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RESOLVING INFINITARY PARADOXES

MICHAŁWALICKI

Abstract. Graph normal form, GNF, [1], was used in [2, 3] for analyzing paradoxes in propositional
discourses, with the semantics—equivalent to the classical one—defined by kernels of digraphs. The paper
presents infinitary, resolution-based reasoning with GNF theories, which is refutationally complete for the
classical semantics. Used for direct (not refutational) deduction it is not explosive and allows to identify in
an inconsistent discourse, a maximal consistent subdiscourse with its classical consequences. Semikernels,
generalizing kernels, provide the semantic interpretation.

§1. Motivation and overview. An informal discourse, represented by just writing
its statements in some logical language, can be analyzed for consistency or validity,
but hardly for paradoxicality. For paradox does not amount to the inconsistency of
the discourse but of its truth-theory, which means here, roughly, the collection of
T-schemata for discourse’s statements, [3]. There is nothing paradoxical about
a ∧ ¬a. Its propositional T-schema, f ↔ (a ∧ ¬a), is unproblematic, classify-
ing this statement, called now f, as false. When there are no references between
the statements, the truth-theory becomes such a trivially satisfiable repetition of
each statment, in an equivalence to its unique identifier. When statements refer to
statements, identifiers become essential already for their representation. The truth-
teller becomes at once t ↔ t, the liar l ↔ ¬l , and the truth-theory may become
inconsistent.
Classical provability of everything from such an inconsistent theory makes all
statements, so to speak, equally paradoxical. This is easily found unsatisfactory.
The discourseD, to the left below, consists of Yablo’s paradox and three statements
(a)–(c). Its truth-theory T is given to the right:
(Y) Yablo’s paradox. {yi ↔

∧
j>i ¬yj | i ∈ N}

(a) All statements in (Y) are false. a ↔
∧
i∈N

¬yi
(b) All statements in (Y) and (c) are false. b ↔ (¬c ∧

∧
i∈N

¬yi )
(c) Earth is round. c ↔ 1 ((c) is true)
One can accept that (a) is a paradox because of (Y), though even this could be
disputed. It is a bit harder to accept paradoxicality of (b) which, denying a true
claim (c), can be considered false, irrespectively of (Y). But even granting that (b)
is a (part of the) paradox, too, there seems to be no reason whatsoever why Yablo’s
paradox should affect also the indisputability of Earth’s roundness.
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The reasoning system RIP, presented in Section 3, works with clausal represen-
tation of propositional theories like T , using a variation of (positive and negative)
hyper-resolution. It is sound and refutationally complete for the classical semantics
of countable theories in infinitary logic, Section 4. Thus, each discourse, having
inconsistent truth-theory T expressible in this language, can be proven paradoxical
by deriving from T the empty clause, T � {}.
A surprising, paraconsistent effect is achieved by proving consequences in RIP
directly, instead of refutationally: to check if A follows from T , we try to prove
T � A and not T,¬A � {}, Section 5. Consequently, weakening is no longer
admissible and, with it, neither is Ex Falso Quodlibet. The system remains complete
for nonredundant clauses, i.e., if T |= C , then T � B for some B ⊆ C .
For our T : T � {}, T � c and T � ¬b, but neither T � ¬c nor T � b. Only for
atoms invovled into paradox, like all yi , we have both T � yi and T � ¬yi . We can
then follow spreading of paradox through the discourse along such atoms, whose
both literals are provable, Section 5.2. In our T , this happens only to a.
A paradox appears when truth seems to imply falsehood and vice versa. Iden-
tification of statements involved into a paradox by the classical provability of
both their truth and falsehood, seems therefore quite satsfactory. Importantly, this
does not lead to any semantic dialetheism. Paradox is a failure—inconsistency—of
discourse’s truth-theory. The statements involved into this failure are characterized
by the provability of both literals. Knowing the culprits, there is no need for attach-
ing to them any value—they are simply excluded from semantic interpretation.RIP
classifies a discourse as one of the three types and, in case (3), draws the demarcation
line:
1. The discourse is nonparadoxical, its truth-theory is consistent.
2. All statements of the discourse participate in the paradox.
3. Only a part of the discourse is involved into paradox, like (Y), (a) of D.
Following [1, 3], semantics, given in Section 2, uses digraph kernels and coincides
with the classical one in cases (1) and (2). In case (3), kernel semantics generalizes to
semikernels, which are kernels of subgraphs without the paradoxical part, Section
5.1, and to which the same reasoning applies. Rendering the syntactic theory as
a digraph (and the semantics as its (semi)kernels), opened in [2, 3] a fruitful way
to investigate patterns of paradoxes, in particular, of circularity. The present paper
touches upon this but, primarily, introduces the reasoning system RIP.

§2. Background. A propositional formula is in graph normal form, GNF, when
it has the form

x ↔
∧
y∈Ix

¬y, (2.1)

where all x, y are atoms (propositional variables). When Ix = ∅, x ↔ 1 represents
x. A theory is in GNF when all its formulae are in GNF and every atom occurs
in such a formula exactly once unnegated, i.e., on the left of ↔.1 We identify a
discourse with a theory in GNF (truth-theory from Section 1) and paradoxwith an

1The formula a ↔ ¬b is in GNF but the theory {a ↔ ¬b} is not, due to the loose b. Such cases
can be treated as abbreviations for GNF theories, here, with a fresh atom b and two additional formulae
b ↔ ¬b and b ↔ ¬b.
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inconsistent discourse. Plausibility of this definition, implicit in [2], was argued and
exemplified in [3], so we give only one more illustration.

Example 2.1. Let Θ1 be the following discourse:

(a) This and the next statement are false. a ↔ ¬a ∧ ¬b
(b) The next statement is false. b ↔ ¬c
(c) The previous statement is false. c ↔ ¬b
Making b true and a and c false, gives a model, so that Θ1 does not involve any
paradox. Adding the fourth statement:
(d) This and the previous statement are false. d ↔ ¬d ∧ ¬c
gives the discourse Θ2, where paradox is unavoidable.

