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Abstract We develop a theory of R-module Thom spectra for a commutative symmetric ring spectrum

R and we analyze their multiplicative properties. As an interesting source of examples, we show that

R-algebra Thom spectra associated to the special unitary groups can be described in terms of quotient
constructions on R. We apply the general theory to obtain a description of the R-based topological

Hochschild homology associated to an R-algebra Thom spectrum.
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1. Introduction

In their most classical form, Thom spectra arise by forming Thom spaces of compatible

families of vector bundles. The compatibility conditions amount to considering stable

vector bundles and it is convenient to view the formation of such Thom spectra as a

functor defined on the category of spaces over the classifying space BO for stable vector

bundles. This construction was extended by Mahowald and Lewis to spaces over B F ,

the classifying space for stable spherical fibrations. The paper by Lewis [18, IX] gives a

comprehensive account of such ‘classical’ Thom spectra with special emphasis on their

multiplicative properties.

In order to appreciate the relation to the generalized Thom spectra referred to in the

title of the paper, one must first realize that B F may be interpreted as the classifying

space for the units of the sphere spectrum. It is by now well known that every ‘structured’

ring spectrum R has an underlying grouplike monoid of units GL1(R) which represents

the functor that to a space X associates the units in the ring of R-cohomology classes

R0(X). The corresponding classifying space B GL1(R) classifies spaces equipped with an

action of GL1(R). In the influential paper [3] it was realized how to construct from a map
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f : X → B GL1(R) an associated R-module Thom spectrum M( f ). Here R is supposed

to be a ring spectrum (or ‘S-algebra’) in the symmetric monoidal category of spectra

introduced in [11], and M( f ) is an object in the associated module category. The main

interest in [3] is in developing the orientation theory for such R-module Thom spectra in

a way that generalizes the orientation theory introduced in [23].

In the present paper we shall develop an analogous theory of generalized Thom spectra

in the setting of diagram spectra. For definiteness, the main part of the paper is written

in terms of symmetric spectra of topological spaces, but everything can be adapted to

orthogonal spectra or symmetric spectra of simplicial sets, for example. (This is discussed

in Remark 3.7.) The overlap with the paper [3] is quite small since our main interest is

in the multiplicative properties of such generalized Thom spectra and in the associated

topological Hochschild homology. In the following we describe the contents of the paper

in more detail.

1.1. I-spaces and generalized Thom spectra

Let R be a commutative symmetric ring spectrum which we assume to be semistable

throughout the paper. (Semistability is a weak fibrancy condition on symmetric spectra,

see Remark 2.6.) Sometimes it is also necessary to impose a weak cofibrancy condition

on R, but we suppress this in the introduction. Our generalized Thom spectrum functor

takes values in the category of R-modules of symmetric spectra SpΣR , equipped with

the symmetric monoidal smash product ∧R . The most elegant way to express the

multiplicative properties of such an R-module Thom spectrum functor is by realizing

it as a lax symmetric monoidal functor. In order to facilitate this, we shall invoke the

category of I-spaces, cf. [8, 25, 28, 29]. Recall that I denotes the skeleton category of

finite sets and injections. We write TopI for the category of I-spaces, that is, the category

of functors from I to the category of (compactly generated weak Hausdorff) topological

spaces. A map of I-spaces X → Y is said to be an I-equivalence if the induced map of

homotopy colimits XhI → YhI is a weak homotopy equivalence. It is proved in [25] that

the I-equivalences are the weak equivalences in a model structure on TopI which makes

it Quillen equivalent to the category of spaces Top. The advantage of the category TopI

is that it has a symmetric monoidal convolution product in which every E∞ structure

can be rectified to a strictly commutative monoid. In particular, it is shown in [28] and

[25] that the units of R can be conveniently modeled as a commutative I-space monoid

GLI
1 (R). The latter has a classifying I-space which is again a commutative I-space

monoid. Writing BG for this classifying I-space, the fact that BG is commutative implies

that the over-category TopI/BG inherits the structure of a symmetric monoidal category.

The first version of our R-module Thom spectrum functor then takes the form of a lax

symmetric monoidal functor

T I
: TopI/BG → SpΣR /M GLI

1 (R)

where M GLI
1 (R) denotes the R-module Thom spectrum associated to the terminal object

in TopI/BG. We introduce this functor in § 3 where we analyze its homotopical and

multiplicative properties. Here we also set up an appropriate Tor spectral sequence and we

generalize Lewis and Mahowald’s description of Thom spectra associated to suspensions.
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1.2. Thom spectra associated to space level data

We also want a version of our R-module Thom spectrum functor that takes ordinary

space level data as input, and for this purpose it is convenient to use the homotopy

colimit BGhI as a model of the classifying space for the units of R. The over-categories

Top/BGhI and TopI/BG are related by a chain of Quillen equivalences and we define

our space level Thom spectrum functor to be the composition

T : Top/BGhI
PBG
−−→ TopI/BG

TI
−→ SpΣR /M GLI

1 (R)

where PBG is an explicit lax monoidal functor that realizes the induced equivalence

of homotopy categories. The functor so defined satisfies the conditions that one may

require of a good point set level Thom spectrum functor: It takes weak homotopy

equivalences over BGhI to stable equivalences of R-modules, and it preserves colimits,

h-cofibrations, and tensors with unbased spaces; this is the content of Proposition 4.9.

The homotopy colimit BGhI has the structure of a topological monoid (associative

but not strictly commutative) and the functor T is lax monoidal with respect to the

corresponding monoidal structure on Top/BGhI . Since the units of R usually cannot be

realized as a strictly commutative monoid in Top, we cannot make T into a symmetric

monoidal functor. What we have instead is a version of Lewis’ results on preservation

of operad actions. We show in Proposition 4.11 that if D is an operad augmented over

the Barratt–Eccles operad, then T induces a functor on the corresponding categories of

D-algebras

T : Top[D]/BGhI → SpΣR [D]/M GLI
1 (R).

This shows in particular that if f : M → BGhI is a map of topological monoids, then

T ( f ) is an R-algebra over M GLI
1 (R). In Appendix A we set up a convenient passage

from loop space data to topological monoids and in order to keep the notation simple we

shall presently use the same notation T ( f ) for the R-algebra Thom spectrum associated

to a loop map f (rather than a map of actual topological monoids).

The analogy between the construction of T and the Thom spectrum functor in [3]

makes it plausible that these two functors should be equivalent. This comparison will be

addressed in the forthcoming paper [27] where we also show that T is equivalent to the

∞-categorical Thom spectrum functor introduced in [2].

1.3. Quotient spectra as Thom spectra

As an interesting source of examples, we consider R-module Thom spectra associated to

the special unitary groups SU (n) in the case where R is an even commutative symmetric

ring spectrum (that is, the homotopy groups of R are concentrated in even degrees). Such

Thom spectra are analyzed in detail in § 5 using a geometric approach. The result in the

theorem below follows from the more elaborate statement in Theorem 5.6. We refer to

§ 5.5 for a discussion of the R-module quotient spectrum R/(u1, . . . , un) associated to a

sequence of homotopy classes u1, . . . , un in π∗(R).
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Theorem 1.4. Suppose that R is even and that u1, . . . , un is a sequence of homotopy

classes with ui ∈ π2i (R). Then there exists a loop map

f(u1,...,un) : SU (n+ 1)→ BGhI

such that the homotopy type of the R-module underlying the associated R-algebra Thom

spectrum T ( f(u1,...,un)) is determined by a stable equivalence

T ( f(u1,...,un)) ' R/(u1, . . . , un).

This theorem can be applied in various ways. On the one hand it shows that the

multiplicative structure of SU (n+ 1) induces a multiplicative structure on the R-module

R/(u1, . . . , un). In the extreme case where all the classes ui are trivial this gives us the

R-algebra R ∧ SU (n+ 1)+ with multiplication inherited from R and SU (n+ 1). In the

other extreme case, when the classes u1, . . . , un form a regular sequence in π∗(R), it follows

that T ( f(u1,...,un)) is a regular quotient of R in the sense that there is an isomorphism

π∗
(
T ( f(u1,...,un))

)
' π∗(R)/(u1, . . . , un)

and T ( f(u1,...,un)) is built from R by iterated homotopy cofiber sequences as described in

§ 5. This should be compared to the work by Angeltveit [4] who considers the special case

where u1, . . . , un is a regular sequence and uses a different technique to show that in this

case R/(u1, . . . , un) has an A∞ structure without any conditions on the degrees of the

classes. In our setting we prove in Corollary 5.7 that the above theorem holds without

any restrictions on the even dimensional classes ui provided that R is 2-periodic as well

as even. This leads to another application of the theorem: the verification that certain

well-known spectra naturally arise as Thom spectra.

Example 1.5. Let En be the 2-periodic Lubin–Tate spectrum with

π∗(En) = W (Fpn )[[u1, . . . , un−1]][u, u−1
], |ui | = 0, |u| = 2.

It is proved in [13] that En has the structure of an E∞ ring spectrum, hence can be realized

as a commutative symmetric ring spectrum. The 2-periodic Morava K -theory spectrum

Kn is defined by Kn = En/(p, u1, . . . , un−1). Thus, we have that π∗(Kn) = Fpn [u, u−1
],

and it follows from Corollary 5.7 that there exists a loop map f : SU (n+ 1)→ BGhI
(where BG is the classifying I-space for GLI

1 (En)), such that Kn ' T ( f ).

A different but related construction appears in recent work by Hopkins and Lurie [14]

where the ∞-categorical version of the R-algebra Thom spectrum functor from [2] is

used to study quotient spectra. More specifically, they show that certain types of algebra

spectra over Lubin–Tate spectra arise as the Thom spectra associated with maps from

tori, and they use this to study Brauer groups of Lubin–Tate spectra.

1.6. Topological Hochschild homology of Thom spectra

In § 6 we use our results from the previous sections to analyze the R-based topological

Hochschild homology THHR(−) of R-algebra Thom spectra. This generalizes the analysis
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of topological Hochschild homology for ‘classical’ Thom spectra in [8]. Let f : X → BGhI
be a loop map with delooping B f : B X → B(BGhI). In this situation we shall introduce

a certain map Lη(B f ) : L(B X)→ BGhI where L(−) denotes the free loop space functor.

The construction is given in Definition 6.5 and generalizes that in [8]. We use the

decoration η to indicate a twist by the Hopf map arising from an incompatibility between

the free loop space and the cyclic bar construction uncovered in [28]. The following

theorem is derived from the statement in Theorem 6.6 using the passage from loop space

data to topological monoids detailed in Appendix A.

Theorem 1.7. Given a loop map f : X → BGhI with associated R-algebra Thom spectrum

T ( f ), there is a stable equivalence THHR(T ( f )) ' T (Lη(B f )). If f is a 3-fold loop map,

then this simplifies to THHR(T ( f )) ' T ( f )∧ B X+.

It is possible to combine Theorems 1.4 and 1.7 in order to explicitly calculate the

topological Hochschild homology of R-algebra quotient spectra. Such calculations are

carried out in [6, 7] and provide a means for measuring the extent to which the induced

multiplicative structure on the quotient spectrum R/(u1, . . . , un) depends on the choice

of delooping of the map f in Theorem 1.4. As a sample calculation we offer the following

example which we quote from [7]. Let again En denote the Lubin–Tate spectrum and recall

the structure of π∗(En) described in Example 1.5. We write π∗(En)/(p, u1, . . . , un−1)
∞

for the π∗(En)-module defined by

colimi, j1,..., jn−1 π∗(En)/(pi , u j1
1 , . . . , u jn−1

n−1 ).

Example 1.8 [7]. For each k > 1 such that p > (n+ 1)(k+ 1)+ 1, the 2-periodic Morava

K -theory spectrum Kn admits a structure as an algebra over En for which

π∗ THHEn (Kn) ∼=

k⊕
i=1

π∗(En)/(p, u1, . . . , un−1)
∞.

This complements the calculations by Angeltveit [4].

As we explain in detail in [27], the good point set level properties of the present

Thom spectrum functor also allow one to express the R-based topological André-Quillen

homology of E∞ R-algebra Thom spectra in terms of Thom spectra. This generalizes

work by Basterra and Mandell [5] for S-algebra Thom spectra.

1.9. Notation and conventions

Let Top denote the category of compactly generated weak Hausdorff topological spaces.

We shall work with I-spaces and symmetric spectra in Top throughout the paper. The

category of symmetric spectra is denoted by SpΣ , and we write ASpΣ for the category

of symmetric ring spectra and CSpΣ for the category of commutative symmetric ring

spectra. We shall not have occasion to consider ring spectra in the weaker sense of being

monoids in the stable homotopy category.
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1.10. Organization

We start from scratch by reviewing basic material about I-spaces and their relation to

symmetric spectra in § 2. In § 3 we set up the lax symmetric monoidal Thom spectrum

functor T I taking I-space data as input, and in § 4 we use this to define the Thom

spectrum functor T taking ordinary space level data as input. The material on Thom

spectra associated to the special unitary groups and the relation to quotient spectra

is contained in § 5. We review the definition of topological Hochschild homology in

terms of the cyclic bar construction in § 6, where we use this description in the proof

of Theorem 1.7. In § 7 we establish some useful facts about modules and classifying

spaces for commutative I-space monoids. Appendix A is about the passage from loop

space data to topological monoids.

2. I-spaces and modules over I-space monoids

In this section we recall some basic facts about I-spaces and symmetric spectra from [25,

§ 3]. We also formulate conditions on a commutative I-space monoid G which ensure that

the bar construction BG classifies G-modules.

