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Geography of simply connected
nonspin symplectic 4-manifolds with
positive signature. II

Anar Akhmedov and B. Doug Park

Abstract. Building upon our earlier work with M. C. Hughes, we construct many new smooth

structures on closed simply connected nonspin 4-manifolds with positive signature. We also provide

numerical and asymptotic upper bounds on the function λ(σ) that was defined in our earlier work.

1 Introduction

�is is a companion paper to our earlier work [1] with M. C. Hughes and addresses
the geography problem for closed simply connected nonspin symplectic 4-manifolds
with positive signature. For some background and history, we refer the reader to the
introduction in [1]. For the corresponding spin geography problem,we refer the reader
to our papers [3, 4].

We start by setting up some basic notation. Given a closed smooth 4-manifold
M, let e(M) and σ(M) denote the Euler characteristic and the signature of M,
respectively. We define χh(M) =

1
4
(e(M) + σ(M)) and c21 (M) = 2e(M) + 3σ(M).

WhenM is a complex surface, χh(M) is the holomorphic Euler characteristic of M ,
while c21 (M) is the square of the first Chern class of M. Given an ordered pair of
integers (a, b), the geography problem asks whether there exists a closed smooth
4-manifold M with the desired properties satisfying χh(M) = a and c21 (M) = b. We
note that suchM must satisfy b = 8a + σ(M).

Given x ∈ R, we define the ceiling function as

⌈x⌉ =min{k ∈ Z ∣ k ≥ x}.(1.1)

Next we recall the following definition from [1, Definition 13].
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Definition 1.1 Given an integer σ ≥ 0, let λ(σ) be the smallest positive integer with
the following properties.

(i) λ(σ) ≥ ⌈(σ + 1)/2⌉.
(ii) Every integral point (a, b) on the line b = 8a + σ satisfying a ≥ λ(σ) is realized

as (χh(M i), c21 (M i)), where {M i ∣ i ∈ Z} is an infinite family of homeomorphic
but pairwise nondiffeomorphic closed simply connected nonspin irreducible 4-
manifolds such thatM i is symplectic for each i ≥ 0 andM i is nonsymplectic for
each i < 0.

We also recall the following definition from [3, Definition 1].

Definition 1.2 We say that a 4-manifoldM has∞2-property if there exist infinitely
many pairwise nondiffeomorphic irreducible symplectic 4-manifolds and infinitely
manypairwise nondiffeomorphic irreducible nonsymplectic 4-manifolds, all ofwhich
are homeomorphic toM.

Let CP2 be the complex projective plane, and let CP2 be the underlying smooth
4-manifoldCP2 equipped with the opposite orientation. By Freedman’s classification
theorem (cf. [11]), if k is any odd integer satisfying k ≥ 2λ(σ) − 1, then the nonspin 4-
manifold kCP2

#(k − σ)CP2, the connected sum of k copies ofCP2, and k − σ copies
of CP2, have∞2-property. �e following conjecture from [1] remains open.

Conjecture 1.3 λ(σ) = ⌈(σ + 1)/2⌉ for every integer σ ≥ 0. Equivalently, given any
integer σ ≥ 0, kCP2

#(k − σ)CP2 has∞2-property for every odd integer k satisfying

k ≥

⎧⎪⎪
⎨
⎪⎪⎩

σ when σ is odd,

σ + 1 when σ is even.

We note that Conjecture 1.3 postulates that there would be no constraint on
kCP2

#(k − σ)CP2 having∞2-property other than the positive integer k being odd,
which is necessary for kCP2

#(k − σ)CP2 to support a symplectic (and hence an
almost complex) structure.

In [1, 2, 5], numerical upper bounds for λ(σ) were given when 0 ≤ σ ≤ 100. In
Section 3, we will present a new algorithm for constructing simply connected 4-
manifolds starting from a surface fibration over a surface with a section, which need
not be a fiber bundle nor a Lefschetz fibration. Using this algorithm, we will construct
twonew infinite families of closed, simply connected, nonspin, irreducible, symplectic
4-manifolds of positive signature, many of which have a smaller value of χh than
the currently known upper bounds on λ(σ). We cannot currently show that all of
these 4-manifolds have∞2-property, but we suspect that they all do (see Remark 3.4
and Corollary 3.6). �e new building blocks in our construction are certain complex
surfaces of general type found in [6, 8, 16], and these will be reviewed in Section 2. In
Section 4, we will also provide two explicit formulae for upper bounds on λ(σ) that
work for every nonnegative integer σ (see Corollaries 4.2 and 4.4). Asymptotically as
σ →∞, we will prove that

https://doi.org/10.4153/S0008439520000533 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000533


