φt (x, v)) will be called a magnetic geodesic.

THEOREM B. Let (M, F) be a closed connected Finsler manifold and � an arbitrary
smooth closed 2-form. Suppose the magnetic flow φ of the pair (F, �) is Anosov and let
GM be the vector field generating φ.

If h : M → R is any smooth function and θ is any smooth 1-form on M such that there
is a smooth function u : SM → R for which h(x)+ θx (v)= GM (u), then h is identically
zero and θ is exact.

Note that by the smooth Livšic theorem [12] saying that h(x)+ θx (v)= GM (u) is
equivalent to saying that h(x)+ θx (v) has zero integral over every closed magnetic
geodesic.

Various versions of Theorem B were previously known.
(1) Guillemin and Kazhdan in [8] proved Theorem B for M a surface, �= 0 and

F a negatively curved Riemannian metric. In [9] they extended this to higher
dimensional manifolds under a pointwise curvature pinching assumption, and Min-
Oo [14] proved it when the curvature operator is negative definite. All these results
were based on Fourier analysis.

(2) A major breakthrough was obtained by Croke and Sharafutdinov [5] in which results
like Theorem B were proved just assuming negative sectional curvature and in any
dimension. The novel ingredient here was the Pestov identity.

(3) In [6], Dairbekov and Sharafutdinov proved Theorem B, just assuming that the
geodesic flow of the Riemannian metric is Anosov.

(4) In [7], the authors proved Theorem B when M is a surface and F is a Riemannian
metric, but � is arbitrary.

We now describe some applications of these results.

1.1. Infinitesimal spectral rigidity. Corollary 1 and the results of Guillemin and Uribe
in [10] give a version of infinitesimal spectral rigidity for magnetic flows. This version was
obtained in [7] for the case of surfaces. Suppose � is a closed integral 2-form and g a
Riemannian metric. For every positive integer m, let Lm be the Hermitian line bundle with
connection over M associated with 5 via the character eiθ

7→ eimθ of S1. The metric on
M , together with the connection on Lm , determine a Bochner–Laplace operator acting on
sections of Lm . For each m, let {νm, j : j = 1, 2, . . .} be the spectrum of this operator. If
we now vary the connection 1-form α as above we obtain eigenvalues νr

m, j .

COROLLARY 2. Let M be a closed connected manifold endowed with a Riemannian
metric g and let � be an integral 2-form. Suppose the magnetic flow of the pair (g, �)
is Anosov. If νr

m, j is independent of r for all m and j (i.e. the deformation is isospectral),
then the deformation is trivial, that is, αr = α +5∗ d Fr and�r =�, where Fr are smooth
functions on M.
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Indeed, let us consider the periodic distribution

ϒ(s)=

∑
m, j

ϕ

(√
νm, j + m2 − m

√
2
)

eims,

where ϕ is a Schwartz function on the real line. Theorem 6.9 in [10] asserts that the
singularities of ϒ are included in the set of all s ∈ R for which s/2π (mod 1) ∈ S.
Moreover, each point of the action spectrum arises as a singularity of ϒ for an appropriate
choice of ϕ. Corollary 2 is now an immediate consequence of Corollary 1.

There is an equivalent way of formulating Corollary 2 in purely Riemannian terms
using the Kaluza–Klein metric. Consider on P the metric gKK defined uniquely by the
following conditions: the restriction of d5 to the horizontal subspace of the connection
α is an isometry, vertical and horizontal subspaces are orthogonal, and the vector field
∂/∂θ tangent to the fibres has norm one. If we vary the connection α as above we
obtain a one-parameter family of Kaluza–Klein metrics gr

KK, r ∈ (−ε, ε). Consider the
usual Laplacian 1r

KK of these metrics. Corollary 2 could be rephrased by saying that,
if the spectrum of 1r

KK remains unchanged, then the deformation is trivial. In fact, the
eigenvalues λm, j of 1KK restricted to the (−m)-eigenspace of −i ∂/∂θ are related to νm, j

by λm, j = νm, j + m2; cf. [10, §6].

1.2. Regularity of the Anosov splitting. Theorem B can be used for the study of the
regularity of the Anosov splitting of magnetic flows. In fact, in dimension two this problem
is completely solved in the Riemannian setting in [7] and is one of the main motivations of
this paper. Here we show the following theorem.

THEOREM C. Let M be a closed connected manifold endowed with a Finsler metric F and
let � be an exact 2-form. Suppose that the magnetic flow φ of the pair (F, �) is Anosov.
If the Anosov splitting of φ is of class C1, then � must vanish, i.e. the magnetic flow is a
Finsler geodesic flow.

Theorem C was proved in [16], when F is a Riemannian metric, using Aubry–Mather
theory. The proof in [16] cannot be extended to include arbitrary (non-reversible) Finsler
metrics, since it uses the invariance of the Riemannian metric under the flip (x, v) 7→

(x,−v).

1.3. Sketch of the proof of Theorem B. Perhaps the most important element in the proof
is the Pestov identity in our setting. This comes in two flavours. We first obtain a scalar
identity (cf. Lemma 3.1 in dimension two and Lemma 4.6 in arbitrary dimension). When
this identity is manipulated and integrated with respect to the Liouville measure µ of SM
it gives rise to our key integral identity:∫

SM
{|X(∇ ·u)|2 − 〈Ry(∇

·u), ∇ ·u〉 − L(Y (y), ∇ ·u, ∇ ·u)− 〈∇
·(Xu), Y (∇ ·u)〉

− 2〈Y (y), ∇ ·u〉
2
+ 〈∇

:u, Y (∇ ·u)〉 + 〈∇|(∇ ·u)Y (y), ∇
·u〉} dµ

=

∫
SM

{|∇
·(Xu)|2 − n(Xu)2} dµ. (1)
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Of course, this formula needs explaining and we shall fully do so in §§3 and 4 (including
the definitions of ∇

· and ∇
:), but for the purpose of this sketch it suffices to note the

following points:
(1) u is a smooth positively homogeneous function of degree zero on T M \ {0};
(2) X is a suitable vector field on T M \ {0} whose restriction to SM coincides with GM ;
(3) the various derivatives that appear in the formula are all obtained using the Chern

connection of the Finsler metric and are explained in detail in §4;
(4) ∇

·u vanishes if and only if u is the pull back of a function on M ;
(5) inner products and norms are all taken with respect to the fundamental tensor in

Finsler geometry,
gi j (x, y)=

1
2 [F2

]yi y j (x, y);

(6) R and L are respectively the Riemann curvature operator and the Landsberg tensor
from Finsler geometry, and Y is the Lorentz force associated with the magnetic field;

(7) n is the dimension of M .
We may regard the identity as a kind of ‘dynamical Weitzenböck formula’. Suppose now

that GM (u)= h ◦ π + θ and extend u to a positively homogeneous function of degree zero
on T M \ {0} (still denoted by u). Then X(u)= Fh ◦ π + θ and it is not hard to see (cf.
Lemma 4.4) that the right-hand side of (1) is non-positive and thus∫

SM
{|X(∇ ·u)|2 − 〈Ry(∇

·u), ∇ ·u〉 − L(Y (y), ∇ ·u, ∇ ·u)− 〈∇
·(Xu), Y (∇ ·u)〉

−2〈Y (y), ∇ ·u〉
2
+ 〈∇

:u, Y (∇ ·u)〉 + 〈∇|(∇ ·u)Y (y), ∇
·u〉} dµ≤ 0.

It is at this point that we need a new ingredient. We will note that the left-hand side of the
last inequality is closely related to an analogue of the classical index form in Riemannian
geometry. Bilinear forms of this type already appeared in [18] and were very useful for the
study of derivatives of topological entropy. This time the form that we need is a sharper
version of the one that appears in [18]. The key point is that the Anosov property, via the
absence of conjugate points established in [15, 17] (see [4] for a proof using the asymptotic
Maslov index), will imply that when we integrate the expression inside the brackets in the
last inequality along every closed magnetic geodesic the outcome should be non-negative
and zero if and only if ∇

·u vanishes along every closed magnetic geodesic. When we
combine this fact with the recent non-negative Livšic theorem [13, 21] we deduce that ∇

·u
must vanish over every closed magnetic geodesic and thus it must be identically zero on
T M \ {0}. This means that u = f ◦ π where f is a smooth function on M . But in this case,
since dπ(x,v)(GM )= v, we have GM (u)= d fx (v) and Theorem B follows.

A considerable part of the paper will be devoted to the proof of the integral formula
(1). This necessitates the language and formalism of Finsler geometry, which makes the
derivation of the formula a bit cumbersome. To help the reader, we have included a brief
section in which we prove the integral formula in dimension two. This easier case still
shows some of the main features and it can be read independently of the other sections.

