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Abstract

We present an extension of Logic Programming (under stable models semantics) that, not

only allows concluding whether a true atom is a cause of another atom, but also deriving new

conclusions from these causal-effect relations. This is expressive enough to capture informal

rules like “if some agent’s actions A have been necessary to cause an event E then conclude

atom caused(A, E),” something that, to the best of our knowledge, had not been formalised

in the literature. To this aim, we start from a first attempt that proposed extending the

syntax of logic programs with so-called causal literals. These causal literals are expressions

that can be used in rule bodies and allow inspecting the derivation of some atom A in the

program with respect to some query function ψ. Depending on how these query functions

are defined, we can model different types of causal relations such as sufficient, necessary or

contributory causes, for instance. The initial approach was specifically focused on monotonic

query functions. This was enough to cover sufficient cause-effect relations but, unfortunately,

necessary and contributory are essentially non-monotonic. In this work, we define a semantics

for non-monotonic causal literals showing that, not only extends the stable model semantics

for normal logic programs, but also preserves many of its usual desirable properties for the

extended syntax. Using this new semantics, we provide precise definitions of necessary and

contributory causal relations and briefly explain their behaviour on a pair of typical examples

from the Knowledge Representation literature.

1 Introduction

An important difference between classical models and most Logic Programming (LP)

semantics is that, in the latter, true atoms must be founded or justified by a given

derivation. Consequently, falsity is understood as absence of proof: for instance, a

common informal way of reading for default literal notA is “there is no way to

derive A.” Although this idea seems quite intuitive and, in fact, several approaches

have studied how to syntactically build these derivations or justifications (Specht

1993; Pemmasani et al. 2004; Pontelli et al. 2009; Denecker et al. 2015; Schulz and

� This research was partially supported by Spanish Project TIN2013-42149-P.
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Toni 2016), it actually resorts to a concept, the ways to derive A, outside the scope

of the standard LP semantics.

Such information on justifications for atoms can be of great interest for Knowledge

Representation (KR), and especially, for dealing with problems related to causality.

For instance, in the area of legal reasoning where determining a legal responsibility

usually involves finding out which agent or agents have eventually caused a given

result, regardless the chain of effects involved in the process. In this sense, an

important challenge in causal reasoning is the capability of not only deriving facts

of the form “A has caused B,” but also being able to represent and reason about

them. As an example, take the assertion:

“If somebody causes an accident, (s)he would receive a fine” (1)

This law does not specify the possible ways in which a person may cause an accident.

Depending on a representation of the domain, the chain of events from the agent’s

action(s) to the final effect may be simple (a direct effect) or involve a complex

set of indirect effects and defaults like inertia. Focusing on representing (1) in an

elaboration tolerant manner (McCarthy 1998), we should be able to write a single

rule whose body only refers to the agent involved and the accident. For instance,

consider the following program

accident ← oil (2)

oil ← suzy (3)

suzy (4)

representing that accident is an indirect effect of Suzy’s actions. We may then

represent (1) by the following rule

fine(suzy) ← suzy necessary for accident (5)

that states that Suzy would receive a fine whenever the fact suzy was necessary to

cause the atom accident.

With this long term goal in mind, (Cabalar et al. 2014a) proposed a multi-

valued semantics for LP that extends the stable model semantics (Gelfond and

Lifschitz 1988) and where justifications are treated as algebraic constructions. In

this semantics, causal stable models assign, to each atom, one of these algebraic

expressions that captures the set of all non-redundant logical proofs for that atom.

Recently, this semantics was used in (Fandinno 2015b) to extend the syntax of logic

programs with a new kind of literal, called causal literal, that allow representing

rules like

fine(suzy) ← suzy sufficient for accident (6)

and derive, from a program P1 containing rules (2-4,6), that fine(suzy) holds.

However, the major limitation of this semantics is that causal literals must be

monotonic and, therefore, rule (5) cannot be represented. It is easy to see that

rule (5) is non-monotonic: in a program P2 containing rules (2-5), the fact suzy is

necessary for accident is satisfied and, thus, fine(suzy) must hold, but in a program P3
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obtained by adding a fact oil to this last program, suzy is not longer necessary and,

thus, fine(suzy) should not be a conclusion.

In this paper, we present a semantics for logic programs with causal literals

defined in terms of non-monotonic query functions. More specifically, we summarise

our contributions as follows. In Section 2, we define the syntax of causal literals

and a multi-valued semantics for logic programs whose causal values rely on a

completely distributive lattice based on causal graphs. Section 3 shows that positive

monotonic program has a least model that can be computed by an extension of

the direct consequences operator (van Emden and Kowalski 1976). In Section 4,

we define semantics for programs with negation and non-monotonic causal literals

and show that it is a conservative extension of the standard stable model semantics.

