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Several policies or interventions have been implemented in developing countries with the
ultimate goal of improving educational outcomes and human capital. Although many
empirical studies have pointed to mixed results of these interventions, the role of
uncertainty arising from the state of nature about the educational environment and
household characteristics in the efficiency of these interventions still lacks an economic
mechanism. This paper aims at developing a theoretical framework that links policy
interventions to educational outcomes. We characterize optimal policies and determine the
conditions for enhancing social welfare.
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1. INTRODUCTION

In many developing countries, the educational sector has experienced sev-
eral policy interventions, that is to say, applications of new resources or
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approaches that change practices to improve the accumulation of human capital and
well-being, especially that of pupils. These interventions result in better achieve-
ment or performance of pupils at school, viz., improvement of academic outcomes,
increased enrollment and attendance rates, and reduced dropout and repetition
rates. Hargreaves (2003) states that “the opportunity to engage actively in inno-
vations (or interventions) and the means of transferring successful interventions
in some schools to other schools, are conditions that can support innovations in
education.”1 As outlined by Frank et al. (2004) and Groff and Mouza (2008),
the success of these policies depends on the capacity and disposition of policy
makers. The relationship between these two factors can be analyzed using two
models: (i) the “distance and dependence model,” which makes explicit how the
specific context can affect a policy and helps identify its success by showing its
difference from existing practice and resources, and (ii) “the layers of influence
model,” which distinguishes the influences that affect the conditions of a policy
and the policy maker.

The first model sheds new light on the debate on “pedagogy before practice”
by suggesting that the implementation of an intervention depends on the close
connection of practice and technological issues. The model was initially drawn
from a study of technology-based innovation, but it can also be used for
non-technology-based approaches in education. The model enables us to depict
how an intervention can be assessed through its distance from current practice and
its dependence on available resources. This model predicts that a policy has better
chances of being accepted if it is close to existing practices. These practices can
be related to educational environment. An intervention in education also needs
resources that differ from existing ones.2 For example, if an intervention requires
a great change in home inputs practice and more financial resources, then it needs
more support to succeed than an intervention that requires fewer resources or one
that demands little change from the home’s existing practice. Thus, implementing
a policy in the educational environment can imply that one forgoes other policies
in order to respond to a resource need implied by some initial intervention. The
complexity of educational policies can follow from the level or mode of interven-
tion: the national, community-based, school, or individual level. Success depends
on the extent to which the change is understood and recharged. Hence, fostering
educational policy requires an analysis of barriers and resistances to changes.

The second framework—the model of layers of influence—analyzes the factors
that affect policy makers’ ability to implement an intervention. It conceptualizes
the layers of influence that affect both the intervention and the policy maker.3 This
model highlights the way layers interact and the role of environmental conditions
surrounding the interventions. The environmental conditions that determine the
failure or success of policies can be gathered into four categories:

Supportive informal social environment: This refers to the atmosphere and
perceptions of agents that may help in adopting new practices.4

Formal environment: This constitutes the organizational infrastructure of an ed-
ucational system together with its formal policies and structures. This environment
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is crucial in providing resources for interventions and allowing interventions to
become accessible through technical support policies.5

Risk aversion: Risk aversion is an important factor that inhibits the ability to
innovate, and it has implications for the extent to which any educational policy
targets the appropriate conditions for interventions.

Shared visions: Refers to common perceptions of goals and requirements.6

Regardless of the approach adopted, the issue raised by policy interventions in
education can be stated as follows: How does uncertainty affect the impact of policy
interventions in the developing world? Indeed, in these countries, education is
increasingly a crucial ingredient in development programs. The role of uncertainty
may come about through different facets. In general, it is related to the state of
nature, meaning exogenous factors unrelated to the policy that may affect the policy
as implemented. In developing countries, uncertainty is much more pronounced
due in particular to the lack of resources and the level of development, which
ultimately can impact the success of interventions. For example, it is common to
observe that after the starting of implementation of an intervention at a given date,
resource constraints change the object of the intervention, reduce its ambition, or
sometimes even stop it.

This paper aims to develop theoretical frameworks to link every specific type
of new intervention for each stakeholder to the global performance of education,
taking into account the social welfare maximization problem. We consider the
production function of the school as a black box where several factors combine
(good school management, quality of school services, and access to education)
and whose outcome is the final performance of students. Our goal is to evaluate
the evolution of this performance over time when policy makers rely on the quality
of school production, e.g., educational outcomes. Their interventions consist of
changing the performance from an initial period to a final period, taking into
account the constraints that may arise. To do this, we first link the vector of
performance to the vector of constraints, assuming different types of relationships
between these vectors.

In a first specification, we consider linear and nonlinear deterministic relation-
ships and characterize the optimal interventions that give the best performance
under the constraints and initial conditions. Then, recognizing that lack of infor-
mation on the socioeconomic characteristics of students and the educational en-
vironment in which interventions are implemented are uncertainty factors, among
others, that may impede the achievement of performance objectives, we introduce
uncertainty into the framework. Here again, we consider linear and nonlinear
approaches. We find the optimal conditions under which actions can be taken.
Furthermore, we enlarge the analysis to the question of how the performance of
the educational system can be integrated into macroeconomic performance (in
terms of well-being and economic growth).

Several results emerge from this study. First, we consider the benchmark frame-
work without uncertainty. In this setup, we consider both the linear and nonlinear
cases. For the linear model, we assume that the relationship between changes in
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performance and successive interventions are additive and separable. We study
the growth rate of educational performance, its trend, and the average change in
performance due to a specific intervention. The main result is that interventions
that make it possible to move from an initial level of performance to a final level
are also additive and linear, and ultimately they may be constant in a regular
time interval. They also depend on the temporal growth rate of performance that
would have prevailed if there had been no response. For the nonlinear model, we
have shown that interventions are possible, even in the case of resistance, meaning
factors that preclude performance. These interventions can be coordinated, so they
are common to all stakeholders.

Further, we illustrate these findings with some examples. In the first, interven-
tions can fade over time, which means that students at a given date can be left at
their free course when they reached a level of performance that is high enough to
be irreversible. In the second example, the intervention depends linearly on initial
conditions at regular time intervals. This means that interventions are implemented
gradually until the desired level of performance is reached. In the last example, only
one type of intervention is made to achieve the desired performance, regardless of
which decision maker applies it.

Second, the framework with uncertainty also considers linear and nonlinear
probabilistic models. The occurrence of random events is integrated into it. Relying
on normal distribution of random events, we express the optimality conditions of
interventions, based on average probabilities. We propose a methodology to solve
for these conditions. The optimality is based on maximizing the probability of
achieving the target performance from an initial period to the final period. We
illustrate in an example how the construction of solutions relies on the correlation
of the random process and the initial conditions.

Third, we link the performance levels to social welfare, on the assumption that
the ultimate goal of policy makers is to improve the well-being of all individuals.
This can be achieved by investing in the education of students. As in the previous
case, we use deterministic and probabilistic approaches. Taking the expected
utility of consumption and investment in quality and access to education, we show
analytically the optimality conditions for these variables.