2.1. Review of I-spaces

Let I be the category with objects the finite sets of the form m = {1, . . . ,m} for m > 0
(where 0 denotes the empty set) and morphisms the injective maps. This is a symmetric

strict monoidal category under ordered concatenation −t− of ordered sets. Let TopI be

the functor category of I-diagrams in Top. The monoidal structure on I and the cartesian

product of spaces induce a convolution product � on TopI : For I-spaces X and Y , their

product X � Y is the left Kan extension of the I × I-diagram (k, l) 7→ X (k)× Y (l) along

−t−: I × I → I. More explicitly, we have

(X � Y )(m) = colimkt l→m X (k)× Y (l)

where the colimit is taken over the comma category (−t− ↓ I). The terminal I-space

UI
= I(0,−) is the monoidal unit for �. We use the term (commutative) I-space monoid

for a (commutative) monoid in the symmetric monoidal category (TopI ,�,UI). This

amounts to the same thing as a lax (symmetric) monoidal functor from I to Top.

We now turn to the homotopy theory of I-spaces and write XhI (or hocolimI X) for

the Bousfield–Kan homotopy colimit of an I-space X (see [9]).

Definition 2.2. A map of I-spaces X → Y is an I-equivalence if XhI → YhI is a weak

homotopy equivalence of spaces.

The I-equivalences are the weak equivalences in several useful model structures on TopI

as discussed in [25, § 3]. Since we shall be particularly interested in commutative I-space

monoids and the associated module categories, it will be most convenient for our purposes

to work with the so-called flat model structures. In order to describe the cofibrations in

these model structures we need to review some basic equivariant homotopy theory for

the symmetric groups Σn : The category of Σn-spaces admits a fine (also known as the
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‘genuine’) model structure in which a map is a weak equivalence (or fibration) if and only

if the induced map of H -fixed points is a weak homotopy equivalence (or fibration) for

every subgroup H in Σn . This is a cofibrantly generated model structure with generating

cofibrations of the form Σn/H × Sn−1
→ Σn/H × Dn for n > 0 and H any subgroup in

Σn .

Next recall that the nth latching space of an I-space X is defined as the colimit Ln X =
colim∂(I↓n) X , where ∂(I ↓ n) denotes the full subcategory of the comma category (I ↓ n)
with objects the non-isomorphisms. Here we view X as a diagram over ∂(I ↓ n) via the

forgetful functor to I. The canonical action of Σn on n induces a Σn-action on Ln X .

In the absolute flat model structure on TopI , a map of I-spaces X → Y is

• a weak equivalence if it is an I-equivalence;

• a cofibration if the induced latching map X (n)∪Ln(X) Ln(Y )→ Y (n) is a cofibration in

the fine model structure on Σn-spaces for all n > 0; and

• a fibration if it has the right lifting property with respect to cofibrations that are

I-equivalences.

The fibrations are described explicitly in [25, § 6.11] and it follows from this description

that if X is a fibrant I-space in the absolute flat model structure, then any morphism

m→ n in I induces a weak homotopy equivalence X (m)→ X (n). The absolute flat model

structure is a cofibrantly generated proper topological model structure that satisfies the

pushout-product and the monoid axiom with respect to �; see [25, Proposition 3.10]. We

shall use the term flat I-space for a cofibrant object in this model structure. If X is a flat

I-space, then the endofunctor X �− preserves I-equivalences by [25, Proposition 8.2].

There is a variation of the absolute flat model structure on TopI known as the positive

flat model structure, where the positivity condition is motivated by an insight of J. Smith,

cf. [20, § 14]. The positive flat model structure again has the I-equivalences as its weak

equivalences, but the conditions for a map X → Y to be a cofibration in the absolute

flat model structure has been strengthened so that the latching map in degree zero (that

is, the map X (0)→ Y (0)) is now supposed to be a homeomorphism. Consequently, the

positive flat model structure has less cofibrations and more fibrations than the absolute

flat model structure and in particular the condition for an I-space to be fibrant no longer

implies that the initial map 0→ n induces a weak homotopy equivalence X (0)→ X (n).
The identity functor on TopI is a left Quillen functor from the positive to the absolute

flat model structure and defines a Quillen equivalence since these model structures have

the same weak equivalences.

Remark 2.3. Apart from the flat model structures there are also the so-called absolute

and positive projective model structures on TopI , cf. [25, § 3.1]. Let us temporarily write

TopIproj for TopI equipped with the (absolute or positive) projective model structure

and TopIflat for TopI equipped with the corresponding (absolute or positive) flat model

structure. Then there is a chain of Quillen equivalences

Top
constI

// TopIproj
colimIoo id // TopIflatid

oo
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with respect to these model structures on TopI and the usual Quillen model structure on

Top. Here the upper arrows indicate left Quillen functors. The first adjunction is induced

by the colimit functor and the constant embedding, and the second adjunction is given

by the identity functor. As a consequence, all these model structures have homotopy

categories equivalent to the usual homotopy category of spaces.

Now let D be an operad in spaces as defined in [21], and let TopI [D] be the category

of D-algebras in TopI with respect to the �-product. The advantage of the positive flat

model structure (as opposed to the absolute structure) is that it lifts to a positive flat

model structure on TopI [D] in the sense that a map of D-algebras is a weak equivalence

or fibration if and only if the underlying map of I-spaces is so. This applies in particular

to the commutativity operad C (the terminal operad with Cn = ∗ for all n) and provides

a positive flat model structure on the category of commutative I-space monoids CTopI =
TopI [C] that makes it Quillen equivalent to the category of E∞ spaces. In other words,

the passage to I-spaces allows us to model E∞ spaces by strictly commutative monoids.

In this paper we shall always use the term cofibrant commutative I-space monoid to

mean a cofibrant object in the positive flat model structure on CTopI . The flat model

structures have the following convenient compatibility property [25, Proposition 3.15]: If

G is a cofibrant commutative I-space monoid, then the underlying I-space of G is flat.

The Bousfield–Kan homotopy colimit functor (−)hI : TopI → Top is a monoidal (but

not symmetric monoidal) functor with monoidal product

XhI × YhI
∼=
−→ (X × Y )h(I×I)→ (−t−)∗(X � Y )h(I×I)→ (X � Y )hI (2.1)

induced by the natural transformation X (k)× Y (l)→ (X � Y )(kt l) resulting from the

definition of � as a left Kan extension. Hence an I-space monoid M gives rise to a

topological monoid MhI . We say that M is grouplike if the monoid π0(MhI) is a group.

2.4. Units of symmetric ring spectra

The category of I-spaces is related to the category of symmetric spectra SpΣ by an

adjunction

SI : TopI � SpΣ : �I (2.2)

whose left adjoint SI is strong symmetric monoidal with respect to the �-product on

TopI and the smash product on SpΣ ; see [25, § 3.17]. These functors are given explicitly

at each level n by SI [X ]n = Sn
∧ X (n)+ and �I(E)(n) = �n(En).

The absolute and positive flat stable model structures (also known as the S-model

structures) on SpΣ discussed in [33] and [30] are the analogues for symmetric spectra

of the absolute and positive flat model structures on TopI (and motivated their

construction). The adjunction (2.2) is a Quillen adjunction with respect to these model

structures. It is a pleasant fact that SI and �I have better homotopy invariance

properties than can be deduced from the general properties of a Quillen adjunction.

Lemma 2.5. The left adjoint SI maps I-equivalences between arbitrary I-spaces to

stable equivalences, and the right adjoint �I maps π∗-isomorphisms between arbitrary

symmetric spectra to I-equivalences.
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Proof. Since SI is a left Quillen functor and an acyclic fibration in the absolute flat

model structure on TopI is a level equivalence, the first statement follows from the fact

that SI sends level equivalences of I-spaces to level equivalences of symmetric spectra.

For a π∗-isomorphism of symmetric spectra E → E ′ it follows from the definitions that

�I(E)→ �I(E ′) induces a weak homotopy equivalence when forming the homotopy

colimit over the subcategory of I given by the subset inclusions. By an argument

originally due to J. Smith, it is therefore also an I-equivalence; see [32, Proposition 2.2.9]

or [26, Proposition 2.6].

Remark 2.6. Recall from [32] and [30] that a symmetric spectrum is said to be

semistable if it is π∗-equivalent to a symmetric �-spectrum. Since stable equivalences

and π∗-isomorphisms agree for semistable symmetric spectra, it follows that �I takes

stable equivalences between semistable symmetric spectra to I-equivalences. Fortunately,

most of the symmetric spectra that one encounters in practice are semistable.

Since SI is strong symmetric monoidal and �I is lax symmetric monoidal, we have an

induced adjunction

SI : CTopI � CSpΣ : �I (2.3)

relating the category of commutative I-space monoids CTopI to the category of

commutative symmetric ring spectra CSpΣ . If R is a semistable commutative symmetric

ring spectrum, then �I(R) is a commutative I-space monoid model for the corresponding

multiplicative E∞ space of R.

Definition 2.7. Let R be a semistable commutative symmetric ring spectrum. The

I-space units GLI
1 (R) of R is the sub commutative I-space monoid of �I(R) given

by the invertible path components in the sense that GLI
1 (R)(n) is the union of the

path components in �n(Rn) that represent units in the commutative ring π0(R) =
colimn πn(Rn).

It follows from the definition that π0(GLI
1 (R)hI) can be identified with the units in

π0(R) ∼= π0(�
I(R)hI) which shows that GLI

1 (R) is grouplike. We notice that the adjoint

of the inclusion GLI
1 (R)→ �I(R) provides a canonical map of commutative symmetric

ring spectra

SI [GLI
1 (R)] → R, (2.4)

analogous to the algebraic situation where a commutative ring receives a canonical map

from the integral group ring of its units.

Remark 2.8. If we want to consider the units of a commutative symmetric ring spectrum

that is not semistable, we may apply the above construction to a suitable fibrant

replacement.
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2.9. The universal fibration EG → BG

Given an I-space monoid G, a right G-module X , and a left G-module Y , the simplicial

two-sided bar construction B•(X,G, Y ) is the simplicial I-space [n] 7→ X �G�n � Y with

simplicial structure maps defined as in [21, § 10]. We write B(X,G, Y ) for the I-space

defined by geometric realization of this simplicial object. When G is commutative and

H and H ′ are commutative G-algebras given by maps of commutative I-space monoids

G → H and G → H ′, the two-sided bar construction B(H,G, H ′) inherits the structure

of a commutative I-space monoid, cf. [21, Lemma 10.1]. The monoidal unit UI is also a

terminal object in CTopI and we define the bar construction BG to be the commutative

I-space monoid B(UI ,G,UI).

Definition 2.10. Given a commutative I-space monoid G, the map G → UI induces a

map B(UI ,G,G)→ BG of commutative I-space monoids and we define EG → BG to

be the positive fibration of commutative I-space monoids resulting from a (functorial)

factorization B(UI ,G,G) //∼ // EG // // BG in the positive flat model structure on CTopI .

The inclusion of the last copy of G in B(UI ,G,G) and the acyclic cofibration

B(UI ,G,G)→ EG from the above definition make EG a commutative G-algebra. Hence

we can view EG → BG as a map of commutative G-algebras, where the structure map

G → BG factors through the terminal map G → UI . It follows from general properties

of the two-sided bar construction that B(UI ,G,G) contains UI as a deformation retract

(see [21, § 9]) which implies that the unit UI
→ EG is an I-equivalence.

Remark 2.11. If G and G ′ are cofibrant in the positive flat model structure on CTopI , then

an I-equivalence G → G ′ induces an I-equivalence BG → BG ′. Therefore BG represents

a well-defined homotopy type if G is cofibrant in CTopI . The fact that EG → BG
is a positive fibration by construction will free us from making additional fibrancy

assumptions later on and it is for this reason we prefer to work with EG instead of

B(UI ,G,G). Such additional fibrancy conditions were needed in Lewis’ work on the

‘classical’ Thom spectrum functor [18, § IX] since the model categorical techniques for

making multiplicative fibrant replacements were not in place at the time when that paper

was written. In our setting, additional fibrancy conditions will only be needed to make

the passage from space level data to I-space data in § 4 homotopy invariant.

Let again G be a commutative I-space monoid, and let TopIG denote the category

of (right) G-modules with respect to the �-product. The category TopIG inherits a

symmetric monoidal product X �G Y defined by the usual coequalizer diagram and with

G as the monoidal unit. Identifying the category of UI -modules with TopI , the map

G → UI induces a restriction of scalars functor trivG : TopI → TopIG whose left adjoint

is the strong symmetric monoidal extension of scalars functor −�G UI
: TopIG → TopI .

In the following we shall use the notation EG → trivG BG when we think of the map of

G-algebras in Definition 2.10 as a map of G-modules.
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Definition 2.12. Let G be a commutative I-space monoid. We define a pair of adjoint

functors (V,U ) by the composition

V : TopIG/EG � TopIG/trivG BG � TopI/BG : U (2.5)

where the first adjunction is given by composition with and base change along EG →
trivG BG and the second adjunction is induced by the adjoint functors −�G UI and trivG .

More explicitly, the left adjoint V sends X → EG to the composition

X �G UI
→ EG�G UI

→ (trivG BG)�G UI ∼= BG

and the right adjoint U sends Y → BG to the pullback of the diagram

EG → trivG BG ← trivGY.

Since BG is a commutative I-space monoid, the category TopI/BG inherits a symmetric

monoidal structure from TopI : Given maps of I-spaces α : X → BG and β : Y → BG,

the monoidal product α�β is defined by the composition

α�β : X � Y → BG� BG → BG.

This product has the unit ι : UI
→ BG as its monoidal unit. Notice also that a

commutative monoid in the symmetric monoidal category (TopIG ,�G ,G) is the same

thing as a commutative G-algebra. Hence we may view EG as a commutative monoid in

TopIG so that TopIG/EG inherits a symmetric monoidal structure in the same way. Here

the monoidal unit is the G-algebra unit ιG : G → EG.

Lemma 2.13. The left adjoint V in (2.5) is a strong symmetric monoidal functor, and

its right adjoint U is a lax symmetric monoidal functor.

Proof. This is standard, but we later need to know the details. The fact that the extension

of scalars functor −�G UI is strong symmetric monoidal implies that the same holds

for V . Using this, the lax symmetric monoidal structure maps for U are given by the

compositions

U (α)�G U (β)→ U V (U (α)�G U (β))
∼=
←− U (V U (α)� V U (β))→ U (α�β)

and ιG → U V (ιG)
∼=
← U (ι), induced by the adjunction unit and counit and the monoidal

structure map for V . (These structure maps can also be described explicitly by the

universal property of the pullback.)