GNF is indeed a normal form, [1]: every theory in (infinitary) propositional logic
Lκ has an equisatisfiable one in GNF.2 Semantics is defined in the standard way
and thus, although focusing on the paradoxical character of discourses, we address
indirectly the consistency in infinitary logic in general.
The standard semantics has an equivalent formulation in terms of graph kernels,
[2,3], which will enable a seamless transition between the classical and less classical
logic. A graph (meaning, directed graph) is a pair G = 〈G,N〉, where N ⊆ G × G
is also viewed as a set-valued function N(x) = {y ∈ G | N(x, y)}. N�(x) = {y ∈
G | N(y, x)} is the converse of N, and all such set-valued functions are extended
pointwise to sets, i.e., N(X ) =

⋃
x∈X N(x), etc. A kernel of a graph G is a subset

K ⊆ G which is independent (no edges between vertices inK) and absorbing (every
vertex inG \K has an edge to some vertex inK), namely, such thatN�(K) = G \K .
Ker(G) denotes kernels of G.
Theories and graphs can be transformed into each others, along with the asso-
ciated models and kernels. A theory Γ in GNF gives rise to a graph G(Γ) with
all atoms as vertices and with edges from every x on the left-hand side of a GNF
formula in Γ, to each y on its right-hand side, i.e., N(x) = Ix . For instance, the
discourse Θ1 from Example 2.1, has the graph G(Θ1) : a

�� �� b �� c�� .
For a graph G = 〈G,N〉, its theory is T (G) = {x ↔

∧
y∈N(x)¬y | x ∈ G}. (When

x is a sink, N(x) = ∅, and x is included in T (G).) The two are inverses, so we
ignore usually the distinction between theories (in GNF) and graphs, viewing them
as alternative presentations. Typically, Γ denotes such a theory or a graph, while G
the corresponding set of atoms/vertices.
The presentations are equivalent also semantically: for corresponding graph and
theory, the kernels of the former and models of the latter are in bijection. Kernel of
a graph G can be defined equivalently as a partition α ofG into two disjoint subsets
〈α1, α0〉 such that ∀x ∈ G :

(a) x ∈ α1⇔∀y ∈ N(x) : y ∈ α0,
(b) x ∈ α0⇔∃y ∈ N(x) : y ∈ α1. (2.2)

Conditions (a) and (b) are equivalent for total α (with α0 = G \ α1), so one will
suffice, until we meet partial structures. A total α satisfies (2.2) iff α1 ∈ Ker(G).

2Lκ denotes propositional language with formulae of finite depth, formed over an arbitrary set of
atoms by unary negation and (possibly) infinite conjunctions of sets of formulae with cardinality < κ.
Binary connectives, such as↔, are encoded (but could be added).
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On the other hand, satisfaction of (2.2) at every x ∈ G is equivalent to the satisfac-
tion of the respective GNF theory T (G). So, for corresponding graph and theory,
we identify also kernels of the former and models of the latter.

Example 2.2. The graphs for the discourses from Example 2.1 are:
G(Θ1) : a

�� �� b �� c�� G(Θ2) : a
�� �� b �� c�� d�� ��

In G(Θ1), the partition α = 〈{b}, {a, c}〉 is the only one satisfying (2.2), i.e.,
α1 = {b} determines the only model of Θ1/kernel of G(Θ1).
In G(Θ2), the sameα satisfies (2.2) at {a, b, c}, but leaves no satisfying assignment
at d . The graph has no kernel, i.e., the discourse is paradoxical.

The inference system presented below, reminiscent of (negative and positive)
hyper-resolution, handles infinitary clausal theories arising from GNF. The two
implications in (2.1) give two kinds of clauses for every x ∈ G :
or-clause: x ∨

∨
yi∈Ix yi , written as xy1y2 . . . ,

nand-clauses: ¬x ∨ ¬y, for every y ∈ Ix , written with overbars, xy.
In terms of a graph, the theory contains, for every x ∈ G , the or-clause N[x] =
{x} ∪ N(x) and for every y ∈ N(x), the nand-clause xy. For the graphs from
Example 2.2, the resulting clausal theories are:
Θ′
1 = {ab, bc, ab, bc, a} and Θ′

2 = {ab, bc, cd, ab, bc, cd , a, d}.
We treat both kinds of clauses as sets of atoms, and overbars mark only that a set
is a nand-clause. We can therefore write, e.g., xy ⊆ xyzu. A ⊆ G denotes (also) an
or-clause,A = {a | a ∈ A} a nand-clause, while Ä either. Sets of unary clauses are
denoted A+ = {{a} | a ∈ A} and A− = {{a} | a ∈ A}. The considered language
contains only or and nand clauses, but no mixed ones.
Semantics is classical but we encounter also partial structures consisting of two
disjoint subsets of G , 〈P,N〉, with satisfaction defined for A ⊆ G :
〈P,N〉 |= A iff P ∩ A �= ∅ and
〈P,N〉 |= A iff N ∩ A �= ∅.
For any M ⊆ G , the total structure αM = 〈M,G \M 〉 is a classical model iff it
satisfies all clauses or, for a graph, (2.2). Such a model can be also given, as αM , by
a subsetM ⊆ G which
– is a transversal of or (for every P ∈ or :M ∩ P �= ∅),
– not containing any nand (for every N ∈ nand : N �⊆M ).
Equivalently, amodel can be given asαG\N for a subsetN ⊆ G which is a transversal
of nand, not containing any P ∈ or. We record this simple fact (Tr(S) denotes the
set of all transversals of S.)

Fact 2.3. For every Γ = or+ nand, the three sets are in bijection:

1. Mod (Γ) = {M ⊆ G | 〈M,G \M 〉 |= Γ},
2. {Pt ∈ Tr(or) | ∀N ∈ nand : N �⊆ Pt},
3. {Nt ∈ Tr(nand) | ∀P ∈ or : P �⊆ Nt}.

§3. Infinitary resolution. Of primary interest to us are graphs (GNF theories) but
several results hold for theories with nand-clauses finite (“every Γ” refers to such
theories). The following system RIP is complete for such theories with countable
or set, denoted c-f, while it is sound for arbitrary theories.
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(Ax) Γ � C, for C ∈ Γ

(Rneg)
{Γ � aiAi | i ∈ I } Γ � {ai | i ∈ I }

Γ �
⋃
i∈I Ai

(Rpos)
Γ � A {Γ � BiKi | i ∈ I } {Γ � aik | i ∈ I, k ∈ Ki}

Γ � (A \ {ai | i ∈ I }) ∪
⋃
i∈I Bi

.