The remainder of the paper is organized as follows. Section 2 provides a brief
review of the educational production performance. Section 3 develops frameworks
for interventions in education. Section 4 studies the optimality of interventions in
terms of social welfare. Section 5 concludes the study.

2. EDUCATIONAL PERFORMANCE: A BRIEF REVIEW AND EMPIRICAL
FACTS

The goal of achieving universal education in developing countries involves looking
for ways to produce effective and efficient schools. Effective teaching methods,
based on survey data acquired from schools, have shown their worth for almost
fifteen years. To identify forms of effective schools, tools were developed primarily
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to measure whether countries can achieve the goal of enroling all children of
school age, and then to evaluate the effectiveness and quality of learning provided
in schools.

Since the 1990s, PASEC has implemented in francophone Africa surveys to
assess child learning, collecting information on children’s characteristics: their
origin, their living conditions (situation at home, medical, diet, economic well-
being of household, housing quality, parental care, etc.), characteristics of teachers
and schools, etc. These elements are often used as components of a production
function of the school [Bourdon (2005)]. The problem is whether there is a form
of this function that is appropriate to describe the effective provision of universal
education and the performance of interventions in the education sector. Describing
the cost of education remains a key challenge.

2.1. The Production Function for Schools

The identification of the determinants of educational service quality is not trivial.
Hanushek (1986) shows that there are a bewildering range of issues including
conflicting technical and esoteric results on the production process of schools. He
argues that there is still no clear answer as to what are the factors that influence
pupils’ performance. In this context, Pritchett (2001) finds that the choices that
guide an educational allowance are not often based on academic performance.

Empirical facts contradict the hypothesis of an efficient allocation of resources
that seeks to maximize school performance. This contradiction is attributed to four
reasons. First, the school is not a black box within which production technology
follows market rules. Second, the impact of schooling on attainment may be
small compared to the role and importance of innate abilities of learners. Third,
the demand for education is not facing a market, and the production function
cannot be observed effectively from an economic standpoint. Finally, the education
production function, if it is tested econometrically, cannot be generalized, as
already shown by Hanushek (1986).

2.2. Measurement of Educational Effectiveness

The optimal timing of school programs has been studied by Farrell (1957) and
Charnes et al. (1981). However, the difficulty lies in identifying stable parameters
of the production function, most importantly those driven by the environment of the
school, as well as households’ characteristics. School production is represented
by the results of pupil assessmentd in language, calculation, the value of self-
esteem reported by the pupils, and also some more aggregate measures such as
enrollment, promotion, and dropouts. For instance, Battese and Coelli (1995)
show that the environmental variables can explain the remoteness of the border.
Empirical studies are also interested in identifying the best-performing schools.
Relying on parametric and nonparametric approaches to the envelope method,
Cooper and Cohn (1997) have identified schools that are close to the efficiency
frontier. The impact of intervention on the effectiveness of schools has been
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examined as well by Stiefel et al. (1999) using randomized control trials. The
authors show that there is a strong inertia between interventions and their effects on
academic performance. Klein (2007) used a Becker–Stigler–Peltzman-like model
to determine the socially optimal level of intervention in education.

Other studies have tried to link school performance to the time of enrollment.
For higher education, Dolton et al. (2003) described a production function where
academic success, given by individual performance on the final exam, depends
on the time spent at school. They show that schooling time is four times less
profitable than teaching in a working group. As a general form of intervention,
they used public expenditure on education. Gupta and Verhoeven (2001) evaluated
the effectiveness of public expenditures in 37 African countries over the period
1984–1995 and compared it with that in Asia and the western hemisphere. They
showed that on the average, African countries are less efficient than Asian countries
and countries in the western hemisphere. Afonso et al. (2006) showed a clear
distinction between countries according to indicators of absolute performance and
cost-effectiveness indicators. National structures for utility costs can play a crucial
role and lead to situations where some systems offer public service and others do
not. This may be due to allocation rules and routine border performance allowed
by the technical frontier.

Kirjavainen and Loikkanen (1998) used a Tobit model powered by the lev-
els of efficiency from data envelopment analysis (hereafter DEA) to explain the
determinants of efficiency for secondary schools in Finland. In their approach,
the education of parents is a driving factor that determines differences in school
performance. Bradley et al. (2001) also used the DEA and a Tobit model to evaluate
the technical efficiency of English secondary schools. The average efficiency rates
obtained were between 83% and 75%. The authors also found that competition
between schools improves the efficiency level of schools. This finding is consis-
tent with the results of Waldo (2007), who studied the performance of Swedish
secondary schools using DEA. In the case of Portugal, Oliveira and Santos (2005)
examined institutional indicators. They were particularly interested in relaxing the
convexity constraint. Simar (2003) found that the unemployment rate, access to
health services, adult education, and infrastructure endowments are determinants
of academic performance. Rubenstein et al. (2007) used a sample of schools
in the northeastern United States and found that the effectiveness of policies
is conditioned by structural elements, including vocational training. This brief
literature review outlines the ambiguity and difficulty of measuring the efficiency
and performance of schools. Schools with superior performance can be the ones
that have better policies, but they can also be the ones that are in very favorable
environments.

3. A THEORY OF INTERVENTIONS IN EDUCATION

In most countries, education is largely a national public service, whose organiza-
tion and operation are provided by the government.7 However, local administration
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can also be involved in the development of this public service. There are several
stakeholders in the education sector, with specific and complementary roles. At the
national level, the government is competent in all aspects of pedagogy, curricula,
national qualifications, and management of teaching staff, etc. At the regional
level, local administrations (counties, districts, municipalities, etc.) are in charge
of the decentralized services of the Ministry of Education. The role of communities
(e.g., associations of parents) is also important. Indeed, parents are full members
of the educational community. Through their representatives, they participate in
school councils, classes, and administration of the institutions, which indirectly
implies the application of educational policy. It is worth noting that there often exist
structures of consultation (which enable their opinion to guide decision making or
allow actors and partners in education to meet and make decisions) and sometimes
technical committees dealing with issues of collective interest. Interventions by
all these stakeholders in education have direct and indirect impact on pupils’
performance.

However, these interventions are implemented in an environment with uncer-
tainty, which is related to the state of nature.8 This environment may be favorable
or unfavorable to the expected result of the intervention. For example, unforeseen
constraints (e.g., stochastic shocks) on resource availability can lead policy makers
to modify or discontinue an intervention. Similarly, unobservable individual fac-
tors related to the environment can make the same intervention more efficient for
some individuals and less for others. Sometimes the results can go in the opposite
direction through interaction with other factors. This raises the question of how
uncertainty affects the impact of interventions in education. In what follows, we
develop simple models that account for these situations and help us to better
understand the economic mechanisms through which these interventions operate,
as well as their effects on well-being.

