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Abstract

This paper considers a variant of the classical Cramér–Lundberg model that is particu-
larly appropriate in the credit context, with the distinguishing feature that it corresponds
to a finite number of obligors. The focus is on computing the ruin probability, i.e. the
probability that the initial reserve, increased by the interest received from the obligors
and decreased by the losses due to defaults, drops below zero. As well as an exact analy-
sis (in terms of transforms) of this ruin probability, an asymptotic analysis is performed,
including an efficient importance-sampling-based simulation approach.
The base model is extended in multiple dimensions: (i) we consider a model in which
there may, in addition, be losses that do not correspond to defaults, (ii) then we analyze
a model in which the individual obligors are coupled via a regime switching mechanism,
(iii) then we extend the model so that between the losses the reserve process behaves as
a Brownian motion rather than a deterministic drift, and (iv) we finally consider a set-up
with multiple groups of statistically identical obligors.

Keywords: Cramér–Lundberg process; ruin probability; large-deviation asymptotics;
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1. Introduction

In insurance and risk, a pivotal role is played by the classical Cramér–Lundberg model (also
known as the compound Poisson model). In this model independent and identically distributed
(i.i.d.) claims arrive according to a Poisson process, whereas premiums are earned at a constant
rate. This means that if the initial reserve is given by u ≥ 0, then the reserve level at time t ≥ 0
is given by

Xt := u + rt −
Nt∑

i=1

Li, (1)

with r> 0 the premium rate, (Nt)t≥0 a Poisson process with intensity λ> 0, and (Li)i∈N
a sequence of i.i.d. random variables. The key quantity of interest is the (finite-horizon)
ruin probability P(∃s ∈ [0, t] : Xs < 0) and its infinite-horizon counterpart P(∃s ≥ 0: Xs < 0).
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722 G. DELSING AND M. MANDJES

A broad set of techniques has been developed to analyze this quantity, for the Cramér–
Lundberg model itself as well as for more advanced variants; we refer to [5] for an exhaustive
overview. With the random variable L denoting a generic claim, often the net profit condition
E (Xt − X0) = rt −ENt EL> 0 is imposed. Under this condition, which effectively means that
r>λEL, it is guaranteed that ruin is rare. A practically relevant objective is to select the initial
reserve u so that the (finite- or infinite-horizon) ruin probability is below some threshold ε.

Essentially the same modeling framework can be applied in the context of credit as well.
Then the claim arrival process describes the default epochs, the premiums correspond to the
interest received from the obligors, and the claims are the corresponding losses. One may
wonder, however, whether in this setting the assumption of Poisson arrivals is at all realis-
tic: whereas in the insurance context the number of claims issued can in principle exceed any
bound, it is obvious that in the credit context the number of defaults cannot exceed the number
of obligors. More concretely, as soon as an obligor goes into default, it effectively leaves the
system. Motivated by this observation, we study in this paper the ruin probability in a tran-
sient variant of the Cramér–Lundberg model. We do so by defining for each obligor a random
variable (e.g. exponentially distributed) corresponding to the time-to-default, where after the
default the obligor can no longer either cause any new default or generate any interest.

Model. We proceed by providing a more formal description of our transient variant of the
classical Cramér–Lundberg model. Here we state the main model, which we will generalize in
various directions later in the paper.

We consider a setting in which there are initially n ∈N obligors, each of which goes into
default after some random amount of time. The corresponding n times-to-default are assumed
to be i.i.d. non-negative random variables, characterized by the density f ( · ). In the credit
context, risk is quantified over a finite time horizon, justifying the use of a model in which
clients eventually all go into default. Let the loss-at-default, per obligor, be distributed as a
non-negative random variable L, and let these losses be i.i.d., each with Laplace transform
�( · ). It is natural to assume that the income per unit of time is proportional to the number of
obligors that have not yet gone into default. In other words, the surplus process increases at a
rate ri per unit of time, for some r> 0, when there are i obligors that have not yet defaulted,
for i ∈ {0, . . . , n}. The company has an initial reserve level u> 0. Because of the similarity to
insurance and risk models, throughout this paper we sometimes refer to losses as claims.

The primary objective of this paper is to evaluate pn(u, t), defined as the ruin probability of
the company before time t, given there are n obligors at time 0 and that the initial reserve is
u. Being able to compute pn(u, t), one can pick u so that this ruin probability remains below
an acceptable level ε > 0. In addition, when a new obligor wishes to get a loan, knowledge of
pn(u, t) allows one to decide if (and if yes, by how much) the initial level should be adjusted.

Contributions. For the main model, we provide a procedure by which, for any n, the double
transform (i.e. in space and time) of pn(u, t) can be determined. More specifically, we develop
a recursive relation by which these transforms can be determined. While this means that one
can evaluate the finite-horizon ruin probability pn(u, t) by numerical inversion, we also point
out how to efficiently estimate this rare-event probability relying on importance sampling sim-
ulations; the procedure proposed has provable optimality properties. In addition we provide
the logarithmic asymptotics of pn(nu, t) as n grows large (i.e. in this setting the initial reserve
u is scaled by the number of obligors n).

As well as the base model, four generalizations are dealt with in this paper. One could
argue that the assumption of the times-to-default being independent is not realistic, as in reality
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defaults tend to cluster. To resolve this issue, in one of the generalizations we allow a regime
switching mechanism (also frequently referred to as Markov modulation) that induces depen-
dence between the obligors. The regime could be thought of as the ‘state of the economy’,
where in every state of the economy the dynamics of the reserve level are described by a spe-
cific Cramér–Lundberg model. In a second generalization we consider a model in which some
loss events correspond to defaults (reducing the number of obligors by one) while others do
not (leaving the number of obligors unchanged). Another unrealistic feature of the main model
is that the obligors are homogeneous: their times-to-default (losses, respectively) stem from
the same distribution. To remedy this, we also analyze a model variant corresponding to het-
erogenous obligors: there are multiple groups, each of them consisting of statistically identical
obligors. This extension offers an important additional flexibility as one can cluster obligors
based on the loss distribution, which is often deterministic in the credit context, and consider
classes of obligors that do not go into default or have a class-specific income rate. A last exten-
sion that we discuss in this paper concerns a model in which between loss events the reserve
level behaves as a Brownian motion (rather than as a deterministic drift).