The rule (Rneg) derives a nand from nands, using a single or as a side formula,
while (Rpos) derives an or from ors, using nands as side formulae. In (Rneg), aiAi
denotes the nand {ai} ∪ Ai , where Ai may be empty. These negative premises are
“joined”—into the union of allAi—by the or-clauseO, with each ai ∈ O belonging
to one aiAi .
In (Rpos), among the or-premises there is the “main” clause A, containing a
subset {ai | i ∈ I } such that for each ai , there is an or-premise BiKi (Bi ∪ Ki),
with side premises aik for all k ∈ Ki . The conclusion joins the or-clauses removing
the atoms which occur in the negative premises. A special case of the rule has only
the main or-premise Awith the side premises Γ � ai , i ∈ I , yielding the conclusion
A \ {ai | i ∈ I }.
There are no cardinality restrictions on the index sets I , so finitary logic is an
obvious special case. Proofs are well-founded trees with (Ax) at the leafs, rule
applications at all internal nodes, and the conclusion at the root. In particular,
every branch of a proof is finite.
A couple of examples of diagnosing the paradox by proving the empty clause {},
may be in order. The side premises are written as side conditions.
In Yablo graph 〈N, <〉, ors are Oi = {j | j ≥ i} for all i ∈ N, and nands all
pairs ij, for i �= j. For each i , starting with the axioms ij for all j > i and using
Oi+1, yields i , and from these {} follows using O1:

12, 13, 14, . . .

1
O2
23, 24, 25, . . .

2
O3 . . .

{ij | j > i}
i

Oi+1 . . .

{} O1.

A “3-Yablo” has each edge i → j from the Yablo graph, for j > i + 1 (i.e.,
except those along the “main” ray), stretched to an odd path of, say, length 3:
yi → aij → bij → yj , as shown in Figure 1. It is proven paradoxical by the following
derivation:

D1. for all i < j : yiyj , e.g.:
y1a13 b

1
3y3

y1y3
a13b

1
3

D2. for all i, k ≥ i + 2 : yiai+1k , e.g.:
y1a14

a24b
2
4 b

1
4y4

a24b
1
4

b2:4y4

y1a24
a14b

1
4

D3. for all i : yi , e.g.:
y1y2

D1
y1y3

D2

y1a24

D2

y1a25
· · ·

y1
y2y3 ∪ {a2k | k ≥ 4}
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Figure 1. “3-Yablo” graph.

D4. for all j : a1j , e.g.:
a13b

1
3

D3
y3

a13
b13y3

D5.

D3
y1

D3
y2

D4

a13

D4

a14

D4

a15
· · ·

{} y1y2 ∪ {a1k | k ≥ 3}.

§4. Soundness and completeness. RIP contains two independent systems:
(Neg) consisting of (Ax) and (Rneg), and
(Pos) consisting of (Ax) and (Rpos).
Sections 4.1, 4.2 show that each system is refutationally complete on its own. The
unexpected, paraconsistent features of their combination are described in Section 5.
Notation identifies often one element set with the element, so that a denotes the
or-clause {a}, while a the nand-clause {a}. Γ, A denotes Γ ∪ {A}.

4.1. The system (Neg). The following lemma gives auxiliary results about the
deductive closure Neg(Γ) of a theory Γ extended with additional clauses.

Lemma 4.1. For every Γ and A ⊆ G :
1. Neg(Γ ∪ A−) = Neg(Γ ∪ {P \ B | P ∈ or, B ⊆ A}) ∪ A−,
2. for finite A : Neg(Γ ∪ A+) ⊇ Neg(Γ) ∪ {X \ B | X ∈ Neg(Γ), B⊆ A} ∪ A+,
for every A : Neg(Γ ∪ A+) ⊆ Neg(Γ) ∪ {X \ B | X ∈ Neg(Γ), B ⊆ A} ∪ A+.

Proof. 1. For ⊆, any application of (Rneg) using B−, for B ⊆ A, has a
counterpart in the RHS:

B ∪ {ai | i ∈ I }
B− {aiAi | i ∈ I }⋃

Ai

{aiAi | i ∈ I }⋃
Ai

{ai | i ∈ I }.

For⊇, conclusion of any application as inRHSwith the side conditionP\B follows
in LHS by a corresponding application with the side condition P and B− added to
the premises.
2. Since each B ⊆ A is finite, ⊇ follows by a finite number of applications of
(Rneg) to X ∈ Neg(Γ) and, successively, each b ∈ B. ⊆ holds for every A since
RHS is closed under (Neg). Explicitly, for some index sets i ∈ I, k ∈ K ⊆ J , with
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XkxkBk ∈ Neg(Γ) and Nini ∈ Neg(Γ), where Bk ⊆ A and Nini ∩ A = ∅, the
conclusion of

{Nini | i ∈ I } {Xkxk | k ∈ K}⋃
i∈I Ni ∪

⋃
k∈K Xk

{ni | i ∈ I } ∪ {xk | k ∈ K} ∈ or

is already in RHS, since Neg(Γ) contains the derivation

{Nini | i ∈ I } {XkxkBk | k ∈ K}⋃
i∈I Ni ∪

⋃
k∈K XkBk

{ni | i ∈ I } ∪ {xk | k ∈ K} ∈ or

and
⋃
i∈I Ni ∪

⋃
k∈K Xk =

(⋃
i∈I Ni ∪

⋃
k∈K XkBk

)
\
⋃
k∈K Bk .

SinceNeg(Γ∪A+) is the smallest set containing Γ∪A+ and closed under (Neg),
the inclusion in RHS follows. �
Some consequences of the above lemma relevant for further use, with 2 being
crucial in the proof of completeness.

Lemma 4.2. For every Γ
1. for finite A : Γ ∪ A+ �Neg {} ⇐ Γ �Neg {} ∨ ∃B ⊆ A : Γ �Neg B,
for every A : Γ ∪ A+ �Neg {} ⇒ Γ �Neg {} ∨ ∃B ⊆ A : Γ �Neg B.

2. (∀a ∈ A : Γ, a �Neg {})⇒ Γ, A �Neg {}.
3. Γ �Neg {} ⇔ ∃K ∈ or ∀k ∈ K : Γ �Neg k.
Proof. 1.⇐) is obvious since each B ⊆ A is finite.⇒) If {} ∈ Neg(Γ ∪ A+) \
Neg(Γ) then, by Lemma 4.1.2, for some B ⊆ A and X ∈ Neg(Γ) : {} = X \ B ,
i.e., X = B .
2. By point 1, the assumption implies Γ �Neg {} ∨ ∀a ∈ A : Γ �Neg a. In the later
case, one application of (Rneg) to A and a, for all a ∈ A, gives {}.
3. ⇐) is obvious, while ⇒) follows since any derivation of {} must end with:

{Γ �Neg ki | i ∈ I }
Γ �Neg {}

{ki | i ∈ I } ∈ or. �

(Neg) is sound (also for partial structures) and refutationally complete (for total,
classical semantics) for c-f theories.