3.1. The Benchmark Model without Uncertainty

Let Xt denote a vector whose n components are the criteria measuring agents’
(pupils’) performance (e.g., achievements such as score and repetition rate). All
interventions are captured by the vector Ut with r components. The aim is to start
with an initial state X0 and reach an optimal state XT where pupils’ performance
is better, T being the final time for the effects of interventions. The equation for
variation of pupils’ performance is

Ẋt = F(t,Xt , Ut ). (1)

The optimality means that in the final state, the interventions lead to a state close
to their objectives. At the level of an agent, it does not mean that all performance
indicators at period T are higher than those in the initial period. But the average
level achieved with XT is expected to be higher than that with X0. We will consider
two cases for equation (1): the linear and the nonlinear.
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The linear case. We assume that F can be written in the form

Ẋt = P(t)Xt + Q(t)Ut + Rt, (2)

where P(t) and Q(t) are matrices of respective order n × r and n × n. Equation
(2) shows that variations in performance are additive with respect to successive
separable interventions. All things being equal, P(t) represents the rate of growth
of performance in the absence of policy interventions with trend R(t). Similarly,
Q(t) denotes the average change in performance following an intervention. We can
assume different frameworks: (i) independence of interventions and (ii) existence
of a centralized public target (such as a global education policy overseen by the
government, in the form of recommendations to stakeholders) that guides the
interventions. Let us consider each of these frameworks in turn.

PROPOSITION 1. The interventions leading X0 to XT can be written as

Ut = B(t)c + v(t), (3)

where c = A(T )[Y−1(T )XT − ∫ T

0 Y−1(θ)R(θ) dθ ] is a vector of constants, v is
a function of time, B(T ) = Y tQ(t), and Y (t) denotes the fundamental matrix of
the system Ẋt = P(t)Xt .

The intuition behind Proposition 1 is that the interventions are additive and
linear and that they apply consistently at regular intervals of time. That is, these
interventions are not highly variable and may be in the form of, for example,
step functions, so that each time a policy is adopted, it is maintained for a while
before another intervention is undertaken. This opens up the opportunity to
assess the effects of interventions regularly and to modify them each time a new
performance target is set. Indeed, if the interventions are continuous and regular,
without the possibility of change, the costs could be unbearable and could lead to
losses.

Proof. Given the fundamental matrix Y (t), let us assume that the initial condition
has the form Y (0) = E, with E being the unitary vector. Let us rewrite Xt =
Y (t)Zt so that

Żt = B(t)Ut + G(t), (4)

where B(t) = Y−1Q(t) and G(t) = Y−1R(t). By making the transformation

Zt = ξt +
∫ t

0
G(θ) dθ, (5)

where ξt is a vectorial function that satisfies the equation

ξ̇t = B(t)Ut , (6)
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it follows that {
ξ(0) = ξ0 = X0

ξT = ξT = Y−1(T )XT − ∫ T

0 Y−1(θ)R(θ) dθ.
(7)

For the sake of simplicity, let us suppose that r = 1, meaning that we have only
one intervention. The integration of equation (6) gives the following system of
integral equations:

ξT − ξ0 =
∫ T

0
B(θ)U(θ) dθ, (8)

the solution of which takes the form Ut = B(t)c + v(t), with c being a constant
vector and v(t) a function such that∫ T

0
bs(θ)v(θ) dθ = 0 s = 1, 2, . . . , n, (9)

where the b’s are the components of B. �

Proposition 1 also states that at any point of time there exist actions guiding agents’
performance. It can also be used when there are limit conditions. Indeed, if we
state them as

S∑
j=0

GjX(tj ) := H, (10)

where H is a vector with m components and tj are such that 0 ≤ t0 < t1 · · · <

ts ≤ T and Gj are constant real matrices. Knowing that U(t) = U , we can write

Xt = YtX0 +
∫ t

0
YtY

−1(θ)Q(θ)U dθ +
∫ t

0
YtY

−1(θ)Q(θ) dθ. (11)

Substituting (11) into (10), we have

S∑
j=0

[GjY (tj )]X0 +
S∑

j=0

∫ tj

0
GjY (tj )Y

−1(θ)Q(θ)U(θ) dθ

+
∫ tj

0
GjY (tj )Y

−1(θ)R(θ) dθ = H. (12)

By setting

ϕj (θ) =
{

1 if θ ∈ [0, tj [

0 if θ ∈ [tj , T ]

and rewriting (12) accordingly, we have

A1X0 +
∫ t

0
B1(θ)U(θ) dθ = H1, (13)
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with H1 = H − ∑S
j=0

∫ tj
0 GjY (tj )Y

−1(θ)Q(θ)R(θ) dθ , A1 = ∑S
j=0[GjY (tj )],

and B1 = ∑S
j=0 ϕj (θ)GjY (tj )Y

−1(θ)Q(θ). Equation (13) is a system of integral
equations. By setting r = 1, the solution is written as

U = B∗
1 c + v. (14)

Substituting (14) into (13) yields

A1X0 + A2c = H1. (15)

This means that when the ranks of the two matrices (A1, A2) and (A1, A2,H1) are
equal, then X(t) is a solution of equation (2). The same expression for U(t) holds
when the limit conditions of (10) are continuous as∫ T

0
dG(θ)X(θ) = H. (16)

The nonlinear case. We now consider a more general case in which the equation
of variation of agents’ performance is written as

Ẋt = P(t)Xt + Q(t)Ut + Rt + μG(t,Xt , Ut , μ). (17)

The nonlinear case is more general than the linear one, with the additional term
μG(t,Xt , Ut , μ). The nonlinear case takes into account two factors: First mixed
interventions, then interventions where there are resistances, meaning for which
people are reluctant. Indeed, it is possible that a government undertakes discrete
interventions, which are supplemented by those undertaken by local authorities
and households. In this case, it is difficult to isolate the specific effects of each
intervention. For example, if a government undertakes health interventions, local
authorities can specialize in nutrition interventions, and households are involved
in the monitoring of teaching of pupils, then these types of interventions are not
exhaustive, but exclusive. Their specific effects on educational outcome are not
controllable, and it can be difficult to identify the most effective intervention.

Similarly, community or individual resistance may occur, depending on the
types of interventions and geographical locations. Often, in developing countries,
some ethnic backgrounds make people reluctant to follow nutrition and health
policies (e.g., deworming) that are set up by the government. Then sociocultural
considerations may lead to distrust. If government wants to intervene, underper-
formance following from this kind of resistance may occur. The nonlinear spec-
ification integrates all these considerations, given that educational performances
are not reached in a simple manner, and that there are complex factors that make
policies difficult to implement or rarely effective.

In equation (17), more specifically in the term μG(t,Xt , Ut , μ), μ is a parameter
and G denotes a vector function. We shall assume impulse interventions, meaning
that interventions are constant. In other words, they are of the same type between
t0 (initial time) and the final time T . Specifically, the vector Ut is constant in time
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intervals [tj , tj+1] with bounds t0, t1, t2, . . . , T . The rationale of this assumption
is that it is typically the kind of intervention encountered in reality. For example,
for school feeding programs, foods are provided at fixed hours and identically
to all pupils; in the case of subsidies granted to pupils’ parents, the scholarships
are regularly and equally paid at approximately the same period; in the case of
academic support consisting in helping students to make up delays, this support
usually occurs at fixed hours, etc. We have the following proposition.