Besides, with a running example, we show how causal literals can be used to derive

new conclusion from necessary causal relations and, in Section 5, briefly relate this

notion with the actual cause literature. In this section, we also formalise the weaker

notion of contributory cause, also related to the actual cause literature, and show how

causal literals may be used to derive new conclusion from them. In Section 6, we

show that our semantics satisfy the usual properties of the stable models semantics

for the new syntax. Finally, Section 7 concluded the paper. Proofs of formal results

from the paper can be found in an extended version (Fandinno 2016).

2 Causal programs

We start by reviewing some definitions from (Cabalar et al. 2014a).

Definition 1 (Term)

Given a set of labels Lb, a term t is recursively defined as one of the following

expressions

t ::= l
∣∣∣ ∏

S
∣∣∣ ∑

S
∣∣∣ t1 · t2

where l ∈ Lb is a label, t1, t2 are in their turn terms and S is a (possibly empty and

possible infinite) set of terms.

When S = {t1, . . . , tn} is a finite set, we will write t1 ∗ . . . ∗ tn and t1 + . . .+ tn instead

of
∏
S and

∑
S , respectively. When S = ∅, we denote

∏
S and

∑
S by 1 and

0, respectively. We assume that application ‘·’ has higher priority than product ‘∗’
and, in its turn, product ‘∗’ has higher priority than addition ‘+’. Application ‘·’
represents the application of a rule label to a previous justification. For instance,

the justification in program P1 for atom suzy is the fact suzy itself. If rules (2-3) in

program P1 are labelled in the following way

r1 : accident ← oil (7)

r2 : oil ← suzy (8)

we may represent the justification of oil as suzy·r2, in other words, oil is true

because of the application of rule r2 to the fact suzy. Similarly, we may represent

the justification of accident as suzy·r2·r1. Addition ‘+’ is used to capture alternative
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Associativity

t · (u·w) = (t·u) · w

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Idempotence

l · l = l

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c · d · e = (c · d) ∗ (d · e) with d �= 1
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Fig. 1. Properties of the ‘·’operators: t, u, w are terms, l is a label and c, d, e are terms

without ‘+’. Addition and product distributivity are also satisfied over

infinite sums and products.

independent causes: each addend is one of those independent causes. For instance,

the justification of oil, in program P3, may be represented as suzy·r2 + oil and

the justification of accident as (suzy·r2 + oil) · r1. As we will see below application

distributes over addition, so that, the justification of accident can also be written as

suzy·r2·r1+oil·r1, which better illustrates the existence of two alternatives. Product ‘∗’
represents conjunction or joint causation. For instance, in a program P4 obtained

by adding the fact billy to P3 and replacing rule (8) by

r2 : oil ← suzy, billy (9)

the justifications of oil will be (suzy ∗ billy)·r2 + oil. Similarly, the justification of

accident will be (suzy ∗ billy)·r2·r1 + oil·r1. Intuitively, terms without addition ‘+’

represent individual causes while terms with addition ‘+’ represent sets of causes. It is

worth to mention that these algebraic expressions are in a one-to-one correspondence

with non-redundant proofs of an atom (Cabalar et al. 2014a) and that they may also

be understood as a formalisation of Lewis’ concept of causal chain (Lewis 1973)

(see Fandinno 2015b).

Definition 2 (Value)

(Causal) values are the equivalence classes of terms under axioms for a completely

distributive (complete) lattice with meet ‘∗’ and join ‘+’ plus the axioms of Figure 1.

The set of values is denoted by VLb. Furthermore, by CLb we denote the subset of

causal values with some representative term without sums ‘+’.

All three operations, ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’ and addition ‘+’

are also commutative, and they satisfy the usual absorption and distributive laws

with respect to infinite sums and products of a completely distributive lattice. The

lattice order relation is defined as:

t � u iff t ∗ u = t iff t+ u = u

An immediate consequence of this definition is that product, addition, 1 and 0

respectively are the greatest lower bound, the least upper bound and the top and the

bottom element of the �-relation. Term 1 represents a value which holds by default,

without an explicit cause, and will be assigned to the empty body. Term 0 represents

the absence of cause or the empty set of causes, and will be assigned to false.

Furthermore, applying distributivity (and absorption) of product and application
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over addition, every term can be represented in (minimal) disjunctive normal form in

which addition is not in the scope of any other operation and every pair of addends

are pairwise �-incomparable. In the following, we will assume that every term is in

disjunctive normal form.

This semantics was used in (Fandinno 2015b), to define the concept of causal

query, here m-query: a monotonic function φ : CLb −→ {0, 1}. Unfortunately, m-

queries are not expressive enough to capture necessary causation for two reasons:

(i) they are monotonic and (ii) they cannot capture relations between sets of causes.

We introduced here the following definition which removes these two limitations.

Definition 3 (Causal query)

A causal query ψ : CLb × VLb −→ {0, 1} is a function mapping pairs cause-value

into 1 (true) and 0 (false) which is anti-monotonic in the second argument, that is,

ψ(G, t) � ψ(G, u) for every G ∈ CLb and {t, u} ⊆ VLb such that t � u.