Theorem 4.3. For every C ⊆ G :
1. For every Γ : Γ �Neg C ⇒ Γ |= C ,
2. For c-f Γ : Γ ��Neg {} ⇒Mod (Γ) �= ∅,
3. For c-f Γ : Γ |= C ⇔ Γ ∪ C+ �Neg {}.
Proof. 1. (Ax) is obviously sound, and so is (Rneg)—for every partial structure

〈P,N〉: when P ∩ {ai | i ∈ I } �= ∅, then some ai0 ∈ P, and so Ai0 ∩ N �= ∅, since
for every i : aiAi ∩N �= ∅. Hence,

⋃
i Ai ∩N �= ∅.

2. Enumerate or = {P1, P2, . . .} and let Γi = nand ∪ {Pj | j ≥ i}. Assume
Γ ��Neg {}. Then, by 4.2.2, there is a c1 ∈ P1 : c1,Γ2 ��Neg {}, and this follows by
induction for every i ∈ � : c1, c2 . . . ci ,Γi+1 ��Neg {}. In the �-limit, for C� = {ci |
i ∈ �}, we obtain C+� ∪ nand ��Neg {}, because otherwiseMod (C+� ∪ nand) = ∅,
by soundness of (Neg), i.e., C� contains some N ∈ nand. As N is finite, for some
i ∈ � : N ⊆ {c1, . . . , ci}. But then c1, . . . , ci ,Γi+1 �Neg {}. So C� contains no
N ∈ nand and, being a transversal of or, gives a model of Γ, by Fact 2.3.
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3. Γ |= C ⇔Mod (Γ ∪ C+) = ∅
1,2⇐⇒ Γ ∪ C+ �Neg {}. �

Corollary 4.4. A countable graph Γ has a kernel iff
∀x ∈ G ∃y ∈ N(x) : Γ �Neg x ⇒ Γ ��Neg y.

Proof. (⇒) follows from soundness of (Neg). (⇐) If Γ has no model then, by
Theorem 4.3, Γ �Neg {}, i.e., for some N[x] ∈ or : Γ �Neg z for all z ∈ N[x]. We thus
have Γ �Neg x and ∀y ∈ N(x) = N[x] \ {x} : Γ �Neg y. �
An adaptation of the completeness proof, yields also the following fact.

Fact 4.5. A countable Γ with all clauses infinite, has a model.

Proof. Enumerate or = {P1, P2, . . .} and nand = {N1, N2, N3, . . .}. Using AC,
well-order each Pi and Ni , and let �(X ) denote the least element of X wrt. this
well-ordering. Start with:
n1 = �(N1) and c1 = �(P1 \ {n1}),
and then, inductively, given {n1 . . . ni} and {c1 . . . ci}, let:
ni+1 = �(Ni+1 \ {c1 . . . ci}) and ci+1 = �(Pi+1 \ {n1 . . . ni , ni+1})
Since each Pi ,Ni is infinite, such a choice is possible for every finite i ∈ �.
The entire C ∗ = {ci | i ∈ �} is then a transversal of or and N∗ = {ni | i ∈ �}
of nand. Also N∗ ∩ C ∗ = ∅, for every ci ∈ Pi \ {n1 . . . ni}, so ci �= nj for all
j ≤ i , while for every k > i : nk ∈ Nk \ {. . . ci . . .}, so ci �= nk . Since for every
N ∈ nand : N �⊆ C ∗, so C ∗ gives a model of Γ by Fact 2.3. �

4.2. The system (Pos). The argument for (Pos) follows the one for (Neg).

Lemma 4.6. For every Γ and A ⊆ G :
1. Pos(Γ ∪ A−) = Pos(Γ) ∪ {X \ P | X ∈ Pos(Γ), P ⊆ A} ∪ A−,
2. Pos(Γ ∪ A+) = Pos(Γ) ∪ A ∪

{X \
⋃
Ki | X ∈ Pos(Γ), ai ∈ Bi ⊆ A,∀k ∈ Ki : aik ∈ nand}.

Proof. ⊇ are obvious. For ⊆ we show that the RHSs are closed under (Pos).
1. The only (Rpos) applications usingA− are of the form X P−

X\P , for some P ⊆ A,
and RHS is clearly closed under such applications. So consider an application with
X,Cj ∈ Pos(Γ) and P,Pj ⊆ A:

(Rpos)
X \ P {Cj \ Pj | j ∈ J}

Z = (X \ P \ {cj | j ∈ J}) ∪ (
⋃
(Cj \ Pj) \ C ′

j)
{cjc | c ∈ C ′

j} ⊆ nand.

If all P,Pj = ∅, then Z ∈ Pos(Γ). Otherwise, the followingW ∈ Pos(Γ) :

(Rpos)
X {Cj | j ∈ J}

W = (X \ {cj | j ∈ J}) ∪ (
⋃
Cj \ C ′

j)
{cjc | c ∈ C ′

j} ⊆ nand.

Thus Z =W \ P′ for some P′ ⊆ P ∪
⋃
Pj ⊆ A, i.e., Z ∈ RHS, and so Γ ∪ A− ⊆

Pos(RHS) ⊆ RHS. Since Pos(Γ ∪ A−) is the smallest set containing Γ ∪ A− and
closed under (Pos), it follows that Pos(Γ ∪ A−) ⊆ RHS.
2. The argument is the same as in 1, with each P,Pj being now some

⋃
a∈B Ka ,

for various B ⊆ A such that
⋃
a∈B{ak | k ∈ Ka} ⊆ nand. �

Point 3 of the following Lemma is used in the completeness proof.
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Lemma 4.7. For every Γ and A ⊆ G :
1. Γ ∪ A− �Pos {} ⇔ Γ �Pos {} ∨ ∃B ⊆ A : Γ �Pos B.
2. Γ, a �Pos {} ⇔ Γ �Pos {} ∨ (∃K ⊆ G : Γ �Pos K ∧ {ak | k ∈ K} ⊆ nand).
3. (∀ai ∈ A : Γ, ai �Pos {})⇒ Γ, A �Pos {}.
Proof. Implications to the left in 1 and 2 are obvious, while the opposite ones use
Lemma 4.6. If {} ∈ Pos(Γ∪A−) \Pos(Γ), then {} = X \A for some X ∈ Pos(Γ),
by 4.6.1, so X = B for some B ⊆ A. Similarly, in 2, {} = X \ K for some K with
{ak | k ∈ K} ⊆ nand by 4.6.2.
3. follows from 2, which then implies that ∀ai ∈ A ∃Ki : Γ �Pos Ki with {aik |

k ∈ Ki} ⊆ nand, so that (Pos) A ; {Ki | i ∈ I }{} . �

Refutational completeness of (Pos) follows by the argument from Theorem 4.3.