Related literature. Starting from the pioneering papers by Cramér [10] and Lundberg [20,21],
focusing on the classical compound Poisson model (1), a broad range of risk models has been
analyzed. Without attempting to provide a complete overview, we proceed by discussing a
few important branches; we refer to [15], [19], and [22] for general accounts of risk theory.
In the first place, the assumption of the cumulative claim process being of compound Poisson
type has been lifted, thus allowing a compound Poisson claim process perturbed by a diffusion
[14,16], and even a (spectrally one-sided) Lévy claim process; see e.g. [5, Ch. X and XI],
[11], and [18]. In addition, some models incorporate returns on investment, while in other
models the dynamics of the reserve process are level-dependent; see e.g. [5, Ch. VIII], [2], and
[7]. Finally, there is a substantial body of papers exploring the effect of specific dependence
structures; see e.g. [9] and, for an overview, [5, Ch. XIII]. More specifically, the effect of
parameter uncertainty can be analyzed through the resampling model recently proposed in [8].

Organization. Section 2 provides an explicit analysis, in terms of transforms, for the base
model introduced above. A large-deviations analysis of the tail probability is presented in
Section 3, together with an importance-sampling-based simulation approach and a uniform
upper bound. The four extensions of the base model are presented in Section 4. The final
section contains a series of numerical experiments.

2. Exact analysis

In this section we analyze the base model that was described in the Introduction. We start by
defining the key quantities of this base model, pertaining to the case when each of the obligors
has a time-to-default that is exponentially distributed. We then present our analysis, yielding a
recursion for the double transform of the ruin probability.

2.1. Notation and preliminaries

The rate of going into default per obligor is λ > 0. This means that if there are still i obligors
left (i.e. not in default), the time to the next default is exponentially distributed with mean
(λi)−1.
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Recall that pn(u, t) is the probability of ruin before time t, starting with n obligors at time 0,
given the initial reserve level is u. In our approach we (uniquely) characterize pn(u, t) through
its double transform

ψn(γ ) :=
∫ ∞

0
e−γ u

∫ ∞

0
ϑ e−ϑ tpn(u, t) dt du =

∫ ∞

0
e−γ upn(u) du,

where pn(u) can be interpreted as the probability of ruin before an exponentially distributed
clock with mean ϑ−1 (which is sampled independently from anything else). The case of t =
∞ corresponds to ϑ ↓ 0. The main result of this section is an expression (recursive in n) for
ψn(γ ): we express ψn( · ) in terms of ψn−1( · ). Observe that we can equivalently write pn(u)
as P(Zn ≥ u), where Zn is the maximum of the net cumulative loss process (the net cumulative
claim process, in the insurance context) over the above-mentioned exponentially distributed
amount of time (i.e. with mean ϑ−1).

In practical settings one typically has r>−λ�′(0) = λEL, so at any point in time ruin is
rare, in the sense that the expected reserve increases as a function of time; to this end, note
that when there are i ∈ {0, . . . , n} obligors left, the ‘local drift’ of the reserve process is ri +
λi �′(0)> 0.

2.2. Analysis

In this subsection we present a recursive scheme to evaluate ψn(γ ). The main idea is to
condition on the first event, being either the first default (which happens after an exponentially
distributed time with mean (λn)−1) or the expiration of the exponential clock (which happens
after an exponentially distributed time with mean ϑ−1). If the former event happens to apply
first, then we can still reach ruin, but now with n − 1 obligors and an adapted initial reserve.
If the latter events occur first, then we will not be facing ruin before the exponential clock
expires. These ideas can be translated into mathematical terms as

pn(u) =
∫ ∞

0
λn e−(λn+ϑ)t P(Zn−1 + L ≥ u + rnt) dt, (2)

using the fact that the time to the first event is exponentially distributed with mean (λn + ϑ)−1,
and that the first event is a default with probability λn/(λn + ϑ).

We proceed by analyzing ψn(γ ) using relation (2), with the objective to express it in terms
of ψn−1( · ). By a change of variable v := u + rnt, we obtain

ψn(γ ) =
∫ ∞

0
e−γ u

∫ ∞

0
λn e−(λn+ϑ)t P(Zn−1 + L ≥ u + rnt) dt du

= 1

rn

∫ ∞

0
e−γ u

∫ ∞

u
λn e−(λn+ϑ)(v−u)/(rn) P(Zn−1 + L ≥ v) dv du.

The next step is to swap the order of the integrals, exploiting the fact that the integral over u
allows an elementary solution:

1

rn

∫ ∞

0

(∫ v

0
e−γ u e(λn+ϑ)u/(rn) du

)
λn e−(λn+ϑ)v/(rn) P(Zn−1 + L ≥ v) dv

= λn

γ rn − λn − ϑ

∫ ∞

0
(e−(λn+ϑ)v/(rn) − e−γ v) P(Zn−1 + L ≥ v) dv.
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In the last expression we see an object that resembles a Laplace transform, but observe that
it features a complementary cumulative distribution function rather than a density. Recall,
however, the standard identity

∫ ∞

0
e−γ u P(X ≥ u) du = 1

γ
− 1

γ

∫ ∞

0
e−γ u P(X ∈ du) = 1 −E e−γX

γ
. (3)

In addition, using integration by parts, for the non-negative random variable Zn−1,

E e−γZn−1 =
∫ ∞

0
e−γ x P(Zn−1 ∈ dx) = 1 − γ

∫ ∞

0
P(Zn−1 > x) e−γ x dx = 1 − γψn−1(γ ).

(4)

By the identity (3), and using the independence between the random variables Zn−1 and L, we
obtain, for any γ ≥ 0, with dn := (λn + ϑ)/(rn),

ψn(γ ) = λn

γ rn − λn − ϑ

(
rn

λn + ϑ
(1 −E e−(λn+ϑ)/(rn) (Zn−1+L)) − 1

γ
(1 −E e−γ (Zn−1+L))

)

= λn

λn + ϑ

1

γ
+ λn

γ rn − λn − ϑ

(
E e−γZn−1�(γ )

γ
− E e−dnZn−1�(dn)

dn

)
,

which, by applying (4) and a few elementary algebraic steps, equals

λn

λn + ϑ

1

γ
+ λn

λn + ϑ − γ rn

(
B

(
λn + ϑ

rn
, ψn−1

(
λn + ϑ

rn

))
− B(γ, ψn−1(γ ))

)
,

where we define

B(x, y) := �(x)

(
1

x
− y

)
.