2. Theorem B implies Theorem A
Let us explain why Theorem B implies Theorem A.
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Suppose that 6 ⊂ T ∗M is an optical hypersurface which encloses an open region U
in T ∗M . Let 6x :=6 ∩ T ∗

x M which is a strictly convex hypersurface in the vector space
T ∗

x M which encloses Ux := U ∩ T ∗
x M . Consider an auxiliary smooth Riemannian metric g

on τ : T ∗M → M , that is, for each x ∈ M , gx is an inner product in T ∗
x M . For each x ∈ M ,

the inner product gx gives rise to a volume form $x in T ∗
x M . Consider the barycentre of

Ux , i.e.

βx :=

∫
Ux

p$x∫
Ux
$x

.

The map x 7→ βx can be seen as a smooth 1-form and by strict convexity βx ∈ Ux for all
x ∈ M .

Consider the map B : T ∗M → T ∗M given by B(x, p)= (x, p − βx ). It is easy to check
that B∗(λ)= λ− τ ∗β and that B∗(τ ∗�)= τ ∗�. Hence if we let �̃ :=�+ dβ, then B is
a symplectomorphism between (T ∗M,−dλ+ τ ∗�) and (T ∗M,−dλ+ τ ∗�̃). Now set
6̃ := B(6) and observe that 6̃ is optical and contains the zero section of T ∗M . Also note
that ∫

0

τ ∗θ = 0

for all 0 of σ if and only if ∫
0̃

τ ∗θ = 0

for all 0̃ of σ̃ . Thus, without loss of generality, we may assume that 6 contains the zero
section of T ∗M . But in that case we can define a Finsler metric F on M using homogeneity
and declaring that 6 corresponds to the unit cosphere bundle of F . The hypothesis in
Theorem A tells us that ∫

γ

θ = 0

for every closed magnetic geodesic γ of (F, �). The smooth Livšic theorem [12] and
Theorem B imply that θ must be exact.

3. Proof of Theorem B for surfaces
3.1. Canonical coframing. Let M be a closed oriented connected surface. A smooth
Finsler structure on M is a smooth hypersurface SM ⊂ T M for which the canonical
projection π : SM → M is a surjective submersion having the property that, for each
x ∈ M , the π -fibre π−1(x)= SM ∩ Tx M is a smooth, closed, strictly convex curve
enclosing the origin 0x ∈ Tx M .

Given such a structure it is possible to define a canonical coframing (ω1, ω2, ω3) on
SM that satisfies the following structural equations (see [3, Ch. 4]):

dω1 = −ω2 ∧ ω3, (2)

dω2 = −ω3 ∧ (ω1 − Iω2), (3)

dω3 = −(Kω1 − Jω3) ∧ ω2, (4)

where I , K and J are smooth functions on SM . The function I is called the main scalar
of the structure. When the Finsler structure is Riemannain, K is the Gaussian curvature.
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The form ω1 is the canonical contact form of SM whose Reeb vector field is the
geodesic vector field X . The volume form ω1 ∧ dω1 gives rise to the Liouville measure
dµ of SM .

Consider the vector fields (X, H, V ) dual to (ω1, ω2, ω3). As a consequence of (2)–(4)
they satisfy the commutation relations

[V, X ] = H, [H, V ] = X + I H + J V, [X, H ] = K V . (5)

Below we will use the following general fact. Let N be a closed oriented manifold and
2 a volume form. Let X be a vector field on N and f : N → R a smooth function. Then∫

N
X ( f )2= −

∫
N

f L X2, (6)

where L X2 is the Lie derivative of 2 along X .
Now let 2 := ω1 ∧ ω2 ∧ ω3. Using the commutation relations we obtain:

L X2 = 0; (7)

L H2 = −J2; (8)

LV2 = I2. (9)

3.2. Identities. Let � be a 2-form on M . An important observation is this: π∗�=

λ ω1 ∧ ω2, where λ : SM → R is a function such that

V (λ)= −λI.

This relation is obtained using the structure equations in d(λ ω1 ∧ ω2)= 0. The magnetic
vector field is

GM = X + λV .

The brackets are now:

[V,GM ] = H − λI V,

[H, V ] = GM + I H + (J − λ)V, (10)

[GM , H ] = KV − λGM − λI H,

where K := K − H(λ)+ λ2
− λJ .

Using these brackets we obtain the following result, as in [7, Lemma 3.1].

LEMMA 3.1. (The Pestov identity) For every smooth function u : SM → R we have

2Hu · V GM u = (GM u)2 + (Hu)2 − K(V u)2 + GM (Hu · V u)

−H(GM u · V u)+ V (GM u · Hu)+ GM u · (I Hu + J V u).

We omit the proof which is (once you know the formula!) a straightforward verification
using the bracket relations.

Integrating Pestov’s identity over SM against the Liouville measure dµ and using (6)
and (7)–(9) we obtain:

2
∫

SM
Hu · V GM u dµ=

∫
SM
(GM u)2 dµ+

∫
SM
(Hu)2 dµ−

∫
SM

K(V u)2 dµ. (11)
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By the commutation relations, we have

GM V u = V GM u − Hu + λI V u.

Therefore,

(GM V u)2 = (V GM u)2 + (Hu)2 + λ2 I 2(V u)2

− 2V GM u · Hu + 2V GM u · λI V u − 2λI V u · Hu.

and thus

(GM V u)2 = (V GM u)2 + (Hu)2 + λ2 I 2(V u)2

− 2V GM u · Hu + 2GM V u · λI V u − 2λ2 I 2(V u)2.

Integrating this equation and

2λI V u · GM (V u)= GM ((V u)2λI )− (V u)2 · GM (λI )

and combining the outcomes with (11) we arrive at the final integral identity (Theorem 3.2).

THEOREM 3.2. One has∫
SM
(GM V u)2 dµ−

∫
SM

Q(V u)2 dµ=

∫
SM
(V GM u)2 dµ−

∫
SM
(GM u)2 dµ, (12)

where Q := K − λ2 I 2
− GM (λI ).

When the Finsler metric is Riemannian (i.e. I = J = 0), the identity (12) is exactly
identity (8) in [7].

If GM u = h(x)+ θx (v), then one can see that the right-hand side of (12) is non-positive.
Indeed, since V GM (u)= V θ we have∫

SM
(V GM u)2 dµ−

∫
SM
(GM u)2 dµ

=

∫
SM
(V θ)2 dµ−

∫
SM

θ2 dµ− 2
∫

SM
hθ dµ−

∫
SM

h2 dµ.

With a bit of work one can see that the linearity of θ in v implies that∫
SM
(V θ)2 dµ=

∫
SM

θ2 dµ,∫
SM

hθ dµ= 0.

This will follow from Lemma 4.4, which holds in any dimension.

3.3. Jacobi equation. For ζ ∈ T (SM) write

dφt (ζ )= x(t)GM + y(t)H + z(t)V,

where x(t), y(t) and z(t) are smooth functions. Equivalently, write

ζ = x(t) dφ−t (GM )+ y(t) dφ−t (H)+ z(t) dφ−t (V ).
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If we differentiate the last equality with respect to t we obtain

0 = ẋGM + ẏ H + y[GM , H ] + żV + z[GM , V ].

Using the bracket relations and regrouping we have

0 = (ẋ − λy)GM + (ẏ − z − λI y)H + (ż + yK + zλI )V,

and hence

ẋ = λy,

ẏ = z + λI y,

ż = −λI z − Ky.

From these equations we get
ÿ + Qy = 0. (13)

3.4. Index form. We have the following lemma.

LEMMA 3.3. If φ is Anosov, then for every closed magnetic geodesic γ : [0, T ] → M and
every smooth function z : [0, T ] → R such that z(0)= z(T ) and ż(0)= ż(T ) we have

I :=

∫ T

0
{ż2

− Qz2
} dt ≥ 0,

with equality if and only if z ≡ 0.

Using (13) the proof of this lemma is quite similar to the proof of [7, Lemma 3.3].
The proof of the lemma in any dimension is given in Lemma 4.10. A key ingredient is
the transversality of the weak stable (or unstable) bundle of φ with respect to the vertical
distribution, which implies the absence of conjugate points.

3.5. End of the proof of Theorem B for surfaces. Set ψ := V (u). The last lemma,
applied to the function z = ψ(γ ), yields∫

γ

{(GMψ)
2
− Qψ2

} dt ≥ 0 (14)

for every closed magnetic geodesic γ . Since the flow is Anosov, the invariant measures
supported on closed orbits are dense in the space of all invariant measures on SM .
Therefore, the above yields ∫

SM
{(GMψ)

2
− Qψ2

} dµ≥ 0.