Theorem 4.8. For every C ⊆ G :
1. For every Γ : Γ �Pos C ⇒ Γ |= C ,
2. For c-f Γ : Γ ��Pos {} ⇒Mod (Γ) �= ∅,
3. For c-f Γ : Γ |= C ⇔ Γ ∪ C− �Pos {}.
Proof. 1. The rule (Rpos) is sound: for every partial structure 〈P,N〉 satisfying
the premises, either ∀i ∈ I : ai �∈ P, in which case A ∩ P �= ∅ implies (A \ {ai |
i ∈ I }) ∩ P �= ∅, giving that 〈P,N〉 satisfies the conclusion, or else ∃i : ai ∈ P.
Then also ai �∈ N and hence for all k ∈ Ki : k ∈ N and since BiKi ∩ P �= ∅, so
Bi ∩ P �= ∅, i.e., 〈P,N〉 satisfies the conclusion.
2. Enumerate or = {P1, P2, . . .}, and let Γk = {Pi | k ≤ i < �} ∪ nand. If
Γ1 = Γ ��Pos {}, then there is a c1 ∈ P1 : c1,Γ2 ��Pos {} by 3 of 4.7. By induction,
the same holds for every finite i : c1 . . . ci ,Γi ��Pos {}. In the �-limit, for C� =
{ci | i ∈ �}, we obtain C+� ∪ nand ��Pos {}, for otherwise, by soundness of (Pos),
Mod (C+� ∪nand) = ∅, i.e., for some N ∈ nand : N ⊂ C� . Since every N ∈ nand
is finite, there is some finite prefix {c1, . . . , ck} ⊇ N . But then c1 . . . ck,Γk �Pos {}.
Hence, C� ∈ Tr(or) contains no set from nand and is a model of Γ, by Fact 2.3.
3. Γ |= C ⇔Mod (Γ ∪ C−) = ∅

1,2⇐⇒ Γ ∪ C− �Pos {}. �

4.3. The whole system. Points 1 and 3 of the following corollary witness to the
conservativity of RIP over each subsystem. Still, it offers a new tool for handling
paradox, which arises from point 4.

Corollary 4.9. For c-f Γ:
1. Mod (Γ) = ∅ ⇔ Γ �Neg {} ⇔ Γ �Pos {} ⇔ Γ � {}
2. Γ, x � {} ⇔ (Γ � x ∨ Γ � {}) and Γ, x � {} ⇔ (Γ � x ∨ Γ � {})
3. Γ �� {} ⇒ (Γ � x ⇔ Γ �Neg x) ∧ (Γ � x ⇔ Γ �Pos x)
4. Γ � {} ⇔ ∃x ∈ G : Γ � x ∧ Γ � x (denoted Γ � ⊥(x)).
Proof. 1. The first two equivalences are Theorems 4.3 and 4.8, giving soundness
and refutational completeness of the whole system, i.e., the last equivalence.

2. When Γ �� {}, we have: Γ �� x ⇒ Γ ��Neg x
4.2.1⇒ Γ, x ��Neg {}

1⇔ Γ, x �� {}.
Conversely, if Γ � x then also Γ, x � x, while Γ, x � x, so Γ, x � {}.
Similarly, if Γ �� {}: Γ �� x ⇒ Γ ��Pos x

4.7.1⇒ Γ, x ��Pos {}
1⇔ Γ, x �� {}.

Conversely, if Γ � x then also Γ, x � x, while Γ, x � x, so Γ, x � {}.
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3. In both cases, the implication (⇐) is obvious. For (⇒) assume Γ �� {}:
Γ ��Neg x

4.2.1⇒ Γ, x ��Neg {}
1⇔ Γ, x �� {} 2⇔ Γ �� x.

Γ ��Pos x
4.7.1⇒ Γ, x ��Pos {}

1⇔ Γ, x �� {} 2⇔ Γ �� x.
4. (⇐) follows by a single application of (Rneg) or (Rpos). (⇒) If Γ � {}
then, by 1, also Γ �Neg {}. Hence, by 4.2.3, there is a clause K ∈ or such that
∀ki ∈ K : Γ �Neg ki . Choosing then any k0 ∈ K , an application of (Rpos) yields
K (K \ k0)−

k0
witnessing to the claim. �

Provability of both x and x not only comes closer to the informal understanding
of paradox than does provability of {}, but enables also its finer treatment. Before
describing this in Section 5, let us close this section by observing that one can
hardly expect any complete and useful extensions to uncountable theories. Various
distributivity laws, used typically for this purpose, have namely semantic character,
which reduces them to triviality for or+nand theories. For instance, Chang’s law
postulates that, for a language Lκ∨

a<κ(
∧
b<κ xab) is an axiom iff ∀C ∈ κκ∃x : {x,¬x} ⊂ {xaC (a) | a < κ},

or, equivalently:∧
a<κ(

∨
b<κ xab) is an axiom iff ∃C ∈ κκ∀x : {x,¬x} �⊂ {xaC (a) | a < κ}.

The formula on the left corresponds to a set of clauses, while the right-hand side
claims the existence of a choice C selecting, for every a < κ, an element xaC (a)
from the a-th clause

∨
b<κ xab , so that the selection from all< κ clauses contains no

complementary pair x,¬x. In or+nand theories, complementary pairs, selected
from distinct clauses, correspond to nand-pairs. We can therefore rewrite this last
formulation as:
or = {Pa | a < κ} is axiomatic iff ∃C ∈ Tr(or) : ∀N ∈ nand : N �⊂ C .
But this is definition of a model, as in Fact 2.3. Having it as an axiom, to obtain
completeness for κ > �1, makes reasoning unnecessary.