Syntax. We define the semantics of logic programs using its grounding. Therefore,

for the remainder of this paper, we restrict our attention to ground logic programs.

A signature is a triple 〈At, Lb,Ψ〉 where At, Lb and Ψ respectively represent sets of

atoms (or propositions), labels and causal queries. We assume the signature of every

program contains a causal query ψ1 ∈ Ψ s.t. ψ1(G, t) def= 1 for every G ∈ CLb and

value t ∈ VLb.

Definition 4 (Causal literal)

A (causal) literal is an expression (ψ :: A) where A ∈ At is an atom and ψ ∈ Ψ is a

causal query.

A causal atom (ψ1 :: A) is said to be regular and, by abuse of notation, we will

use atom A as shorthand for regular causal literals of the form (ψ1 :: A). We will see

below the justification for this notation. A literal is either a causal literal (ψ :: A)

(positive literal ), or a negated causal literal not(ψ :: A) (negative literal ) or a double

negated causal literal not not(ψ :: A) (consistent literal ) with A ∈ At an atom and

ψ ∈ Ψ a causal query.

Definition 5 (Causal program)

A (causal) program P is a set of rules of the form:

ri : A ← B1, . . . , Bm (10)

where 0 � m is a non-negative integer, ri ∈ Lb is a label or ri = 1, A (the head of

the rule) is an atom and each Bi with 1 � i � m (the body of the rule) is a literal or

a term.

A rule r is said to be positive iff all literals in its body are positive and it is said

to be regular if all causal literals in its body are regular. When m = 0, we say that

the rule is a fact and omit the body and sometimes the symbol ‘←.’ Furthermore,

for clarity sake, we also assume that, for every atom A ∈ At, there is a homonymous

label A ∈ Lb and that the label of an unlabelled rule is assumed to be its head. In

this sense, a fact A in a program actually stands for the labelled rule (A : A ←). A

program P is positive or regular when all its rules are positive (i.e. it contains no
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default negation) or regular, respectively. A standard program is a regular program

in which the label of every rule is ‘1 :’.

Semantics. A (causal) interpretation is a mapping I : At −→ VLb assigning a value

to each atom. For interpretations I and J , we write I � J when I(A) � J(A) for

every atom A ∈ At. Hence, there is a �-bottom interpretation 0 (resp. a �-top

interpretation 1) that stands for the interpretation mapping every atom A to 0 (resp.

1). For an interpretation I and atom A ∈ At, by max I(A) we denote the set

max I(A) def= { G ∈ CLb | G � I(A) and there is no G′ ∈ CLb s.t. G < G′ � I(A) }

containing the maximal terms without addition (or individual causes) of A w.r.t. I .

Definition 6 (Causal literal valuation)

The valuation of a causal literal of the form (ψ :: A) with respect to an interpretation

I , in symbols I(ψ :: A), is given by

I(ψ :: A) def=
∑
{ G∈ max I(A) | ψ(G, I(A) ) = 1 }

We say that I satisfies a causal literal (ψ :: A), in symbols I |= (ψ :: A), iff

I(ψ :: A) �= 0.

Notice now that I(ψ1 :: A) = I(A) for any atom A and, thus, writing a standard

atom A as a shorthand for causal literal (ψ1 :: A) does not modify its intended

meaning. Causal literals can be used to represent the body of rule (5). For instance,

given a set of labels A ⊆ Lb representing the actions of some agent A, we may

define the query function

ψnec
A (G, t) def=

{
1 if t �

∑
A

0 otherwise
(11)

and represent the body of rule (5) by a causal literal of the form (ψnec
Suzy :: accident)

where Suzy is the set of labels {suzy}. In the sake of clarity, we will usually write

(A necessary for A) in rule bodies instead (ψnec
A :: A).

If we consider an interpretation I which assigns to the atom accident its jus-

tification in program P2, that is, I(accident) = suzy·r2·r1, then any term without

addition G ∈ CLb, satisfies

ψnec
Suzy(G, I)(accident) = 1 iff suzy·r2·r1 �

∑
{suzy}

iff suzy·r2·r1 � suzy

iff suzy·r2·r1 + suzy = suzy

which holds applying identity and associativity of application and absorption w.r.t.

addition

suzy·r2·r1 + suzy = 1 · suzy · (r2·r1) + suzy = suzy

Similarly, in program P3, ψ
nec
Suzy(G, I

′(accident)) = 1 iff suzy·r2·r1 + oil � suzy which

does not hold. In other words, Suzy’s actions has been necessary in program P2 but

not in program P3.
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The valuation of a causal term t is the class of equivalence of t. The valuation of

non-positive literals is defined as follows

I(not(ψ :: A)) def=

{
1 iff I(ψ :: A) = 0

0 otherwise

I(not not(ψ :: A)) def=

{
1 iff I(ψ :: A) �= 0

0 otherwise

Furthermore, for any literal or term L, we write I |= L iff I(L) �= 0.