420 A. Akhmedov and B. D. Park

λ(σ) ≤
8

5
σ + O(σ 1/2).(1.2)

Such an asymptotic upper bound has been missing in the literature, and we hope
that our bound provides a useful benchmark for future works. Our ultimate goal is to
decrease the coefficient of σ in (1.2) from 1.6 to a smaller number that is much closer
to the coefficient 0.5 in Conjecture 1.3.

2 Building Blocks

In this section, we will collect all the 4-manifold building blocks that we will need
for our constructions later. Our first family of building blocks are the so-called BCD
surfaces constructed by Bauer, Catanese, and Dettweiler in [6, 8].

Lemma 2.1 For each positive integer n ≥ 5 that is coprime with 6, there exists a
minimal complex surface S(n) of general type with c21 (S(n)) = 5(n − 2)

2, e(S(n)) =
2n2 − 10n + 15, and σ(S(n)) = (n2 − 10)/3. Each S(n) admits a genus n − 1 fibration
over a genus (n − 1)/2 curve.Moreover, S(n) also contains four disjoint genus (n − 1)/2
curves of self-intersection −1, one of which is a section of the fibration, and each of the
other three is contained in a singular fiber and hence disjoint from regular fibers.

Proof Recall from [8] that S(n) arises as a (Z/nZ)2 Abelian Galois ramified
cover (in the sense of [18]) over a del Pezzo surface CP

2
#4CP2 of degree 5. �e

branch divisor of this covering is a sum of ten rational curves, four of which are the
exceptional divisors of the blow-ups. We note that the preimages of the exceptional
divisors under this (Z/nZ)2 covering map are disjoint genus (n − 1)/2 curves of self-
intersection −1. �e genus n − 1 fibration structure on S(n) and its singular fibers are
discussed in [8, Proposition 4.2]. We recall that this fibration is obtained by li�ing a
pencil of lines going through a point of blow-up, and thus a section of the fibration
is given by the inclusion of the preimage of the corresponding exceptional divisor.
�e characteristic numbers c21 (S(n)) and e(S(n)) were computed in [8, Proposition
4.3]. We can readily compute the signature of S(n) using the well-known formula
c21 = 2e + 3σ . ∎

Let Σb denote a closed connected 2-manifold with genus b ≥ 0. Our second
building block is a Σ7 bundle over Σ5 that was constructed in [16].

Lemma 2.2 �ere exists a minimal complex surface Y of general type with e(Y) = 96
and σ(Y) = 16 such that Y is the total space of a surface bundle over a surface with base
genus 5 and fiber genus 7. Moreover, this surface bundle admits a section whose image
in Y has self-intersection −8.

Proof In [16, Example 6.9], such Y was constructed as the double cover of Σ3 × Σ3

branched over 4 disjoint graphs of involutions on Σ3. Each graph in the branch locus
gives rise to a section of the bundle whose image in Y has self-intersection equal to 2
times the self-intersection of the graph in Σ3 × Σ3 , which is −4. ∎
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Our next family of building blocks are the homotopy elliptic surfaces constructed
by Fintushel and Stern in [9]. Let E(1) = CP2

#9CP2 denote a rational elliptic surface
that is the complex projective plane blown up nine times. For a positive integer r, let
E(r) denote the fiber sum of r copies of E(1).�en E(r) is a simply connected elliptic
surface without any multiple fiber. Let F be a smooth torus fiber of E(r) and let K be
a knot of genus g(K) in S3. Let E(r)K denote the result of performing a knot surgery
on E(r) along F:

E(r)K = [E(r)/ν(F)] ∪ [S1 × (S3/ν(K))],(2.1)

where the ν’s denote tubular neighborhoods. In (2.1), we glue the 3-torus boundaries
in such a way that the meridians of F get identified with the longitudes of K.

We recall that E(r)K is homeomorphic to E(r), so we have π1(E(r)K) = 1,

e(E(r)K) = e(E(r)) = 12r and σ(E(r)K) = σ(E(r)) = −8r.