§5. Nonexplosiveness. We now use RIP only for direct, not refutational, reason-
ing, i.e., for A ⊆ G , we are asking simply if Γ � Ä. Completeness becomes then
limited, missing some redundant clauses. (Occurrences of ¨ are, in a given context,
either all positive or all negative.)

Corollary 5.1. For c-f Γ and A ⊆ G : Γ |= Ä⇔ ∃B ⊆ A : Γ � B̈ .

Proof. IfMod (Γ) = ∅, then Γ � {} by 4.9.1 and {} ⊆ A. Conversely, if Γ � {},
then Mod (Γ) = ∅ so Γ |= Ä for every A ⊇ {}. This special case is the same for
both cases below, which are considered assuming Γ �� {}:
Ẍ = X . ∃B ⊆ A : Γ � B 4.3⇒ Γ |= B ⇒ Γ |= A, while the opposite: Γ |= A ⇔
Mod (Γ ∪ A+) = ∅

4.9.1⇐⇒ Γ ∪ A+ �Neg {}
4.2.1⇒ ∃B ⊆ A : Γ �Neg B ⇒ Γ � B .

Ẍ = X . ∃B ⊆ A : Γ � B 4.8⇒ Γ |= B ⇒ Γ |= A, while the opposite: Γ |= A ⇔
Mod (Γ ∪ A−) = ∅

4.9.1⇐⇒ Γ ∪A− �Pos {}
4.7.1⇐⇒ ∃B ⊆ A : Γ �Pos B ⇒ Γ � B. �

The resulting logic does not have weakening—hence neither Ex Falso Quodlibet.
Its nonexplosiveness gives a paraconsistent ability to contain paradox and reason—
classically—about the subdiscourse unaffected by it.
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Example 5.2. The closure of y ���� z �� x
��
contains, besides {}, all literals.

Provability of both x and x, i.e., the paradox at x, pollutes the whole discourse.
In the discourse {yz, yz, zxs, zx, zs, x, x, s}, i.e., s y �� �� z ���� x

��
, we still

have paradox at x and {} is still provable, but neither is y nor z. The closure
contains only the literals {x, x, s, z, y}, showing that x is the only problem, which
does not affect the rest of the discourse.

To identify semantic counterpart of this nonexplosiveness, we first register a form
of monotonicity of reasoning. For Γ ⊆ P(Y ) and X ⊆ Y we denote the result of
removing all atoms X from all clauses of Γ (removing also the empty clause, if it
appears in the process):

Γ \\X = {C \ X | C ∈ Γ} \ {{}}.
The result corresponds roughly to the theory of the subgraph induced by G \ X .3
We elaborate this when we apply this operation in Section 5.1.

Lemma 5.3. For every Γ : Γ � Ä �⊆ X ⇒ ∃B ⊆ A \ X : Γ \\X � B̈ .
Proof. By induction on the well-founded structure of the proof Γ � Ä, with
axioms introducing ¨A \ X instead of Ä. Let Γ′ = Γ \\X . If Γ′ � {}, the claim
follows, so we assume (especially in IH) nonemptiness of all Γ’-provable clauses.
For the induction step

(Rneg)
{Γ � aiAi | i ∈ I } Γ � {ai | i ∈ I }

Γ �
⋃
i∈I Ai

,

where
⋃
i∈I Ai \ X �= ∅, there are also some aiAi \ X �= ∅ and we consider only

these. If for some i : Γ′ � Bi ⊆ Ai \ X , the Bi gives the claim. Otherwise, IH
gives for every i : Γ′ � aiBi , where Bi ⊆ Ai \ X , while for the side premise,
Γ′ � {ai | i ∈ I ′} ⊆ {ai | i ∈ I } \ X . Appplying (Rneg) to the respective
Γ′ � aiBi , i ∈ I ′ yields the claim with

⋃
i∈I ′ Bi ⊆

⋃
i∈I Ai \ X .

Induction step for the proof ending with (Rpos), where ∀i ∈ I : Ki ⊆ Ai :

(Rpos)
Γ � A {Γ � Ai | i ∈ I } {Γ � aik | i ∈ I, k ∈ Ki}

Γ � (A \ {ai | i ∈ I }) ∪
⋃
i∈I (Ai \Ki)

.

By IH, Γ′ � B ⊆ A \ X and Γ′ � Bi ⊆ Ai \ X , with B,Bi �= {}, for all i ∈ I .
If all ai ∈ X , then Γ′ � B gives the claim. Likewise, if for some i : Ki ⊆ X ,
then Γ′ � Bi ⊆ Ai \ X ⊆ Ai \ Ki gives the claim. Otherwise, consider only
J = {i ∈ I | ai �∈ X}. For every i ∈ J :
(1) ∃k : k ∈ Ki ∩ X , and then Γ′ � ai (by IH Γ′ � C ⊆ aik \ k, and Γ′ �� {}),
or

(2) Ki ∩ X = ∅ and then either
(2.a) ∀k ∈ Ki : Γ′ � k, or
(2.b) Γ′ � ai , or
(2.c) Ki = Li �Ri ∧Li �= ∅∧ ∀k : k ∈ Li → Γ′ � aik ∧ k ∈ Ri → Γ′ � k.

If (2.a) holds for an i ∈ J , the claim follows by Γ
′ � Bi {Γ′ � k | k ∈ Ki}

Γ′ � Bi \Ki
.

3ForH ⊆ G , the subgraph of 〈G,N〉 induced byH is 〈H,NH 〉 with NH = N ∩ (H ×H ).

https://doi.org/10.1017/jsl.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.18


720 MICHAŁWALICKI

Otherwise, for all i satisfying (2.b) or (1), apply first (Rpos) to Γ′ � B obtaining
Γ′ � B ′ = B \ {ai | Γ′ � ai}. There remain i ’s from (2.c), i.e., I ′ = {i ∈ J | Γ′ ��
ai ∧Li �= ∅}:

...
Γ′ � B ′

{
Γ′ � Bi {Γ′ � k | k ∈ Ri}

Γ′ � Bi \Ri
| i ∈ I ′

} {
...

Γ′ � aik
| i ∈ I ′, k ∈ Li

}

Γ′ � (B ′ \ {ai | i ∈ I ′}) ∪
⋃
i∈I ′ (Bi \Ki)

.