Definition 7 (Causal model)

Given a rule r of the form (10), we say that an interpretation I satisfies r, in symbols

I |= r, if and only if the following condition holds:(
I(B1) ∗ . . . ∗ I(Bm)

)
· ri � I(A) (12)

An interpretation I is a causal model of P , in symbols I |= P , iff I satisfies all rules

in P .

Let P5 be the program containing rules (7) and (8) plus the labelled fact (suzy :

suzy ←) and P6 be the program containing rules (7) and (9) plus the labelled facts

(suzy : suzy ←) and (billy : billy ←). Then, it can be checked that these programs

respectively have unique �-minimal models I5 and I6 which satisfy

I5(accident) = suzy·r2·r1 I6(accident) = (suzy ∗ billy)·r2·r1 + oil

Let now P7 and P8 be the labelled programs respectively obtained by adding the

following rule

r3 : fine(suzy) ← suzy necessary for accident (13)

(resulting of labelling rule (5) with r3) to programs P5 and P6. Then it can be

checked that these programs also have unique �-minimal models I7 and I8 which

respectively agree with I5 and I6 in all atoms but in fine(suzy) and, as we have seen

above,

I7(ψ
nec
Suzy :: accident) = I7(accident) = suzy·r2·r1 I8(ψ

nec
Suzy :: accident) = 0

Furthermore, by definition, it holds that Ij(fine(suzy)) = Ij(ψ
nec
Suzy :: accident)·r3 for

j ∈ {7, 8} which implies that

I7(fine(suzy))) = suzy·r2·r3
I8(fine(suzy))) = 0·r3 = 0

That is, Suzy would receive a fine for causing the accident, I7 |= fine(suzy), w.r.t P7,

but not w.r.t. program P8 because I8 �|= fine(suzy).

It is worth to note that positive programs may contain non-monotonic causal

literals that, somehow, play the role of negation and, hence, they may have several

�-minimal causal models. Consider, for instance, the following positive program P9

r1 : p r2 : q ← A1 necessary for p
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where A1
def={r1}. Program P9 has two �-minimal causal models. The first one

which satisfies I9(p) = r1 and I9(q) = r1·r2; and a second unintended one which

satisfies I ′9(p) = r1 + r2 and I ′9(q) = 0. In the following section, we introduce the

notion of monotonic programs which have a least model and a well-behaved direct

consequences operator (when they are positive). In Section 4, we will see that, in

fact, only I9 is a causal stable model of program P9.

3 Positive monotonic Programs

A causal query ψ is said to be monotonic iff ψ(G, u) � ψ(G′, w) for any val-

ues {G,G′} ⊆ CLb and {u, w} ⊆ VLb such that G � G′. A causal literal (ψ :: A)

is monotonic if ψ is monotonic. A program P is monotonic iff all causal literals

occurring in P are monotonic. We show next that every monotonic program can

be reduced to the syntax and semantics of (Fandinno 2015b). For space reasons,

we omit here the details of (Fandinno 2015b), which can be found in the extended

version (Fandinno 2016).

Definition 8

Given a query ψ (resp. m-query φ), its corresponding m-query (resp. query) is given

by φψ(G) def=ψ(G, 1) (resp. ψφ(G, t)
def=φ(G)). Similarly, for any program P (resp. m-

program Q) its corresponding m-program Q (resp. program P) is obtained by replacing

every query ψ in P (resp. m-query φ in Q) by its corresponding m-query φψ
(resp.query ψφ).

Theoram 1

If P is the corresponding program of some positive m-program Q with the syntax

of Definition 5 or Q is the corresponding m-program of some positive monotonic

program P , then an interpretation I is a model of P iff I is a model of Q.

An immediate consequence of Theorem 1, plus Theorem 3.8 in (Fandinno 2015b),

is that positive monotonic programs have a least model that can be computed

by iteration of the following extension of the direct consequences operator of van

Emden and Kowalski (1976).

Definition 9 (Direct consequences)

Given a causal program P , the operator of direct consequences is a function TP
from interpretations to interpretations such that

TP (I)(A) def=
∑
{

(
I(B1) ∗ . . . ∗ I(Bm)

)
· r1 | (ri : A ← B1, . . . , Bm) ∈ P }

for any interpretation I and any atom A ∈ At. The iterative procedure is defined as

usual

T
↑α
P (0) def= TP (T↑α−1

P (0)) if α is a successor ordinal

T
↑α
P (0) def=

∑
β<α

T
↑β
P (0) if α is a limit ordinal

As usual 0 and ω respectively denote the first limit ordinal and the first limit ordinal

that is greater than all integers. Thus, T↑0P (0) = 0.
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Corollary 1

Any (possibly infinite) positive monotonic program P has a least causal model

I which (i) coincides with the least fixpoint lfp(TP ) of the direct consequences

operator TP and (ii) can be iteratively computed from the bottom interpretation

I = lfp(TP ) = T
↑ω
P (0).