Combining this with the fact that the right-hand side of (12) is non-positive, we find that∫
SM

{(GMψ)
2
− Qψ2

} dµ= 0. (15)
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By the non-negative version of the Livšic theorem, proved independently by Pollicott
and Sharp [21] and by Lopes and Thieullen [13], we conclude from (14) and (15) that∫

γ

{(GMψ)
2
− Qψ2

} dt = 0

for every closed magnetic geodesic γ . Applying Lemma 3.3 again, we see that ψ vanishes
on all closed magnetic geodesics. Since the latter are dense in SM , the function ψ vanishes
on all of SM , as required.

4. Proof of Theorem B
4.1. Differential identities of Finsler geometry. Henceforth M is a closed n-dimensional
manifold and F is a Finsler metric on M .

Let π : T M \ {0} → M be the natural projection, and let βr
s M := π∗τ r

s M denote the
bundle of semibasic tensors of degree (r, s), where τ r

s M is the bundle of tensors of degree
(r, s) over M . Sections of the bundles βr

s M are called semibasic tensor fields and the
space of all smooth sections is denoted by C∞(βr

s M). For such a field T , the coordinate
representation

T = (T i1...ir
j1... js

)(x, y)

holds in the domain of a standard local coordinate system (x i , yi ) on T M \ {0} associated
with a local coordinate system (x i ) in M . Under a change of a local coordinate system, the
components of a semibasic tensor field are transformed by the same formula as those of an
ordinary tensor field on M .

Every ‘ordinary’ tensor field on M defines a semibasic tensor field by the rule T 7→

T ◦ π , so that the space of tensor fields on M can be treated as embedded in the space of
semibasic tensor fields.

Let (gi j ) be the fundamental tensor,

gi j (x, y)=
1
2 [F2

]yi y j (x, y),

and let (gi j ) be the contravariant fundamental tensor,

gik gk j
= δ

j
i . (16)

In the usual way, the fundamental tensor defines the inner product 〈·, ·〉 on β1
0 M , and we

put |U |
2
= 〈U,U 〉.

Let

G = yi ∂

∂x i − 2Gi ∂

∂yi

be the spray induced by F . Here Gi are the geodesic coefficients [25, (5.7)],

Gi (x, y)=
1
4

gil
{

2
∂g jl

∂xk −
∂g jk

∂x l

}
y j yk .

Let
T (T M \ {0})=HT M ⊕ VT M

be the decomposition of T (T M \ {0}) into horizontal and vertical vectors. Here
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HT M = span
{
δ

δx i

}
, VT M = span

{
∂

∂yi

}
,

with
δ

δx i =
∂

∂x i − N j
i
∂

∂y j

and

N i
j =

∂Gi

∂y j .

Let

∇ : C∞(T (T M))× C∞(π∗T M)→ C∞(π∗T M)

be the Chern connection,

∇X̂ U = {dU i (X̂)+ U jωi
j (X̂)}

∂

∂x i ,

where

ωi
j = 0i

jk dxk

are the connection forms. Recall that

N i
j = 0i

jk yk . (17)

Given a function u ∈ C∞(T M \ {0}), we put

u|k :=
δu

δxk , u·k :=
∂u

∂yk ,

and, given a semibasic vector field U = (U i ) ∈ C∞(β1
0 M), we put

U i
|k :=

(
∇δ/δxk U

)i

, U i
·k :=

(
∇∂/∂ yk U

)i

.

We have

u|k =
∂u

∂xk − 0
p
kq yq ∂u

∂y p , u·k =
∂u

∂yk ,

and

U i
|k =

∂U i

∂xk − 0
p
kq yq ∂U i

∂y p + 0i
kpU p, U i

·k =
∂U i

∂yk .

In the usual way, we extend these formulas to higher order tensors:

T i1...ir
j1... js |k

=
∂

∂xk T i1...ir
j1... js

− 0
p
kq yq ∂

∂y p T i1...ir
j1... js

+

r∑
m=1

0
im
kpT i1...im−1 pim+1...ir

j1... js
−

s∑
m=1

0
p
k jm

T i1...ir
j1... jm−1 pjm+1... js

and
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T i1...ir
j1... js ·k

=
∂

∂yk T i1...ir
j1... js

.

We define the operators

∇| : C∞(βr
s M)→ C∞(βr

s+1 M), ∇· : C∞(βr
s M)→ C∞(βr

s+1 M)

by
(∇|T )

i1...ir
j1... js k = ∇|k T i1...ir

j1... js
:= T i1...ir

j1... js |k

and
(∇·T )

i1...ir
j1... js k = ∇·k T i1...ir

j1... js
= T i1...ir

j1... js ·k
.

For convenience, we also define ∇
| and ∇

· by

∇
|i

= gi j
∇| j , ∇

·i
= gi j

∇· j .

In the case of Riemannian manifolds, the above operators were denoted in [20, 22] by
h
∇ and

v

∇ respectively.
Given a function u ∈ C∞(T M \ {0}), note that ∇

·u = 0 if and only if u does not depend
on y.

Equivalently, the above can be described as follows. In a natural way, the connection
∇ on β1

0 M = π∗T M defines a connection on the dual bundle β0
1 = π∗T ∗M , as well as

connections on the tensor product bundles βr
s M for all r and s. Then for T ∈ C∞(βr

s M)
we have

∇|k T = ∇δ/δxk T, ∇·k T = ∇∂/∂ yk T .

This shows also that ∇| and ∇· are compatible with tensor products and contractions.
Note that

gi j ·k = 2Ci jk, gi j
·k = −2gil g jmClmk,

where
Ci jk =

1
4 [F2

]yi y j yk

is the Cartan tensor of F .
Also, note that the fundamental tensor is parallel with respect to ∇|:

gi j |k = 0, gi j
|k = 0. (18)

Indeed, [25, (5.29)], we see that

gi j |k =
∂gi j

∂xk − 0
p
kq yq ∂gi j

∂y p − 0
p
ki gpj − 0

p
k j gi p = 2Ci pj N p

k − 20 p
kq yqCi j p = 0,

while the second identity is obtained by differentiating (16).
By [25, Lemma 5.2.1]

F|k = 0.

On the other hand, for (x, y) ∈ SM ,

F·k = yk = gk j y j . (19)
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Indeed, using homogeneity we have

F Fyk =
1
2 [F2

]yk =
1
2 [F2

]yk y j y j
= gk j y j .

However, F = 1 on SM , which gives (19).
A straightforward computation shows also that

yi
|k = 0, yi

·k = δi
j .

Let P denote the Chern curvature tensor and R denote the Riemann curvature tensor
(see [25, (8.12) and (8.13)]),

P i
jkl = −

∂0i
jk

∂yl ,

Ri
jkl =

∂0i
jl

∂xk −
∂0i

jk

∂x l +
∂0i

jk

∂ym N m
l −

∂0i
jl

∂ym N m
k + 0m

jl0
i
mk − 0m

jk0
i
ml ,

and put (see [25, p. 127])

P i
kl = y j P i

jkl ,

Ri
kl = y j Ri

jkl .

Note that

Ri
k = Ri

kl yl

corresponds to the Riemann curvature operator

Ry(V )= (Ri
k V k),

while

yk P i
kl = 0. (20)

LEMMA 4.1. If u ∈ C∞(T M \ {0}), then one has

u·l·k − u·k·l = 0, (21)

u|l·k − u·k|l = P i
lku·i , (22)

u|l|k − u|k|l = Ri
lku·i . (23)

Proof. Equation (21) is trivial. Next,

u|l·k =
∂

∂yk

(
∂u

∂x l − 0i
l j y j ∂u

∂yi

)
=

∂2u

∂yk∂x l −
∂0i

l j

∂yk y j ∂u

∂yi − 0i
lk
∂u

∂yi − 0i
l j y j ∂2u

∂yk∂yi ,

whereas

u·k|l =

(
∂

∂x l − 0i
l j y j ∂

∂yi

)
u·k − 0i

lku·i =
∂2u

∂x l∂yk − 0i
l j y j ∂2u

∂yi∂yk − 0i
lk
∂u

∂yi .
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Taking the difference, we come to (22). Further,

u|l|k =

(
∂

∂xk − 0m
ks ys ∂

∂ym

)
u|l − 0m

klu|m

=

(
∂

∂xk − 0m
ks ys ∂

∂ym

)(
∂u

∂x l − 0i
l j y j ∂u

∂yi

)
− 0m

kl

(
∂u

∂xm − 0i
m j y j ∂u

∂yi

)
=

∂2u

∂xk∂x l − 0m
ks ys ∂2u

∂ym∂x l −
∂0i

l j

∂xk y j ∂u

∂yi − 0i
l j y j ∂2u

∂xk∂yi

+ 0m
ks ys

∂0i
l j

∂ym y j ∂u

∂yi + 0m
ks ys0i

lm
∂u

∂yi + 0m
ks ys0i

l j y j ∂2u

∂ym∂yi − 0m
kl
∂u

∂xm

+ 0m
kl0

i
m j y j ∂u

∂yi .