Note that we have expressed ψn( · ) in terms of ψn−1( · ), so we would obtain a recursion if
we had an explicit expression for ψ0( · ). Recall that ψ0( · ) corresponds to ruin in the scenario
without any obligor left. Obviously p0(u, t) ≡ 0 for any u and t, entailing that ψ0(γ ) ≡ 0 for
any value of γ . It means that we can thus recursively compute ψn(γ ). The theorem below
summarizes the findings so far.

Theorem 1. For any γ ≥ 0 and n ∈N, we have the recursion

ψn(γ ) = λn

λn + ϑ

1

γ
+ λn

λn + ϑ − γ rn

(
B

(
λn + ϑ

rn
, ψn−1

(
λn + ϑ

rn

))
− B(γ, ψn−1(γ ))

)
,

where ψ0(γ ) ≡ 0.

Remark 1. Interestingly, one could interpret the departure of an obligor as a time change:
the default arrival rate drops from λn to λ(n − 1), and simultaneously the aggregate income
per time unit drops from rn to r(n − 1). As a consequence, in the infinite-horizon setting (i.e.
ϑ = 0) the recursion in Theorem 1 greatly simplifies.

Remark 2. Upon inspecting the above proof, it is readily checked that we have not used the
fact that the income rate is proportional to the number of obligors present; similarly, it is not
crucial that the time to the next default when there are still i obligors is exponential with
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parameter λi. This effectively means that we can work with an income rate ri (rather than ri)
and a default rate λi (rather than λi) during times that there are i obligors left. We thus obtain
the recursion

ψn(γ ) = λn

λn + ϑ

1

γ
+ λn

λn + ϑ − γ rn

(
B

(
λn + ϑ

rn
, ψn−1

(
λn + ϑ

rn

))
− B(γ, ψn−1(γ ))

)
,

where ψ0(γ ) ≡ 0. We also remark that one can make the loss distribution dependent on the
number of obligors in the system, by working with the transform βi( · ) when there are still i
obligors that have not yet gone into default.

Remark 3. An interesting special case relates to the situation in which rn = r and λn = λ, i.e.
the conventional Cramér–Lundberg model. Sending n → ∞, one should recover the (transient
version of the) Pollaczek–Khinchine formula. As an illustration, we show this computation for
ϑ = 0, writing a for λ/r and assuming that −a�′(0)< 1. We obtain the following relation, with
the limit of ψn( · ) denoted by ψ( · ):

ψ(γ ) = 1

γ
+ a

a − γ
(B(a, ψ(a)) − B(γ, ψ(γ )).

After some elementary algebra, it yields

1 − γψ(γ ) = γ

γ − a + a�(γ )
�(a)(1 − aψ(a)).

The constant �(a)(1 − aψ(a)) can be identified by observing that the left-hand side goes to 1
as γ ↓ 0; hence an application of l’Hôpital’s rule yields that

�(a)(1 − aψ(a)) = lim
γ↓0

γ − a + a�(γ )

γ
= 1 + a�′(0).

We conclude that

ψ(γ ) = 1

γ
− 1 + a�′(0)

γ − a + a�(γ )
,

which directly corresponds to the Pollaczek–Khinchine formula [5,11]. Our new results can
thus be seen as a true generalization of the classical results from ruin theory.

Remark 4. The recursion featuring in Theorem 1 can be made more explicit when working
with its generating function. To demonstrate this, we focus on the case of ϑ = 0, rn = rn, and
λn = λn. We have, again with a = λ/r,

ψn(γ ) = 1

γ
+ a

a − γ

(
�(a)

(
1

a
−ψn−1(a)

)
− �(γ )

(
1

γ
−ψn−1(γ )

))
.

Thus, using ψ0(γ ) = 0, we obtain

	(z, γ ) :=
∞∑

n=1

znψn(γ )

=
∞∑

n=1

zn 1

γ
+ z

a

a − γ

∞∑
n=1

zn−1
(
�(a)

(
1

a
−ψn−1(a)

)
− �(γ )

(
1

γ
ψn−1(γ )

))

= z

1 − z

1

γ
+ z

a

a − γ

(
�(a)

(
1

a(1 − z)
−	(z, a)

)
− �(γ )

(
1

γ (1 − z)
−	(z, γ )

))
.
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We conclude that

	(z, γ ) = 1

a − γ − za �(γ )

(
z

1 − z

a − γ

γ
+ za �(a)

(
1

a(1 − z)
−	(z, a)

)
− z

1 − z

a �(γ )

γ

)
.

We are thus left with determining 	(z, a). For a and z fixed there is a unique positive γ ≡
γ (z, a) for which the denominator equals 0 (as follows from the fact that ν(γ ) := a − γ −
za �(γ ) is concave with ν(0) = a(1 − z)> 0 and ν(γ ) → −∞ as γ → ∞). We therefore have
that in γ ≡ γ (z, a) the numerator should equal 0 as well. This leads to

	(z, a) = 1

a(1 − z)
+ 1

1 − z

1

γ (z, a) �(a)

(
a − γ (z, a)

a
− �(γ (z, a))

)

= 1

a(1 − z)
+ a − γ (z, a) − a �(γ (z, a))

(1 − z) aγ (z, a) �(a)
.

Combining the above, we have thus identified

	(z, γ ) = z

1 − z

1

a − γ − za �(γ )

(
a − γ − a �(γ )

γ
− a − γ (z, a) − a �(γ (z, a))

γ (z, a)

)
.

Multiplying by (1 − z), we obtain the transform at a geometrically distributed time with success
probability z. Sending z ↑ 1, and realizing that γ (1, a) = 0, we recover the stationary result
discussed in Remark 3.