Corollary 1 guarantees that the least fixpoint of TP is well-behaved and corre-

sponds to the least model of the program P . In fact, we can check now that the

least model I6 of program P6 satisfies I6(accident) = (suzy ∗ billy)·r2·r1 + oil·r1. First

note, that program P6 contains facts suzy, billy and oil whose label is the same as

the name atom and, thus, T↑1P6
(0)(A) = A for each atom A ∈ {suzy, billy, oil}. Then,

since T↑1P6
(0)(suzy) = suzy, T↑1P6

(0)(billy) = billy and rule (8) and fact oil belong to

program P6, it follows that T↑2P6
(0)(oil) = (suzy ∗ billy) · r2 + oil. Similarly, we can

check that

T
↑3
P6

(0)(accident) = ( (suzy ∗ billy) · r2 + oil) · r1 = (suzy ∗ billy)·r2·r1 + oil·r1

and, thus, I6 = T
↑3
P6

(0) is the least fixpoint of TP6
. Checking that T↑3P5

(0) = I5,

that T↑4P7
(0) = I7 and that T↑4P8

(0) = I8 are the least fixpoint and the least models

respectively of programs P5, P7 and P8 is analogous.

It is easy to see that every true atom, according to the standard least model

semantics, has a non-zero causal value associated in the causal least model of the

program, that is, some associated cause. An interpretation I is two-valued when it

maps each atom into the set {0, 1}. By Icl , we denote the two-valued (or “classic”)

interpretation corresponding to some interpretation I s.t.

Icl(A) def=

{
1 iff I(A) > 0

0 iff I(A) = 0

Corollary 2

Let P be a regular, positive monotonic program and Q its standard unlabelled

version obtained by removing all labels from the rules in P . Let I and J be the least

models of P and Q, respectively. Then, Icl = J .

4 Non-monotonic causal queries and negation

We introduce now the semantics for programs with non-monotonic causal queries

and negation by extending the concept of reduct (Gelfond and Lifschitz 1988) to

causal queries.

Definition 10 (Reduct)

For any term t, by ψt we denote a query such that

ψt(G, u) def=

{
1 iff exists some G′ � G s.t. G′ ∈ max t and ψ(G′, t) = 1

0 otherwise

The reduct of a causal literal (ψ :: A) w.r.t some interpretation I is itself if ψ is

monotonic and (ψI(A) :: A) if ψ is non-monotonic. The reduct of a program P w.r.t.
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an interpretation I , in symbols P I , is the result of (i) removing all rules whose body

contains a non satisfied negative or consistent literal, (ii) removing all the negative

and consistent literals for the remaining rules and (iii) replacing the remaining causal

literals (ψ :: A) by their reducts (ψ :: A)I .

It is easy to see that the reduct P I of any program P is a positive monotonic

program and, therefore, it has a least causal model.

Definition 11 (Causal stable model)

We say that an interpretation I is a causal stable model of a program P iff I is the

least model of the positive program P I .

We can check now that interpretation I9 is, in fact, the unique causal stable model

of program P9. Let Q = P I9
9 be the reduct of program P9 w.r.t. I9 consisting in the

following rules

r1 : p r2 : q ← (ψ :: p)

where ψ(G, t) = 1 iff there exists some G′ � G s.t. G′ ∈ max I9(p) = r1 and

ψnec
A1

(G′, I9(p)) iff r1 � G and r1 �
∑
A1 = r1 iff r1 � G. First note that

T
↑α
Q (0)(p) = r1 = I9(p) for any ordinal α � 1 because r1 is the only rule with

the atom p in the head. Then, note that T↑αQ (0)(ψ :: p) = T
↑α
Q (0)(p) because r1 � G

for every G∈ maxT↑αQ (0)(p) = r1 (there is only one such G = r1) and, thus,

T
↑β
Q (0)(q) = T

↑α
Q (0)(ψ :: p)·r2 = T

↑α
Q (0)(p)·r2 = r1·r2 = I9(q)

for any ordinal β � 2. Hence, I9 is a causal stable model of P9. On the other hand,

we can check that I ′9 is not a causal stable model of P9. Let Q′ = P
I ′9
9 be the reduct

of program P9 w.r.t. I ′9 consisting in the same rules than program Q, but replacing

ψ by ψ′ where ψ′(G, t) = 1 iff there exists some G′ � G s.t. G′ ∈ max I ′9(p) = r1 + r2
and ψnec

A1
(G′, I ′9(p)). As above, T↑αQ′ (0)(p) = r1 �= I ′9(p) = r1 + r2 for any ordinal α � 1

and, therefore, I9 is not a causal stable model of program P9.

It is worth to mention that, as happened with positive programs, we can establish

a correspondence between the causal stable models of regular programs and the

standard stable models of their standard version.

Definition 12 (Two-valued equivalence)

Two programs P and Q are said to be two-valued equivalent iff for every causal

stable model I of P there is a unique causal stable model J of Q such that Icl = Jcl ,

and vice-versa.