Using (17), rearranging, and appropriately renaming indices, we obtain

u|l|k =
∂2u

∂xk∂x l − N m
k

∂2u

∂ym∂x l − N i
l
∂2u

∂xk∂yi + N m
k N i

l
∂2u

∂ym∂yi − 0m
kl
∂u

∂xm

−

(
∂0i

l j

∂xk −
∂0i

l j

∂ym N m
k − 0m

kj0
i
lm − 0m

kl0
i
m j

)
y j ∂u

∂yi .

Alternating with respect to k and l, we come to (23). 2

4.2. Integral identities of Finsler geometry. We will derive the Gauss–Ostrogradskiı̆
formulas for vertical and horizontal divergences like those for Riemannian manifolds in
[22, §3.6]. We proceed along the lines of [22].

Given a vector field U = (U i ) ∈ C∞(β1
0 M), the vertical divergence and the horizontal

divergence are defined by
v

div U = U i
·i ,

h
div U = U i

|i .

Let

I(U )= gi j Ci jkU k

be the mean Cartan torsion [25, p. 108], and let

J(U )= gi j Lki jU
k

be the mean Landsberg curvature [25, p. 116]. Here L is the Landsberg tensor, related to
the Chern curvature tensor as follows [25, (8.27)]:

L i jk = −gim Pm
jk . (24)

Let

dV 2n
= det(gi j ) dx1. . . dxn dy1. . . dyn

be the Liouville volume form on T M \ {0}.
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Consider the following set of local forms on T M \ {0}:
v
ωk = (−1)n+k−1g dx ∧ dy1

∧ · · · ∧ d̂yk ∧ · · · ∧ dyn,

h
ωk = g

[
(−1)k−1 dx1

∧ · · · ∧ d̂xk ∧ · · · ∧ dxn
∧ dy

+

n∑
j=1

(−1)n+ j0
j
kl yl dx ∧ dy1

∧ · · · ∧ d̂y j ∧ · · · ∧ dyn
]
,

where g = det(gi j ), dx = dx1
∧ · · · ∧ dxn , dy = dy1

∧ · · · ∧ dyn , and the symbol̂over
a factor means that this factor is omitted.

LEMMA 4.2. Given a semibasic vector field U = (U k), the set of local forms U k vωk defines

a global differential form on T M \ {0}. Similarly, the set of local forms U k h
ωk defines a

global differential form on T M \ {0}. Moreover, one has

d(U k vωk) = (
v

div U + 2I(U )) dV 2n, (25)

d(U k h
ωk) = (

h
div U − J(U )) dV 2n . (26)

Proof. First,

d
v
ωk =

∂g

∂yk dx ∧ dy = gi j ∂gi j

∂yk g dx ∧ dy = 2gi j Ci jk dV 2n .

and therefore

d(U k vωk)=
∂U k

∂yk g dx ∧ dy + 2U k gi j Ci jk dV 2n,

which coincides with (25). Next,

d
h
ωk =

∂g

∂xk dx ∧ dy −

(
∂g

∂y j 0
j
kl yl

+ g
∂0

j
kl

∂y j yl
+ g0 j

k j

)
dx ∧ dy

=

(
gi j ∂gi j

∂xk − gkm ∂gkm

∂y j 0
j
kl yl

−
∂0

j
kl

∂y j yl
− 0

j
k j

)
g dx ∧ dy

=

(
gi j ∂gi j

∂xk − 2gkmCkmj N j
k − 0

j
k j + P j

k j

)
dV 2n

= (0
j
k j + P j

k j ) dV 2n .

Here we have used the equality [25, (5.29)]

∂g jl

∂xm = gkl0
k
jm + gk j0

k
lm + 2C jkl N k

m .

Consequently,

d(U k h
ωk)=

∂U k

∂xk g dx ∧ dy −
∂U k

∂y j g0 j
kl yl dx ∧ dy + U k(0

j
k j + P j

k j ) dV 2n

=

{(
∂U k

∂xk − 0
j
kl yl ∂U k

∂y j + 0
j
k jU

k
)

+ P j
k jU

k
}

dV 2n,

which coincides with (26) in view of (24) and the symmetry of the Landsberg tensor. 2

Let SM = {(x, y) ∈ T M | F(y)= 1} be the unit sphere bundle. The restriction of the
form yk vωk to SM gives rise to the Liouville measure dµ of SM .
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THEOREM 4.3. Let U ∈ C∞(β1
0 M) be a semibasic vector field positively homogeneous of

degree λ in y. Then the following Gauss–Ostrogradskiı̆ formulas hold:∫
SM

v

div U dµ=

∫
SM
((λ+ n − 1)〈U, y〉 − 2I(U )) dµ, (27)∫

SM

h
div U dµ=

∫
SM

J(U ) dµ. (28)

These formulas follow easily from (25)–(26) by integration.

LEMMA 4.4. The following hold.
(1) Let ψ ∈ C∞(T M) be a function which depends linearly on y. Then∫

SM
ψ dµ= 0.

(2) Let φ ∈ C∞(T M \ {0}) be such that φ = ϕ0 F + ψ , where ϕ0 is independent of y
while ψ depends linearly on y. Then∫

SM
|∇

·φ|
2 dµ=

∫
SM
(ϕ2

0 + nψ2) dµ.

Proof. To prove part (1) let ψ =9k yk , where 9 is a covector field on M . Put U i
= gi j9 j

and apply (27) to get

(n − 1)
∫

SM
ψ dµ= (n − 1)

∫
SM

〈U, y〉 dµ=

∫
SM
(
v

div U + 2I(U )) dµ.

Now,
v

div U = (gi j9 j )·i = gi j
·i 9 j + gi j9 j ·i = −2gil g jmClmi9 j = −2I(U ),

which implies part (1).
To prove part (2) note that, since ∇·φ = ϕ0∇·F + ∇·ψ , we have

|∇·φ|
2
= ϕ2

0 |∇
·F |

2
+ 2ϕ0〈∇·F, ∇·ψ〉 + |∇

·ψ |
2.

Next,
|∇

·ψ |
2
= gi jψ·iψ· j = (ψgi jψ·i )· j − ψgi j

· jψ·i − ψgi jψ·i · j

=
v

div (ψ∇
·ψ)+ 2I(ψ∇

·ψ),

because ψ·i · j = 0. Thus, on SM we get

|∇
·φ|

2
= ϕ2

0 + 2ϕ0ψ +
v

div (ψ∇
·ψ)+ 2I(ψ∇

·ψ).

Integrating and using (27), we obtain∫
SM

|∇
·φ|

2 dµ=

∫
SM
(ϕ2

0 + 2ϕ0ψ + nψ〈∇
·ψ, y〉) dµ=

∫
SM
(ϕ2

0 + 2ϕ0ψ + nψ2) dµ.

Since by part (1) ∫
SM

ϕ0ψ dµ= 0

the proof of part (2) is complete. 2
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4.3. Identities for the magnetic flow. Identities similar to the ones proved in this section
appear in [23] when the magnetic field �= 0. Let

{dx i , δy j
= dy j

+ N j
k dxk

}

be a local basis for T ∗(T M \ {0}) dual to the local basis {δ/δx i , ∂/∂ y j
} for T (T M \ {0}).

The Legendre transform `F : T M \ {0} → T ∗M \ {0} associated with the Lagrangian 1
2 F2

is a diffeomorphism and ω0 := `∗F (−dλ) defines a symplectic form on T M \ {0}, where λ
is the Liouville 1-form on T ∗M . In local coordinates (x, y), `F is simply the map

(y j ) 7→ (y j ).

The canonical 1-form is λ= yi dx i and `∗Fλ= gi j y j dx i . From this, a calculation shows
that

ω0 = gi j dx i
∧ δy j .

Let H : T M \ {0} → R be defined by

H =
1
2 F2.

The Hamiltonian flow of H with respect to ω0 gives rise to the geodesic flow of the Finsler
manifold (M, F).

Let � be a closed 2-form on M and consider the new symplectic form ω defined as

ω0 + π∗�.

The Hamiltonian flow of H with respect to ω0 + π∗� gives rise to a flow φt : T M \ {0} →

T M \ {0}, called magnetic flow or twisted geodesic flow.
The form �, regarded as an antisymmetric tensor field (�i j ) ∈ C∞(τ 0

2 M), gives rise to
a corresponding semibasic tensor field. We define the Lorentz force Y ∈ C∞(β1

1 M) by

Y i
j (x, y)=� jk(x)g

ik(x, y). (29)

We also define
Y (U )= (Y i

j U
j ).

Note that Y is skew symmetric with respect to g:

〈Y (U ), V 〉 = −〈U, Y (V )〉.