3. Asymptotics, efficient simulation, and uniform bound

The previous section provides us with a way of computing pn(u, t). Here one should realize
that ψn(γ ) is a (double) transform, so numerical Laplace inversion needs to be applied in order
to evaluate pn(u, t). Over the past decades significant progress has been made in the domain
of Laplace inversion; see for instance the fast, accurate, and generally applicable algorithms
described in [1] and [17]. If one wishes to avoid numerical inversion, two frequently used
alternatives are (i) asymptotic techniques and (ii) simulation-based estimation. In approach (i),
we scale one or more of the model parameters, and aim to find an explicit expression for the
quantity under study (in our case the ruin probability) when this scaling parameter grows large.
Approach (ii) has the intrinsic drawback that in order to obtain reliable estimates in the domain
of small ruin probabilities, many runs are needed. These issues can be remedied by simulat-
ing under a suitably chosen alternative measure rather than the actual one, and correcting the
simulation output by likelihood ratios; this method is known as importance sampling.

In this section we present a series of results that help to quantify the ruin probability pn(u, t)
without the need to resort to numerical inversion. Our findings come in three flavors. In the first
place we find, for a given u and t, the asymptotics of pn(nu, t) as n grows large; that is, we scale
the initial capital level by the initial number of obligors. Secondly, we derive a uniform upper
bound on pn(u, t), comparable to the well-known Lundberg inequality for the conventional
Cramér–Lundberg model. Finally we develop a provably efficient importance-sampling-based
simulation algorithm. Further, it is important that we can lift the assumption of exponentially
distributed times-to-default in this section.

3.1. Notation and preliminaries

Throughout this entire section we let the times-to-default T1, . . . , Tn be non-negative i.i.d.
random variables, with density f ( · ) and distribution function F( · ), distributed as a generic
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728 G. DELSING AND M. MANDJES

random variable T. Let Zn(t) be the net cumulative loss amount at time t ≥ 0, given that at
time 0 there are n ∈N obligors present. For i = 1, . . . , n and t ≥ 0, we let Wi(t) denote the net
cumulative loss amount of the ith obligor at time t. By distinguishing between the scenario that
obligor i has gone into default at time t and its complement, we can write Wi(t) as

Wi(t) := 1{Ti≤t}Li − r min{Ti, t}. (5)

We define the moment generating function E eαL of the loss L by �̄(α) := �( − α). Then, due to
fact that the obligors are statistically identical,

E eαZn(t) = (E eαW1(t))n.

In addition, we can compute the moment generating function of the net loss amount of a single
obligor at time t. By conditioning on the time-to-default, using (5),

ωt(α) :=E eαW1(t) = �̄(α)
∫ t

0
f (s) e−rαs ds + e−rαt

∫ ∞

t
f (s) ds

= �̄(α)
∫ t

0
f (s) e−rαs ds + e−rαt(1 − F(t)).

For instance, in the special case when the times-to-default are exponentially distributed with
mean λ−1, we have

ωt(α) = (1 − e−(λ+rα)t)
λ

λ+ rα
�̄(α) + e−(λ+rα)t.

3.2. Large-deviations asymptotics

The goal of this subsection is to establish a limit theorem for our ruin probability, given that
we start with n obligors and an initial capital reserve level nu> 0, as n grows large. In other
words, we analyze how the probability

qn(t) := pn(nu, t) = P(∃s ∈ [0, t] : Zn(s) ≥ nu) = P

(
∃s ∈ [0, t] :

n∑
i=1

Wi(s) ≥ nu

)
(6)

behaves as n → ∞. We do so under the evident ‘rarity condition’ that, for all t ≥ 0, EZn(t) is
smaller than nu, or, equivalently,

sup
t≥0

(P(T ≤ t) EL − r E min{T, t})< u,

where we use that EW1(t) =ω′
t(0) = P(T ≤ t) EL − r E min{T, t}. We start by establishing a

lower bound. The underlying principle is that the probability of a union of events is bounded
from below by the probability of the most likely event among them. This entails that, for any
s ∈ [0, t], we have qn(t) ≥ q̌n(s), where

q̌n(s) := P

( n∑
i=1

Wi(s) ≥ nu

)
.

Define the Legendre transform pertaining to W1(s):

I(s) := sup
α

(αu − log ωs(α)).
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Because of the rarity conditionω′
s(0)< u for all s ≥ 0, we can restrict ourselves to maximizing

over α > 0 only; we define α(s) := arg supα (αu − logωs(α)). By Cramér’s theorem [13], we
immediately have that, for any s ∈ [0, t],

lim inf
n→∞

1

n
log qn(t) ≥ lim inf

n→∞
1

n
log q̌n(s) = −α(s)u + log ωs(α(s)) = −I(s). (7)

We also define
t := arg inf

s∈[0,t]
I(s),

which has the informal interpretation of the most likely time Zn( · ) exceeds nu. From the fact
that the lower bound (7) applies for any s ∈ [0, t], we thus obtain that

lim inf
n→∞

1

n
log qn(t) ≥ − inf

s∈[0,t]
I(s) = −I(t).

We proceed by proving that −I(t) is also an upper bound on the decay rate of qn(t). The first
step is to realize that ruin occurs at the default time of one of the n obligors. As a consequence,
we can rewrite qn in terms of the union of n events:

qn(t) = P

(
∃j ∈ {1, . . . , n} : Tj ∈ [0, t],

n∑
i=1

Wi(Tj) ≥ nu

)
,

instead of the union of uncountably many events featuring in the representation (6). By the
union bound, we obtain that this probability qn(t) is majorized by nq̂n(t), where

q̂n(t) := P

(
T1 ∈ [0, t],

n∑
i=1

Wi(T1) ≥ nu

)
.

As n−1 log n → 0, it suffices to prove that lim supn→∞ n−1 log q̂n(t) ≤ −I(t). To this end, by
conditioning on T1,

q̂n(t) =
∫ t

0
f (s) P

( n∑
i=2

Wi(s) + L1 − rs ≥ nu

)
ds.

Then observe that the Wi(T1) are dependent, but once conditioned on T1 = s they have become
independent. The next step is to apply the Markov inequality: for any α≥ 0, with L1 being
independent from W2(s), . . . ,Wn(s),

P

( n∑
i=2

Wi(s) + L1 − rs ≥ nu

)
= P

(
exp

(
α

n∑
i=2

Wi(s) + αL1

)
≥ exp (α(nu + rs))

)

≤ (ws(α))n−1�̄(α) e−α(nu+rs)

≤ (ws(α))n−1�̄(α) e−α(n−1)u.