We also recall that E(r) and E(r)K are spin if and only if r is even. IfK is a fibered knot,
then E(r)K admits a symplectic structure, and a sphere section of E(r) and a Seifert
surface of K can be glued together to form a symplectic submanifold ΣK of genus
g(K) and self-intersection −r inside E(r)K . Given a nonnegative integerm, let Fm

K be
the genus g(K) +m symplectic submanifold of E(r)K with self-intersection 2m − r
that is obtained from the union of ΣK and m copies of torus fiber by symplectically
resolving theirm intersection points. We note that F0

K = ΣK .

Lemma 2.3 Let m ≥ 0 and r > 0 be integers, and let K be a fibered knot in S3.
Let ν(Fm

K ) denote a tubular neighborhood of Fm
K in E(r)K . �en the complement

E(r)K/ν(Fm
K ) is simply connected. If r ≥ 2, then write r = 2ρ + ε for integers ε = 0, 1

and ρ ≥ 1. �en E(r)K/ν(Fm
K ) contains 2ρ disjoint symplectic tori Tj( j = 1, . . . , 2ρ) of

self-intersection 0 such that π1(E(r)K/(ν(Fm
K ) ∪ (∪

2ρ
j=1Tj))) = 1.

Proof Each surface Fm
K transversely intersects once a topological sphere in E(r)K

coming from a cusp fiber of E(r). �us, any meridian of Fm
K is nullhomotopic in

E(r)K/ν(Fm
K ). Hence, we conclude that π1(E(r)K/ν(Fm

K )) = π1(E(r)K) = 1. Next, we
recall from [13] that E(2) contains 3 disjoint copies of theGompf nucleus. If r ≥ 2, then
E(r) can be viewed as the fiber sum of ρ copies of E(2) and possibly a copy of E(1).
In each copy of E(2), we have 2 copies of Gompf nuclei that are disjoint from the tori
and sections used in the fiber sum, and thus E(r)K contains 2ρ Gompf nuclei that
are all disjoint from ν(Fm

K ). Let N j denote one of these nuclei, and let Tj be a smooth
torus fiber in N j ( j = 1, . . . , 2ρ). By changing the symplectic form on the E(2) parts if
necessary, we can arrange each Tj to be a symplectic submanifold of E(r)K . Since Tj

transversely intersects once a sphere section of N j with self-intersection −2, every

meridian of Tj is nullhomotopic. It follows that π1(E(r)K/(ν(Fm
K ) ∪ (∪

2ρ
j=1Tj))) =

π1(E(r)K/ν(Fm
K )) = 1. ∎

From the Seifert–Van Kampen theorem, we can also deduce that

π1(E(r)K/(ν(Fm
K ) ∪ (∪

τ
j=1Tj))) = 1
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for any integer τ satisfying 0 ≤ τ ≤ 2ρ, i.e., we can choose to take out less tori and still
have the complement remain simply connected. Our final set of building blocks are
certain families of symplectic 4-manifolds that were studied in [1].

Lemma 2.4 For each positive integer u, there is a pair of closed simply connected
nonspin irreducible symplectic 4-manifolds Q(u) and Q̃(u) satisfying

σ(Q(u)) = 26u − 2⌈u/2⌉ − 2,
χh(Q(u)) = 27u + 32⌈u/2⌉ − 2,

σ(Q̃(u)) = 25u2 + u − 2⌈u/2⌉ − 2,

χh(Q̃(u)) = 25u2 + ⌈u/2⌉(30u + 2) + 2u − 2,

where ⌈ ⌉ is given by (1.1). Let Q denote either Q(u) or Q̃(u). �en each Q contains
a disjoint pair of symplectic tori T ′1 and T ′2 of self-intersection 0 satisfying π1(Q/(T ′1 ∪
T ′2)) = 1.

Proof We let Q(u) = Qm
n (W

p,v
u1 ,u2
) in [1, Example 12] with m = 1, p = 5, u1 = u,

u2 = 1, v = 1, t = ⌈u/2⌉, and n = 16⌈u/2⌉ + u + 1 ≥ 18. We let Q̃(u) = Qm
n (W

p,v
u1 ,u2
) in

[1, Example 12] withm = 1, p = 5, u1 = u, u2 = u, v = 1, t = ⌈u/2⌉, and n = ⌈u/2⌉(15u +
1) + u + 1 ≥ 18. �e existence of T ′1 and T ′2 follows from [1, �eorem9]. ∎