Theoram 2

Let P be a regular program and Q be its corresponding standard program obtained

by removing all labels in P . Then P and Q are two-valued equivalent.

Theorem 2 asserts that, labelling a standard program does not change which atoms

are true or false in its stable models, in other words, the causal stable semantics

presented here is a conservative extension of the standard stable model semantic.
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5 Contributory cause and its relation with actual causation

Until now, we have considered that an agent is a cause of an event when its

actions have been necessary to cause that event. This understanding is similar to

the definition of the modified Halpern-Pearl definition of causality given by Halpern

(2015). However, in some scenarios it makes sense to consider a weaker definition in

which those agents whose actions have contributed to that event are also considered

causes, even if their actions have not been necessary (Pearl 2000). Consider, for

instance, the following example from (Hopkins and Pearl 2003).

Example 1

For a firing squad consisting of shooters Billy and Suzy, it is John’s job to load

Suzy’s gun. Billy loads and fires his own gun. On a given day, John loads Suzy’s gun.

When the time comes, Suzy and Billy shoot the prisoner. The agents who caused

the prisoner death would be punished with imprisonment.

In this example, although the actions of any of the agents are not necessary for the

prisoner’s death, commonsense tells that all three should be considered responsible

of it. If we represent Example 1 by the following program P10

r1 : dead ← shoot(suzy), loaded

r2 : dead ← shoot(billy)

r3 : loaded ← load(john)

rA : long prison(A) ← A necessary for dead

shoot(suzy)

shoot(billy)

load(john)

for A ∈ {suzy, billy, john}, it can be shown that its unique causal stable model I10
satisfies

I10(dead) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

Recall that, we assume that every fact has a label with the same name. According

to I10, the actions of the three agents appear in the causes of the atom dead,

but there is no agent whose actions occur in all causes. Then, the causal literal

(A necessary for dead) is not satisfied for any agent A and, therefore, for every

agent A ∈ {suzy, billy, john}, it holds that I10(long prison(A)) = 0. That is, no

agent is punished with imprisonment for the prisoner’s death. On the other hand,

if P11 is a program obtained by replacing rules rA by rules

cA : short prison(A, dead) ← A contributed to dead

in program P10, we may expect that short prison(A) holds, in its unique causal

stable model I11, for any A ∈ {suzy, billy, john}. We formalise this by defining the

following query

ψcont
A (G, t) def=

{
1 if G �

∑
A

0 otherwise
(14)

In the sake of clarity, we will write (A contributed to dead) instead of (ψcont
A ::

dead). It can be checked that
(
load(john)·r3 ∗ shoot(suzy)

)
· r1 � load(john) and,
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therefore,

I11(john contributed to dead) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1

Consequently, I11(short prison(john)) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1 · cjohn.

Similarly, it can be shown that

I11(short prison(suzy)) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1·csuzy

I11(short prison(billy)) = shoot(billy)·r2 · cbilly

It is worth to note that contributory causes are non-monotonic when defaults are

taken into account. Consider now the following variation of Example 1.

Example 2

Now Suzy also loads her gun as Billy does. However, Suzy’s gun was broken and

John repaired it.

As in Example 1, John’s repairing action is necessary in order for Suzy to be able

to fire her gun. However, in this case, it seems too severe to consider that John has

contributed to the prisoner’s death. This consideration has been widely attributed

to the fact that we consider that, by default, things are not broken and that causes

must be events that deviate from the norm (Maudlin 2004; Hall 2007; Halpern

2008; Hitchcock and Knobe 2009). If we represent this variation by a program P12

containing the following rules1

r1 : dead ← shoot(suzy), un broken

r2 : dead ← shoot(billy)

r3 : un broken ← repair(john)

cA : short prison(A) ← A contributed to dead

shoot(suzy)

shoot(billy)

repair(john)

for A ∈ {suzy, billy, john}, then it is easy to see that

I12(dead) =
(
repair(john)·r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

where I12 is the least model of program P12 and, thus, responsible(john, dead) will

be a conclusion of it. Just note that program P12 is the result of replacing atoms

loaded and load(john) in program P11 by un broken and repair(john), respectively.

Note also that nothing in program P12 reflects the fact that by default guns are

un broken. We state that guns are un broken by default adding the following rule

1 : un broken ← not broken (15)

If P13 is the result of adding rule (15) to program P12 and I13 is the least model

of P13, then

I13(un broken) = I12(un broken) + 1 = 1

1 We have chosen this representation in order to illustrate the non-monotonicity of contributory cause.
However, solving the Frame and Qualification Problems (McCarthy and Hayes 1969; McCarthy 1987)
would require the introduction of time and the inertia laws, plus the replacement of rule r1 by the
pair of rules (r1 : dead ← shoot(suzy), not ab) and (ab ← broken). For a detailed discussion of how
causality and the inertia laws can combined we refer to (Fandinno 2015a).
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and, consequently,

I12(dead) =
(
1·r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

=
(
r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

which shows that John is not considered to have contributed to the prisoner’s death.