Upon combining the above, we have thus found that for any α( · ) ≥ 0,

lim sup
n→∞

1

n
log q̂n(t) ≤ lim sup

n→∞
1

n
log

∫ t

0
f (s) (ws(α(s)))n−1�̄(α(s)) e−α(s) (n−1)u ds.
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Recall that, for any t ≥ 0, I(t) = α(t)u − logωt(α(t)). Plugging in α( · ) = α( · ), we thus
obtain, in the second inequality using the definition of t,

lim sup
n→∞

1

n
log q̂n(t) ≤ lim sup

n→∞
1

n
log

∫ t

0
f (s) �̄(α(s)) e−(n−1)I(s) ds

≤ lim sup
n→∞

1

n
log

∫ t

0
f (s) �̄(α(s)) e−(n−1)I(t) ds

= −I(t) + lim sup
n→∞

1

n
log

∫ t

0
f (s) �̄(α(s)) ds. (8)

Observe that we are done if we succeed in proving that the second term in (8) is 0, for which it
suffices to prove that the integral appearing in this term is finite. To this end, first observe that,
with τ (α) :=E eαT ,

lim
t→∞ ωt(α) = �̄(α)τ ( − rα) =:�(α),

so that α(∞) solves�′(α)/�(α) = u.

Assumption 1. The function α( · ) is bounded on [0, t].

Under Assumption 1 we have sups∈[0,t] α
(s) ≤ M for some finite M. Note that this

holds whenever the function α( · ) is continuous, whereas for t = ∞ we additionally require
α(∞)<∞. With this assumption in place and using that α → �̄(α) is increasing, we conclude
that ∫ t

0
f (s) �̄(α(s)) ds ≤ �̄(M)

∫ t

0
f (s) ds ≤ �̄(M)<∞.

Summarizing, we have shown

lim sup
n→∞

1

n
log qn(t) ≤ −I(t).

We have arrived at the following result.

Theorem 2. As n → ∞, under Assumption 1,

1

n
log qn(t) → −I(t).

3.3. Efficient simulation

As the above theorem only provides us with the logarithmic asymptotics of qn, it is inher-
ently imprecise. For instance, if the true asymptotic shape of qn is nα exp (−nI(t)) for some
α ∈R, or exp (nη) exp (−nI(t)) for some η ∈ (0, 1), the effect of the α and η is not visible. One
can get accurate estimates in an efficient way, however, applying importance sampling. Below
we present an importance sampling algorithm, which we prove to be logarithmically efficient.

The key idea is that we decompose our rare-event probability qn into n rare-event
probabilities, which we will be dealing with separately. We write

qn(t) =
n∑

j=1

qnj(t), (9)

where

qnj(t) := P(Fj), Fj := Ej ∩
j−1⋂
i=1

E c
i , Ej :=

{
Tj ∈ [0, t],

∑
i �=j

Wi(Tj) + Lj − rTj ≥ nu

}
;
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the validity of (9) is due to the events Fj being (by construction) disjoint, while the union of
the Ej equals the union of the Fj. The problem of efficiently estimating qn(t) thus reduces to the
problem of efficiently estimating each of the qnj(t) (and adding up all the resulting estimates).

Fix a j ∈ {1, . . . , n} and focus on the estimation of qnj. We now define an importance
sampling probability measure Q.

• Under Q the density of Tj remains f ( · ).

• Conditionally on Tj = s, the moment generating function of Lj becomes

�̄Q(α) = �̄(α+ α(s)

�̄(α(s))
.

Sampling Lj from Q amounts to sampling from an exponentially twisted version of
the actual distribution. This is a standard procedure in applied probability; for many
frequently used distributions the twisted distribution remains within the same class
of distributions, but with different parameters. For instance, the α-twisted version
of an exponentially distributed random variable with parameter μ corresponds to an
exponentially distributed random variable with parameter μ− α (requiring that α ∈
[0, μ)).

• Conditionally on Tj = s, the moment generating function of Wi(s) (for i �= j) becomes

ωQ
s (α) := ωs(α + α(s))

ωs(α(s))
. (10)

To decide whether the event Fj applies, we have to sample the default times Ti and (if
Ti < t) the losses Li, for i �= j, in accordance with (10). This can be done as follows. By
(10), the exponentially twisted version of Wi(s) has the moment generating function

ωQ
s (α) = 1

ωs(α(s))

(∫ s

0
f (v) e−(α+α(s)) rv�̄(α+ α(s)) dv +

∫ ∞

s
f (v) e−(α+α(s)) rs dv

)
.

From this identity we observe that the Li can be sampled from a distribution with moment
generating function �̄Q( · ), as defined above, whereas the density fQ( · ) of the Ti (for
i �= j) becomes

fQ(v) = 1

ωs(α(s))
f (v)(e−α(s) rv�̄(α(s))1{v≤s} + e−α(s) rs1{v>s}).

We proceed by detailing the importance-sampling-based simulation procedure, and establish-
ing its asymptotic efficiency. To this end, we first observe that a generic sample of the likelihood
ratio, say Lj, has the form

e−α(Tj) Lj · �̄(α(Tj))
∏
i �=j

(e−α(Tj) Wi(Tj) ·ωTj(α
(Tj))).
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Recall that on the event Fj we have
∑

i �=j Wi(Tj) + Lj − rTj ≥ nu. As a consequence, on the
event Fj the likelihood ratio Lj is majorized by

e−α(Tj)(nu+rTj) · �̄(α(Tj)) · (ωTj(α
(Tj)))n−1

≤ e−α(Tj)(n−1)u · �̄(α(Tj)) · (ωTj(α
(Tj)))n−1

= �̄(α(Tj)) e−(n−1) I(Tj)

≤ �̄(M) e−(n−1) I(Tj)

≤ �̄(M) e−(n−1) I(t),

with M as defined in Section 3.2 (where we let Assumption 1 be in force). We thus find
that, with Ij denoting the indicator function of Fj, the almost sure inequality Lj Ij ≤
�̄(M) e−(n−1) I(t), and therefore

n∑
j=1

Lj Ij ≤ n �̄(M) e−(n−1) I(t).