3 New Symplectic 4-manifolds

We start the section with a general algorithm for producing simply connected 4-
manifolds from a symplectic fibration. Let X be a closed symplectic 4-manifold that
is the total space of a fibration f ∶ X → Σb whose regular fiber is a 2-manifold Σa

with genus a ≥ 0. Assume that this fibration has a section s ∶ Σb → X whose image
s(Σb) has self-intersection equal to d in X. Next let t and δ be nonnegative integers.
By symplectically resolving the double points of the union of s(Σb) and t copies
of the fiber Σa , we obtain a symplectic submanifold Σta+b in X with genus ta + b
and self-intersection 2t + d. By symplectically blowing up δ points of Σta+b in X, we
obtain a genus ta + b symplectic submanifold Σ′ta+b in the blow-up X#δCP2 with
self-intersection 2t + d − δ.

Let E(r)K and Fm
K be as in Section 2. Let E(X)t ,δK ,m ,r denote the symplectic normal

sum (cf. [12, 17]) of X#δCP2 and E(r)K along symplectic submanifolds Σ′ta+b and F
m
K :

E(X)t ,δK ,m ,r = [(X#δCP
2)/ν(Σ′ta+b)] ∪ [E(r)K/ν(F

m
K )].

For this symplectic normal sum to be well-defined, we require the genera of subman-
ifolds to be equal and their self-intersections to have opposite signs, i.e.,

ta + b = g(K) +m and 2t + d − δ = −(2m − r).(3.1)

�eorem 3.1 Assume that both conditions in (3.1) hold. �en E(X)t ,δK ,m ,r is a closed
symplectic 4-manifold with

e(E(X)t ,δK ,m ,r) = e(X) + δ + 12r + 4ta + 4b − 4,
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σ(E(X)t ,δK ,m ,r) = σ(X) − δ − 8r,

χh(E(X)t ,δK ,m ,r) = χh(X) + r + ta + b − 1.

If δ > 0, then E(X)t ,δK ,m ,r is nonspin. If t > 0, then E(X)t ,δK ,m ,r is simply connected. If

t > 0 and r ≥ 2, then E(X)t ,δK ,m ,r contains two disjoint symplectic tori, T1 and T2 , of self-

intersection 0 such that π1(E(X)t ,δK ,m ,r/(T1 ∪ T2)) = 1.

Proof We compute that e(E(X)t ,δK ,m ,r) = e(X#δCP
2) + e(E(r)K) − 2e(Σ′ta+b)

and σ(E(X)t ,δK ,m ,r) = σ(X#δCP
2) + σ(E(r)K). When δ > 0, we have a punctured

2-sphere in the [(X#δCP2)/ν(Σ′ta+b)] half coming from an exceptional divisor of a
blow-up. We can glue this disk to a punctured torus fiber in the [E(r)K/ν(Fm

K )] half
and obtain a torus with self-intersection −1, which implies that the intersection form
of E(X)t ,δK ,m ,r is not even.

Since we know from Lemma 2.3 that

π1(E(r)K/ν(Fm
K )) = 1,(3.2)

the Seifert–Van Kampen theorem implies that

π1(E(X)t ,δK ,m ,r) ≅ π1((X#δCP2)/ν(Σ′ta+b))⟨π1(∂ν(Σ′ta+b))⟩ ,(3.3)

where ∂ν(Σ′ta+b) is the boundary of ν(Σ′ta+b) and ⟨π1(∂ν(Σ′ta+b))⟩ is the normal

subgroup of π1((X#δCP2)/ν(Σ′ta+b)) generated by the image of π1(∂ν(Σ′ta+b))
under the inclusion induced homomorphism.

Note that ∂ν(Σ′ta+b) is a circle bundle over Σ′ta+b with Euler number 2t + d − δ. It
is well known (cf. [10, Proposition 10.4]) that

π1(∂ν(Σ′ta+b)) = ⟨α i , β i , µ ∣ ta+b∏
i=1
[α i , β i] = µ2t+d−δ , α iµα

−1
i = µ, β iµβ

−1
i = µ⟩,

where the index i ranges over 1, . . . , ta + b. Here, µ is represented by a fiber circle that
is a meridian of Σ′ta+b , and α i , β i are the parallel push-offs of the standard generators
of π1(Σ′ta+b).