Having arranged for EG → BG to be a fibration in the positive flat model structure,

right properness of the latter model structure [25, Proposition 11.3] has the following

consequence.

Lemma 2.14. The functor U : TopI/BG → TopIG/EG preserves I-equivalences.

It follows from [25, Proposition 3.10] and [31, Theorem 4.1(2)] that the absolute and

positive flat model structures on TopI lift to corresponding absolute and positive flat
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model structures on TopIG in the sense that a map of G-modules is a weak equivalence

or fibration if and only if the underlying map of I-spaces is so. The next theorem shows

that under suitable assumptions on G we may view EG → BG as a universal fibration

and BG as a classifying space for G-modules.

Theorem 2.15. Let G be a grouplike and cofibrant commutative I-space monoid. Then

the (V,U )-adjunction (2.5) and the adjunction induced by the canonical map EG → UI

define a chain of Quillen equivalences

TopIG � TopIG/EG � TopI/BG

with respect to the absolute and positive flat model structures on these categories.

Proof. The first Quillen adjunction is given by composition with and pullback along the

map EG → UI and is a Quillen equivalence because the latter is an I-equivalence. We

postpone the argument why the (V,U )-adjunction defines a Quillen equivalence until § 7

where the statement appears as part of Proposition 7.8.

Let α : X → BG and β : Y → BG be maps of I-spaces with X or Y flat, and let

U (α)cof
→ U (α) and U (β)cof

→ U (β) be cofibrant replacements in the absolute flat model

structure on TopIG/EG. We define the derived monoidal multiplication for U to be the

composition

U (α)cof�G U (β)cof
→ U (α)�G U (β)→ U (α�β). (2.6)

Such a map can be defined without conditions on X and Y , but the term derived monoidal

multiplication is only justified if either X or Y is flat.

Lemma 2.16. Let G be a grouplike and cofibrant commutative I-space monoid. Then

the monoidal unit ιG → U (ι) and the derived monoidal multiplication (2.6) are

I-equivalences.

Proof. The fact that the (V,U )-adjunction defines a Quillen equivalence implies that the

derived unit and counit of the adjunction are I-equivalences (see [15, Proposition 1.3.13]).

Using the description of the monoidal structure maps given in the proof of Lemma 2.13,

the result then follows from the homotopy invariance of U stated in Lemma 2.14 and the

assumption that X or Y is flat.

3. Thom spectra from I-space data

Our definition of the Thom spectrum functor is based in part on the two-sided bar

construction, and we begin by reviewing the basic properties of the latter.

3.1. The two-sided bar construction for symmetric spectra

We shall work with the positive and absolute flat stable model structures on SpΣ

introduced in [33] and [30]. These model structures have the same stable equivalences as

the standard stable model structure (see [16] and [20]), but the flat versions have more

cofibrations which makes them better suited for certain applications. Most important for

our purposes is the fact that the positive flat stable model structure lifts to a (positive
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flat) stable model structure on the category of commutative symmetric ring spectra CSpΣ ,

and that if a commutative symmetric ring spectrum is cofibrant in this model structure,

then its underlying symmetric spectrum is cofibrant in the absolute flat stable model

structure on SpΣ . We shall use the term flat symmetric spectrum to mean a cofibrant

object in the absolute flat stable model structure on SpΣ .

Given a commutative symmetric ring spectrum R, we write SpΣR for the symmetric

monoidal category of (right) R-modules under the usual R-balanced smash product ∧R .

The absolute flat stable model structure on SpΣ lifts to a flat stable model structure on

SpΣR in which a map of R-modules is a stable equivalence or fibration if and only if the

underlying map of symmetric spectra is so with respect to the absolute flat stable model

structure. We use the term flat R-module for a cofibrant object in this model structure.

It is a useful fact that if M is a flat R-module, then the smash product M ∧R − preserves

stable equivalences between general R-modules without further cofibrancy conditions (see

e.g. the proof of [24, Lemma 4.8] and the analogous argument for I-spaces in Lemma 7.1

below).

Now let P → R be a map of commutative symmetric ring spectra and recall that for

a P-module M , the two-sided bar construction B(M, P, R) is the geometric realization

of the simplicial symmetric spectrum [n] 7→ M ∧ P∧n
∧ R with simplicial structure maps

defined as in [21, § 10]. This construction gives a lax symmetric monoidal functor

B(−, P, R) : SpΣP → SpΣR
with monoidal structure maps

B(M, P, R)∧R B(N , P, R)→ B(M ∧P N , P, R) and R→ B(P, P, R) (3.1)

induced by the multiplicative structures of P and R and the unit of P, cf. [21, Lemma

10.1]. The two-sided bar construction is related to the actual smash product by a natural

symmetric monoidal map B(M, P, R)→ M ∧P R induced by the canonical map M ∧ R→
M ∧P R in simplicial degree zero. Applying the argument from [32, Lemma 4.1.9] to the

case of a flat P-module, we get the following result.

Lemma 3.2. If M is a flat P-module, then B(M, P, R)→ M ∧P R is a stable equivalence.

The advantage of the two-sided bar construction compared to the extension of scalars

functor −∧P R is that the former is homotopically well-behaved under less restrictive

cofibrancy conditions as we shall see below. Let us say that a commutative symmetric

ring spectrum P has a flat unit if the unit S→ P is a cofibration in the absolute flat

stable model structure on SpΣ .

Lemma 3.3. Let P → R be a map of commutative symmetric ring spectra and suppose

that P has a flat unit.

(i) If M is a P-module such that the underlying symmetric spectrum of M is flat, then

B(M, P, R) is a flat R-module.

(ii) If the underlying symmetric spectrum of R is flat, then the functor defined by

B(−, P, R) preserves stable equivalences.
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Proof. For the proof of (i) we consider the skeletal filtration of B(M, P, R) inherited

from the underlying simplicial object. (We refer to [17, Corollary 2.4] and its proof for a

discussion of skeletal filtrations.) The assumption on M implies that the 0-skeleton M ∧ R
is a flat R-module. Furthermore, using the pushout-product axiom, the assumption that

P has a flat unit implies that the inclusion of the (n− 1)-skeleton in the n-skeleton is

a cofibration in the flat stable module structure on SpΣR for all n. This implies that

B(M, P, R) is a flat R-module.

As for the claim in (ii), let M → M ′ be a stable equivalence of P-modules, and notice

that the induced map of R-modules admits a factorization

B(M, P, R) ∼= M ∧P B(P, P, R)→ M ′ ∧P B(P, P, R) ∼= B(M ′, P, R).

Using an argument similar to that used in (i) (or that B(P, P, R) is isomorphic to

B(R, P, P)), the assumption on R implies that B(P, P, R) is a flat P-module. Hence

the functor −∧P B(P, P, R) preserves stable equivalences and the result follows.

Whereas the extension of scalars functor −∧P R is strong symmetric monoidal, the

two-sided bar construction only gives a lax symmetric monoidal functor.

Lemma 3.4. Let P → R be a map of commutative symmetric ring spectra and suppose

that P is cofibrant in the positive flat stable model structure on CSpΣ . Then the monoidal

structure maps in (3.1) are stable equivalences provided that M and N are flat P-modules.

Proof. The assumption on P implies that its underlying symmetric spectrum is flat which

in turn implies that every flat P-module has underlying flat symmetric spectrum (see

[33, § 4]). It also follows that P has a flat unit so that B(M, P, R) and B(N , P, R) are

flat R-modules by Lemma 3.3. Hence the monoidal structure maps in (3.1) are stably

equivalent to the monoidal structure maps for the extension of scalars functor −∧P R
that we know to be isomorphisms.

3.5. The Thom spectrum functor on TopI/BG

Let R be a semistable commutative symmetric ring spectrum and let G → GLI
1 (R)

be a cofibrant replacement of its units in the positive flat model structure on

CTopI . We consider the two-sided bar construction B(−,SI [G], R) associated with the

canonical map SI [G] → R in (2.4), and write M GLI
1 (R) for the commutative R-algebra

spectrum B(SI [EG],SI [G], R) where EG is the commutative G-algebra introduced in

Definition 2.10.

Definition 3.6. The R-module Thom spectrum functor T I is the composition

T I
: TopI/BG

U
−→ TopIG/EG

SI
−→ SpΣSI [G]/S

I
[EG]

B(−,SI [G],R)
−−−−−−−−→ SpΣR /M GLI

1 (R)

of the right adjoint U from (2.5) and the functors of over-categories induced by SI and

B(−,SI [G], R).

For R = S, one can show by a direct comparison that the resulting Thom spectrum

functor is equivalent to that considered by Lewis and Mahowald. This implies in particular

that M GLI
1 (S) is stably equivalent to the Thom spectrum usually denoted M F .
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Remark 3.7. For definiteness, we have chosen the setting of symmetric spectra of

topological spaces for our generalized Thom spectra, but it is also possible to translate the

constructions and results in the paper to the setting of orthogonal spectra [20]. The main

point in this translation is to replace the category of I-spaces with the corresponding

diagram category of V-spaces, where V denotes the topological category with objects the

standard real inner product spaces Rn and morphisms the linear isometries. Lind’s work

on V-spaces [19] and Stolz’ flat model structure for orthogonal spectra [10] supply many

of the necessary technical foundations. Working with orthogonal spectra has the technical

advantage that stable equivalences induce isomorphisms on spectrum homotopy groups

so that the semistability condition becomes superfluous.

One can also modify the constructions to obtain a generalized Thom spectrum functor

for symmetric spectra in simplicial sets. In this case, we have to assume that R is both

level fibrant and semistable for GLI
1 (R) to capture the desired homotopy type. This is

useful even in the classical case because the approach to Thom spectra for maps to B F
in [29] does not seem to have a simplicial counterpart with good monoidal properties.

The homotopy invariance statement in the next proposition is the main reason why we

prefer to work with the two-sided bar construction instead of the actual smash product

−∧SI [G] R. We recall that if R is cofibrant in the positive flat stable model structure on

CSpΣ , then its underlying symmetric spectrum is automatically flat.

Proposition 3.8. Suppose that the underlying symmetric spectrum of R is flat. Then T I

takes I-equivalences over BG to stable equivalences over M GLI
1 (R).

Proof. The functor U preserves I-equivalences by Lemma 2.14, the functor SI takes

I-equivalences to stable equivalences by Lemma 2.5, and B(−,SI [G], R) preserves stable

equivalences by Lemma 3.3 and the assumption on R.

Remark 3.9. The above construction also leads to an R-module Thom spectrum functor

for associative (not necessarily commutative) symmetric ring spectra R. The homotopy

invariance property continues to hold, but there are no monoidal structures on TopI/BG
and SpΣR that can be preserved by such a Thom spectrum functor.

Next we turn to the monoidal properties of T I . Let ι : UI
→ BG denote the unit of

the commutative I-space monoid BG.

Proposition 3.10. The functor T I is lax symmetric monoidal with monoidal structure

maps given by maps of R-modules

T I(α)∧R T I(β)→ T I(α�β) and R→ T I(ι)

satisfying the usual associativity, commutativity, and unitality conditions.

Proof. The functor U is lax symmetric monoidal by Lemma 2.13, the functor SI is even

strong symmetric monoidal, and the two-sided bar construction B(−, SI [G], R) is lax

symmetric monoidal as we noted above. Hence the composition is also lax symmetric

monoidal.
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Let D be an operad in spaces. Since BG and M GLI
1 (R) are commutative monoids in

the symmetric monoidal categories TopI and SpΣR , restricting along the canonical operad

morphism from D to the (terminal) commutativity operad allows us to view BG and

M GLI
1 (R) as D-algebras. Writing TopI [D] and SpΣR [D] for the categories of D-algebras

in TopI and SpΣR , Proposition 3.10 then has the following corollary.

Corollary 3.11. Let D be an operad in spaces. Then T I induces a functor

T I
: TopI [D]/BG → SpΣR [D]/M GLI

1 (R)

on the categories of D-algebras over BG and M GLI
1 (R).

We proceed to analyze the homotopical properties of the monoidal structure maps for

T I . Let α : X → BG and β : Y → BG be maps of I-spaces with X or Y flat, and let

T I(α)cof
→ T I(α) and T I(β)cof

→ T I(β) be cofibrant replacements in the flat stable

model structure on SpΣR . Composing the monoidal multiplication from Proposition 3.10

with these cofibrant replacements, we get a map of R-modules

T I(α)cof
∧R T I(β)cof

→ T I(α)∧R T I(β)→ T I(α�β) (3.2)

that we refer to as the derived monoidal multiplication of T I .

Proposition 3.12. Let R be a commutative symmetric ring spectrum with underlying

flat symmetric spectrum. Then the monoidal unit R→ T I(ι) and the derived monoidal

multiplication (3.2) are stable equivalences.

Proof. We can write the monoidal unit as the composition

R→ B(SI [G],SI [G], R)→ B(SI [U (ι)],SI [G], R)

where the first map is a stable equivalence by general properties of the two-sided bar

construction, and the second map is a stable equivalence since SI [G] → SI [U (ι)] is a

stable equivalence by Lemmas 2.5 and 2.16.

In order to analyze the derived monoidal multiplication, we first choose cofibrant

replacements U (α)cof
→ U (α) and U (β)cof

→ U (β) as in Lemma 2.16. Applying

the functor B(SI [−],SI [G], R) to these cofibrant replacements gives us cofibrant

replacements of T I(α) and T I(β) by flat R-modules as follows from Lemma 3.3.

Furthermore, combining Lemmas 2.16 and 3.4, we see that the derived monoidal

multiplication is a stable equivalence for these particular choices of cofibrant

replacements. That the same holds for all choices of cofibrant replacements now follows

from the fact that the smash product ∧R preserves stable equivalences between flat

R-modules.