PROPOSITION 2. Assume that we associate to every pair of bounded sets G0

and GT a scalar μ0 = μ0(G0,GT ) such that every μ0 < μT . There exists an
intervention Ut that leads X0 from G0 to XT belonging to GT .

Proof. We set

A(T ) =
∫ T

0
B(t)B∗(t) dt, where B(t) = Y−1(t)Q(t). (18)

Suppose that we have X(t) and U(t) such that equation (17) is verified. Then (17)
can be written as

Xt = Y (t)X0 + Y (t)

∫ t

0
Y−1(θ) [Q(θ)U(θ) + R(θ) + μG(θ,X,U,μ)] dθ.

(19)
By setting t = T , we have

Y−1(T )XT − X0 =
∫ T

0
B(θ)U(θ)dθ +

∫ T

0
Y−1(θ)[Q(θ)U(θ) + R(θ)

+μG(θ,X,U,μ)]dθ. (20)

When we write U = Bc + v, it follows that

c = A(T )

[
Y−1(T )XT − X0 −

∫ T

0
Y−1(θ)R(θ)dθ

−μ

∫ T

0
Y−1(θ)G(θ,X,U,μ)dθ

]
. (21)

Replacing for (21) in U , we have

U(t) = U0(t) + μB∗A−1(T )

[
−

∫ T

0
Y−1(θ)G(θ,X,U,μ)dθ

]
, (22)

U0(t) = B∗A−1(T )

[
Y−1(T )XT − X0 −

∫ T

0
Y−1(θ)R(θ)dθ

]
+ v(t). (23)
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Thus, it is easy to find that

X(t) = X0(t) + μ

[∫ T

0
Y (θ)Y−1(θ)G(θ,X,U,μ)dθ

−Y (t)A(t)A−1(T )

∫ T

0
Y−1(θ)G(θ,X,U,μ)dθ

]
, (24)

with X0(t) = Y (t)
[
X0 + ∫ t

0 B(θ)U0(θ)dθ + ∫ t

0 Y−1(θ)R(θ)dθ
]
. Equations (23)

and (24) show that for μ = 0 and U = U0(t), equation (17) has X = X0(t) as a
solution. �

In what follows, we provide examples that illustrate different modes of
intervention.

Example 1
Suppose that the intervention consists of providing school meals. We seek to
measure the effects of this program on the concentration time of pupils in class.
This concentration time is assumed to have a direct impact on pupils’ academic
performance. This problem can be described by the following equation:

Ẋt = AXt + GUt, (25)

where Xt measures the difference between the maximum score and its current
level:

Xt =

⎛⎜⎝X1
...

Xn

⎞⎟⎠ ; A =

⎛⎜⎝A11 · · · A1n

...
...

...

An1 · · · Ann

⎞⎟⎠ ;

G =

⎛⎜⎝G11 · · · G1n

...
...

...

Gn1 · · · Gnn

⎞⎟⎠ ; Ut =

⎛⎜⎝U1
...

Un

⎞⎟⎠ .

Equation (25) can also be rewritten as

dXj

dt
=

n∑
k=1

AjkXk +
r∑

l=1

AjlUl, j = 1, . . . , n.

The solution of this given by

Xt = X0e
At +

∫ t

0
eA(t−θ)GU(θ) dθ. (26)
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It is straightforward to show that the interventions that can reduce the performance
gap between t = 0 and t = T take the form

Ũt = −G′eA′tM−1X0, (27)

where M = ∫ t

0 e−AθGG′e−A′θdθ and A′ and G′ denote the transpose matrices. If
one considers the much simpler form of educational performance variation

Ẋt = a + Ut, (28)

then the intervention becomes

Ũt = − 2a

1 − e−2aT
e−atX0. (29)

This mode of intervention is typically the one undertaken by a government.

Example 2
Let us consider a discrete-time problem where the change in performance over
time is described by

Xt − Xt−1 = aXt−1 + bUt + r. (30)

Equation (30) can be interpreted as follows: the difference between the perfor-
mance before and after access to the intervention depends on the initial perfor-
mance and the intervention Ut . For the intervention to be optimal, in the sense that
Xt > Xt−1, it must be of the form U = Bc + v. This implies that the intervention
is constant in the time interval [t − 1, t]. By induction, we have

Xt = (1 + a)tX0 +
t∑

j=1

(1 + a)j−1(bUn−j+1 + r). (31)

As long as the intervention is constant over time, we have

Ũ1 = Xt − (1 + a)tX0

b
∑t

j=1(1 + a)j−1
− r

b
. (32)

This mode of intervention can be associated with community intervention.

Example 3
We consider a school located in an area where local government seeks to raise the
level of academic achievement. The goal of the intervention is to support a given
number of pupils to make sure that they will be enrolled. Let X denote the number
of pupils who attend the primary school and X0 the number of pupils enrolled
at the starting period. Let U be the proportion of pupils involved in a school
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achievement program. Assume that the decision is based on the mechanism

Ẋt = aX + bU, 0 ≤ U ≤ 1. (33)

The aim is to set the final value XT as high as possible at the end of the process.
It is easy to find that Ũ = 1 and max−1≤U≤1 XT = X0e

−aT + b
a
(1 − e−aT ). This

example illustrates an intervention that can be designed by local authorities.

3.2. Impacts of Interventions under Uncertainty

As discussed earlier, interventions depend on many uncontrolled factors that may
impact their effectiveness. Informal and formal environments, risk aversion, shared
common vision, and other parameters have to be taken into account. In fact, uncer-
tainty is the most realistic approach to modeling interventions, and several factors
support this approach. First, there is no deterministic causal relationship between
the actions of authorities and educational achievement. Instead, authorities try to
establish the best conditions (good home, school, and community environments,
etc.) for an improvement of pupils’ performance. Pupils are all different and their
reactions to interventions can be highly variable from one to another. Indeed, their
innate characteristics are not the same; some may be more effective in scientific
topics, some in literary or artistic materials. The lack of information on certain
socioeconomic and personal characteristics of pupils or students is an uncertainty
factor that weighs on the achievement of performance targets. Thus, the imple-
mentation of interventions is not always controllable. Communities, schools, and
households may be vulnerable to unforeseen shocks that negatively affect pupils’
performance (financing problems, floods, disease, etc.). Given these uncertainties,
a probabilistic approach better suits our purpose. The difference from the deter-
ministic model is that the probability of occurrence of random events is embedded
in the system of stochastic equations.