The conclusion of this derivation gives the claim. �
The condition like A �⊆ X is needed because the transition to Γ \\X neither
preserves nor reflects provability of {}. For instance, Γ1 = {s, x, x} � {}, but
Γ1 \\{x} = {s} �� {}, while Γ2 = {s, xs, x, xs} �� {}, but Γ2 \\{s} = {x, x} � {}.

5.1. The paradoxical and the consistent subdiscourses. Turning now to paradoxi-
cal discourses, let Γ � {} and denote:
G⊥ = {x ∈ G | Γ � x ∧ Γ � x},
Γok = Γ \\G⊥ = {C \G⊥ | C ∈ Γ} \ {{}},
Gok = G \G⊥ =

⋃
Γok .

G⊥ contains all statements involved in the paradox and the story ends here when it
covers the whole G . But otherwise Γok remains consistent alongside G⊥.

Fact 5.4. For c-f Γ with Gok �= ∅:
1. ∀D̈ ∈ Γok : Γ � D̈, and so Γok � C̈ ⇒ Γ � C̈ , for any C ⊆ Gok .
2. Γok �� {}.
3. ∀x ∈ Gok : Γok � x ⇔ Γ � x and Γok � x ⇔ Γ � x.
4. ∃x ∈ Gok : Γok �� x, hence also Γ �� x.
5. ∀x ∈ Gok : Γok �� x ⇒ N(x) ∩ G⊥ = ∅ (when Γ is a graph).

Proof. 1. ∀D̈ ∈ Γok \ Γ ∃C̈ ∈ Γ : D̈ = ¨C \ (C ∩ G⊥). Two cases:

(Rpos)
Γ � C {Γ � c | c ∈ C ∩G⊥}

Γ � C \ (C ∩G⊥)
Γ � C Γ � c (c ∈ C ∩ G⊥)

Γ � C \ {c}
(Rneg)

C ∈ nand ⊆ Γ is finite, so finitely many applications of (Rneg) suffice to get
D = C \ (C ∩ G⊥) ∈ Γok in the latter case.
2. Γok � {} 4.9.4⇒ ∃x ∈ Gok : Γok � x ∧ Γok � x 1⇒ Γ � x ∧ Γ � x ⇒ x �∈ Gok .
3. (⇒) follow from point 1, while (⇐) by Lemma 5.3 and point 2.
4. If ∀x ∈ Gok : Γok � x then ∀y ∈ G : Γ � y, so also ∀y ∈ G : Γ � y,
contradicting Gok �= ∅.

5. If x ∈ Gok has a y ∈ N(x) ∩G⊥, then Γ � y ⇒ Γ � x 3.⇒ Γok � x. �
For a graph Γ, Γok is almost the theory of its subgraph induced by Gok , except
for some differences at its border vertices brd (Gok) = {x ∈ Gok | N(x) �⊆ Gok}.

Example 5.5. Consider the following Γ : y �� �� z �� ��
x 

 s �� t.��

Γ = {yz, yz, zxs, zx, zs, st, st, x, x},
G⊥ = {x},
Gok = {y, z, s, t},
Γok = {yz, yz, zs, z, zs, st, st},
brd (Gok) = {z}.
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The theory of the subgraph induced byGok is T (Γok) = {yz, yz, zs, zs, st, st}, while
Γok contains, in addition, z.

Border vertices enter as such negative clauses into Γok = T (Γok)∪ (brd (Gok))−,
so we can view Γok as the subgraph Γok induced by Gok , with a new loop at each
border vertex. It is not paradoxical, Fact 5.4.2, and its models are kernels of Γok

excluding border vertices: Mod (Γok) = {K ∈ Ker(Γok) | brd (Gok) ⊆ N�(K)}.4
In the above example, Γok has two kernels {t, z} and {s, y}, but only the latter gives
a model of Γok , which requires z.
The relation between paradoxical graphΓandΓok can be specified further inmore
semantic terms.Models of Γok are namely semikernels of Γ. A semikernel is a subset
L ⊆ G such thatN(L) ⊆ N�(L) ⊆ G \L. It determines the subdiscourse induced by
L∪N�(L), with the partial structure α�L = 〈L,N�(L)〉.5 Actually,L is a semikernel
iff α�L satisfies both conditions of (2.2), [3], so this subdiscourse, when torn apart

from Γ, does not involve paradox. For instance, Θ2 : l
�� �� t �� s�� r

���� has
no kernel (and Θok2 = ∅), but {t} and {s} are semikernels, giving partial struc-
tures α�{t} = 〈{t}, {l, s}〉 and α�{s} = 〈{s}, {r, t}〉 satisfying (2.2). Semikernels
provide thus the possibility of ignoring part of the context and were used in [3] as
the semantics of nonparadoxical subdiscourses. Mod (Γok) specialize this general
concept. (SK(Γ) denotes all semikernels of Γ.)

Fact 5.6. For a countable graph Γ:Mod (Γok) ⊆ SK(Γ).
Proof. Assume K ∈ Mod (Γok). For every k ∈ K , Γok �� k by soundness, so
by 5.4.5, N(k) ⊆ Gok , and hence N(k) = NΓok (k), since Γ

ok is subgraph of Γ
induced by Gok . K ∈ Ker(Γok) gives the first inclusion and the second equality:
N(K) = NΓok (K) ⊆ Gok \ K = N�Γok (K) ⊆ N�(K). We also have N�(K) ⊆ G \ K ,
for K is independent in Γ, being independent in the induced subgraph Γok . Thus
N(K) ⊆ N�(K) ⊆ G \K , i.e., K ∈ SK(Γ). �
The soundness arguments in Theorems 4.3 and 4.8 apply to the partial structures
and not only to the classical ones. For a graph Γ, a partial structure 〈P,N〉 |= Γ
is in fact a classical model, when Γ = Γok . But when Γ has no model, yet has a
subdiscourse Γok �� {}, the models of Γok , induced from some semikernels of Γ, are
partial structures for Γ. Semantic situation is one of the three kinds, depending on
the relation between Gok and G :

Γ � {} Γ � ⊥(x)
Gok = G no no x Mod (Γok) =Mod (Γ) �= ∅

∅ �= Gok ⊂ G yes x ∈ G⊥ Mod (Γok) �= ∅ =Mod (Γ)
Gok = ∅ yes all x Mod (Γok) = ∅ =Mod (Γ)

The semantics Mod (Γok)—of Γ—explains the nonexplosive behavior: reasoning
fromΓ is sound also for these partial structures. Besides contrarieties⊥(x), provable
when G⊥ �= ∅, RIP proves neither simply facts true in all kernels of Γ (as does
classical logic), nor simply facts induced from all its semikernels (as does Ł3, [3]),

4This makes sense as ∀b ∈ brd (Γok) : b 	∈ sinks(Γok), since∅ 	= N(b) ⊆ G⊥ 5.9⇒ b ∈ G⊥.
5It coincides with αL = (L,G \ L) only when L is a kernel. Subdiscourse corresponds to an induced

subgraph, rather than to a subtheory.
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but facts true in maximal semikernels which are not infected by paradox, namely,
Mod (Γok) ⊆ Ker(Γok)∩SK(Γ). For literals (in countable graphs), this is Fact 5.4.3,
while the following implies the general case for arbitrary graphs.