Recall that the topological categories TopI and SpΣR are tensored over Top with tensors

defined by the levelwise cartesian products X × Q and the levelwise smash product

E ∧ Q+ for a space Q, an I-space X , and a symmetric spectrum E . Precomposing with

the appropriate projections, we get induced tensor structures on the over-categories

SI/BG and SpΣR /M GLI
1 (R). The next proposition states that the Thom spectrum

functor preserves these tensors.
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Proposition 3.13. For a map of I-spaces α : X → BG and a space Q, there is a natural

isomorphism T I(α× Q) ∼= T I(α)∧ Q+.

3.14. Thom spectra from I-space monoids over G

Let R be a (semistable as always) commutative symmetric ring spectrum with flat unit

and underlying flat symmetric spectrum, and let again G → GLI
1 (R) be a cofibrant

replacement. Recall from [25, Proposition 9.3] that the absolute flat model structure on

TopI lifts to an (absolute flat) model structure on the category ATopI of (not necessarily

commutative) I-space monoids. We shall use the term cofibrant I-space monoid for a

cofibrant object in this model structure on ATopI . The induced over-category model

structures on ATopI/G and ATopI/GLI
1 (R) are Quillen equivalent, and it will be most

convenient to work directly with I-space monoids over G. Given a map of I-space

monoids α : H → G, we write Bα : B H → BG for the induced map of bar constructions.

Proposition 3.15. Let H be a grouplike and cofibrant I-space monoid, and let α : H → G
be a map of I-space monoids. Then there is a chain of natural stable equivalences

T I(Bα) ' B(R, R ∧SI [H ], Rα)

where the copy of R on the left in the two-sided bar construction has module

structure induced by the projection R ∧SI [H ] → R, and Rα has R as its underlying

symmetric spectrum and module structure induced by the map H
α
→ G → GLI

1 (R) and

the multiplication in R.

On the level of homotopy groups we have π∗(R ∧SI [H ]) ∼= R∗(HhI) with Pontryagin

ring structure induced by the monoid structure of HhI . Since the two-sided bar

construction B(R, R ∧SI [H ], Rα) represents the derived smash product of R and Rα over

R ∧SI [H ], we thus get the following Tor spectral sequence (compare e.g. [11, Theorem

IV.4.1]):

E2
∗,∗ = TorR∗(HhI )

∗ (R∗, Rα∗ ) H⇒ π∗(T I(Bα))

Proof of Proposition 3.15. The map α gives rise to a commutative diagram of I-spaces

B(UI , H,G) //

��

B(UI ,G,G)

��

B H Bα // BG

which we claim to be homotopy cartesian. Thus, we must show that applying the

homotopy colimit functor (−)hI we get a homotopy cartesian diagram of spaces (see [25,

Corollary 11.4]). For this it suffices to show that replacing G by GhI , H by HhI , and the

�-product by the cartesian product of spaces, the diagram becomes homotopy cartesian.

In this situation the diagram is actually a pullback diagram and the vertical maps are

quasifibrations by [22, Theorem 7.6] since HhI and GhI are grouplike. This shows that

the diagram is homotopy cartesian. By definition of the universal fibration EG → BG
this in turn implies that the induced map B(UI , H,G)→ U (Bα) is an I-equivalence,

and hence that applying SI gives a stable equivalence of S[G]-modules

B(S,SI [H ],SI [G]) ∼= SI [B(UI , H,G)]
'
→ SI [U (Bα)].
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The chain of stable equivalences

B(SI [U (Bα)],SI [G], R)
'
←− B(B(S,SI [H ],SI [G]),SI [G], R)

'
−→ B(S,SI [H ],SI [G])∧SI [G] R

'
−→ B(S,SI [H ], Rα)

'
−→ B(R, R ∧SI [H ], Rα)

then gives the statement in the proposition. For the second equivalence we argue as in the

proof of Lemma 3.3(i) to show that the SI [G]-module B(S,SI [H ],SI [G]) is flat such that

Lemma 3.2 applies. The flatness assumption on the unit of R ensures that the degeneracy

maps in the simplicial spectrum underlying B(R, R ∧SI [H ], Rα) are cofibrations so the

geometric realization is homotopically well-behaved.

Remark 3.16. In general, given a map of based I-spaces β : X → BG with XhI path

connected, one can show that there exists a grouplike and cofibrant I-space monoid M
and a map of I-space monoids α : M → G such that Bα and β are weakly equivalent

as objects of TopI/BG. It follows that the description of the Thom spectrum functor in

Proposition 3.15 can be extended to all such maps of based I-spaces X → BG with XhI
path connected.

3.17. Thom spectra over suspensions

Let R and G be as above and suppose that the underlying symmetric spectrum of R is

flat. (We do not need to assume that R has a flat unit for the results in this section.)

Let X be a based I-space (that is, an I-space equipped with a map UI
→ X), which we

assume to be levelwise well-based. We write C X for the reduced cone (the levelwise smash

product with the unit interval I based at 0) and ΣX for the reduced suspension (the

levelwise smash product with S1
= I/∂ I ). Given a map of based I-spaces α : X → G, we

let Σα be the composition

Σα : ΣX → ΣG → BG,

where the second map is the inclusion of ΣG as the 1-skeleton of BG.

Proposition 3.18. The Thom spectrum T I(Σα) fits in a functorial homotopy cocartesian

diagram of R-modules

SI [X ] ∧ R //

��

SI [C X ] ∧ R

��

B(SI [G],SI [G], R) // T I(Σα)

where the upper horizontal map is induced by the inclusion of X in C X , and the vertical

map on the left is induced by α and the inclusion of SI [G] ∧ R as the 0-skeleton in

B(SI [G],SI [G], R).

Notice that the composition of the vertical map on the left with the stable equivalence

B(SI [G],SI [G], R)
'
−→ R can be described as multiplication by SI [α] via the map

G → GLI
1 (R). Hence the diagram in the proposition is stably equivalent to the following
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diagram in the stable homotopy category

R ∧ (XhI)+ //

��

R

��

R // T I(Σα)

where on the left we compose αhI with the map GhI → GLI
1 (R)hI and use the

multiplication in R. Consequently we get a homotopy cofiber sequence of R-modules

R ∧ XhI → R→ T I(Σα).

We prefer the description of T I(Σα) in the proposition since it has the advantage of

being strictly functorial. The proof of the proposition is based on the next lemma.

Lemma 3.19. There is a functorial homotopy cocartesian diagram of G-modules

X �G //

��

C X �G

��

G // U (Σα)

where the upper horizontal map is induced by the inclusion of X in C X , and the vertical

map on the left is induced by α and the multiplication in G.

Proof. We first observe that the 1-skeleton of B(UI ,G,G) can be identified with the

pushout of the diagram G ← G�G → CG�G, where the maps are given by the

multiplication in G and the inclusion of G in CG. Hence Σα fits as the composition

in the bottom line of the commutative diagram

G ∪X�G C X �G //

��

G ∪G�G CG�G //

��

B(UI ,G,G)

��

ΣX // ΣG // BG

which in turn gives rise to the commutative diagram in the lemma. Furthermore, by the

definition of the universal fibration EG → BG, the statement in the lemma is equivalent

to the outer diagram being homotopy cartesian. Now recall from [25, Corollary 11.4])

that a commutative diagram of I-spaces is homotopy cartesian if and only if it becomes

a homotopy cartesian diagram of spaces when passing to homotopy colimits. Thus, it

suffices to show that replacing X by XhI , G by GhI , and the �-product by the cartesian

diagram of spaces, the outer diagram becomes homotopy cartesian. In this situation

one can check that the outer diagram is in fact a pullback diagram. Indeed, it is the

geometric realization of a pullback diagram of simplicial spaces, where the simplicial cone

is the smash product with the standard simplicial one-simplex 1[1], and the simplicial

suspension is the smash product with the simplicial circle 1[1]/∂1[1]. The standard

arguments which show that B(∗,GhI ,GhI)→ BGhI is a quasifibration also show that

the projection

GhI ∪XhI×GhI (C(XhI)×GhI)→ Σ(XhI)

is a quasifibration since GhI is grouplike. This gives the result.
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Proof of Proposition 3.18. Applying the functor B(SI [−],SI [G], R) to the homotopy

cocartesian diagram in Lemma 3.19, we get a commutative diagram of R-modules

B(SI [X ] ∧SI [G],SI [G], R) //

��

B(SI [C X ] ∧SI [G],SI [G], R)

��

B(SI [G],SI [G], R) // B(SI [U (Σα)],SI [G], R)

which is homotopy cocartesian by Lemmas 2.5 and 3.3. Now the assumption that

the underlying symmetric spectrum of R be flat implies that there is natural stable

equivalence

−∧ R→ B(−∧SI [G],SI [G], R)

and applying this to the upper horizontal map in the diagram above, we get the homotopy

cocartesian square in the proposition.

Remark 3.20. Using that the canonical map G → �(BG) is an I-equivalence (see [26,

§ 4]), one may extend the result in Proposition 3.18 to general based maps ΣX → BG.

We shall prove a space level version of this result in § 4.12.

4. Generalized Thom spectra from space level data

In this section, we explain how the Thom spectrum functor T I from the previous section

gives rise to an R-module Thom spectrum functor taking space level data as input. For

this purpose we first review the I-spacification functor introduced in [29, § 4.2].

4.1. I-spacification of space level data

The I-spacification procedure works in general for a commutative I-space monoid

M and gives a multiplicative homotopy inverse of the homotopy colimit functor

(−)hI : TopI/M → Top/MhI . Furthermore, if D is an operad in Top that is augmented

over the Barratt–Eccles operad E (that is, equipped with a map D→ E), then the

canonical E-action on MhI pulls back to a D-action, and it is proved in [29, Corollary 6.9]

that (−)hI induces a functor TopI [D]/M → Top[D]/MhI relating the categories of

D-algebras over M and MhI . The I-spacification functor is compatible with these actions

and provides a homotopy inverse also in the algebra setting.

The I-spacification procedure is based on the bar resolution M of M defined by

M(n) = hocolim(I↓n) M ◦πn

in which πn : (I ↓ n)→ I denotes the forgetful functor. Since each of the categories

(I ↓ n) has a terminal object, the map from the homotopy colimit to the colimit induces

a levelwise equivalence t : M → M . There is a canonical isomorphism colimI M ∼= MhI
and we write π : M → constI MhI for the adjoint map of I-spaces. Thus, we have a

diagram of I-equivalences

constI MhI
π
←− M

t
−→ M
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and it follows from the proof of [29, Lemma 6.7] that this is a diagram of algebras over

the Barratt–Eccles operad E . Consider the composite functor

Top/MhI
π∗

−→ TopI/M
t
−→ TopI/M (4.1)

where π∗ takes a space over MhI , viewed as a constant I-space, to the pullback along π ,

and the functor t is given by post-composition with the map t .

Proposition 4.2. The functors π∗ and t define a chain of Quillen equivalences relating

Top/MhI equipped with the standard over-category model structure and TopI/M equipped

with the (absolute flat) over-category model structure.

Proof. Recall from Remark 2.3 that there is an (absolute) projective model structure on

TopI with the property that the colimit functor is a left Quillen functor. Let us write

(TopI/M)proj for the category TopI/M equipped with the projective over-category model

structure. Then we have a chain of Quillen adjunctions

Top/MhI
π∗
// (TopI/M)proj

colimoo t // TopI/Moo

which we claim to be Quillen equivalences. For the first adjunction we know that

colim : TopI → Top is a Quillen equivalence and the claim then follows from the fact that

π is an I-equivalence. For the second adjunction we know that the identity functor defines

a left Quillen functor from the projective to the flat model structure on TopI/M and that

this is a Quillen equivalence. The result then follows since t is an I-equivalence.

Remark 4.3. If D is an operad augmented over the Barratt–Eccles operad, an analogous

argument gives a chain of Quillen equivalences relating the categories Top[D]/MhI and

TopI [D]/M equipped with the appropriate model structures.

The functor π∗ in (4.1) is only homotopy invariant on fibrant objects and in order to

remedy this we shall precompose with the standard Hurewicz fibrant replacement functor

0 on Top/MhI . In detail, for a map f : K → MhI , let 0 f (K ) be the space of pairs (x, ω)
given by a point x ∈ K and a path ω : I → MhI such that ω(0) = f (x). The functor 0

then takes f to the Hurewicz fibration 0( f ) : 0 f (K )→ MhI mapping (x, ω) to ω(1).
Putting these constructions together, we define the I-spacification functor

PM : Top/MhI → TopI/M, ( f : K → MhI) 7→ (PM ( f ) : P f (K )→ M) (4.2)

by letting P f (K ) be the pullback in the diagram

constI 0 f (K )
constI 0( f )����

P f (K )oo

����
PM ( f )

''
constI MhI Mπoo t // M.

Since the absolute flat model structure on TopI is right proper, it is clear that P f (K ) is

I-equivalent to constI K . The effect of applying first (−)hI and then PM is dealt with in

the next lemma.
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Lemma 4.4. Let α : X → M be a map of I-spaces. Then α is I-equivalent to PM (αhI) as

objects in TopI/M.

Proof. Writing X for the bar resolution of X , the homotopy cartesian square of I-spaces

constI XhI

��

Xoo

��

constI MhI Moo

is I-equivalent to the homotopy pullback square defining PαhI (XhI). Using that t : X → X
is an I-equivalence, this proves the claim.

The category Top/MhI inherits the structure of a monoidal category from the

topological monoid structure of MhI . Given objects f : K → MhI and g : L → MhI , we

write f × g for the monoidal product defined as the composition

f × g : K × L
f×g
−−→ MhI ×MhI → MhI

in which the last map is the multiplication in MhI . The monoidal unit is given by the

unit ι : ∗ → MhI . Since π and t are maps of I-space monoids, PM canonically has the

structure of a lax monoidal functor. Choosing cofibrant replacements of P f (K ) and Pg(L),
we define the derived monoidal multiplication to be the composition

P f (K )cof� Pg(L)cof
→ P f (K )� Pg(L)→ P f×g(K × L) (4.3)

where the second map is the monoidal multiplication of PM .