In (3.3), we have µ = 1 in the quotient group, since µ ∈ ⟨π1(∂ν(Σ′ta+b))⟩. �us, we
can write

π1(E(X)t ,δK ,m ,r) ≅ π1(X#δCP2)
⟨π1(Σ′ta+b)⟩ ≅

π1(X)⟨π1(Σta+b)⟩ .(3.4)

From the long exact sequence of the fibration, we have an exact sequence

π1(Σa)Ð→ π1(X)Ð→ π1(Σb)Ð→ 1,

where the first and second arrows are induced by the inclusion of a regular fiber and
the fibrationmap, respectively.When t > 0, the image of π1(Σta+b) in π1(X) contains
all the generators of the images of π1(Σa) and π1(s(Σb)) under the inclusion induced
homomorphisms. �us, we can conclude that the quotient group (3.4) is trivial.
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When r ≥ 2, Lemma 2.3 tells us that the [E(r)K/ν(Fm
K )] half contains (at least) two

disjoint symplectic tori T1 and T2 of self-intersection 0 such that

π1([E(r)K/ν(Fm
K )]/(T1 ∪ T2)) = 1.(3.5)

To show that π1(E(X)t ,δK ,m ,r/(T1 ∪ T2)) = 1, we can apply the above argument to

show that π1(E(X)t ,δK ,m ,r) = 1 with the only change being the replacement of (3.2)
with (3.5). ∎

Next we apply�eorem 3.1 to the BCD surface S(n) from Lemma 2.1, now viewed
as a symplectic 4-manifold.

Corollary 3.2 For any positive integer n ≥ 5 such that n ≡ ±1 (mod 6) and any
fibered knot K ⊂ S3 of genus 3(n − 1)/2, there is a simply connected irreducible sym-
plectic 4-manifold M(n)K that is homeomorphic to

(7
6
n2 − 2n +

11

6
)CP2

#( 5
6
n2 − 2n +

79

6
)CP2 .(3.6)

Proof An integer n is coprime with 6 if and only if n ≡ ±1 (mod 6). We let
M(n)K = E(X)t ,δK ,m ,r with X = S(n), a = n − 1, b = (n − 1)/2, d = −1, t = 1, δ = 0,
g(K) = 3(n − 1)/2,m = 0, and r = 1. We can easily check that both conditions in (3.1)
are satisfied. We note that M(n)K is nonspin, since it contains three curves of square
−1 in the [(X#δCP2)/ν(Σ′ta+b)] half by Lemma 2.1.

Since e(M(n)K) = 2n2 − 4n + 17 and σ(M(n)K) = (n2 − 34)/3, Freedman’s clas-
sification theorem (cf. [11]) implies that M(n)K must be homeomorphic to (3.6).
Since S(n) is minimal, the symplectic normal sumM(n)K is also minimal by Usher’s
theorem in [19].We recall from [14, 15] that any simply connectedminimal symplectic
4-manifold is irreducible. ∎

We note that M(n)K has positive signature except when n = 5. For many values
of n, Corollary 3.2 gives a new symplectic (and thus exotic) smooth structure on
(3.6). For example, when n = 7, 11, 13, 17, we get an exotic smooth structure on each
of 45CP2

#40CP2, 121CP2
#92CP2, 173CP2

#128CP2 , and 305CP2
#220CP2. �ese 4-

manifolds have signature equal to 5, 29, 45, and 85, and χh equal to 23, 61, 87, and 153,
respectively. For comparison, we showed in [1, Table 2] that λ(5) ≤ 47, λ(29) ≤ 87,
λ(45) ≤ 85 and λ(85) ≤ 166. �us these exotic smooth structures are new solutions
to the symplectic geography problem when n = 7, 11, 17 as far as we know.

Similarly, we can apply �eorem 3.1 to the surface bundle Y from Lemma 2.2 and
obtain the following corollary.

Corollary 3.3 For any fibered knot K ⊂ S3 of genus 8, there is a simply connected
irreducible symplectic 4-manifold ZK that is homeomorphic to 79CP2

#72CP2.

Proof We let ZK = E(X)t ,δK ,m ,r with X = Y , a = 7, b = 5, d = −8, t = 1, δ = 1,
g(K)= 8, m = 4, and r = 1. We have e(ZK) = 153 and σ(ZK) = 7. �e rest of the
proof is similar to that of Corollary 3.2 and is le� to the reader. ∎
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In [1], we showed that λ(7) ≤ 49. Since χh(ZK) = 40, the symplectic smooth
structure in Corollary 3.3 is new.