The linear case. We assume that the factors that influence the intervention target
lead to the equation of motion

Ẋt = A(t)Xt + B(t)Ut + R(t) + C(t)Yt , (34)

where A(t), B(t), and R(t) are vectors whose components depend on time. They
are defined on the support [0, T ]. The criterion measuring the performance is still
the vector Xt and the intervention is captured by Ut . Yt is a stochastic vector with
components y1(t), y2(t), . . . , ym(t). They are also defined on [0, T ]. We denote
by Z(t) the fundamental matrix of the homogeneous system Ẋt = A(t)Xt with
Z(0) = E, where E is the unitary matrix. Suppose that D is a domain in phase
space and define

J (Ut) = P {X(T ) ∈ D} . (35)

The functional J is the probability that the end of the stochastic trajectory of the
performances arrives at the region D. The issue is to find the better interventions
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Ut that lead to a maximum level of J . The mathematical expectation of Xt is:

E(Xt ) = Z(t)E(X0) +
∫ t

0
Z(θ)Z−1(θ) [BU(θ) + R(θ) + CE(Y )] dθ. (36)

This expression leads to a simple form of the variance of Xt ,

V(Xt ) = E[Xs(t) − as(t)]
2 (37)

with

as = a0
s (t) +

∫ t

0

r∑
j=1

csj (t, θ)Ujdθ, s = 1, 2, . . . , n.

Assume that the X1 component follows a normal distribution with mean a1(t) and
standard deviation

√
V1(t). The value J1(U) = P{X1(t) ≤ δ} is the probability of

reaching the right end of the stochastic trajectory X(T ) in the overall performance
delimited by −δ ≤ X1(T ) ≤ δ. Our goal is to find interventions that maximize
J1(U) under the constraint that | Uj |≤ j = 1, . . . , r . Let us consider the case of
the functional J1(U) as normal by setting

J1(U) =
∫ δ

−δ

1√
2πV1(T )

exp

{
− [X − a1(T )]2

2V1(T )

}
dX. (38)

We have ∂J1(U)
∂a1(T )

> 0 for the following conditions: if a1(T ) > 0 and a1(T ) is
decreasing or if a1(T ) < 0 and a1(T ) is increasing. As a result, J1(U) is a
minimum if | a1(T ) | is the smallest possible. Let us denote by (U ∗

j )
j=1,...,r

the

optimal intervention. Then (i) if a∗
1(T ) > 0 and a∗

1(T ) + ∫ T

0

∑r
j=1 | c1j (T , θ) |

dθ > 0 then U ∗
j = −sgn c1j (T , θ); and (ii) if a∗

1(T ) < 0 and a∗
1(T ) + ∫ T

0

∑r
j=1 |

c1j (T , θ) | dθ < 0 then U ∗
j = sgn c1j (T , θ). As a result, whatever the case, we

have U ∗
j = −sgn a∗

1(T )c1j (T , θ). With these optimal interventions, the value of
the probability of the event reaching the ultimate goal of performance is

J ∗
1 (U)=

∫ δ

−δ

1√
2πV1(t)

exp

{
− [X − a∗

1(T )+∫ T

0

∑r
j=1 | c1j (T , θ) | dθ ]2

2V1(t)

}
dX.

(39)

However, if a∗
1(T ) > 0 and a∗

1(T )+∫ T

0

∑r
j=1 | c1j (T , θ) | dθ < 0, then interven-

tions become infinite. For a given interval [0, t0], we can take one of the actions,
and for the complementary interval, we set that there is no intervention. Therefore,
we have U ∗

j = −sgn a∗
1(T )c1j (T , θ) within [0, t0] and U ∗

j = 0 within (t0, T ]. We

chose t0 as the smallest t , where we have a∗
1(T ) = ∫ t

0

∑r
j=1 | c1j (T , θ) | dθ < 0.

Similarly, if a∗
1(T ) < 0, t0 is the minimum time to have a∗

1(T ) = − ∫ t

0

∑r
j=1 |

c1j (T , θ) | dθ < 0.
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The vector of performance may be controlled not only on the last portion of
its path, but also on one or more time intervals. However, these time intervals
must comply with a condition. Let � be the union of these intervals and �c its
complement, so that �∩�c = ∅ and �∪�c = [0, T ]. If U ∗

j = sgn a∗
1(T )c1j (T , θ)

when t ∈ �c and U ∗
j = 0 when t ∈ �, this intervention is optimal for a∗

1(T ) =
sgn a∗

1(T )
∫
�c

∑r
j=1 | c1j (T , θ) | dθ < 0. The expectations of performances

X1, . . . , Xn are then aj = a∗
T (T ) + ∫ T

0

∑r
j=1 bijui dθ for j = 1, . . . , n and

i = 1, . . . , r .
In the case where the variables X1(T ), . . . , Xk(T ) are independent and follow

a normal distribution, their cumulative distribution function is F(λ1, . . . , λk) =
F1(λ1)F2(λ2) · · · Fk(λk), where Fj (λj ) denotes the cumulative distribution func-
tion of [Xj(T )]j=1,...,k:

Fj (λj ) =
∫ λj

−∞

1√
2πVj (T )

exp

{
− [X − a1(T )]2

2Vj (T )

}
dX. (40)

Let J (U) = J1(U)J2(U) · · · Jk(U) = P {X1(T ), . . . , Xk(T ) ∈ D} denote the
probability that the final performance belongs to domain D, with −δj ≤ Xj(T ) ≤
δ, and δ > 0. For k = 1, the intervention turns out to follow from equation (38).
What are the interventions when k > 1?

Suppose that U ∗ = (U ∗
1 , . . . , U ∗

r ) is optimal, and U ∗
j = −1, 0, or 1. Consider

θ ∈ [0, T ] such that U ∗
j does not change in the interval [θ − ε, θ + ε] for ε

sufficiently small. We can search Ū ∗
j as follows: it is U ∗

j (θ) = −ε for t ∈
[θ −ε, θ +ε]. Similarly, it is U ∗

j for θ ∈ [0, T ] and t ∈ [θ −ε, θ +ε]. Consider the
intervention Ū ∗ = (U ∗

1 , . . . , U ∗
j−1, Ū

∗
j , U ∗

j+1, U
∗
r ). We have J (U ∗) ≥ J (Ū ∗) for

all ε small. By substitution, we have aj = aj (U
∗)+ηj = aj (Ū

∗) for j = 1, . . . , k.
Observe that J (Ū ∗) can be expanded in power series of ηi :

J (Ū ∗) = J (U ∗) +
k∑

i=1

∂J (Ū ∗)
∂ηi

∣∣∣∣
η1=···=ηk=0

ηi + · · · . (41)

Let us set �i = ∂J (Ū∗)
∂ηi

∣∣
η1=···=ηk=0 for i = 1, . . . , k. Then �i =[

∂Ji (Ū
∗)

∂ηi

]
J (U∗)
Ji (U∗)

∣∣
η1=···=ηk=0. We deduce that

�i = 1√
2πVi

(
exp

{
− [−δ − ai(U

∗)]2

2Vi

}
− exp

{
− [δ − ai(U

∗)]2

2Vi

})
J (U ∗)
Ji(U ∗)

.