Lemma 4.5. The I-spacification functor PM is lax monoidal, and the monoidal unit

UI
→ Pι(∗) and the derived monoidal multiplication (4.3) are I-equivalences.

Proof. For f and g as above, the monoidal structure map is induced by the commutative

diagram

constI 0 f (K )� constI 0g(L) //

��

constI MhI � constI MhI

��

M �Moo

��

constI 0 f×g(K × L) // constI MhI M .oo

In order to show that the derived monoidal multiplication is an I-equivalence, we note

that the left hand vertical map and the horizontal maps on the right hand side of the
diagram induce weak homotopy equivalences after applying (−)hI (see [8, Lemma 8.9]).

We now use that (−)hI preserves and detects homotopy cartesian squares by [25,

Corollary 11.4], and that by [26, Lemma 2.25], the monoidal structure map of (−)hI
is a weak homotopy equivalence when evaluated on cofibrant objects. This implies that

the map in (4.3) is I-equivalent to the map of horizontal homotopy pullbacks in the

above diagram and is therefore an I-equivalence.

4.6. The R-module Thom spectrum functor on Top/BGhI

Let R be a (semistable as always) commutative symmetric ring spectrum, and let us

assume for the rest of this section that the underlying symmetric spectrum of R is flat.

As usual, we let G → GLI
1 (R) be a cofibrant replacement.
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Definition 4.7. The R-module Thom spectrum functor T on Top/BGhI is the composition

Top/BGhI
PBG
−−→ TopI/BG

TI
−→ SpΣR /MGLI

1R (4.4)

of the I-spacification functor for the commutative I-space monoid BG and the R-module

Thom spectrum functor T I from Definition 3.6.

The relation between the Thom spectrum functors T and T I is recorded in the next

proposition which is an immediate consequence of Lemma 4.4.

Proposition 4.8. Let α : X → BG be a map of I-spaces. Then T I(α) and T (αhI) are

naturally stably equivalent in SpΣR /MGLI
1R.

The basic properties of the Thom spectrum functor T are summarized in the following

proposition. We refer the reader to [20] and [25, § 7] for the notion of an h-cofibration.

Proposition 4.9. The Thom spectrum functor T has the following properties:

(i) it takes weak homotopy equivalences over BGhI to stable equivalences;

(ii) it preserves colimits;

(iii) it preserves the tensor with an unbased space Q in the sense that there is a natural

isomorphism T ( f × Q) ∼= T ( f )∧ Q+;

(iv) it takes maps over BGhI that are h-cofibrations in Top to h-cofibrations of

R-modules.

Proof. It is clear from the construction that PBG takes weak equivalence over BGhI
to level equivalences over BG, hence part (i) is a consequence of Proposition 3.8. For

part (ii) we observe that the functor B(SI [−],SI [G], R) on TopIG preserves colimits, so

that it remains to show that the same holds for the composite functor U ◦ PBG . Let

us write t∗EG → BG for the pullback of the universal fibration EG → BG along the

levelwise equivalence t : BG → BG. Given a map f : K → BGhI , we can then identify

U (P f (K )) with the pullback of f along the levelwise Hurewicz fibrant replacement of the

composition t∗EG → BG → BGhI , followed by the projection onto EG. Furthermore,

the arguments in [17] show that the space BGhI is locally equiconnected in the sense that

the diagonal inclusion in BGhI × BGhI is an h-cofibration. Using this, the result follows

from [18, Propositions 1.1 and 1.2, § IX] which taken together state that pullback along

a Hurewicz fibration with locally equiconnected codomain preserves colimits. The claim

in (iii) follows from the fact that both of the functors PBG and T I preserve tensors with

unbased spaces. Finally, the proof of (iv) is analogous to the proof of the corresponding

statement in [29, Proposition 4.16]: The functor PBG takes (not necessarily fiberwise)

h-cofibrations over BGhI to fiberwise h-cofibrations over BG by [18, Proposition IX1.11],

and T I takes fiberwise h-cofibrations over BG to h-cofibrations of R-modules.

Notice in particular, that by the above proposition T takes homotopy cocartesian

squares of spaces over BGhI to homotopy cocartesian squares of R-modules.

Since T I is lax symmetric monoidal by Proposition 3.10 and PBG is lax monoidal

by Lemma 4.5, the composite functor T is also lax monoidal. Given a pair of maps
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f : K → BGhI and g : L → BGhI , we choose cofibrant replacements of the R-modules

T ( f ) and T (g), and define the derived monoidal multiplication of T to be the composite

map

T ( f )cof
∧R T (g)cof

→ T ( f )∧R T (g)→ T ( f × g). (4.5)

Combining Proposition 3.12 and Lemma 4.5 we get the following result.

Proposition 4.10. The functor T is lax monoidal, and the monoidal unit R→ T (ι) and

the derived monoidal multiplication (4.5) are stable equivalences.

Now let D be an operad augmented over the Barratt–Eccles operad E , and let us view

BGhI as a D-algebra by pulling back the canonical E-action along the augmentation.

Proposition 4.11. Let D be an operad augmented over the Barratt–Eccles operad. Then

the R-module Thom spectrum functor induces a functor

T : Top[D]/BGhI → SpΣR [D]/M GLI
1 (R)

on the categories of D-algebras over BGhI and M GLI
1 (R).

Proof. We know that the functor T I induces a functor on the corresponding categories

of D-algebras by Corollary 3.11. Arguing as in the proof of the corresponding statement

in [29, Proposition 6.8], one shows that the same holds for PBG .

In the case where D is the associativity operad (the operad with nth space equal to

Σn) the proposition says that the Thom spectrum functor takes topological monoids over

BGhI to R-algebras over M GLI
1 (R).

4.12. Thom spectra over space level suspensions

Now we turn to the space level version of Proposition 3.18 which we shall formulate for

general maps of the form f : ΣK → BGhI . Given a map of based spaces g : L → GhI ,

we use the I-spacification functor from § 4.1 (with M = G) to pass to a map of based

I-spaces

PG(g) : Pg(L)→ G.

Proceeding as in § 3.17, this in turns extends to a map

ΣPG(g) : ΣPg(L)→ BG.

Proposition 4.13. To a well-based space K and a based map f : ΣK → BGhI , there is

functorially associated a diagram of well-based spaces of the form

K
'
←− K̂

f̂
−→ GhI

such that f and Σ f̂ are weakly equivalent as objects in Top/BGhI , and there is a chain

of natural stable equivalences T ( f ) ' T I(ΣPG( f̂ )).

Combined with the description of T I(ΣPG( f̂ )) in Proposition 3.18, this gives a

functorial description of T ( f ) as an R-module which in turn leads to a cofiber sequence

in the stable homotopy category of the form

R ∧ K → R→ T ( f ).
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The definition of the map Σ f̂ figuring in Proposition 4.13 requires some explanation.

Since we work with the homotopy colimit BGhI (i.e., (BG)hI) as opposed to the weakly

equivalent B(GhI), we cannot identify the 1-skeleton with the reduced suspension ΣGhI
directly. Instead, we may view BGhI as the geometric realization of the simplicial space

[k] 7→ (Bk G)hI so that the 1-skeleton can be identified with the pushout of the diagram

UI
hI ← UI

hI ×1
1
∪GhI × ∂1

1
→ GhI ×1

1

where UI
hI = BI. Using that I has an initial object, we can nonetheless define a natural

embedding of ΣGhI in BGhI : Let h : UI
hI × I → UI

hI be the canonical null homotopy

with h(−, 0) the constant map and h(−, 1) the identity on UI
hI , and let p : GhI → UI

hI
be the projection. Representing ΣGhI as a quotient of GhI × I in the usual way, we

define

σ : ΣGhI → BGhI , σ (x, t) =


h(p(x), 3t) for 0 6 t 6 1/3

(x, (3t − 1, 2− 3t)) for 1/3 6 t 6 2/3

h(p(x), 3− 3t) for 2/3 6 t 6 1.

(4.6)

Given a map of based spaces g : L → GhI , we write Σg both for the induced map of

suspensions ΣL → ΣGhI and for the composition

Σg : ΣL → ΣGhI
σ
−→ BGhI .

The context will make the meaning clear. In the next lemma we compare the effect of

suspending before or after passing to I-spaces.

Lemma 4.14. Given a well-based space L and a based map g : L → GhI , there is a chain

of natural I-equivalences relating PBG(Σg) and ΣPG(g) as objects in TopI/BG.

Proof. We first observe that the map σ in (4.6) admits a canonical lift to a map of bar

resolutions σ : ΣG → BG, such that the left hand square in the diagram

constI ΣGhI

σ

��

ΣGΣπoo Σ t //

σ
��

ΣG

��

constI BGhI BGπoo t // BG

is strictly commutative and the right hand square is homotopy commutative by a

canonical homotopy H : ΣG× I → BG starting at t ◦ σ and ending at Σ t . Putting all

this together, we get the commutative diagram

constI ΣL ' //

Σg

��

constI Σ0g(L)

Σ0(g)
��

ΣPg(L)
'oo

i0 //

��

ΣPg(L)× I

��

ΣPg(L)
i1oo

ΣPG (g)

��

constI ΣGhI

σ

��

ΣGΣπoo
i0 //

σ

��

ΣG× I

H
��

constI BGhI BG //πoo t // BG.
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Here the left part of the diagram gives a chain of I-equivalences

PΣg(ΣL)
'
−→ Pσ◦Σ0(g)(Σ0g(L))

'
←− ΣPg(L)

in TopI/BG, but where ΣPg(K ) maps to BG via the composition indicated in the middle

of the diagram. Composing with the maps in the right part of the diagram, we get the

chain of I-equivalences in the lemma.

Proof of Proposition 4.13. Let f̌ : K → �(BGhI) be the adjoint of f , and let f̂ be

defined as the pullback indicated in the diagram

K̂
f̂
//

'

��

GhI

σ̌'

��

K
' //

0 f̌ (K )oo
0( f̌ )
// �(BGhI).

Then we have a chain of weak equivalences relating f andΣ f̂ : Σ K̂ → BGhI as objects in

Top/BGhI which gives a chain of stable equivalences T ( f ) ' T (Σ f̂ ). Now the conclusion

follows from Lemma 4.14 and the homotopy invariance of the Thom spectrum functor

T I .

5. Quotient spectra as Thom spectra associated to SU (n)

In this section we specialize to the case where R is a commutative symmetric ring

spectrum that is even in the sense that π∗(R) is concentrated in even degrees. As usual

R is supposed to be semistable and in this section we also assume that the underlying

symmetric spectrum of R is flat. We again write G → GLI
1 (R) for a cofibrant replacement.

Let SU (n) denote the special unitary group. Our main concern is to analyze Thom

spectra associated to loop maps of the form SU (n)→ BGhI . Since we are mainly

interested in Thom spectra that are strict symmetric ring spectra (as opposed to a more

relaxed notion of A∞ ring spectra), we shall model such loop maps by maps of actual

topological monoids. For this reason it will be convenient to work with the model B1(−)

of the classifying space functor for topological monoids introduced by Fiedorowicz [12].

We review the relevant details of this construction in Appendix A. Writing ATop/BGhI
for the category of topological monoids over BGhI , we shall use the ‘loop functor’ from

§ A.3,

�′ : Top∗/B1 BGhI → ATop/BGhI , (K
g
−→ B1 BGhI) 7→ (�′g(K )

�′(g)
−−−→ BGhI),

which models the looping of a based map g : K → B1 BGhI by a map of actual topological

monoids �′(g) : �′g(K )→ BGhI .

Now suppose we are given a based map g : B1SU (n)→ B1 BGhI . Then we introduce

the notation SU ′(n) for �′g(B1(SU (n))), so that the associated loop map is realized by

the map of topological monoids �′(g) : SU ′(n)→ BGhI . For each m = 1, . . . , n, we write

SU ′(m) = �′gm
(B1SU (m)), where gm : B1SU (m)→ BGhI is the ‘restriction’ of g obtained

by precomposing with the map of classifying spaces induced by the standard inclusion
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of SU (m) in SU (n). The notation is justified by the fact that there is a canonical chain

of weak equivalences of topological monoids relating SU ′(m) and SU (m), and it follows

from Proposition A.4 that these equivalences are compatible when m varies. Until further

notice we fix a based map g as above and simplify the notation by writing

T (SU (m)) = T (�′(gm))

for 1 6 m 6 n. Thus, the R-algebra Thom spectrum T (SU (m)) depends on the map g
even though this is not visible in the notation.

5.1. The structure of T (SU (n))

Our assumption that R be even implies that R is complex orientable (see [1]), so we may

choose an element x ∈ R̃2(CPn−1) such that the map of π∗(R)-algebras π∗(R)[x]/xn
→

R∗(CPn−1) is an isomorphism. Next recall (see e.g. §10 of Chapter IV in [35]) that the

reduced suspension ΣCPn−1 admits a canonical embedding in SU (n). Composing with

�′(g) and the chain of equivalences relating SU (n) and SU ′(n), we get a well-defined

homotopy class

ΣCPn−1
→ SU (n) ' SU ′(n)

�′(g)
−−−→ BGhI (5.1)

whose adjoint determines a cohomology class

u ∈ [CPn−1, �(BGhI)]∗ ∼= [CPn−1,GhI ]∗ ⊂ [CPn−1,GhI ] ∼= R0(CPn−1)×.

For the last isomorphism we use that the topological monoid GhI models the units of

R, hence represents the functor taking a space X to the units R0(X)×. It follows that we

can write u uniquely in the form

u = 1+ u1x + u2x2
+ · · ·+ un−1xn−1, ui ∈ π2i (R). (5.2)

For c a natural number, let FS
c : Top∗→ SpΣ be the level c free symmetric spectrum

functor, see [16, 20]. Since R is assumed to be semistable, we can represent ui by an

actual map of symmetric spectra ui : FS
c (S

2i+c)→ R for a suitable constant c. In the

proposition below we use the notation Σ2m(−) for the smash product with FS
c (S

2m+c).