Let GM be the generator of the magnetic flow. Straightforward calculations show that

GM (x, y)= yi δ

δx i + yi Y j
i
∂

∂y j . (30)

It is easily seen that every integral curve of GM is a curve of the form t 7→ γ̇ (t) ∈ T M
which satisfies the equation

Dγ̇ γ̇ = Yγ̇ (t)(γ̇ ),

where the covariant derivative D is the one determined by the Chern connection.
Alternatively we could write:

γ̈ i (t)+ 0i
jk(γ̇ (t))γ̇

j (t)γ̇ k(t)= Y i
j (γ̇ (t))γ̇

j (t).

A curve γ , satisfying this equation, is referred to as a magnetic geodesic.
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If u ∈ C∞(T M \ {0}), then by (30)

GM u(x, y)= yi
(
δu

δx i + Y j
i
∂u

∂y j

)
= yi (u|i + Y j

i u· j ).

Since the Hamiltonian flow φt preserves the level sets of H , the magnetic flow preserves
SM and the vector field GM is tangent to SM .

Suppose that for a smooth function u : SM → R we have

GM u = ϕ.

Extend u to a positively homogeneous function (of degree 0) on T M \ {0}, denoting the
extension by u again.

For (x, y) ∈ T M , define
Xu = yi (u|i + FY j

i u· j ).

Then on T M \ {0} we have
Xu = φ,

where φ is the positively homogeneous extension of ϕ to T M \ {0} of degree one.
Given T = (T i1...ir

j1... js
) ∈ C∞(βr

s M), put

T i1...ir
j1... js :k

= T i1...ir
j1... js |k

+ FY j
k T i1...ir

j1... js · j .

Straightforward calculations show that for (x, y) ∈ SM

gi j :k = 2Y s
k Ci js, (31)

gi j
:k = −2Y s

k gil g jmClms,

yi
:k = Y i

k .

It is also useful to note that differentiating (29) yields

Y i
j ·k = −2Y m

j gilClmk = gis
: j gsk . (32)

LEMMA 4.5. If u ∈ C∞(T M \ {0}), then for (x, y) ∈ SM we have

u:l·k − u·k:l = P̃ i
lku·i , (33)

u:l:k − u:k:l = R̃i
lku·i , (34)

with

P̃ i
lk = P i

lk + Y i
l yk + Y i

l·k,

R̃i
lk = Ri

lk + (Y i
l|k − Y i

k|l)− (P i
lmY m

k − P i
kmY m

l )

+ (Y j
l Y i

k· j − Y j
k Y i

l· j )+ ys(Y
s
k Y i

l − Y s
l Y i

k ).

Proof. We have

u:l·k = (u|l + FY i
l u·i )·k = u|l·k + F·kY i

l u·i + FY i
l·ku·i + FY i

l u·i ·k

whereas
u·k:l = u·k|l + FY i

l u·k·i .
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Thus, for (x, y) ∈ SM

u:l·k − u·k:l = (u|l·k − u·k|l)+ ykY i
l u·i + Y i

l·ku·i .

Using (22), we come to (33).
Further,

u:l:k = u:l|k + FY j
k u:l· j = (u|l + FY j

l u· j )|k + FY j
k (u|l + FY s

l u·s)· j

= u|l|k + FY j
l|ku· j + FY j

l u· j |k + FY j
k u|l· j

+ FY j
k F· j Y

s
l u·s + F2Y j

k Y s
l· j u·s + F2Y j

k Y s
l u·s· j .

Thus, for (x, y) ∈ SM

u:l:k − u:k:l = (u|l|k − u|k|l)+ (Y j
l|k − Y j

k|l)u· j

+ Y j
l (u· j |k − u|k· j )+ Y j

k (u|l· j − u· j |l)+ (Y j
k Y s

l − Y j
l Y s

k )y j u·s

+ (Y j
k Y s

l· j − Y j
l Y s

k· j )u·s + (Y j
k Y s

l − Y j
l Y s

k )u·s· j .

Using (23) and (22) and renaming indices, we come to (34). 2

Given U ∈ C∞(β1
0 M) and u ∈ C∞(T M \ {0}), define

m
div U = U i

:i , ∇
:u = (u:i )= (gi j u: j ).

LEMMA 4.6. (The Pestov identity) The following holds on SM:

2〈∇
:u, ∇ ·(Xu)〉 = |∇

:u|
2
+ X(〈∇ :u, ∇ ·u〉)−

m
div ((Xu)∇ ·u)+

v

div ((Xu)∇ :u)

− 〈R̃y(∇
·u), ∇ ·u〉 + 〈Y (∇ ·u), ∇ :u〉

+ 2I((Xu)∇ :u)+ J((Xu)∇ ·u). (35)

Proof. With the above notation, we can write

Xu = yi u:i .

Therefore,

2〈∇·(Xu), ∇:u〉 −
v

div ((Xu)∇ :u)= 2gi j (Xu)·i u: j − ((Xu)gi j u: j )·i

= gi j (Xu)·i u: j − (Xu)gi j
·i

u: j − (Xu)gi j u: j ·i = I − II − III. (36)

We rewrite the first term on the right-hand side of (36) as follows:

I = gi j (yku:k)·i u: j = gi j (u:i + yku:k·i )u: j

= gi j u:i u: j + gi j yk(u·i :k + (u:k·i − u·i :k))u: j

= |∇
:u|

2
+ yk(gi j u·i u: j ):k − yk gi j

:k u·i u: j − yk gi j u·i u: j :k + gi j yk P̃m
ki u·mu: j .

Note that
yk(gi j u·i u: j ):k = X(〈∇ ·u, ∇ :u〉),

and that
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gi j yk P̃m
ki u·mu: j = gi j yk(Pm

ki + Y m
k yi + Y m

k·i )u·mu: j

= 〈Y (y), ∇ ·u〉Xu + yk gmj
:k u·mu: j ,

where we have used (20) and (32), and also that

yk gi j u·i u: j :k = yk gi j u·i (u:k: j + (u: j :k − u:k: j ))

= gi j u·i (y
ku:k ): j − gi j u·i yk

: j u:k + yk gi j u·i R̃m
jku·m

= 〈∇
·u, ∇ :(Xu)〉 − 〈Y (∇ ·u), ∇ :u〉 + 〈R̃y(∇

·u), ∇ ·u〉.

Thus,

I = |∇
:u|

2
+ X(〈∇ ·u, ∇ :u〉)+ 〈Y (∇ ·u), ∇ :u〉 − 〈R̃y(∇

·u), ∇ ·u〉

+〈Y (y), ∇ ·u〉Xu − 〈∇
·u, ∇ :(Xu)〉. (37)

We rewrite the second term on the right-hand side of (36) as

II = (Xu)gi j
·i u: j = −2(Xu)gil g jmClmi u: j = −2I((Xu)∇ :u). (38)

Finally, we rewrite the third term in (36) as

III = (Xu)gi j u: j ·i = (Xu)gi j (u·i : j + (u: j ·i − u·i : j ))

= ((Xu)gi j u·i ): j − (Xu): j g
i j u·i − (Xu)gi j

: j u·i + (Xu)gi j P̃m
ji u·m .

Note that

(Xu)gi j u·i ): j =
m

div ((Xu)∇ ·u),

and that
(Xu): j g

i j u·i = 〈∇
·u, ∇ :(Xu)〉,

and also that

(Xu)gi j P̃m
ji u·m = (Xu)gi j (Pm

ji + Y m
j yi + Y m

j ·i )u·m

= −J((Xu)∇ ·u)+ 〈Y (y), ∇ ·u〉Xu + (Xu)gmj
: j u·m

in view of (32). Thus,

III =
m

div ((Xu)∇ ·u)− J((Xu)∇ ·u)+ 〈Y (y), ∇ ·u〉Xu − 〈∇
·u, ∇ :(Xu)〉. (39)

Finally, inserting (37)–(39) into (36), we come to (35). 2

Given a semibasic vector field V , define a new semibasic vector field XV by

XV i
= yk V i

:k .

It easy to see that if (x, y) ∈ SM and γ is a magnetic geodesic with γ (0)= x , γ̇ (0)= y,
then

XV (x, y)= Dγ̇ (V ◦ γ̇ )|t=0,

the covariant derivative of the field V ◦ γ̇ along γ .
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LEMMA 4.7. If u ∈ C∞(T M \ {0}) is positively homogeneous, then

|X(∇ ·u)|2 = |∇
·Xu|

2
+ |∇

:u|
2
− 2〈∇

:u, ∇ ·(Xu)〉 + 〈Y (y), ∇ ·u〉
2. (40)

Proof. We have

X(u·i )= yk(gi j u· j ):k = yk gi j
:k u· j + yk gi j (u:k· j − (u:k· j − u· j :k))

= yk gi j
:k u· j + gi j (yku:k)· j − gi j u: j − gi j yk P̃m

kj u·m .