(42)
Thus, sgn �i = −sgn ai(U

∗); e.g., �i and −ai(U
∗) are of the same sign. Suppose

we have, whatever ε is small enough,
∑k

i=1 �iηi = 0. Then, as U ∗ is optimal,∑k
i=1 �iδi < 0. Regarding ηi , we have

ηi = ai(Ū
∗) − ai(U

∗) = −2
∫ θ+ε

θ−ε

εj bij (t)dt = −2
∫ θ+ε

θ−ε

U ∗bij (t)dt. (43)
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Similarly, we have
∑k

i=1 �iηi = −2
∫ θ+ε

θ−ε

(∑k
i=1 �ibijU

∗
j dt

)
, and as the inte-

grand is positive, U ∗
j = sgn

∑k
i=1 �ibij .

As there is only one value �1 of the same sign as −a1(U
∗) and therefore of

the same sign as −a∗ if there is no part of the time when policy makers or other
agents do not intervene, U ∗

j = −sgn(a∗bj ). If k > 1, we can use this method
of calculation by approximation. Let U1 be an intervention. We then use this
framework to find �11, . . . ,�k1 as we did for the computation of �1, . . . ,�k

thanks to U ∗.
Then let U 2

j = sgn
∑k

i=1 �i1bij for t ∈ [0, T ]. The intervention U 2
j =

(U 2
1 , . . . , U 2

r ) is the second approximation of the process, which results in
the sequence U1, U2, . . . , Ur of successive approximations. The system U 2

j =
sgn

∑k
i=1 �ibij is a system of integral equations that enables us to find optimal

interventions. The following result holds:

PROPOSITION 3. Optimal interventions U ∗
j = sgn

∑k
i=1 �ibij for j =

1, . . . , r are solutions of the system of integral equations.

We refer to the Appendix for the general resolution of this system.
The nonlinear case. If the system is nonlinear, it can be written in the general

form

dXs

dt
= fs(x1, . . . , xn; u1, . . . , ur; y1, . . . , ym), s = 1, . . . , n, (44)

and J (u) is the functional defined on integral curves given by equation (44). It
defines the probability that the extreme performance X(T ) holds in a region of
phase space. The interventions u1, . . . , ur are constrained and u∗

1, . . . , u
∗
r are

optimal interventions that maximize J (U). Let ξ1, . . . , ξn be a sequence of
random variables such that E(ξi) = 0, E(ξiξj ) = 0 ∀i = j , and E(ξ 2

i ) = 1.
We have yj ≈ lj (r)

∑∞
i=1 lj i(r)ξi for j = 1, . . . , m. Moreover, we have

E
(
yi − lj − ∑k

i=1 lj iξi

)2
−→

k−→∞
0, which is the convergence in mean toward

the value yi of the sequence. The system can be rewritten as

dXs

dt
= fs(t, x1, . . . , xn; u1, . . . , ur ; ξ1, . . . , ξk). (45)

We stop the sequence at ξk in amputating ξk+1 to determine the solution of equation
(45). For u1, . . . , ur fixed, we set ξ

j
1 , . . . , ξ

j
k for j = 1, . . . , l and determine the

solution of equation (45) associated with realizations ξj and initial conditions
x0 = xj for t = 0, j = 1, . . . , l (deterministic). We then form an interpolation
polynomial,

x = π(t, ξ1, . . . , ξk), (46)

such that xj = π(t, ξ
j
1 , . . . , ξ

j
k ) provides the solution to equation (45) for any

sequence ξ
j
1 , . . . , ξ

j
k . Then we determine J (u) from equation (46). For k and l
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large enough, we determine the optimal interventions as

J =
∫ T

0
E [(X(t) − Z(t))]2 dt (47)

for a given deterministic form. Then we substitute (46) into (47) to have

J̄ =
∫ T

0
f0

[
t1, x

1(t) · · · xl(t)
]
, (48)

where Xj are deterministic solutions of equation (44). Computations are then
done by the Lagrangian method.

Example 4
We consider a problem of policy interventions in discrete time, on groups of
schools, by assuming that pupils’ performance evolves randomly and therefore
require random interventions. These intervention requests are assumed to be
Markovian, meaning that the decision makers face uncontrolled situations that
do not depend on them. For example, school dropouts can lead to losses of per-
formances, and can be supposed to follow a Markov process.9 We assume that
the performance is compared with a standard level, so that intervention requests
depend on the difference between current and standard levels. Let us denote them
as vt [assumed independent with the same probability distribution, P(vt )]. The
difference in performance is denoted Xt , and can be positive (the current perfor-
mances are higher than the standard level) or negative (the current performances
are lower than the standard ones). For the sake of simplicity, we still refer to Xt

as performance, even if it represents the difference from the standard level. The
performances are produced in each period by interventions aiming to improve
them. The interventions are denoted Ut ≥ 0.

There are two costs associated with the production of performance: (i) The
cost of performance itself and the cost of lack of performance, denoted f (Xt).
Thus, (a) when Xt ≥ 0, f (Xt) is interpreted as the cost to maintain the level of
performance; (b) when Xt < 0, f (Xt) is the cost of weak performance. (ii) The
cost of implementation of the intervention Ut , denoted as g(Ut).

The optimization consist in minimizing the costs of the intervention,

min
Ut

E
T −1∑
t=0

[f (Xt) + g(Ut)] , (49)

under the dynamical constraints Xt+1 = Xt −Ut +Vt . The dynamic programming
function is then

V (t, x) = min
Us

E

{
T −1∑
t=0

[f (Xt) + g(Ut)]

Xt

= x

}
, with s = t, . . . , T − 1. (50)
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The equation of the dynamic programming is stated as

V (t, x) = min
U∈R+

{∫
v

V (t + 1, Xt , Ut − vt )

}
P(dvt ) + f (Xt) + g(Ut), (51)

with V (t, x) = 0, where T is the final period.
Solving this equation gives the optimal cost Vt and a Markov decision strategy,

as we assume that intervention requests are Markovian. Over an infinite horizon,
meaning that there is infinite renewal of the cohorts of pupils, if we discount
the cost of interventions and school performances at the rate r , the dynamic
programming problem is

min
Ut

E

{ ∞∑
t=0

[f (Xt) + g(Ut)]

(1 + r)t+1

}
(52)

under the dynamical constraints Xt+1 = Xt − Ut + Vt , and

V (t, x) = 1

1 + r
min
Ut≥0

{∫
v

V (Xt + Ut − vt )P(dvt ) + g(Ut) + f (Xt)

}
. (53)

The period T can tend to infinity and the asymptotic behavior of the function of
dynamic programming has solutions of the form e(Xt) = −mT + ρ(Xt), where
m is the average cost per period. If we substitute V (t,Xt ) by e(Xt), the dynamic
equation becomes

m + ρ(Xt) = min
Ut≥0

{∫
v

ρ(Xt + Ut − vt )P(dvt ) + g(Ut) + f (Xt)

}
. (54)

We check by recurrence that e(Xt) is the solution of the dynamic equation. Let us
suppose that a period of time has a length σ . We assume the following particular
case: (i) f (Xt) = ρX2

t ; (ii) P(dvt ) = 1 within the period of length σ and
P(dvt ) = 0 elsewhere; (iii) g(Ut) = 0 if Ut > 0 and g(Ut) = 1 if Ut = 0; (iv) we
replace m by σm. The problem of optimality of the intervention is then

σm = min

{
inf

Ut>0
[ρ(Xt + Ut − σ ] − ρ(Xt) + 1, ρ(Xt − σ) − ρ(Xt)

}
+ σX2

t .