Proposition 5.2. There are homotopy cofiber sequences of R-modules

Σ2m T (SU (m))
um
−→ T (SU (m)) −→ T (SU (m+ 1)).

for 1 6 m < n.

Here the first map is given by um and the R-module structure on T (SU (m)). The precise

meaning of the term ‘homotopy cofiber sequence’ is as follows: There is a chain of stable

equivalences in the category of R-modules under T (SU (m)) relating T (SU (m+ 1)) to the

mapping cone of the first map.

The proof of Proposition 5.2 is based on two lemmas. In the first lemma we consider

the analogues of the homotopy classes (5.1) for 1 6 m 6 n. We arrange to have a

set of representatives ΣCPm−1
→ SU ′(m) that are compatible when m varies, and we

write T (ΣCPm−1) for the associated Thom spectra. Let T (SU (m))cof be a cofibrant

replacement of the R-module T (SU (m)).
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Lemma 5.3. For 1 6 m < n, the commutative square of R-modules

T (ΣCPm−1)∧R T (SU (m))cof //

��

T (SU (m))

��

T (ΣCPm)∧R T (SU (m))cof // T (SU (m+ 1))

is homotopy cocartesian.

Proof. Using the standard inclusion of SU (m) in SU (m+ 1) and the multiplicative

structures of these groups, we get the commutative diagram

ΣCPm−1
× SU (m) //

��

SU (m)× SU (m) //

��

SU (m)

��

ΣCPm
× SU (m) // SU (m+ 1)× SU (m) // SU (m+ 1)

(5.3)

in which the outer diagram is a pushout square as follows from the statements listed as

(i) and (ii) on page 345 in [35]. Since the chains of weak equivalences SU (m) ' SU ′(m)
are multiplicative and compatible when m varies, it follows that the analogous square

with SU ′(m) and SU ′(m+ 1) is homotopy cocartesian. The latter may be viewed as

a diagram in Top/BGhI , so applying the Thom spectrum functor gives a homotopy

cocartesian square of R-modules. Hence the result follows from Proposition 4.10 (it

suffices to cofibrantly replace one of the factors).

In the second lemma we analyze the maps T (ΣCPm−1)→ T (ΣCPm). Recall from [1]

that the R-homology of CPn−1 is given by

R∗(CPn−1) = π∗(R){β0, . . . , βn−1}

where βi ∈ R2i (CPn−1) is dual to x i . The classes βi may be realized as maps of symmetric

spectra βi : FS
c (S

2i+c)→ R ∧CPn−1
+ , for a suitable constant c, and give rise to a stable

equivalence of R-modules

n−1∨
i=0

Σ2i R =
n−1∨
i=0

FS
c (S

2i+c)∧ R
∨βi
−−→ R ∧CPn−1

+ . (5.4)

Lemma 5.4. For 1 6 m < n there are homotopy cofiber sequences of R-modules

Σ2m R
um
−→ T (ΣCPm−1) −→ T (ΣCPm).

Here we again write Σ2m(−) for the smash product with FS
c (S

2m+c) and the first map

is defined by the composition

FS
c (S

2m+c)∧ R
um∧R
−−−→ R ∧ R −→ R −→ T (ι) −→ T (ΣCPm−1),

where the maps are given respectively by um , the multiplication in R, the monoidal unit

of T , and the inclusion of the base point in ΣCPn−1. The meaning of the term ‘homotopy

cofiber sequence’ is as in Proposition 5.2.
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Proof of Lemma 5.4. Let us write fm : ΣCPm
→ BGhI for the based maps giving rise

to the Thom spectra T (ΣCPm). Applying Proposition 4.13 to the maps fm (with Km =

CPm) we get a sequence of maps f̂m : ĈPm
→ GhI such that ĈPm

' CPm and there are

stable equivalences T (ΣCPm) ' T I(ΣPG( f̂m)). Furthermore, there are induced maps

ĈPm
→ ĈPm+1 such that these equivalences are compatible with the inclusion of CPm

in CPm+1. The symmetric spectrum SI [P f̂m
(ĈPm)] is a (semistable) model of Σ∞(CPm

+ ),

so we get a stable equivalence of R-modules

∨βi :

m∨
i=0

FS
c (S

2i+c)∧ R
'
−→ SI [P f̂m

(ĈPm)] ∧ R

as in (5.4). Proceeding inductively, we may assume these equivalences to be compatible

with the maps ĈPm
→ ĈPm+1. Hence it follows from the description in Proposition 3.18

that there are homotopy cocartesian squares of the form∨m
i=0 FS

c (S
2i+c)∧ R //

∨ui
��

∨m
i=0 FS

c (C S2i+c)∧ R

��

B(SI [G],SI [G], R) // T I(ΣPG( f̂m))

where the notation indicates that the maps ui represent the corresponding homotopy

classes in (5.2) under the canonical stable equivalence R ' B(SI [G],SI [G], R).
Furthermore, we may arrange for these squares to be compatible when m varies. This

gives the statement in the lemma.

Proof of Proposition 5.2. Smashing the homotopy cofiber sequence in Lemma 5.4 with

the cofibrant R-module T (SU (m))cof, we get the homotopy cofiber sequence in the left

column of the diagram

Σ2m R ∧R T (SU (m))cof ' //

��

Σ2m T (SU (m))

��

T (ΣCPm−1)∧R T (SU (m))cof //

��

T (SU (m))

��

T (ΣCPm)∧R T (SU (m))cof // T (SU (m+ 1)).

The result follows since the bottom square is homotopy cocartesian by Lemma 5.3.

5.5. Quotient spectra as generalized Thom spectra

We recall some facts about quotient constructions for symmetric spectra. Let as usual R
be a semistable commutative symmetric ring spectrum and let x ∈ πd(R) be a homotopy

class represented by a map f : Sd2 → Rd1 with d2− d1 = d. The map f extends to a

map of symmetric spectra FS
d1
(Sd2)→ R and using the multiplication in R we get a

map of R-modules f : FS
d1
(Sd2)∧ R→ R ∧ R→ R that represents multiplication by x on

homotopy groups. We define R/ f to be the mapping cone of this map so that we have a
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pushout diagram

FS
d1
(Sd2)∧ R //

f
��

FS
d1
(C Sd2)∧ R

��

R // R/ f

where C Sd denotes the reduced cone on Sd . Notice that, with this definition, R/ f is a

flat R-module. It is clear that if g : Sd2 → Rd1 represents the same class in πd2(Rd1), then

M/ f and M/g are stably equivalent R-modules. Furthermore, if σ( f ) : Sd2+1
→ Rd1+1

denotes the ‘suspension’ of f , then we have a commutative diagram

FS
d1+1(S

d2+1)
' //

σ( f ) &&

FS
d1
(Sd2)

fzz
R

where the horizontal arrow is the canonical stable equivalence. From this we get a stable

equivalence R/σ( f )
∼
−→ R/ f which shows that the homotopy type of the R-module R/ f

only depends on the class x ∈ πd(R) represented by f . We use the notation R/x for this

homotopy type. Given a sequence of classes x1, . . . , xn in π∗(R), we chose representatives

f1, . . . , fn as above and define R/(x1, . . . , xn) to be the homotopy type of R-modules

represented by the smash product

R/( f1, . . . , fn) = (R/ f1)∧R · · · ∧R (R/ fn).

The homotopy type is well-defined since the R-modules R/ fi are flat and it follows from

the definition that there are homotopy cofiber sequences

Σ |xi |R/(x1, . . . , xi−1)
xi
−→ R/(x1, . . . , xi−1)→ R/(x1, . . . , xi ).

If x1, . . . , xn is a regular sequence in π∗(R), then these homotopy cofiber sequences split

up into short exact sequences of homotopy groups from which we deduce an isomorphism

π∗(R)/(x1, . . . , xn)
'
−→ π∗

(
R/(x1, . . . , xn)

)
.

The corresponding homomorphism may well fail to be an isomorphism if the sequence is

not regular.

Now we return to the setting from the beginning of this section and consider R-algebra

Thom spectra T (SU (n)) associated to loop maps as defined there. Our main result

is stated in the next theorem and shows that the process described in the previous

subsection can be reversed so that instead of starting with a loop map we start with a

sequence of homotopy classes in π∗(R).

Theorem 5.6. Given homotopy classes ui ∈ π2i (R) for i = 1, . . . , n− 1, there exists a

based map B1SU (n)→ B1 BGhI such that the homotopy type of the R-module underlying

the R-algebra Thom spectrum T (SU (n)) of the associated loop map is described by

T (SU (n)) ' R/(u1, . . . , un−1).
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Proof. Working in the homotopy category, the classes ui (and the chosen orientation class

x) determine a based map u : ΣCPn−1
→ BGhI as explained in § 5.1. After suspending

once we consider the extension problem of filling in the map g in the diagram

Σ(ΣCPn−1)
Σu //

��

ΣBGhI // B1 BGhI

ΣSU (n)

��

B1SU (n).

g

66

The obstructions to the extension problem lie in the cohomology groups

Hk+1 ((B1SU (n),Σ2CPn−1), πk(B1 BGhI)
)

which are trivial since the groups πk(B1 BGhI) ∼= πk−2(GLI
1 (R)hI) are concentrated in

even degrees. If g is such an extension, then u can be recovered as the composition

u : ΣCPn−1
→ SU (n) ' SU ′(n)

�′(g)
−−−→ BGhI .

We claim that the R-algebra Thom spectrum T (SU (n)) associated to �′(g) has the

homotopy type described in the theorem. Proceeding as in § 5.1, we represent the classes

ui by actual maps of symmetric spectra ui : FS
c (S

2i+c)→ R so as to get homotopy cofiber

sequences of R-module spectra

FS
c (S

2m+c)∧ R/(u1, . . . , um−1)
um
−→ R/(u1, . . . , um−1)→ R/(u1, . . . , um).

Comparing these homotopy cofiber sequences with those of Proposition 5.2, we conclude

by induction that the R-module T (SU (m)) is equivalent to R/(u1, . . . , um−1) for all m =
1, . . . , n.

Recall that a commutative symmetric ring spectrum R is said to be 2-periodic if there

exists an element w ∈ π2(R) which is a unit in the graded ring π∗(R). The existence of

such a unit allows us to strengthen the statement in the above theorem.

Corollary 5.7. If the commutative symmetric ring spectrum R in Theorem 5.6 is

2-periodic (as well as even), then the statement of the theorem holds for any family

u1, . . . , un−1 of even dimensional homotopy classes. (That is, the requirement that ui is

an element in π2i (R) is no longer needed.)

Proof. Let w ∈ π2(R) be a unit in the graded ring π∗(R). Given a sequence of homotopy

classes u1, . . . , un−1 in π∗(R), we set vi = ui ·w
i−|ui |/2 so that the classes v1, . . . , vn−1

satisfy the degree requirements in Theorem 5.6. Let fi : Sdi2 → Rdi1 be a representative

for ui and let gi : Sei2 → Rei1 be a representative for wi−|ui |/2. Then the map fi · gi defined

by

fi · gi : Sdi2 ∧ Sei2 → Rdi1 ∧ Rei1 → Rdi1+ei1
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is a representative for vi (see [25, § 4] and the discussion in [30].) Consider the

commutative diagram

R FS
di1
(Sdi2)∧ FS

ei1
(Sei2)∧ R

fi ·gioo //

id∧gi
��

FS
di1
(C Sdi2)∧ FS

ei1
(Sei2)∧ R

id∧gi
��

R FS
di1
(Sdi2)∧ R

fioo // FS
di1
(C Sdi2)∧ R

where the maps are induced by fi , gi , and fi · gi as explained in the beginning of

this subsection. Here we use the canonical identification of FS
di1
(Sdi2)∧ FS

ei1
(Sei2) with

FS
di1+ei1

(Sdi2 ∧ Sei2). The vertical maps induced by gi are stable equivalences since gi
represents a unit in π∗(R). Evaluating the horizontal pushouts, the diagram thus gives

us a stable equivalence R/( fi · gi )
∼
−→ R/ fi . Combining this with Theorem 5.6 we get the

stable equivalences

T (SU (n)) ' (R/ f1 · g1)∧R · · · ∧R (R/ fn−1 · gn−1) ' (R/ f1)∧R · · · ∧R (R/ fn−1)

where the last term represents the homotopy type R/(u1, . . . , un−1).

6. Topological Hochschild homology of Thom spectra

Consider in general a monoid A in a symmetric monoidal category (A,2, 1A). Then the

cyclic bar construction Bcy
• (A) is the simplicial object [k] 7−→ A2(k+1) with simplicial

structure maps defined as for the standard Hochschild complex of an algebra (see e.g. [8,

§ 1] for more details). We shall use the notation Bcy(A) for the geometric realization of

Bcy
• (A) when this makes sense in the category A. In the case of a commutative symmetric

ring spectrum R and the symmetric monoidal category of modules SpΣR , a monoid A is

the same thing as an R-algebra and the cyclic bar construction takes the form

Bcy
• (A) : [k] 7→ A∧R · · · ∧R A (with k+ 1 smash factors). (6.1)

It is well known that the topological Hochschild homology of an R-algebra can be modeled

by the cyclic bar construction under suitable cofibrancy conditions. The conditions we

impose ensure that our definition is equivalent to the standard definition of topological

Hochschild homology as a derived smash product, see [11, Chapter IX] and [32, § 4].

Definition 6.1. Let R be a commutative symmetric ring spectrum and let A be an

R-algebra such that the unit R→ A is an h-cofibration and the underlying R-module

of A is flat. Then the topological Hochschild homology THHR(A) of A is the geometric

realization Bcy(A) of the cyclic bar construction in (6.1).

This definition is homotopy invariant: If A and B are R-algebras that satisfy the

conditions in the definition and A→ B is a stable equivalence, then the induced map

THHR(A)→ THHR(B) is also a stable equivalence. Notice that the conditions on A hold

if A is cofibrant in the category of R-algebras R/ASpΣ equipped with the absolute or

positive flat model structures. (Recall that ASpΣ denotes the category of symmetric ring
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spectra.) They also hold if A is commutative and cofibrant in the corresponding positive

flat model structure on R/CSpΣ .