Evidently, to obtain an estimator with good precision, we have to repeat the above experiment
sufficiently often. Suppose, for each j ∈ {1, . . . , n}, we perform N ∈N independent trials. The
corresponding likelihood ratios are denoted by Lj,k, and the indicator functions are Ij,k, with
j ∈ {1, . . . , n} and k ∈ {1, . . . ,N}. Our estimator thus becomes

ξN := 1

N

N∑
k=1

n∑
j=1

Lj,k Ij,k,

which is (by construction) unbiased. The next step is to analyze the performance of this
estimator. To this end, we observe in relation to its second moment that

EQ

(( n∑
j=1

Lj Ij

)2)
≤ n2 (�̄(M))2 e−2(n−1) I(t),

with EQ( · ) denoting expectation under Q. We find the following upper bound for the second
moment:

lim sup
n→∞

1

n
logEQ

(( n∑
j=1

Lj Ij

)2)
≤ −2I(t).

By Theorem 2, and using the fact that variances are non-negative, we also have the
corresponding lower bound:

lim inf
n→∞

1

n
logEQ

(( n∑
j=1

Lj Ij

)2)
≥ lim inf

n→∞
2

n
log EQ

( n∑
j=1

Lj Ij

)

= lim inf
n→∞

2

n
log qn(t)

= −2I(t).
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The above bounds lead to the following conclusion, which in practical terms entails that
the number of runs needed to obtain an estimate of a given relative precision grows sub-
exponentially in n. For the definition of logarithmic efficiency, and related performance notions
in rare-event simulation, we refer to [6, Ch. VI].

Theorem 3. Under Assumption 1 the estimator ξN is logarithmically efficient as N → ∞.

3.4. Uniform bound

Intrinsic drawbacks of the large-deviations asymptotics are that they only kick in for large
n, and they provide us with the decay rate only. This motivates the search for a uniform upper
bound on the ruin probability pn(u, t). The result is a Lundberg-type inequality derived along
the same lines as was done in [5, Section XIII.5a] for the conventional Cramér–Lundberg
model in which claims (or losses in the credit context) arrive according to a fixed-intensity
Poisson process. We focus on the situation that when there are n obligors the time to the first
default is exponentially distributed with mean λ−1

n and the income rate is rn. Let γn be the
positive solution for γ in

�̄(γ )
λn

λn + γ rn
= 1.

Theorem 4. Suppose that γn is non-increasing in n. Then

pn(u, t) ≤ pn(u,∞) ≤ e−γnu.

Proof. It is evident that pn(u, t) ≤ pn(u,∞). Let Yn be distributed as L − rn T1, where T1
is assumed exponentially distributed with mean λ−1

n (independent of L). Conditioning on Yn

immediately yields

pn(u,∞) = P(Yn > u) +
∫ u

−∞
pn−1(u − y,∞) P(Yn ∈ dy).

We claim that this implies pn(u,∞) ≤ e−γnu. The proof is by induction. First note that the
claim holds true for n = 0 as p0(u,∞) = 0 for all u> 0. Assuming the inequality holds true for
n − 1,

pn(u,∞) ≤ P(Yn > u) +
∫ u

−∞
e−γn−1(u−y) P(Yn ∈ dy)

≤ P(Yn > u) +
∫ u

−∞
e−γn(u−y) P(Yn ∈ dy)

≤ e−γnu
∫ ∞

u
eγny P(Yn ∈ dy) +

∫ u

−∞
e−γn(u−x) P(Yn ∈ dy)

= e−γnu E eγnYn

= e−γnu �̄(γn)
λn

λn + γnrn

= e−γnu,

where in the second inequality we have used the fact that γn is non-increasing in n. �
Remark 5. In the special case when the default arrival intensity λn and the income rates rn are
linear in the number of obligors n, it is readily checked that γn does not depend on n. As a
consequence, the upper bound derived above does not depend on n either.
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4. Non-default losses, Markov modulation, Brownian perturbations, and multiple
groups

In this section we consider four important extensions of our base model.

• In the first extension there are both losses due to defaults (reducing the number of oblig-
ors by one) and losses that do not correspond to defaults (leaving the number of obligors
unchanged).

• Then we consider a model in which the dynamics are affected by a Markovian
background process, thus creating dependence between the individual obligors.

• We proceed by analyzing a model in which the cumulative process between jumps
behaves as a Brownian motion (rather than being linear).

• Finally we discuss an extension that allows heterogeneous obligors (by working with
multiple groups).

Note that, as opposed to the analysis presented in the previous section, in this section we let
the default times be exponentially distributed. In principle, the four generalizations introduced
above can be combined, but to keep the presentation as transparent as possible we have decided
to discuss them separately.

4.1. Non-default losses

In this subsection we consider the following extension of the model analyzed in Section 2
(or indeed the more general one featured in Remark 2). Next to losses due to defaults (hap-
pening at a Poisson rate λn with the losses having Laplace transform �( · ) when n obligors are
present), there are losses that do not correspond to defaults (happening at a Poisson rate λ◦

n
with the losses having Laplace transform �◦( · ) when n obligors are present).

We again start our derivations by conditioning on the first event, being the first default, the
first loss (not leading to default), or the expiration of the exponential clock. If a default happens
first, then we can still reach ruin, but now with n − 1 obligors and an adapted initial reserve. If
the first event is a loss that does not correspond to a default, then we can still reach ruin with
n obligors but an adapted initial reserve. If the exponential clock expires, then we will not be
facing ruin.

This idea can be formalized as follows. With L◦ denoting a generic random variable
corresponding to a non-default loss, we obtain the relation

pn(u) =
∫ ∞

0
e−(λ̄n+ϑ)t(λn P(Zn−1 + L ≥ u + rnt) + λ◦

n P(Zn + L◦ ≥ u + rnt)) dt.