Hence, short prison(john) is not a conclusion of program P13. It is worth to mention

that besides the two syntactic differences between causal queries and m-queries

already mentioned, there is a, perhaps, less noticeable difference in the evaluation

of causal literals. Note that,(
repair(john)·r3 ∗ shoot(suzy)

)
· r1 �

(
r3 ∗ shoot(suzy)

)
· r1

and, thus, if we replaced G∈ max I(A) by G � I(A) in Definition 6 (as done

in Fandinno 2015b), it would follow that atom short prison(john) would be an

unintended conclusion of program P13. It is also worth to mention that, besides

(Pearl 2000) approach, the notion of contributory cause is also behind the definitions

of actual cause given in (Halpern and Pearl 2005; Hall 2007).

6 Properties of causal logic programs

Theorem 2 established a correspondence for regular programs, but they say nothing

about programs with causal queries. For instance, positive program with non-

monotonic causal literals may have more than one causal stable model. Consider

the following positive program P14

r1 : p

r3 : q

r2 : q ← A1 necessary for p

r4 : p ← A2 necessary for q

obtained by adding rules r3 and r4 to program P9 and whereA2
def={r3}. Program P14

has two causal stable causal models. The first that satisfies I14(p) = r1 + r3·r4 and

I14(q) = r3. The second I ′14(p) = r1 and I ′14(q) = r3 + r1·r2. Let now Q = P I14

14 be the

reduct of program P14 w.r.t. I14, which consists in the following rules

r1 : p

r3 : q

r2 : q ← (ψ1 :: p)

r4 : p ← (ψ2 :: q)

where ψ1(G, t) = 1 iff there exists some G′ � G such that G′ ∈ max I14(p) = r1 + r3·r4
and ψnec

A1
(G′, I14(p)) and ψ2(G, t) = 1 iff there exists G′ � G such that G′ ∈ max I14(q) =

r3 and ψnec
A2

(G′, I14(p)). First, note that ψnec
A1

(G′, I14(p)) iff I14(p) = r1 +r3·r4 �
∑
A1 =

r1 which does not hold. Thus, ψ1(G, t) = 0 for every G ∈ CLb and t ∈ VLb. Then, it is

clear that the body of rule r2 is never satisfied and, therefore, T↑αQ (0)(q) = r3 for any

ordinal α � 1. It can also be checked that ψ2(r3, T
↑α
Q (0)(q)) = 1 because there exists

G′ = r3 such that G′ ∈ max I ′14(q) = r3 and ψnec
A2

(G′, I14(q)) = ψnec
A2

(r3, r3) = 1 since

r3 �
∑
A2 = r3. Hence, since r3 ∈ maxT↑αQ (0)(q) and ψ2(r3, T

↑α
Q (0)(q)) = 1, it follows

that T↑αQ (0)(ψ2 :: q) = r3 and T
↑β
Q (0)(p) = r1 + T

↑α
Q (0)(q)·r4 = r1 + r3·r4 = I9(p) for

any ordinal β � 2. Hence, I14 is the least model of P I14

14 and a causal stable model

of program P14. Showing that I ′14 is also a causal stable model of P14 is symmetric.

https://doi.org/10.1017/S1471068416000466 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000466


Deriving conclusions from non-monotonic cause-effect relations 683

In the following we revise some desired general properties for a LP semantics.

First, causal stable models should also be supported models. Note that the concept

of supported model bellow is analogous to the usual concept used in standard LP,

but it is stronger in the sense that, not only requires that true atoms are supported,

but also all their causes must be supported by a rule and a cause of its body.

Definition 13

An interpretation I is a (causally) supported model of a program P iff I is a model

of P and for every true atom A and cause G ∈ CLb such that G � I(A) there is a

rule r in P of the form of (10) such that G � ( I(B1) ∗ . . . ∗ I(Bm)) · ri.

Proposition 1

Any causal stable model I of a program P is also a supported model of P .

Furthermore, as happen with programs with nested negation under the standard

stable models semantics (where stable models may not be minimal models of the

program), causal stable models may not be minimal models either. In fact, this may

happen even when the nested negation is replaced by a non-monotonic causal literal.

Consider, for instance, the following program P15

r1 : p r2 : p ← not (A1 necessary for p)

whereA1
def={r1}. Program P15 has two causal models. One which satisfies I15(p) = r1.

The other which satisfies I ′15(p) = r1 + r2. We define now the notion of normal

program whose causal stable models are also �-minimal models. A program P is

normal iff no body rule in P contains a consistent literal (double negated literal)

nor a negated non-monotonic causal literal. In other words, a program is normal iff

it does not contain nested negation nor non-monotonic causal literals in the scope

of negation.

Proposition 2

Any causal stable model I of normal program P is also a �-minimal model.

Splitting programs. The intuitive meaning of the causal rule (13) in programs P7

and P8 is to cause the atom fine(suzy) whenever the causal query expressed by

its body is true with respect to programs P5 and P6, respectively. This intuitive

understanding can be formalised as a splitting theorem in (Lifschitz and Turner

1994).