Remark 6.2. When we want to consider the topological Hochschild homology of an

R-algebra A that does not satisfy the conditions in the definition, we should first find a

suitable replacement in the form of a stable equivalence Ac ∼
−→ A where Ac is an R-algebra

that does satisfy the conditions. We may then take Bcy(Ac) as our definition of THHR(A).

Returning to the discussion of Thom spectra, we assume for the rest of this section

that the commutative symmetric ring spectrum R is semistable and that the underlying

symmetric spectrum of R is flat. Recall the R-module Thom spectrum functor T I on

TopI/BG introduced in § 3.5.

Lemma 6.3. The Thom spectrum functor T I preserves geometric realization of simplicial

objects.

Proof. By definition, a simplicial object in TopI/BG amounts to a map of simplicial

I-spaces α• : X•→ BG where we view BG as a constant simplicial I-space. Writing

α : X → BG for the geometric realization of α•, the statement in the lemma says that

there is a natural isomorphism of R-modules |T I(α•)| ∼= T I(α) over M GLI
1 (R). Consider

the three functors in Definition 3.6. The first functor U preserves geometric realization

since it is given by a pullback construction and geometric realization of simplicial spaces

commutes with pullbacks. The remaining two functors preserve geometric realization

since they preserve colimits and tensors with spaces. This gives the result.

Given a map of I-space monoids α : M → BG, we use the notation Bcy(α) for the

composite map

Bcy(α) : Bcy(M)→ Bcy(BG)→ BG

where the last map is induced by the multiplication in the commutative I-space monoid

BG. With this definition, Bcy(α) is the cyclic bar construction internal to the symmetric

monoidal category TopI/BG. In the following proposition we also consider the cyclic bar

construction internal to SpΣR and apply it to a cofibrant replacement T I(α)cof of T I(α) so

that Bcy(T I(α)cof) is a model of THHR(T I(α)), cf. Remark 6.2. We say that an I-space

monoid M is well-based if the inclusion of the unit UI
→ M is an h-cofibration (in the

sense of [25, § 7]).

Proposition 6.4. Let α : M → BG be a map of I-space monoids and suppose that M is

well-based and that the underlying I-space of M is flat.

(i) If T I(α)cof
→ T I(α) is a cofibrant replacement in the category of R-algebras, then

there is a stable equivalence of R-modules Bcy(T I(α)cof)
∼
−→ T I(Bcy(α)).

(ii) If M is commutative and T I(α)cof
→ T I(α) is a cofibrant replacement in

the category of commutative R-algebras, then there is a stable equivalence of

commutative R-algebras Bcy(T I(α)cof)
∼
−→ T I(Bcy(α)).
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Notice, that in (i) the conditions on M hold if M is cofibrant as an object in ATopI ,

and in (ii) the conditions on M hold if M is cofibrant as an object in CTopI .

Proof. Consider first case (i) of the proposition where we have the maps of simplicial

R-modules

Bcy
• (T I(α)cof)→ Bcy

• (T I(α))→ T I(Bcy
• (α)) (6.2)

induced by the cofibrant replacement and the lax symmetric monoidal structure of T I .

Since the underlying R-module of T I(α)cof is flat, it follows from Proposition 3.12 that the

composite map is a stable equivalence in each simplicial degree. We shall argue below that

the geometric realization is also a stable equivalence. Composing with the isomorphism

|T I(Bcy
• (α))| ∼= T I(Bcy(α)) from Lemma 6.3, we then get the stable equivalence in the

proposition.

The reason why an extra argument is needed to ensure that the geometric realization is

a stable equivalence is that the simplicial spectra in question are not necessarily ‘good’,

that is, the degeneracy maps may fail to be h-cofibrations. For this reason we introduce

an auxiliary R-algebra T I(α)c by choosing a cofibrant replacement U (α)cof
→ U (α) of

the G-algebra U (α) (see Proposition 7.4) and setting

T I(α)c = B(SI [U (α)cof
],SI [G], R).

Then we have a stable equivalence T I(α)c → T I(α) and we claim that the composite

map

Bcy(T I(α)c)→ Bcy(T I(α))→ T I(Bcy(α)) (6.3)

is a stable equivalence. This composition admits a factorization

Bcy(T I(α)c)→ B(SI [Bcy(U (α)cof)],SI [G], R)→ T I(Bcy(α))

and we shall prove that both of these maps are stable equivalences.

The first map is the geometric realization of a map of simplicial spectra induced by the

lax symmetric monoidal structure of the functor B(SI [−],SI [G], R). Since the underlying

G-module of U (α)cof is flat by Lemma 7.5, it follows from Lemma 3.4 that the underlying

simplicial map is a levelwise stable equivalence. Furthermore, having replaced U (α) by

the cofibrant (hence well-based) I-space monoid U (α)cof we ensure that the degeneracy

maps of these simplicial spectra are h-cofibrations. Hence the geometric realization is

also a stable equivalence. The second map is induced by the composition

Bcy(U (α)cof)→ Bcy(U (α))→ U (Bcy(α)) (6.4)

given by the cofibrant replacement U (α)cof
→ U (α) and the lax symmetric monoidal

structure of U from Lemma 2.13. By the homotopy invariance of the functor

B(SI [−],SI [G], R) it suffices to show that the composition in (6.4) is indeed an

I-equivalence. Using again that the underlying G-module of U (α)cof is flat, an argument

based on the cellular filtration shows that also the underlying G-module of Bcy(U (α)cof)

is flat. Thus, we are in a position to use that the (V,U )-adjunction in Theorem 2.15 is a

Quillen equivalence so that showing the map in (6.4) to be an I-equivalence is equivalent

to showing that the adjoint map

V (Bcy(U (α)cof)) ∼= Bcy(V (U (α)cof))→ Bcy(α)
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is an I-equivalence in TopI/BG. The latter map is induced by the derived counit of the

adjunction V (U (α)cof)→ α and is therefore an I-equivalence, cf. [15, Proposition 1.3.13].

This concludes the argument why the map in (6.3) is a stable equivalence.

Now we can finally prove that the geometric realization of (6.2) is a stable equivalence.

We may assume without loss of generality that the cofibrant replacement T I(α)cof
→

T I(α) is an acyclic fibration. Let (T I(α)c)cof
→ T I(α)c be a cofibrant replacement of

the R-algebra T I(α)c. Then we can lift the composition (T I(α)c)cof
→ T I(α)c → T I(α)

to a stable equivalence (T I(α)c)cof
→ T I(α)cof. Passing to the cyclic bar constructions,

we get a diagram of stable equivalences

Bcy(T I(α)c)
∼
←− Bcy((T I(α)c)cof)

∼
−→ Bcy(T I(α)cof)

over Bcy(T I(α)). Here we use that the underlying R-module of T I(α)c is flat by

Lemma 3.3. Having proved that the map in (6.3) is a stable equivalence, it follows that

the geometric realization of (6.2) is a stable equivalence which gives the statement in (i).

The proof of case (ii) proceeds as above except that we now choose U (α)cof to be a

cofibrant replacement in the model structure on commutative G-algebras over EG (see

Proposition 7.4).

Now we come to our main result in this section which we shall formulate in terms of

Thom spectra associated to space level data over BGhI . Since the commutative I-space

monoid BG is grouplike (BGhI is path connected), it follows that BGhI inherits the

structure of an infinite loop space. Let us write Bn(BGhI) for the deloopings as defined

in [28, § 5.2]. The first delooping B1(BGhI) is canonically equivalent to the usual bar

construction B(BGhI) by [28, Proposition 5.3]. We say that a map of based spaces

f : K → BGhI is an n-fold loop map if there exists an n-fold delooping Bn K of K and a

based map Bn f : Bn K → Bn(BGhI) such that the diagram

�n(Bn K )
�n(Bn f )

// �n(Bn(BGhI))

K
f

//

'

OO

BGhI .

'

OO

is homotopy commutative. Using the machinery detailed in Appendix A, every one-fold

loop map can be realized up to weak homotopy equivalence as a map of grouplike

topological monoids. Since we are mainly interested in strictly associative R-algebra

spectra, it will be most convenient to state our results for Thom spectra associated to

grouplike monoids over BGhI .

As preparation we recall a construction from [8, § 1]. Consider the unstable Hopf map

η : S3
→ S2 and the homotopy class of maps defined by the composition

η : B(BGhI) ' Map∗(S
2, B3(BGhI))

η∗

−→ Map∗(S
3, B3(BGhI)) ' BGhI .

Let L(−) denote the free loop space functor. Applied to the infinite loop space B(BGhI),
the canonical splitting of the fibration sequence

�(B(BGhI))→ L(B(BGhI))→ B(BGhI)

and the equivalence BGhI
∼
−→ �(B(BGhI)) gives a canonical product decomposition

L(B(BGhI)) ' BGhI × B(BGhI).

https://doi.org/10.1017/S1474748017000421 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000421


56 S. Basu, S. Sagave and C. Schlichtkrull

Definition 6.5. Given a well-based and grouplike topological monoid M and a map of

topological monoids f : M → BGhI , we use the notation Lη(B f ) for a representative of

the homotopy class defined by the composition

L(B M)
L(B( f ))
−−−−−→ L(B(BGhI)) ' BGhI × B(BGhI)

id×η
−−→ BGhI × BGhI → BGhI

where the last map is the multiplication of BGhI .

Theorem 6.6. Consider the R-algebra Thom spectrum T ( f ) associated to a map of

topological monoids f : M → BGhI where M is well-based and grouplike.

(i) The R-module THHR(T ( f )) is stably equivalent to T (Lη(B f )).

(ii) If f is a 2-fold loop map, then the R-module THHR(T ( f )) is stably equivalent

to T ( f )cof
∧R T (η ◦ B f ), where T ( f )cof is a cofibrant replacement of T ( f ) as an

R-module and η ◦ B f : B M → B(BGhI)→ BGhI is defined as above.

(iii) If f is a 3-fold loop map, then the R-module THHR(T ( f )) is stably equivalent to

T ( f )∧ B M+.

Proof. Let T ( f )cof
→ T ( f ) be a cofibrant replacement of the R-algebra T ( f ) and let

us take Bcy(T ( f )cof)) as our model of THHR(T ( f )), cf. Remark 6.2. By definition,

T ( f ) = T I(PBG( f )) where PBG( f ) is the monoid in TopI/BG obtained by applying

the I-spacification functor to f . Let PBG( f )cof
→ PBG( f ) be a cofibrant replacement as

an I-space monoid over BG. Then the underlying I-space of PBG( f )cof is flat so that we

have a chain of stable equivalences

Bcy(T I(PBG( f ))cof)
∼
←− Bcy(T I(PBG( f )cof)cof)

∼
−→ T I(Bcy(PBG( f )cof))

where the first equivalence is induced by the cofibrant replacement and the second is

given by Proposition 6.4. Furthermore, it follows from Proposition 4.8 that the last term

is stably equivalent to T (Bcy(PBG( f )cof)hI). The rest of the proof follows the outline in

[8]: For (i) we first use the argument from [8, Proposition 4.8] to show that the domain

of Bcy(PBG( f )cof)hI is weakly equivalent to L(B M). The proof of [8, Theorem 2.2] then

shows that under this equivalence, Bcy(PBG( f )cof)hI represents the homotopy class of

Lη(B f ). (As explained in [8, § 8.1], the functor U in the proof of that theorem is (−)hI
if one works in I-spaces.) Since our Thom spectrum functor sends products to derived

smash products (Proposition 4.10) and preserves tensors with spaces (Proposition 4.9),

the proofs of [8, Theorem 2 and 3] in [8, § 3.3] apply almost verbatim to give (ii) and (iii).

7. Modules and classifying spaces for commutative I-space monoids

In this section G denotes a commutative I-space monoid and we shall continue the

analysis of the module category TopIG initiated in § 2.9. The primary aim is to finish the

proof of Theorem 2.15 stating that TopIG is Quillen equivalent to TopI/BG provided that

G is grouplike and cofibrant. Here we recall that both the absolute and the positive flat

model structure on TopI lift to corresponding absolute and positive flat model structures
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on TopIG . We shall use the term flat G-module for a cofibrant object in the absolute flat

model structure on TopIG .

Lemma 7.1. If X is a flat G-module, then the endofunctor X �G (−) on TopIG preserves

I-equivalences.

Proof. For the proof we may assume without loss of generality that X is the colimit of

a λ-sequence of G-modules {Xα : α < λ} (for some ordinal λ) such that X0 is the initial

G-module and the map Xα → Xα+1 is obtained by cobase change from a map of the form

Kα �G → Lα �G, where Kα → Lα is a generating cofibration for the absolute flat model

structure on TopI . Given a G-module Y , X �G Y is then the colimit of the λ-sequence

{Xα �G Y : α < λ}, where Xα �G Y → Xα+1�G Y is the cobase change of Kα � Y
→ Lα � Y . By [25, Proposition 7.1(ii) and (vi)] this is a λ-sequence of h-cofibrations in

the sense of [25, § 7]. Now let Y → Y ′ be an I-equivalence between G-modules. Using the

gluing lemma for h-cofibrations and I-equivalences, [25, Proposition 7.1(iv)], we argue

by induction to see that Xα �G Y → Xα �G Y ′ is an I-equivalence for all α. By [25,

Proposition 7.1(v)] the map of colimits is therefore also an I-equivalence.

Lemma 7.2. If X is a flat G-module, then the map B(X,G, Y )→ X �G Y is an

I-equivalence.

Proof. Using the canonical isomorphism B(X,G, Y ) ∼= X �G B(G,G, Y ), it suffices by

Lemma 7.1 to show that the canonical map B(G,G, Y )→ Y is an I-equivalence. However,

this map is even a level equivalence since Y is a simplicial deformation retract of the

domain before passing to the geometric realization.

Recall that we use the term cofibrant commutative I-space monoid to mean a cofibrant

object in the positive flat model structure on CTopI .