Going through the same type of computations as those relied on in Section 2, we end up with
a relation between ψn( · ) and ψn−1( · ). More specifically, for any γ ≥ 0, using the notation
λ̄n = λn + λ◦

n, we find that

ψn(γ ) = λ̄n

λ̄n + ϑ

1

γ
+ λn

λ̄n + ϑ − γ rn

(
B

(
λ̄n + ϑ

rn
, ψn−1

(
λ̄n + ϑ

rn

))
− B(γ, ψn−1(γ ))

)

+ λ◦
n

λ̄n + ϑ − γ rn

(
B◦

(
λ̄n + ϑ

rn
, ψn

(
λ̄n + ϑ

rn

))
− B◦(γ, ψn(γ ))

)
, (11)

https://doi.org/10.1017/jpr.2020.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.114


A transient Cramér-Lundberg model with applications to credit risk 735

where B◦(· , ·) is defined as B(· , ·) but with �( · ) replaced by �◦( · ). Unfortunately this relation
between ψn( · ) and ψn−1( · ) cannot be directly written in terms of an explicit recursion (as
opposed to the model without non-default losses; see Theorem 1). The ψn( · ), however, can
still be found recursively, using the following procedure.

To this end, we start by defining the (yet unknown) constants

An := B◦
(
λ̄n + ϑ

rn
, ψn

(
λ̄n + ϑ

rn

))
.

Then, using that ψ0( · ) ≡ 0, observe that ψ1(γ ) obeys

ψ1(γ ) = λ̄1

λ̄1 + ϑ

1

γ
+ λ1

λ̄1 + ϑ − γ r1

(
r1

λ̄1 + ϑ
�

(
λ̄1 + ϑ

r1

)
− �(γ )

γ

)

+ λ◦
1

λ̄1 + ϑ − γ r1

(
B◦

(
λ̄1 + ϑ

r1
, ψ1

(
λ̄1 + ϑ

r1

))
− B◦(γ, ψ1(γ ))

)
. (12)

We can rewrite (12), for a known function F( · ), as

ψ1(γ ) = F(γ ) + λ◦
1

λ̄1 + ϑ − γ r1

(
A1 − �◦(γ )

(
1

γ
−ψ1(γ )

))
,

which can be rearranged to

1 − γψ1(γ ) = 1 − γF(γ )(λ̄1 + ϑ − γ r1) + γ λ◦
1A1 − λ◦

1�
◦(γ )

λ̄1 − λ◦
1�

◦(γ ) + ϑ − γ r1
.

As we know that 1 − γψ1(γ ) is a Laplace transform, its value should be between 0 and 1 for
any γ ≥ 0. Hence any zero of the denominator is necessarily also a zero of the numerator. It is
standard to verify that the numerator has a single positive zero, say γ̄ . Then it follows that

A1 = �◦(γ̄ )

γ̄
− F(γ̄ )

λ̄1 + ϑ − γ̄ r1

λ◦
1

.

Now that we have found A1 and hence ψ1(γ ), we can identify A2 and ψ2(γ ) along the same
lines: we first express ψ2(γ ) in terms of A2 using (11), and then identify A2 using the fact that
the zero of the denominator (which we know to equal λ̄2 − λ◦

2�
◦(γ ) + ϑ − γ r2) is a zero of the

numerator as well. Continuing this procedure, all ψn(γ ) (and constants An) can be found.

4.2. Markov modulation

In the models discussed so far the individual obligors are independent. In reality they may be
affected by common external factors, to be thought of as the ‘state of the economy’, and hence
behave dependently. In this subsection we consider a model in which a particular dependence
structure is incorporated, via the mechanism of Markov modulation (also known as regime
switching).

We start by describing the model. Let (J(t))t≥0 be an irreducible continuous-time Markov
process living on {1, . . . , d}. We let qjk ≥ 0 (for j �= k) denote the transition rate from state j to
state k, and qj := − qjj = ∑

k �=j qjk. Let rnj be the rate at which the surplus process increases
when there are n obligors and the background process is in state j, let λnj be the corresponding
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hazard rate of the time to the next default, and let �j( · ) be the Laplace transform of the loss
(with the associated generic random variable being denoted by Lj).

Let Tn be the minimum of the time of the first default and the expiration of an exponential
clock of rate ϑ . Let

R(Tn) :=
∫ Tn

0
rnJ(t) dt

denote the increase of the surplus process until Tn. We start by analyzing the distribution of
R(Tn) through the object

Fi,j,n(x) := Pi(R(Tn) ≥ x, J(Tn) = j) := P(R(Tn) ≥ x, J(Tn) = j | J(0) = i).

Using the standard ‘Markovian reasoning’, i.e. by distinguishing between all possible events in
a (small) time interval of length� and using the memory-less property, we obtain the relation,
as � ↓ 0,

Fi,j,n(x) =
∑
k �=j

Fi,k,n(x) qkj�+ Fi,j,n(x − rj�)(1 − (qj + λnj + ϑ)) + o(�).

Subsequently subtracting Fi,j,n(x − rj�) from both sides, dividing by �, and taking the limit
� ↓ 0, we end up with a system of linear differential equations:

F′
i,j,n(x) =

d∑
k=1

Fi,k,n(x) qkj + Fi,j,n(x) (λnj + ϑ).

For given i and n, this is a system of d coupled linear differential equations, that can be solved
in the standard manner; the resulting structure depends on the multiplicities of the eigenvalues.
Henceforth we assume that its solution is such that the corresponding density obeys

Pi(R(Tn) ∈ dx, J(Tn) = j) =
d∑

k=1

ξi,j,k,n e−ζk,nx,

but a similar analysis can be done if the terms in the right-hand side of the previous display also
involve polynomial factors (as a consequence of the multiplicities of some of the eigenvalues
being larger than one).