By (20) and (32)

gi j yk P̃m
kj u·m = gi j yk(Pm

kj + Y m
k y j + Y m

k· j )u·m

= 〈Y (y), ∇ ·u〉yi
+ yk gmi

:k u·m .

Thus
X(∇ ·u)= ∇

·(Xu)− ∇
:u − 〈Y (y), ∇ ·u〉y.

Squaring, we obtain

|X(∇ ·u)|2 = |∇
·Xu|

2
+ |∇

:u|
2
+ 〈Y (y), ∇ ·u〉

2

− 2〈∇
·(Xu), ∇ :u〉 − 2〈Y (y), ∇ ·u〉〈∇

·(Xu), y〉 + 2〈Y (y), ∇ ·u〉〈∇
:u, y〉

= |∇
·Xu|

2
+ |∇

:u|
2
+ 〈Y (y), ∇ ·u〉

2
− 2〈∇

:u, ∇ ·(Xu)〉

− 2〈Y (y), ∇ ·u〉Xu + 2〈Y (y), ∇ ·u〉Xu,

coming to the sought identity. 2

Suppose that we have a kinetic equation on SM :

GM u = ϕ.

Extending u to a positively homogeneous function on T M \ {0}, the extension denoted by
u again, on T M \ {0} we have

Xu = φ,

where φ is the positively homogeneous extension of ϕ of degree one.
Combining (35) and (40), we get

|X(∇ ·u)|2 + X(〈∇ :u, ∇ ·u)〉 −
m

div ((Xu)∇ ·u)

− 〈R̃y(∇
·u), ∇ ·u〉 + 〈Y (∇ ·u), ∇ :u〉 − 〈Y (y), ∇ ·u〉

2

+ 2I((Xu)∇ :u)+ J((Xu)∇ ·u)

= |∇
·(Xu)|2 −

v

div ((Xu)∇ :u).

We integrate this identity over SM against the Liouville measure, using the flow invariance
of the measure and (27):∫

SM
|X(∇ ·u)|2 dµ−

∫
SM

m
div ((Xu)∇ ·u) dµ−

∫
SM

〈R̃y(∇
·u), ∇ ·u〉 dµ

+

∫
SM

{〈Y (∇ ·u), ∇ :u〉 − 〈Y (y), ∇ ·u〉
2
+ J((Xu)∇ ·u)} dµ

=

∫
SM

{|∇
·(Xu)|2 − n(Xu)2} dµ. (41)
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Since
m

div U = U i
:i = U i

|i + Y j
i U i

· j =
h

div U + Y j
i U i

· j ,

we have

m
div ((Xu)∇ ·u)=

h
div ((Xu)∇ ·u)+ Y j

i ((Xu)· j g
iku·k + (Xu)gik

· j u·k + (Xu)giku·k· j )

=
h

div ((Xu)∇ ·u)+ 〈∇
·(Xu), Y (∇ ·u)〉,

because by the symmetry argument

Y j
i gik

· j = −2Y j
i gilClm j g

km
= 0

and

Y j
i giku·k· j = 0.

Using also (28), we hence have∫
SM

m
div ((Xu)∇ ·u) dµ=

∫
SM

{J((Xu)∇ ·u)+ 〈∇
·(Xu), Y (∇ ·u)〉} dµ.

Next,

〈R̃y(∇
·u), ∇ ·u〉 = {Ri

kl + (Y i
k|l − Y i

l|k)− (P i
kmY m

l − P i
lmY m

k )

+ (Y j
k Y i

l· j − Y j
l Y i

k· j )+ ys(Y
s
l Y i

k − Y s
k Y i

l )}ylu·ku·i .

Now,

Ri
kl ylu·ku·i = 〈Ry(∇

·u), ∇ ·u〉,

(Y i
k|l − Y i

l|k)y
lu·ku·i = 〈(∇|yY )(∇ ·u), ∇ ·u〉 − 〈∇|(∇ ·u)Y (y), ∇

·u〉

= −〈∇|(∇ ·u)Y (y), ∇
·u〉

by skew symmetry of Y and parallelism of the fundamental tensor with respect to ∇|,

(P i
kmY m

l − P i
lmY m

k )y
lu·ku·i = P i

kmY m
l ylu·ku·i = −L(Y (y), ∇ ·u, ∇ ·u)

in view of (20) and (24),

(Y j
k Y i

l· j − Y j
l Y i

k· j )y
lu·ku·i = −2Y j

k Y r
l gisCsr j ylu·ku·i + 2Y j

l Y r
k gisCsr j ylu·ku·i = 0

by the symmetry of C , and

ys(Y
s
l Y i

k − Y s
k Y i

l )y
lu·ku·i = 〈Y (y), y〉〈Y (∇ ·u), ∇ ·u〉 − 〈Y (∇ ·u), y〉〈Y (y), ∇ ·u〉

= 〈Y (y), ∇ ·u〉
2

again by the skew symmetry of Y .
Now, (41) takes the form of equation (1) in the Introduction. That is, we have proved

the following result.
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THEOREM 4.8. One has∫
SM

{|X(∇ ·u)|2 − 〈Ry(∇
·u), ∇ ·u〉 − L(Y (y), ∇ ·u, ∇ ·u)− 〈∇

·(Xu), Y (∇ ·u)〉

− 2〈Y (y), ∇ ·u〉
2
+ 〈∇

:u, Y (∇ ·u)〉 + 〈∇|(∇ ·u)Y (y), ∇
·u〉} dµ

=

∫
SM

{|∇
·(Xu)|2 − n(Xu)2} dµ. (42)

Remark 4.9. The identity (42) is exactly identity (12) when n = 2. If φ ∈ C∞(T M \ {0})

is homogeneous of degree one and n = 2, then chasing definitions we have

|∇
·φ|

2
= φ2

+ (Vφ)2.

Thus the right-hand side of (42) becomes∫
SM

{|∇
·(Xu)|2 − 2(Xu)2} dµ=

∫
SM

{(GM u)2 + (V GM u)2} dµ− 2
∫

SM
(GM u)2 dµ,

which is exactly the right-hand side of (12). We leave to the keen reader the task of fully
verifying that the left-hand sides also coincide. When the Finsler metric is Riemannian (i.e.
I = J = 0) and n = 2, it is quite easy to check that (for points in SM):

|X(∇ ·u)|2 = (GM V u)2 + λ2(V u)2,

〈Ry(∇
·u), ∇ ·u〉 = (V u)2 K ,

〈∇
·(Xu), Y (∇ ·u)〉 = −λGM u · V u,

〈Y (y), ∇ ·u〉 = λV u,

〈∇
:u, Y (∇ ·u)〉 = −λGM u · V u,

〈∇|(∇ ·u)Y (y), ∇
·u〉 = (V u)2 H(λ).

Inserting these relations into the left-hand side of (42) we see that we get exactly the left-
hand side of (12).

4.4. Jacobi equation. Let us derive a Jacobi equation. The calculations below mimic
those in the proof of [25, Lemma 6.1.1].

Let φt : T M \ {0} → T M \ {0} be the magnetic flow. Take a curve Z : (−ε, ε)→

T M \ {0} with Z(0)= v and Z ′(0)= ξ , and consider the variation H(s, t)= π(φt (Z(s))).
Set

T =
∂H

∂t
, U =

∂H

∂s
.

Each cs(t)= H(s, t) is a magnetic geodesic, and therefore

∂2 H i

∂t2 + 2Gi
(
∂H

∂t

)
= Y i

j

(
∂H

∂t

)
∂H j

∂t
or

∂T i

∂t
+ 2Gi (T )= Y i

j (T )T
j . (43)

Since
∂T i

∂s
=
∂

∂s

(
∂H i

∂t

)
=
∂

∂t

(
∂H i

∂s

)
=
∂U i

∂t
,

differentiating (43) with respect to s yields
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∂2U i

∂t2 = −2U k ∂Gi

∂xk (T )− 2
∂U l

∂t

∂Gi

∂yl (T )

+

(
U k
∂Y i

j

∂xk (T )+
∂U l

∂t

∂Y i
j

∂yl (T )

)
T j

+ Y i
j (T )

∂U j

∂t
.

Note that
∂

∂s
[Gi (T )] = U k ∂Gi

∂xk (T )+
∂U l

∂t

∂Gi

∂yl (T ),

∂

∂t

[
∂Gi

∂yl (T )

]
= T k ∂2Gi

∂xk∂yl +
∂T k

∂t

∂2Gi

∂yl yk (T )

= T k ∂2Gi

∂xk∂yl + (−2Gk(T )+ Y k
m(T )T

m)
∂2Gi

∂yl∂yk (T ).