Theoram 3 (Splitting)

Let 〈Pb, Pt〉 a partition of a program P such that no atom occurring in the head of

a rule in Pt occurs in Pb. An interpretation I is a causal stable model of P iff there

is some causal stable model J of Pb such that I is a causal stable model of (J ∪ Pt).

In our running example, the bottom part are P7,b = P5 and P8,b = P6 while their

top part P7,t = P8,t is the program containing the rule (13). This result can be

generalised to infinite splitting sequences as follows.
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Definition 14

A splitting sequence of a program P is a family (Pα)α<μ of pairwise disjoint sets such

that P =
⋃
α<μ Pα and no atom occurring in the head of a rule in some Pα occurs

in the body of a rule in
⋃
β<α Pβ . A solution of a splitting (Pα)α<μ is a family (Iα)α<μ

such that align=Center, leftmargin=10pt, itemindent=0.5pt

1. I0 is a stable model of P0,

2. Iα is a stable model of (Jα∪Pα) for any ordinal 0 < α < μ where Jα =
∑

β<α Iβ .

A splitting sequence is said to be strict in α if, in addition, no atom occurring in the

head of a rule in Pα occurs (in the head of a rule) in
⋃
β<α Pβ and it is said to be

strict if it is strict in α for every α < μ.

Theoram 4 (Splitting sequences)

Let (Pα)α<μ a splitting sequence of some program P . An interpretation I is a causal

stable model of P iff there is some solution (Iα)α<μ of (Pα)α<μ such that I =
∑

α<μ Iα.

Furthermore, if such solution is strict in α, then Iα = I|Sα where Sα is the set of

all atoms not occurring in the head of any rule in
⋃
α<β<μ Pβ and I|Sα denotes the

restriction if I to Sα.

A program P is said to be stratified if there is a some ordinal μ and mapping λ

from the set of atoms At into the set of ordinals {α < μ} such that, for every rule

of the form (10) and atom B occurring in its body, it satisfies λ(A) � λ(B) if B

does not occur in the scope of negation nor in a non-monotonic causal literal, and

λ(A) > λ(B) if B does occur under the scope of negation or in a non-monotonic

causal literal.

Proposition 3

Every stratified causal program P has a unique causal stable model.

7 Conclusions, related work and open issues

The main contribution of this work is the introduction of a semantics for non-

monotonic causal literals that allow deriving new conclusions by inspecting the

causal justifications of atoms in an elaboration tolerant manner. In particular, we

have used causal literals to define necessary and contributory causal relations which

are intuitively related to some of the most established definitions of actual causation

in the literature (Pearl 2000; Halpern and Pearl 2005; Hall 2007; Halpern 2015).

Besides, by some running examples we have shown that causal literals allow, not

only to derive whether some event is the cause or not of another event, but also

to derive new conclusions from this fact. From a technical point of view, we have

shown that our semantics is a conservative extension of the stable model semantics

and that satisfy the usual desired properties for an LP semantics (casual stable

models are supported models, minimal models in case of normal programs and can

be iteratively computed by split table programs). It worth to mention that, besides

the syntactic approaches to justifications in LP, the more related approach to our

semantics is (Damásio et al. 2013), for which a formal comparative can be found

in (Cabalar and Fandinno 2016a) and that (Pontelli et al. 2009) allows a Prolog
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system to reason about justifications of an ASP program, but justifications cannot

be inspected inside the ASP program.

Regarding complexity, it has been shown in (Cabalar et al. 2014b) that there

may be an exponential number of causes for a given atom w.r.t. each causal stable

model. Despite that, the existence of stable model for programs containing only

monotonic queries evaluable in polynomial time is NP-complete (Fandinno 2015b).

For programs containing only necessary causal literals we can prove NP-complete

(NP-hard holds even for programs containing a single negated regular literal or pos-

itive programs containing a single constraint, see (Fandinno 2016)). The complexity

for programs including other non-monotonic causal literals (like contributory) is still

an open question. A preliminary prototype extending the syntax of logic programs

with causal literals capturing sufficient, necessary and contributory causal relation

can be tested on-line at http://kr.irlab.org/cgraphs-solver/nmsolver.

In a companion paper (Cabalar and Fandinno 2016b), the causal semantics used

here has been extended to disjunctive logic programs, which will be useful for

representing non-deterministic causal laws. Interesting topics include extending the

complexity assessment for contributory causes, studying an extension to arbitrary

theories as with Equilibrium Logic (Pearce 2006) for the non-causal case; and

formalise the relation between our notions of necessary and contributory cause with

the above definitions of the actual causation and, in particular, with (Vennekens

2011) who has studied it in the context of CP-logic. A promising approach seems

to translate structural equations into logic programs in a similar way as it has been

done to translate them into the causal theories (Giunchiglia et al. 2004; Bochman

and Lifschitz 2015).
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