Theorem 5.7. For any Γ, denote Th(Γ)|
Gok
= {C̈ ⊆ Gok | Γ � C̈}:

1.Mod (Γok) ⊆Mod (Th(Γ)|
Gok
)—for every Γ;

2.Mod (Γok) ⊇Mod (Th(Γ)|
Gok
)—for Γ with all N ∈ nand finite.

Proof. The nontrivial case is when ∅ �= Gok �= G . (1) If Γ � C̈ ⊆ Gok then, by
Lemma 5.3, Γok � B̈ ⊆ C̈ (B �= {} since Gok �= ∅). For every M ∈ Mod (Γok) :
M |= B̈ , soM |= C̈ , i.e.,M ∈Mod (Th(Γ)|

Gok
). (2) follows since Γok ⊆ Th(Γ)|

Gok

by Fact 5.4.1 (which does not require countable or.) �
5.2. Propagation of paradox. Paradox need not pollute the whole discourse, but
it spreads to G⊥ and we specify closer the pattern of this spreading.
Fact 5.8. For any x in any graph Γ : Γ � ⊥(x)⇒ ∀y ∈ N∗(x) : Γ � ⊥(y).
Proof. Γ � x gives the side formula for obtaining ∀y ∈ N(x) : Γ � y, which
then, together with Γ � x, yield ∀y ∈ N(x) : Γ � y:
(Rneg)

xy

y
x and (Rpos)

N[x]
y
(N[x] \ {y})−.

Induction gives this for all y ∈ Nn(x), for all n ∈ N, i.e., for all y ∈ N∗(x). �
So, N(G⊥) ⊆ G⊥ and, dually, N�(Gok) ⊆ Gok . This may seem surprising, since
reading a path from x to y as x “referring to” or “depending on” y, a paradox
pollutes thus everything on which it depends. For instance, in “This statement is
false and the sun is a star”, i.e., f

��
�� y �� s, f “refers to” the sink s . One could

say: since s is true (y is false and) f is paradoxical. But this paradox spreads then
from f to y and s , neither of which “depends” on it. All literals are provable here
and the true fact s is also provably false. Being partly responsible for the occurring
paradox, which “depends” on it, it is a part of the paradoxical whole.6

Paradox can also spread upwards, along N�, as in x
��

z�� , where provability
of ⊥(x) leads to provability of ⊥(z). But such upward propagation can be inter-
rupted. In Example 5.5, Gok = {y, z, s, t}—both z and y “depend” on the paradox
at x, but are not affected by it.
A sufficient condition for an upward propagation of paradox is that all paths
from a given statement reach, eventually, a paradox. A complete path is a path (i.e.,
� ∈ GI with I ∈ �+ and �i+1 ∈ N(�i) for all i + 1 ∈ I ) which is infinite or
terminates with a sink. paths(x) denotes all paths starting from x.

Fact 5.9. For an x in any graph Γ, if every complete � ∈ paths(x) contains a
paradoxical �i , i.e., Γ � ⊥(�i), then Γ � ⊥(x).
Proof. Assume x is as stated and Γ �� ⊥(x). For every complete � ∈ paths(x),
let x� ∈ � be the first vertex on � for which Γ � ⊥(x�) and X⊥ = {x� | � ∈
paths(x)}. Let X0 be the subgraph of

(
N∗(x) ∩ (N�)∗(X⊥)

)
\ X⊥, containing all

paths starting from x and not crossing X⊥, i.e., ∀z ∈ X0 : Γ �� ⊥(z). The claim
is that ∃z ∈ X0 : N(z) ⊆ X⊥. For if not, i.e., ∀z ∈ X0∃y ∈ N(z) \ X⊥, then let

6This is not to suggest that “The sun is a star” is paradoxical but only that combined with the
contingen liar as above, it gives the paradoxical whole. Like consistency, paradox is genuinely holistic.
To “repair” it, removing the loop at f is as good as removing s .

https://doi.org/10.1017/jsl.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.18


RESOLVING INFINITARY PARADOXES 723

z0 be any such and z1 ∈ N(z0) \ X⊥. Given zi we can choose zi+1 ∈ N(zi ) \ X⊥,
obtaining an infinite path from x to (z0 and then) 〈z0, z1, z2, . . .〉 with no element
⊥(zi), contrary to the assumption. So, a claimed z exists. But since N(z) ⊆ X⊥, so
Γ � ⊥(z), contradicting Γ �� ⊥(z). �
Γ from Example 5.5 illustrates thus the only possibility of preventing the propa-
gation of paradox upwards by some path which, exiting from a border vertex, like
z ∈ brd (Γok), meets no paradox and forces z to be false.

§6. Concluding remark. Like in logics with internal truth-predicate, paradox
formulated in GNF becomes a special case of inconsistency: a discourse is paradox-
ical when the T-schemata of its statements, expressed in GNF, are inconsistent. The
graphical representation gives a precise grasp of vicious cirucularity. It confirms, for
instance, the intuition that for obtaining a finitary paradox, negative self-reference
is necessary (and not only sufficient): according to Richardson’s theorem, [4], a
finitary graph without odd cycle has a kernel.
Even if some satisfactory logical language, adopting paradox, becomes agreed
upon, it will hardly remove the need to identify occurrences of paradox by diag-
nosing its general patterns and by detailed analysis of the actual cases. For classical
logic, kernel theory provides a rich source of such patterns, explored initially in
[2, 3]. The analysis enabled by RIP can, besides diagnosing paradox, identify the
nonparadoxical subdiscourse and its classical concequences, which are not affected
by the surrounding inconsistency. This paraconsistent effect is obtained by nonrefu-
tational use of hyper-resolution, which deviates from classical reasoning only by the
exclusion of weakening.
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