Hence,

DT DT (U
i )= DT

(
∂U i

∂t
+ U l ∂Gi

∂yl (T )

)
=
∂

∂t

(
∂U i

∂t
+ U l ∂Gi

∂yl (T )

)
+

(
∂U k

∂t
+ U l ∂Gk

∂yl (T )

)
∂Gi

∂yk (T )

=
∂2U i

∂t2 +
∂U l

∂t

∂Gi

∂yl + U l ∂

∂t

[
∂Gi

∂yl

]
+
∂U k

∂t

∂Gi

∂yk + U l ∂Gk

∂yl

∂Gi

∂yk

= −2U k ∂Gi

∂xk − 2
∂U l

∂t

∂Gi

∂yl +

(
U k
∂Y i

j

∂xk +
∂U l

∂t

∂Y i
j

∂yl

)
T j

+ Y i
j
∂U j

∂t

+
∂U l

∂t

∂Gi

∂yl + U l
[

T k ∂2Gi

∂xk∂yl + (−2Gk
+ Y k

m T m)
∂2Gi

∂yl∂yk

]
+
∂U k

∂t

∂Gi

∂yk + U l ∂Gk

∂yl

∂Gi

∂yk

= −U k
(

2
∂Gi

∂xk − T j ∂
2Gi

∂x j∂yk
+ 2G j ∂

2Gi

∂y j yk −
∂Gi

∂y j

∂G j

∂yk

)
+

(
U k
∂Y i

j

∂xk +
∂U l

∂t

∂Y i
j

∂yl

)
T j

+ Y i
j
∂U j

∂t
+ U lY k

m T m ∂2Gi

∂yl∂yk .

Using the identities

Ri
k(T )= 2

∂Gi

∂xk − T j ∂
2Gi

∂x j∂yk
+ 2G j ∂

2Gi

∂y j yk −
∂Gi

∂y j

∂G j

∂yk ,

∂U i

∂t
= DT U i

− N i
l U l ,

∂Y i
j

∂xk = Y i
j |k + N p

k

∂Y i
j

∂y p − 0i
kpY p

j + 0
p
k j Y

i
p,

∂2Gi

∂yl∂yk = 0i
jk + L i

jk,

Y (DT U )= Y i
j
∂U j

∂t
+ Y i

j0
j
kl T

lU k,

we find that
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DT DT (U )= −RT (U )+ Y (DT U )+ (∇|U Y )(T )+ (∇·DT U Y )(T )+ L(U, Y (T )),

which is the Jacobi equation for the magnetic flow of a Finsler metric. Here L(U, V ) is
defined by 〈L(U, V ), W 〉 = L(U, V, W ).

4.5. Index form. Let γ be a closed unit speed magnetic geodesic. Let A and C be the
operators on smooth vector fields along γ defined by

A(Z)= Z̈ + Rγ̇ (Z)− Y (Ż)− (∇|Z Y )(γ̇ )− (∇
·Ż Y )(γ̇ )− L(Z , Y (γ̇ ))

= Z̈ + C(Z)− (∇
·Ż Y )(γ̇ )− L(Z , Y (γ̇ )), (44)

where

C(Z) := Rγ̇ (Z)− Y (Ż)− (∇|Z Y )(γ̇ ). (45)

If J is a magnetic Jacobi field, then

A(J )= 0. (46)

Let 3 denote the R-vector space of smooth vector fields Z : [0, T ] → T M along γ ,
such that Z(0)= Z(T ) and Ż(0)= Ż(T ). Let I denote the quadratic form I :3→ R
defined by

I(Z , Z)= −

∫ T

0
{〈A(Z), Z〉 + 〈Y (γ̇ ), Z〉

2
} dt. (47)

Observe that

I(Z , Z)=

∫ T

0
{|Ż |

2
− 〈C(Z), Z〉 − L(Y (γ̇ ), Z , Z)− 〈Y (γ̇ ), Z〉

2
} dt. (48)

Indeed,

X(〈U, V 〉)= yk(gi jU
i V j ):k = yk(gi j :kU i V j

+ gi jU
i
:k V j

+ gi jU
i V j

:k)

= −yk gs j Y
s
k·iU

i V j
+ 〈XU, V 〉 + 〈U, XV 〉

= −〈(∇·U Y )(y), V 〉 + 〈XU, V 〉 + 〈U, XV 〉,

where we have used the equality gi j :k = −gs j Y s
k·i following from (31) and (32).

This implies that

〈Z̈ , Z〉 = Dγ̇ (〈Ż , Z〉)− |Ż |
2
+ 〈(∇

·Ż Y )(γ̇ ), Z〉,

whence (48) is straightforward.

LEMMA 4.10. (Index lemma) Suppose the magnetic flow φt is Anosov and let γ be a
closed magnetic geodesic with period T . If Z is orthogonal to γ̇ , then

I(Z , Z)≥ 0,

with equality if and only if Z vanishes.
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Proof. Let E denote the weak stable or unstable subbundle of φt . It is well known
(cf. [15, 17]; see [4] for a proof using the asymptotic Maslov index) that the following
transversality property holds:

E(v) ∩ Ker dvπ = {0},

for every v ∈ SM , where π : SM → M is the canonical projection. Consider the splitting
into horizontal and vertical subbundles described in §4.1. With respect to this splitting the
transversality property can be restated as follows: For each v ∈ SM , there exists a map
Sv : Tπ(v)M → Tπ(v)M so that its graph is E(v); moreover the correspondence v → Sv is
continuous.

If ξ ∈ E(v), then Jξ (t)= dπ ◦ dφt (ξ) satisfies the Jacobi equation (46). Since for all
t ∈ R,

dπγ̇ (t)|E(γ̇ (t)) : E(γ̇ (t))→ Tγ (t)M

is an isomorphism, there exists a basis {ξ1, . . . , ξn} of E(v) such that {Jξ1(t), . . . , Jξn (t)}
is a basis of Tγ (t)M for all t ∈ R. Without loss of generality we may assume that ξ1 =

(v, S(v)) and Jξ1 = γ̇ .
Let us set for brevity Ji = Jξi . Then if Z is an element of 3 we can write

Z(t)=

n∑
i=1

fi (t)Ji (t),

for some smooth functions f1, . . . , fn and thus

I(Z , Z)= −

∑
i, j

∫ T

0
〈A( fi Ji ), f j J j 〉 dt −

∫ T

0
〈Y (γ̇ ), Z〉

2 dt. (49)

An easy computation shows that

A( fi Ji )= f̈i Ji + 2 ḟi J̇i − ḟi Y (Ji )− ḟi (∇·Ji Y )(γ̇ )+ fiA(Ji ).

Indeed,

Dγ̇ Dγ̇ ( fi Ji )= f̈i Ji + 2 ḟi J̇i + fi J̈i ,

Rγ̇ ( fi Ji )= fi Rγ̇ (Ji ),

Y (Dγ̇ ( fi Ji ))= ḟi Y (Ji )+ fi Y ( J̇i ),

(∇| fi Ji Y )(γ̇ )= fi (∇|Ji Y )(γ̇ ),

(∇·Dγ̇ ( fi Ji )Y )(γ̇ )= ḟi (∇·Ji Y )(γ̇ )+ fi (∇· J̇i
Y )(γ̇ ),

L( fi Ji , Y (γ̇ ))= fi L(Ji , Y (γ̇ )).

Since Ji satisfies equation (46), it follows that A(Ji )= 0 and hence

〈A( fi Ji ), J j 〉 = f̈i 〈Ji , J j 〉 + 2 ḟi 〈 J̇i , J j 〉 − ḟi 〈Y (Ji ), J j 〉 − ḟi 〈(∇·Ji Y )(γ̇ ), J j 〉.

Observe that, since E is a Lagrangian subspace,

〈Ji , J̇ j 〉 − 〈 J̇i , J j 〉 + 〈Y (Ji ), J j 〉 = 0,

and then
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〈A( fi Ji ), J j 〉 =
d

dt
( ḟi 〈Ji , J j 〉).

Now we can write∫ T

0
〈A( fi Ji ), f j J j 〉 dt = 〈 ḟi Ji , f j J j 〉|

T
0 −

∫ T

0
〈 ḟi Ji , ḟ j J j 〉 dt.

Combining the last equality with (49) we obtain

I(Z , Z)=

∫ T

0

∣∣∣∣ n∑
i=1

ḟi Ji

∣∣∣∣2

dt −

〈 n∑
i=1

ḟi Ji , Z

〉∣∣∣∣T

0
−

∫ T

0
〈Y (γ̇ ), Z〉

2 dt.

But Ż(0)= Ż(T ) and Ż =
∑n

i=1 ḟi Ji +
∑n

i=1 fi J̇i , and therefore〈 n∑
i=1

ḟi Ji , Z

〉∣∣∣∣T

0
= −

〈 n∑
i=1

fi J̇i , Z

〉∣∣∣∣T

0
.