Lemma 7.3. Let G be a grouplike and cofibrant commutative I-space monoid, let X → X ′

and Y → Y ′ be maps of G-modules, and suppose that the G-modules X and X ′ are flat.

Then the commutative square

X �G Y //

��

X �G Y ′

��

X ′�G Y // X ′�G Y ′

is homotopy cartesian.

Proof. Using Lemma 7.2 and that the homotopy colimit functor (−)hI detects homotopy

cartesian squares [25, Corollary 11.4], it suffices to show that the diagram of spaces

B(X,G, Y )hI //

��

B(X,G, Y ′)hI

��

B(X ′,G, Y )hI // B(X ′,G, Y ′)hI

is homotopy cartesian. It follows from [25, Proposition 3.15(ii)] that the underlying

I-space of G is flat and inspecting the generating cofibrations of the absolute flat model
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structure on TopIG , we see that the underlying I-spaces of X and X ′ are also flat. The

topological monoid GhI is well-based by [25, Proposition 12.7]. Since the monoidal

structure map of (−)hI in (2.1) is a weak equivalence if one of the factors is flat [26,

Lemma 2.25] and the relevant simplicial objects are good in the usual sense, this implies

that the above diagram is weakly equivalent to the left hand square in the diagram

B(XhI ,GhI , YhI) //

��

B(XhI ,GhI , Y ′hI)
//

��

B(XhI ,GhI , ∗)

��

B(X ′hI ,GhI , YhI) // B(X ′hI ,GhI , Y ′hI)
// B(X ′hI ,GhI , ∗).

Here the horizontal maps in the right hand square are induced by the projection Y ′hI → ∗.
By [22, Theorem 7.6], the assumption that GhI be grouplike implies that the horizontal

maps in the right hand square and the outer square are quasifibrations. Since these

are actual pullback diagrams this translates into the statement that these squares are

homotopy cartesian. The left hand square is therefore also homotopy cartesian as claimed.

Proposition 7.4. Let G be a commutative I-space monoid and let D be an operad in Top.

Then the category TopIG[D] of D-algebras in TopIG admits a positive flat model structure

where a map is a weak equivalence or fibration if the underlying map in TopIG (or TopI)

is so with respect to the positive flat model structure.

Proof. Using an obvious generalization of the double cell filtration for D-algebra cell

attachments in [25, Proposition 10.1] to G-modules, this is completely analogous to the

proof of [25, Proposition 9.3].

In the next lemma we refer to the fine model structure on Σk-spaces discussed in § 2.1.

Lemma 7.5. Let G be a commutative I-space monoid and let D be an operad such that

each space D(k) is cofibrant as an object in the category of Σk-spaces equipped with the

fine model structure. If A is an object in TopIG[D] that is cofibrant in the positive flat

model structure, then the underlying G-module of A is flat.

Proof. This is analogous to [25, Proposition 12.5] (which provides the statement for

G = UI).

In the case of the commutativity operad C, the category TopIG[C] can be identified

with the category G/CTopI of commutative G-algebras. Under this identification, the

lifted model structure on TopIG[C] resulting from Proposition 7.4 becomes the standard

under-category model structure on G/CTopI inherited from the positive flat model

structure on CTopI . With this in mind, the following result may be viewed as a

strengthening of Lemma 7.5 in the case of the commutativity operad.

Lemma 7.6. Let G be a commutative I-space monoid and let A→ A′ be a cofibration in

the positive flat model structure on G/CTopI . If the underlying G-module of A is flat,

then the underlying G-module of A′ is also flat.
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Proof. By a cell induction argument, the claim reduces to the case where A′ is obtained

from A by attaching a generating cofibration for the positive flat model structure on

TopIG[C]. To analyze this pushout, we again use the G-module version of the double

cell filtration provided by [25, Proposition 10.1]. The Σk-action on the object UD
k (A)

appearing in this proposition is trivial since we consider the commutativity operad here,

see [25, Example 10.2]. Hence the claim follows from the G-module version of [25, Lemma

12.16].

This lemma applies in particular to the commutative G-algebra EG introduced in

Definition 2.10.

Corollary 7.7. If G is a cofibrant commutative I-space monoid, then the underlying

G-module of EG is flat.

Proof. Inspecting the skeletal filtration of the commutative G-algebra B(UI ,G,G), we

conclude that the underlying G-module is flat. Hence the claim follows from the previous

lemma.

Now we can finally complete the proof of Theorem 2.15 by showing that the

(V,U )-adjunction in Definition 2.12 defines a Quillen equivalence. We also prove a variant

of this result where we allow for actions by an operad in Top.

Proposition 7.8. Let G be a grouplike and cofibrant commutative I-space monoid.

(i) The adjunction V : TopIG/EG � TopI/BG : U is a Quillen equivalence with respect

to the absolute and positive flat model structures.

(ii) If D is an operad that satisfies the condition in Lemma 7.5, then the

induced adjunction of D-algebras V : TopIG[D]/EG � TopI [D]/BG : U is a Quillen

equivalence with respect to the positive flat model structures.

Proof. For (i) we first observe that the (V,U )-adjunction is composed of two Quillen

adjunctions, hence is itself a Quillen adjunction. Now suppose we are given a cofibrant

object X → EG in TopIG/EG, a fibrant object Y → BG in TopI/BG, and a map of

I-spaces ϕ : X �G UI
→ Y over BG. Then we must show that ϕ is an I-equivalence if

and only if its adjoint is. Consider the commutative diagram of I-spaces

X
∼= //

��

X �G G //

��

X �G UI ϕ
//

��

Y

��

EG
∼= // EG�G G // EG�G UI // BG

where the middle square is induced by the map X → EG and the projection G → UI .

The latter square is homotopy cartesian by Lemma 7.3. Notice that the map EG�G UI

→ BG in the diagram is an I-equivalence since the composition

B(UI ,G,G)�G UI
→ EG�G UI

→ BG

is an isomorphism and the first map is an I-equivalence (since the left Quillen functor

(−)�G UI preserves acyclic cofibrations). Hence ϕ is an I-equivalence if and only if the
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right hand square is homotopy cartesian. Furthermore, it follows from the definitions

that the adjoint of ϕ is an I-equivalence if and only if the outer square is homotopy

cartesian. Now it is clear that if the right hand square is homotopy cartesian, then the

outer square is also homotopy cartesian. In order to show the converse, we use that the

functor (−)hI detects and preserves homotopy cartesian squares by [25, Corollary 11.4].

Passing to the associated diagram of homotopy colimits, the bottom horizontal map in

the middle becomes surjective so that the result follows by comparing vertical homotopy

fibers.

The Quillen adjunction part of (ii) follows from (i). For the Quillen equivalence part, we

use that if X → EG is an cofibrant object in TopIG[D]/EG, then the underlying G-module

of X is flat by Lemma 7.5. Hence the argument for (i) applies.

Appendix A. Rectification of loop maps

Let ATop denote the category of topological monoids and let us for the rest of this section

fix a topological monoid M which we assume to be grouplike and well-based. We shall

then define a ‘loop functor’ with values in the corresponding over-category ATop/M . Our

main application of this construction in the paper is for M = BGhI (in the notation

of § 4.6) in which case it allows us to pass from loop space data to strictly associative

R-algebra Thom spectra, cf. Proposition 4.11.

A.1. The classifying space B1 M

In order to work within the setting of topological monoids (as opposed to a more relaxed

notion of A∞ spaces), it is most elegant to apply the model B1 M of the classifying space

functor introduced by Fiedorowicz [12] (which in turn is a variant of May’s classifying

space functor [21]). We begin by reviewing the relevant details. Recall that the Moore

loop space 3(K ) of a based space K is the subspace of Map([0,∞), K )×[0,∞) given by

the pairs ( f, r) such that f (t) = ∗ (the base point) if t = 0 or t > r . The Moore loop space

defines a functor from based spaces to topological monoids and the canonical inclusion of

the standard loop space�(K )→ 3(K ) is an (unbased) deformation retract. We can refine

the target category for 3 by letting Top[0,∞) be the full subcategory of the over-category

Top∗/[0,∞) with objects p : K → [0,∞) such that p−1(0) = {∗}. (This is the category

denoted T∗[R+] in [12].) The structure map 3(K )→ [0,∞) is the obvious projection.

Notice that Top[0,∞) inherits a symmetric monoidal structure from Top∗/[0,∞) when we

equip [0,∞) with the additive monoid structure. The purpose of introducing the category

Top[0,∞) is to realize 3 as a right adjoint in an adjunction

4 : Top[0,∞) � Top∗ :3

in which the left adjoint is the Moore suspension functor defined by

4(K , p) = K ×[0,∞)/{(x, s)| s = 0 or s > p(x)}.

Because (4,3) form an adjoint functor pair, the composition 34 defines a monad on

Top[0,∞). We also have the symmetric monoidal adjunction

L : Top[0,∞) � Top∗ : R
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where L is the forgetful functor and R takes a based space K to

RK = {(x, s) ∈ K ×[0,∞)| s > 0 or s = 0 and x = ∗}

with structure map the projection onto [0,∞). It follows from [12, Lemma 6.6] that there

are natural homeomorphisms R� = 3 and ΣL = 4. This is the reason for working with

Top[0,∞) as opposed to Top∗/[0,∞). It is easy to check that R takes NDR pairs to NDR

pairs (see [34]). This in turn implies that if K is a well-based space, then also RK is

well-based.

Now let J denote the classical James construction that to a based space K associates the

free topological monoid J (K ). We may also view J as a monad on Top[0,∞) by assigning

to an object p : K → [0,∞) the induced map of topological monoids J (K )→ [0,∞).
Defined in this manner, J (K , p) is the free monoid on (K , p) which implies that we have

a canonical map of monads λ : J → 34 on Top[0,∞). It is proved in [12, Theorem 6.8]

that this is a weak equivalence when applied to spaces that are well-based and path

connected.

The definition of Fiedorowicz’s classifying space B1 M is based on the monadic bar

construction and we refer to [21, § 9] for details. First we apply the functor R to get a

topological monoid RM that is an algebra for the monad J on Top[0,∞). Secondly, the

adjoint of λ : J → 34 makes 4 a J -functor in the sense of [21]. Putting all this together,

B1 M is defined to be the corresponding monadic bar construction

B1 M = B(4, J, RM).

The fact that RM is well-based ensures that this is the realization of a good simplicial

space in the sense that the degeneracy maps are h-cofibrations (it is clear that J preserves

h-cofibrations).

We shall also consider the monadic bar construction B(J, J, RM) which comes with a

canonical weak equivalence of topological monoids

B(J, J, RM)
∼
−→ RM

∼
−→ M. (A 1)

Let us use the notation λ for the composite map of topological monoids

λ : B(J, J, RM)
∼
−→ B(34, J, RM)

∼
−→ 3(B(4, J, RM)) = 3(B1 M) (A 2)

where the first map is induced by the natural transformation with the same name and the

second map is the canonical weak equivalence relating the geometric realization of the

levelwise Moore loop space to the Moore loop space of the geometric realization, cf. [21,

Theorem 12.3]. It remains to show that the first map is a weak equivalence as indicated.

Proposition A.2. The map λ in (A 2) is a weak homotopy equivalence.

Proof. Notice first that our assumption that M be grouplike implies that also B(J, J, RM)
is grouplike. The topological monoid 3(B1 M) is grouplike by definition. Hence it suffices

to show that λ induces a weak equivalence Bλ of bar constructions. The latter statement

reduces to showing that the first map in (A 2) induces a weak equivalence of bar

constructions in every simplicial degree. This essentially follows from [12, Theorem 6.12]

which states that B J (K , p)→ B3(4(K , p)) is a weak equivalence for every well-based

object (K , p) in Top[0,∞).
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Combining the weak equivalences in (A 1) and (A 2), we get a chain of weak equivalences

relating the topological monoids M and 3(B1 M). This is one of the advantages of

working with the model B1 M of the classifying space. Applying the ordinary (bar

construction) classifying space functor to these equivalences and composing with the

weak equivalence B3(B1 M)
∼
−→ B1 M from [22, Lemma 15.4], we get the chain of weak

homotopy equivalences

B M
∼
←− B B(J, J, RM)

∼
−→ B1 M

as stated in [12, Theorem 7.3].

A.3. Rectification of loop maps

Based on the preparations in the previous subsection, we now introduce a rectified loop

functor

�′ : Top∗/B1 M → ATop/M; (g : K → B1 M) 7→ (�′(g) : �′g(K )→ M)

that models the looping of a based map g : K → B1 M by a map of actual topological

monoids �′(g) : �′g(K )→ M . In detail, given a based map g as above, we let �′g(K ) be

the homotopy pullback of the diagram of topological monoids

3(K )
3(g)
−−→ 3(B1 M)

λ
←− B(J, J, RM)

and we let �′(g) be the composite map

�′(g) : �′g(K )→ B(J, J, RM)→ M.

It follows from the discussion in the previous subsection that the composition

ATop/M
B1
−→ Top∗/B1 M

�′

−→ ATop/M

defines a group completion functor on the full subcategory of well-based topological

monoids over M . Restricted to objects (that is, homomorphisms) f : N → M with N
well-based and grouplike, we thus have a chain of natural weak equivalences of topological

monoids �′B1 f (B1 N ) ' N over M .

We shall need a further compatibility relation. Let (B1(−) ↓ B1 M) be the comma

category with objects (N , g) given by a topological monoid N and a based map

g : B1 N → B1 M . A morphism f : (N , g)→ (N ′, g′) is a homomorphism f : N → N ′ such

that g = g′ ◦ B f . In the following proposition we view �′g(B1 N ) and N as functors from

(B1(−) ↓ B1 M) to ATop by composing with the appropriate forgetful functors.

Proposition A.4. There is a chain of natural maps of topological monoids relating

�′g(B1 N ) and N . These maps are weak equivalences when N is well-based and grouplike.

Proof. It follows from the definition that the homomorphisms

N
∼
←− B(J, J, RN ) −→ 3(B1 N )

∼
←− �′g(B1 N )

satisfy the stated naturality conditions. The second statement then follows from
Proposition A.2.
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