(55)

If σ tends to zero, we have

min

{
inf
Ut>0

[ρ(Xt + Ut − σ ] − ρ(Xt) + 1, ρ ′(Xt) + X2
t − m

}
= 0. (56)

The solution is

ρ(Xt) = 1

3
X3

t − mXt. (57)

Then the minimum is reached at Xt = √
m with − 2

3m3/2 as minimum value.

https://doi.org/10.1017/S1365100515000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100515000309


2086 MBAYE DIENE ET AL.

4. OPTIMALITY OF INTERVENTIONS AND SOCIAL WELFARE

The issue regarding the role of education is wider than the impact of interven-
tions on school performance. Education appears to be of great importance for
development and economic growth [Lucas (1988); Barro (1991); Mankiw et al.
(1992)]. All the stakeholders involved in the education system may have different
targets in the short run. But the ultimate long-run objectives are the same: pro-
moting economic development and social welfare. That is why governments in
developing countries are inclined to undertake policies that enhance educational
attainment and achievement. As shown by Glewwe (2002), many scholars and
international organizations recognize that investment in education is a priority for
development and welfare [Becker (1995); Hanushek (1987)]. In this section, we
study the conditions of welfare improvement following from interventions.

4.1. The Conditions of Deterministic Equilibrium

In our context, the relation between education and welfare can be studied broadly
by taking into account the difference between the objectives of the stakeholders
and the future labor productivity arising from skills acquired through education.
The impact of different skills on future income and on other socioeconomic
outcomes may have implications for the kinds of interventions in education. The
previous two propositions define the existence of interventions. We can now
extend this framework to social welfare that integrates utility functions of all
stakeholders. As previously, the variation in performance is described by the
equation Ẋt = F(t,Xt , Ut ). Do interventions that maximize social welfare exist?
We assume social welfare function to be of the form

WF =
∫ T

0
L[S(t)]w(t)dt, (58)

where S is the utility function, which is defined on a set of variables including
consumption and health of agents (for example, pupils). The function L is weighted
by w(t), which represents the time allocation (either for education, or for work).
The main issue we face here is that each stakeholder has a utility function. For
each, we define an explicit form of the function and aggregate them in a specific
social welfare function.

For the values to be optimal, we assume that the utility function S(t) : R+ → R+
is C∞ with S ′

C > 0, S ′′
C < 0, and limC(t)→0 S ′

C → ∞, where C(t) denotes any of
the arguments of the function S(t).

Observe that education provides human capital in the form of skills and ability
and leads to higher probabilities of getting into the labor market. The question
is: How can the interventions in the education system lead to higher welfare for
the whole population? A plausible approach is to run an optimization problem for
each stakeholder taking into account his/her own objective and budget constraints.
However, it appears more tractable to start from a general framework where a
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social planner maximizes the social welfare function that integrates the parameters
depending on the stakeholders’ objectives.

The households have as objective to maximize a utility function with two
arguments: consumption of goods and services and child cognitive skills. At the
last period of schooling, T , pupils start working and have earnings. Part of these
earnings is given to parents and to the other stakeholders of the education system,
such as the government and the local administrations, by means of taxes, for
example.

A utility function that embeds parents’ consumption Ct from period t0 to T and
child skills Xt as arguments is

St = S(Ct ,Xt , σ, σ ′), (59)

where σ is a discount factor for future consumption and σ ′ is a value repre-
senting the households’ incentive to have educated children. The higher σ ′, the
more parents prefer educated children who will help them increase their future
consumption. The production function of skills is given by

Xt = I (q, θ, e), (60)

where q is the school quality and θ denotes the years of schooling. The function I

is increasing in q and θ . The parameter e is the child’s learning efficiency (her/his
own personal characteristics and those of parents: ability, motivation, etc.). It is an
opportunity that enhances the possibility for children to better perform at school.
Households’ consumption is given by

Ct = a(Wt − πθ) + (1 − a)(Wt + δWc
t,d), (61)

with {
a = 1 if t ≤ θ

a = 0 if t > θ.
(62)

The parameter π is the price of schooling, Wt is the households’ income in period t ,
Wc

t,d are respectively the child’s gross and disposable income when she/he works,
and d is the fraction of the disposable income spent in the household. The first
term represents the income while the children are still attending school. The
second term is the income when they work. Let the income tax rates levied by the
government be τ . We have

Ct = Wt − aπθ + δ(1 − a)(1 − τ)Wc
t . (63)

The income of children increases with their skills by the equation

Wc
t = z(Xt , Ut ), (64)

where z is a function that links skills and income in the labor market. The house-
holds’ utility function can then be written as a function of years of schooling θ
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and school quality q:

St = S(Wt − aπθ + δ(1 − a)(1 − τ)z(Xt);Xt ; σ ; σ ′). (65)

Relying on equation (58), the global welfare is given by

WF =
∫ T

t0

L
{
S[Wt − aπθ + δ(1 − a)(1 − τ)z(Xt);Xt ;Ut ; σ ; σ ′]

}
w(t)dt.

(66)
The welfare function is maximized under the constraint of the equation of motion
of skills,

Ẋt = F(t,Xt , Ut ). (67)

The Hamiltonian of the optimization problem for WF is

H = L
{
S[Wt − aπθ + δ(1 − a)(1 − τ)z(Xt);Xt ;Ut ; σ ; σ ′]

}
w(t)

+μtF (t,Xt , Ut ). (68)

The optimality conditions are given by the state equation,

∂L

∂St

∂St

∂Ut

w(t) + μt

∂F

∂Ut

= 0, (69)

and by the co-state equation,

μ̇t = −δ(1 − a)(1 − τ)
∂L

∂St

∂St

∂z

∂z

∂Xt

w(t) − ∂St

∂Xt

− μt

∂F

∂Xt

. (70)

The conditions of existence of optimal interventions depend on the expression for
L and its characteristics (continuity, differentiability, and concavity).