Note that J̇i (t)= Sγ̇ (t) Ji (t), and hence

n∑
i=1

fi J̇i = S

( n∑
i=1

fi Ji

)
= S(Z),

which implies that 〈 n∑
i=1

fi J̇i , Z

〉∣∣∣∣T

0
= 〈S(Z), Z〉|

T
0 = 0.

Then one has

I(V, V )=

∫ T

0

∣∣∣∣ n∑
i=1

ḟi Ji

∣∣∣∣2

dt −

∫ T

0
〈Y (γ̇ ), Z〉

2 dt. (50)

Now let

W :=

n∑
i=2

ḟi Ji .

Since J1 = γ̇ we have〈 n∑
i=1

ḟi Ji ,

n∑
i=1

ḟi Ji

〉
= 〈 ḟ1γ̇ + W, ḟ1γ̇ + W 〉 = ḟ 2

1 + 2 ḟ1〈γ̇ , W 〉 + 〈W, W 〉.

Differentiating 〈Z , γ̇ 〉 = 0 we get

〈Ż , γ̇ 〉 + 〈Z , Y (γ̇ )〉 = 0.

But

〈Ż , γ̇ 〉 =

〈 n∑
i=1

ḟi Ji , γ̇

〉
= ḟ1 + 〈W, γ̇ 〉,

since 〈 J̇i , γ̇ 〉 = 0 for all i . Therefore

〈Y (γ̇ ), Z〉
2
= ḟ 2

1 + 2 ḟ1〈W, γ̇ 〉 + 〈W, γ̇ 〉
2.
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Thus one has 〈 n∑
i=1

ḟi Ji ,

n∑
i=1

ḟi Ji

〉
− 〈Y (γ̇ ), Z〉

2
= 〈W, W 〉 − 〈W, γ̇ 〉

2.

If we let W ⊥ be the orthogonal projection of W to γ̇⊥, the last equation and (50) give

I(Z , Z)=

∫ T

0
‖W ⊥

‖
2 dt ≥ 0,

with equality if and only if W ⊥ vanishes identically. But if W ⊥ vanishes, then

−〈W, γ̇ 〉γ̇ +

n∑
i=2

ḟi Ji = 0,

which implies that the functions fi are constant for i ≥ 2. Thus Z is of the form f1γ̇ + J ,
where J is a magnetic Jacobi field. If we let J⊥ be the orthogonal projection of J to γ̇⊥,
then Z = J⊥. Now write

J = x γ̇ + J⊥.

A simple calculation shows that A(x γ̇ )= Dγ̇ (ẋ γ̇ ) with ẋ = 〈J, Y (γ̇ )〉 = 〈J⊥, Y (γ̇ )〉.
Hence one has

0 =A(J )=A(J⊥)+ Dγ̇ (〈J⊥, Y (γ̇ )〉γ̇ ).

The fact that J⊥ satisfies this second-order differential equation together with J⊥(0)=

J⊥(0) and ˙J⊥(T )= ˙J⊥(T ) implies that J⊥ is periodic with period T . Hence ẋ is also
a periodic function of period T , which implies that ‖J‖ grows at most linearly with t .
However, since the closed orbits of φt are hyperbolic, the only Jacobi fields with that
type of growth are those given by constant multiples of γ̇ . Since Z is orthogonal to γ̇ , Z
must vanish. 2

4.6. End of the proof of Theorem B. Define

C̃(V )= Ry(V )− Y (XV )− (∇|V Y )(y).

Then the following holds:

〈C̃(∇ ·u), ∇ ·u〉 = 〈Ry(∇
·u), ∇ ·u〉 + 〈X(∇ ·u), Y (∇ ·u)〉 − 〈(∇|(∇ ·u)Y )(y), ∇

·u〉

= 〈Ry(∇
·u), ∇ ·u〉 + 〈∇

·(Xu)− ∇
:u − 〈Y (y), ∇ ·u〉y, Y (∇ ·u)〉

− 〈(∇(∇ ·u)Y )(y), ∇
·u〉

= 〈Ry(∇
·u), ∇ ·u〉 + 〈∇

·(Xu), Y (∇ ·u)〉 − 〈∇
:u, Y (∇ ·u)〉

+ 〈Y (y), ∇ ·u〉
2
− 〈(∇|(∇ ·u)Y )(y), ∇

·u〉.

Suppose that GM u = h ◦ π + θ . From (42) and Lemma 4.4 we infer that∫
SM

{|X∇
·u|

2
− 〈C̃(∇ ·u), ∇ ·u〉 − L(Y (y), ∇ ·u, ∇ ·u)− 〈Y (y), ∇ ·u〉

2
} dµ≤ 0. (51)

Given a closed unit-speed magnetic geodesic γ : [0, T ] → M , consider the smooth
vector field Z : [0, T ] → T M along γ given by Z := ∇

·u(γ, γ̇ ). Note that Z is orthogonal
to γ̇ because u is homogeneous of degree zero.
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The index lemma (Lemma 4.10) tells us that∫ T

0
{|Ż |

2
− 〈C(Z), Z〉 − L(Y (γ̇ ), Z , Z)− 〈Y (γ̇ ), Z〉

2
} dt ≥ 0 (52)

for every closed magnetic geodesic γ .
Since the flow is Anosov, the invariant measures supported on closed orbits are dense

in the space of all invariant measures on SM . Therefore, the above yields∫
SM

{|X∇
·u|

2
− 〈C̃(∇ ·u), ∇ ·u〉 − L(Y (y), ∇ ·u, ∇ ·u)− 〈Y (y), ∇ ·u〉

2
} dµ≥ 0.

Combining this with (51), we find that∫
SM

{|X∇
·u|

2
− 〈C̃(∇ ·u), ∇ ·u〉 − L(Y (y), ∇ ·u, ∇ ·u)− 〈Y (y), ∇ ·u〉

2
} dµ= 0. (53)

By the non-negative version of the Livšic theorem, proved independently by Pollicott
and Sharp [21] and by Lopes and Thieullen [13], we conclude from (52) and (53) that∫ T

0
{|Ż |

2
− 〈C(Z), Z〉 − L(Y (γ̇ ), Z , Z)− 〈Y (γ̇ ), Z〉

2
} dt = 0

for every closed magnetic geodesic γ . Applying again the index lemma (Lemma 4.10), we
see that ∇

·u vanishes on all closed magnetic geodesics. Since the latter are dense in SM ,
the function ∇

·u vanishes on all of SM . This means that u = f ◦ π where f is a smooth
function on M . But in this case, since dπ(x,v)(GM )= v, we have GM (u)= d fx (v) and
Theorem B follows.

5. Proof of Theorem C
Suppose the magnetic flow φ of the pair (F, �) has an Anosov splitting

E s
⊕ Eu

⊕ RGM

of class C1 and suppose also that � is exact. Let τ denote the 1-form that vanishes on
E s

⊕ Eu and takes the value one on the vector field GM . If the splitting is of class C1

then τ is also of class C1 and dτ is a continuous 2-form invariant under the magnetic
flow. Hamenstädt showed in [11], for the geodesic flow case, that any continuous invariant
exact 2-form must be a constant multiple of the symplectic form provided that the splitting
is of class C1. Hamenstädt’s proof carries over to the case of magnetic flows without
major changes, provided that � is an exact form dθ (see the appendix of [16]). Recall
from the introduction that the symplectic form on T M \ {0} is given by ω0 + π∗�, where
ω0 = `∗F (−dλ) (`F is the Legendre transform of F2/2 and λ is the Liouville 1-form of
T ∗M). It follows that there exists a constant c such that

dτ = c(ω0 + π∗�),

and thus
d(τ + c`∗Fλ− cπ∗θ)= 0.

Let us write
ϕ := τ + c`∗Fλ− cπ∗θ.
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Then ϕ is a smooth closed 1-form. Since on SM we have `∗Fλ(GM )= 1† we obtain

ϕ(GM )(x, v)= 1 + c − cθx (v). (54)

It is well known that the map π∗
: H1(M, R)→ H1(SM, R) is an isomorphism (provided

that M is not diffeomorphic to a 2-torus). Therefore there exist a closed smooth 1-form δ

in M and a smooth function u : SM → R such that

ϕ = π∗δ + du.

Hence equation (54) gives

GM (u)+ δx (v)= 1 + c − cθx (v). (55)

Integrating the last equality with respect to the (normalized) Liouville measure µ and using
that the magnetic flow leaves µ invariant we have

0 = 1 + c − c
∫

SM
θ dµ−

∫
SM

δ dµ.

By Lemma 4.4 ∫
SM

θ dµ=

∫
SM

δ dµ= 0,

and thus c = −1. Replacing in (55) we finally obtain

δx (v)+ GM (u)(x, v)= θx (v). (56)

We can now apply Theorem B to conclude that θ is a closed form, i.e. � vanishes
identically. (Alternatively, we could have applied Theorem B directly to equation (55) to
conclude that c = −1 and θ is exact.)
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