Remark 3.4 It is well known (cf. [7]) that for a fixed genus g > 1, there are infinitely
many genus g fibered (andnonfibered) knots that are distinguished by theirAlexander
polynomials. By varying the knot K while fixing the genus g(K), we expect the
resulting collection of M(n)K ’s and ZK ’s to provide infinitely many distinct smooth
structures on (3.6) and 79CP2

#72CP2. At present, it is not clear to us how to compute
the Seiberg–Witten invariants of these 4-manifolds completely so as to distinguish
their smooth structures.

We end this section by constructing another family of simply connected irreducible
symplectic 4-manifolds.

Corollary 3.5 For any positive integer n ≥ 5 such that n ≡ ±1 (mod 6) and any
fibered knot K ⊂ S3 of genus 3

2
(n − 1) − 1, there is a simply connected irreducible

symplectic 4-manifold X(n)K that is homeomorphic to

(7
6
n2 − 2n +

23

6
)CP2

#( 5
6
n2 − 2n +

145

6
)CP2 .(3.7)

Moreover, each X(n)K contains two disjoint symplectic tori, T1 and T2 , of self-
intersection 0 such that π1(X(n)K/(T1 ∪ T2)) = 1.
Proof We let X(n)K = E(X)t ,δK ,m ,r with X = S(n), a = n − 1, b = (n − 1)/2, d = −1,
t = 1, δ = 1, g(K) = 3

2
(n − 1) − 1, m = 1, and r = 2. We have e(X(n)K) = 2n2 − 4n +

30 and σ(X(n)K) = 1
3
(n2 − 61). �e rest of the proof is similar to the proof of

Corollary 3.2 and is le� to the reader. ∎

We note that the signature of X(n)K is positive when n ≥ 11. By performing knot
surgeries along T1 (and/or T2) on X(n)K , we can obtain infinitely many distinct
smooth structures on (3.7).

Corollary 3.6 For any positive integer n ≥ 5 such that n ≡ ±1 (mod 6), the 4-
manifold (3.7) in Corollary 3.5 has∞2-property (cf. Definition 1.2).

Proof �is follows immediately from [1, �eorem 16]. ∎

For example, when n = 17, we obtain infinitely many exotic smooth structures
on 307CP2

#231CP2, which have signature equal to 76 and χh equal to 154. For
comparison, we only showed in [1] that λ(76) ≤ 167, so these exotic smooth structures
are new (cf. Remark 4.5).

4 Upper Bounds on λ(σ)

�e goal of this section is to exhibit concrete formulae for upper bounds on λ(σ) that
are valid for any nonnegative integer σ . First, we recall the following theorem, which
was proved in [1, Corollary 17].
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�eorem 4.1 Let X be a closed, simply connected, nonspin, minimal, symplectic 4-
manifold with b+2 (X) > 1 and σ(X) ≥ 0. Assume that X contains disjoint symplectic
tori T1 and T2 of self-intersection 0 such that π1(X/(T1 ∪ T2)) = 1. Suppose σ is a fixed
integer satisfying 0 ≤ σ ≤ σ(X). If ⌈x⌉ =min{k ∈ Z ∣ k ≥ x} and if we define

ℓ(σ) = ⌈σ(X) − σ
8

− 1⌉,
then

λ(σ) ≤ χh(X) + ℓ(σ) + 1.
Now we apply�eorem 4.1 to the 4-manifolds Q(u) in Lemma 2.4 and obtain the

following corollary.

Corollary 4.2 If λ(σ) is as in Definition 1.1, then we have

λ(σ) < 43

25
σ +

6813

100
= 1.72σ + 68.13.(4.1)

Proof Given a nonnegative integer σ , let u be the smallest positive integer such that
σ ≤ σ(Q(u)) = 26u − 2⌈u/2⌉ − 2. It follows that when u > 1,

σ(Q(u)) − σ < σ(Q(u)) − σ(Q(u − 1)) = 26 − 2(⌈u/2⌉ − ⌈(u − 1)/2⌉) ≤ 26,(4.2)

since ⌈u/2⌉ − ⌈(u − 1)/2⌉ is either 0 or 1 depending on whether u is even or odd. Note
that σ(Q(1)) = 22 so that we still have σ(Q(u)) − σ < 26 even when u = 1. �us, we
have ℓ(σ) < (σ(Q(u)) − σ)/8 < 13/4. Since