4.2. The Case of Stochastic Welfare

Skills lead to higher future incomes and are an incentive for parents to get their
children educated. The household’s utility is assumed to depend on the current
income and on the expected income of children. The presence of skilled and
unskilled labor in the production sector leads to unequal distribution of wages.
Indeed, workers can be skilled or not and earn future income. The time spent in
education differs between children, as do their innate abilities and their parents’
education. The child’s ability is a stochastic variable and does not dependent on
parents’ abilities. Parents pay for their children’s education, and their involvement
in the education is related to the probabilities of their being skilled or unskilled. As
a result, the utility function of households depends now on the fact that children
may not acquire the skills they expected and this will have an impact on their
expected incomes. The expected utility of the parents is

E(St ) = S[E(Ct ),Xt , σ, σ ′]. (71)
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The expected income of the children from different types of households is

E(Cs,t ) = Ws,t − aπθs + δ(1 − a)(1 − τs)E
(
Wc

s,t

)
, (72)

E(Cn,t ) = Wn,t − aπθn + δ(1 − a)(1 − τn)E
(
Wc

n,t

)
. (73)

Parents are assumed to educate their children when the expected utility with
educated children is greater. Thus we have

S[Ws,t − aπθs + δ(1 − a)(1 − τs)E
(
Wc

s,t

);Xt ;Ut ; σ, σ ′] (74)

≥ S[Ws,t + δ(1 − a)(1 − τs)E
(
Wc

s,t

);Xt ;Ut ; σ, σ ′],

S[Wn,t − aπθn + δ(1 − a)(1 − τn)E
(
Wc

n,t

);Xt ;Ut ; σ, σ ′] (75)

≥ S[Wn,t + δ(1 − a)(1 − τn)E
(
Wc

n,t

);Xt ;Ut ; σ, σ ′].

This means that, with the same household income, children from the unskilled
household drop out earlier from education than the others, meaning that θn ≤ θs .
The global expected welfare is then

WF =
∫ T

t0

((
L

{
S[E(Cs,t );Xt ; σ, σ ′]

} + L
{
S[E(Cn,t );Xt ; σ, σ ′]

}))
w(t)dt.

(76)
One of the objectives the authorities can have is to reduce the difference between
skilled and unskilled wages, as the decision to invest in education depends on
its cost and on the expected income from education, given that skilled labor is
more profitable in terms of future income. The issue they face is to enhance the
education of the children of unskilled parents.

5. CONCLUSION

In this study, we develop theoretical frameworks to relate interventions in educa-
tion to educational performance. In that regard, we show that uncertainty plays
a crucial role in shaping the optimality of interventions. Uncertainty may follow
from lack of information on the socioeconomic characteristics of students and the
educational environment in which interventions are implemented. We also enlarge
the analysis to the issue of how the performance of the educational system can be
integrated into macroeconomic performance in terms of well-being and economic
growth. We also link the performance levels to social welfare, on the assumption
that the ultimate goal of policy makers is improving the well-being of individuals.

In this research, we focused on the study of equilibria by providing optimality
conditions for interventions. Future research would be to examine the stability of
optimal equilibria in both certain and uncertain cases. Indeed, there may be external
shocks resulting in disturbances of the system: for example, natural events that
may increase the risk significantly, or more restrictive and unpredictable budgetary
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policies that policy makers may face. All these are likely to affect the stability of
equilibria and the way they evolve over time.

NOTES

1. The term “innovation” is used here to refer to the implementation of new practices, the intro-
duction of a new policy, and mobilizing new resources to support the implementation of that policy.

2. For instance, technical resources (equipment), human resources (extra staff to support activities
and planning time), physical resources (classroom space), or financial resources.

3. In the literature, four core layers are commonly identified and their influences analyzed: (i) the
intervention, (ii) the micro level influences (factors that are relevant to the policy maker such as capacity
to innovate), (iii) the midlevel influences (local-level influences such as educational environment), and
(iv) the macrolevel influences (national policy and programs, government initiatives, etc.).

4. For instance, allowing competition in schools can motivate and enhance efforts.
5. For instance, food policies that promote pupils’ access to enough calories. The formal environ-

ment has a key role in creating spaces for sharing existing or innovative practices. Furthermore, it
facilitates partnerships between all stakeholders in education.

6. For example, a teacher’s perception of the effectiveness of new pedagogical practices implied
by an intervention can influence its success. A shared vision provides clarity of purpose and direction
for those who manage interventions.

7. In developing countries, there is a growing contribution of the private sector to education (private
school, universities, etc.)

8. The empirical literature on impact assessment of interventions stresses the importance of taking
uncertainty into account. But to date, no work has proposed a theoretical study.

9. This means that students who leave school (drop out) are replaced by others who enter. This
is a replacement process in which we do not specify the reasons for dropping out. Moreover, the
performance of those who enter is independent of the performance of those who leave.
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Vers une école juste et efficace: 26 contributions sur les systèmes d’enseignement et de formation,
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APPENDIX
To solve the system leading to the solution in Proposition 3, one use the following ap-
proximation. For example, we search constants c1, . . . , ck using ci = ϕ(c1, . . . , ck) for
i = 1, . . . , k. This turns out to solve an algebraic equation. The algebraic equation is
obtained by substituting U ∗

j = −sgn(a∗bj ) into the expressions of ci . Then we can solve

by trial search approximation the minimum of the function E = ∑k
i=1[ci −ϕ(c1, . . . , ck)]2.

If (cn
1 , . . . , c

n
k ) is the nth approximation of the solution of the equation in ci , the func-

tions μn
j = sgn

∑k
i=1 cn

i bij , j = 1, · · · . . . , k, are the nth approximation to the optimal
intervention.
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Let us move to the case of random functions y1(t), . . . , ym(t) that are independent
of t and are random variables ξ1, . . . , ξm. Let F1, . . . , Fm be, respectively, the associated
response functions. Suppose (to simplify) that ξ1, . . . , ξm are independent and the initial data
are deterministic. The cumulative distribution function of ξ1, . . . , ξm is F(λ1, . . . , λm) =
F1(λ1), . . . , Fm(λm). We deduce the distribution function G(λ) of the random variable
X1(T ) with

X1(T ) =
m∑

i=1

�iεi +
∫ +∞

0

∑
j=1

bjujdt + a∗
1 . (A.1)

Set in the space of m variables λ1, . . . , λm the domain, say S(λ), defined by X1(T ) ≤ λ.
We have

G(λ) =
∫
S(λ)

dF (λ1, . . . , λm)

=
∫ +∞

−∞
dF1(ξ1)

∫ +∞

−∞
dF2(ξ2) · · ·

∫ [�mξm+λ−X1(T )]/�m

−∞
dFm(ξm). (A.2)

Hence the following representation:

G(λ) = Ḡ

⎡⎣ 1

�m

⎛⎝λ − a∗
1 −

∫ T

0

r∑
j=1

bjujdt

⎞⎠⎤⎦ . (A.3)

Let us seek the optimal intervention that maximizes J (U) = P{| X1 |≤ δ}. Let α and

β be respectively the minimum and maximum values of 1
�m

(
a∗

1 + ∫ T

0

∑r
j=1 bjujdt

)
and

α∗ ∈ [α, β] the point where Ḡ
(

1
�m

− a
)

− Ḡ
(
− 1

�m
− a

)
takes its highest known value

z ∈ [α, β]. If α∗ = α or α∗ = β, the optimal intervention is μj = sgn [(a∗
1 − α∗)bj ] for

j = 1, . . . , r . Otherwise, the intervention operates only on a portion of the time course. If
the intervention is μ∗

j = 0 in that case, the intervals or ranges of interventions are defined
by

α∗ = a∗
1 +

∫ T

0

r∑
j=1

bju
∗
j dt. (A.4)

The problem of determining the optimal intervention is fully resolved by any law of response
of the random variables of the initial system.
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