σ > σ(Q(u)) − 26 = 26u − 2⌈u/2⌉ − 28
by (4.2) and 2⌈u/2⌉ is u or u + 1 depending on whether u is even or odd, we conclude
that σ > 26u − (u + 1) − 28 = 25u − 29. �us, we have u < (σ + 29)/25 and

λ(σ) ≤ χh(Q(u)) + ℓ(σ) + 1 < 27u + 32⌈u
2
⌉ − 2 + 13

4
+ 1

≤ 43u +
73

4
<
43

25
σ +

6813

100
,

since 32⌈u/2⌉ is 16u or 16u + 16 depending on whether u is even or odd. ∎

Remark 4.3 For a specific value of σ , (4.1) may not provide the optimal bound
procured from Q(u). For example, when σ = 76, we can apply �eorem 4.1 to Q(4)
directly and obtain λ(76) ≤ 173, which is better than the bound λ(76) ≤ 198 coming
from (4.1).

Similarly, we apply�eorem 4.1 to the 4-manifolds Q̃(u) in Lemma 2.4 and obtain
the following corollary.

https://doi.org/10.4153/S0008439520000533 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000533


Geography of 4-manifolds with Positive Signature. II 427

Corollary 4.4 If λ(σ) is as in Definition 1.1, then we have

λ(σ) < 8

5
σ +

417

20

√
σ + 4 +

1353

20
= 1.6σ + 20.85

√
σ + 4 + 67.65.(4.3)

Proof Given a nonnegative integer σ , let u be the smallest positive integer such that
σ ≤ σ(Q̃(u)) = 25u2 + u − 2⌈u/2⌉ − 2. Note that

σ(Q̃(u)) − σ(Q̃(u − 1)) = 50u − 24 − 2(⌈u/2⌉ − ⌈(u − 1)/2⌉) ≤ 50u − 24.
It follows that

σ(Q̃(u)) − σ < 50u − 24.(4.4)

Note that σ(Q̃(1)) = 22 so that (4.4) still holds when u = 1. �us, we have ℓ(σ) <(σ(Q̃(u)) − σ)/8 < 25
4
u − 3. Since ⌈u/2⌉ ≤ (u + 1)/2, we get

λ(σ) ≤ χh(Q̃(u)) + ℓ(σ) + 1
< 25u2 + ⌈u/2⌉(30u + 2) + 2u − 2 + 25

4
u − 2

≤ 25u2 + (u + 1)(15u + 1) + 33

4
u − 4 = 40u2 +

97

4
u − 3.(4.5)

From (4.4), we also obtain

σ > σ(Q̃(u)) − 50u + 24 = 25u2 − 2⌈u/2⌉ − 49u + 22
≥ 25u2 − (u + 1) − 49u + 22 = 25u2 − 50u + 21.

�us, we must have u < 1 + 1
5

√
σ + 4, and plugging this into (4.5), we

obtain (4.3). ∎

Weobserve that (4.1) is a better (i.e., lower) upper bound than (4.3) when σ ≤ 30185
and (4.3) is better than (4.1) when σ ≥ 30186.

Remark 4.5 If we apply �eorem 4.1 to our 4-manifolds X(n)K in Corollary 3.5
with n ≥ 11 and argue as in the proof of Corollary 4.4, then we can deduce an upper
bound

λ(σ) < 7

4
σ + 4

√
3σ + 61 + 45,

which is always worse than (4.1). However, we note that it is still possible to get a
new and better upper bound for λ(σ) from X(n)K for individual σ . For example, by
applying�eorem 4.1 to X(17)K , we obtain

λ(75) ≤ 155 and λ(76) ≤ 154,(4.6)

which are better than the bounds λ(75) ≤ 197 and λ(76) ≤ 198 coming from (4.1).�e
upper bounds in (4.6) are also better than the bound λ(σ) ≤ 173 for σ = 75, 76 that is
obtained by applying�eorem4.1 toQ(4) (cf.Remark 4.3), and the bound λ(σ) ≤ 167
for σ = 75, 76 in [1, Table 2], which was obtained by applying�eorem 4.1 to Q̃(2).
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We finish our paper by observing that (4.1) does not give the least known upper
bound on λ(σ) for very low values of σ . For example, (4.1) gives λ(0) ≤ 68, whereas
we already know from [5] that λ(0) ≤ 12. We still hope that (4.1) and (4.3) provide
baselines of comparison for future research.
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