The key observation is the identity

Pi(Zn ≥ u) =
d∑

j=1

λnj

λnj + ϑ

∫ ∞

0
Pj(Zn−1 ∈ dz) Pi(Lj ≥ R(Tn) + u − z, J(Tn) = j)

=
d∑

j=1

λnj

λnj + ϑ

∫ ∞

0

∫ ∞

0
Pj(Zn−1 ∈ dz) P(Lj ≥ x + u − z)

d∑
k=1

ξi,j,k,n e−ζk,nx dx

=
d∑

j=1

λnj

λnj + ϑ

∫ ∞

0
Pj(Zn−1 + Lj ≥ x + u)

d∑
k=1

ξi,j,k,n e−ζk,nx dx.
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Therefore, using the now familiar steps concerning a change of variables and swapping the
order of integration,

ψni(γ ) :=
∫ ∞

0
e−γ u Pi(Zn ≥ u) du

=
d∑

j=1

λnj

λnj + ϑ

∫ ∞

0

∫ ∞

0
e−γ u Pj(Zn−1 + Lj ≥ x + u)

d∑
k=1

ξi,j,k,n e−ζk,nx dx du

=
d∑

j=1

λnj

λnj + ϑ

∫ ∞

0

∫ ∞

u
e−γ u Pj(Zn−1 + Lj ≥ v)

d∑
k=1

ξi,j,k,n e−ζk,n(v−u) dv du

=
d∑

j=1

λnj

λnj + ϑ

∫ ∞

0

d∑
k=1

ξi,j,k,n

(∫ v

0
e−γ u eζk,nu du

)
Pj(Zn−1 + Lj ≥ v) e−ζk,nv dv

=
d∑

j=1

λnj

λnj + ϑ

∫ ∞

0

d∑
k=1

ξi,j,k,n
e−ζk,nv − e−γ v

γ − ζk,n
Pj(Zn−1 + Lj ≥ v) dv.

From now on we can follow the approach presented in Section 2: the last expression in the
previous display can be expressed in terms of ψn−1,j( · ), for j = 1, . . . , d. We thus end up with
a vector-valued recursion. As the derivation is fully analogous to that corresponding to the
non-modulated case, we omit the details.

4.3. Brownian perturbations

We proceed by making the model more realistic, by allowing the process to evolve, between
defaults, as Brownian motion rather than a deterministic drift. The parameters of this Brownian
motion depend on the number of obligors that have not yet gone into default, say with drift
coefficient ri and variance coefficient σ 2

i when there are i obligors left. In this section the time
between the ith and (i + 1)th default is exponentially distributed with mean λ−1

i .
Considering a Brownian motion with parameters r and σ 2 over an interval with expo-

nentially distributed length with mean λ−1, we know the following from Wiener–Hopf
theory.

• The maximum value M+ achieved is exponentially distributed with the parameter

ν+ ≡ ν+(r, σ 2, λ) :=
√

r2 + 2λσ 2

σ 2
− r

σ 2
.

• The (absolute value of the) amount by which the process goes down after the max-
imum is achieved until the end of the exponentially distributed interval, say M−, is
exponentially distributed with the parameter

ν− ≡ ν−(r, σ 2, λ) :=
√

r2 + 2λσ 2

σ 2 + r

σ 2 .

• The random variables M+ and M− are independent. The rates ν+ and ν− are the roots
of the equation λ+ rα − 1

2α
2σ 2 = 0.

Now define ν±
n := ν±( − rn, σ

2
n , λn + ϑ); note that the first parameter is −rn rather than rn, as

we consider the event of the cumulative claim process exceeding the value u (i.e. the reserve
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level dropping below 0). As before, we set up a relation between ψn( · ) and ψn−1( · ). Realize
that, due to the Brownian term, ruin can occur before the exponential clock (with parameter ϑ)
expires; this happens with probability e−ν+

n u. Following the approach we have been using in
the case without the Brownian term, we thus obtain the relation

pn(u) = e−ν+
n u + In(u, ϑ),

where

In(u, ϑ) :=
∫ u

0

∫ ∞

0
ν+

n e−ν+
n vν−

n e−ν−
n w λn

λn + ϑ
P(Zn−1 + L ≥ u − v + w) dw dv

= λn

λn + ϑ

∫ u

0

∫ ∞

u−v
ν+

n e−ν+
n vν−

n e−ν−
n (z−u+v) P(Zn−1 + L ≥ z) dz dv.

The next step is to evaluate ψn(γ ), by multiplying pn(u) by e−γ u and integrating over u ∈
[0,∞). Interchanging the order of the integrals so that the ‘easy’ integration (i.e. over u) can
be done first, we obtain

∫ ∞

0
e−γ uIn(u, ϑ) du

= λn

λn + ϑ

∫ ∞

0

∫ ∞

0

∫ z+v

v
e−γ u ν+

n e−ν+
n vν−

n e−ν−
n (z−u+v) P(Zn−1 + L ≥ z) du dv dz

= λn

λn + ϑ

∫ ∞

0

∫ ∞

0
ν−

n e−γ v e−ν−
n z − e−γ z

γ − ν−
n

ν+
n e−ν+

n v P(Zn−1 + L ≥ z) dv dz

= λn

λn + ϑ

ν−
n ν

+
n

(γ − ν−
n )(γ + ν+

n )

∫ ∞

0
(e−ν−

n z − e−γ z) P(Zn−1 + L ≥ z) dz.

Performing the same steps as in the proof of Theorem 1, as before relying on the identities (3)
and (4) in combination with the independence of L and Zn−1, after some standard algebra we
obtain the following result.

Theorem 5. For any γ ≥ 0 and n ∈N, we have the recursion

ψn(γ ) = 1

γ + ν+
n

+ λn

λn + ϑ

1

γ + ν+
n

ν+
n

γ

− λn

λn + ϑ

ν−
n ν

+
n

(γ − ν−
n )(γ + ν+

n )
(B(ν−

n , ψn−1(ν−
n )) − B(γ, ψn−1(γ ))),

where ψ0(γ ) ≡ 0.

Remark 6. In Theorem 5 we can simplify

λn

λn + ϑ

ν−
n ν

+
n

(γ − ν−
n )(γ + ν+

n )
= λn

λn + ϑ + rnγ − 1
2γ

2σ 2
n

,

using that ν+
n and ν−

n solve (λn + ϑ) + rnα − 1
2α

2σ 2
n = 0.
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4.4. Multiple groups

To make the model more realistic, one could work with multiple (heterogeneous) groups
of obligors. Suppose there are G ∈N groups of obligors with initially nj obligors in group
j ∈ {1, . . . ,G}; write n = (n1, . . . , nG). We consider the multi-group counterpart of the base
model of Section 2: each obligor in group j has a time-to-default that is exponentially dis-
tributed with rate λj. The losses at default per obligor in group j are i.i.d. random variables
with Laplace transform �j( · ); in addition these per-group sequences are assumed independent.
The income per unit time for this group is rji when there are i ∈ {1, . . . , nj} obligors that have
not yet gone into default.

The company’s capital reserve is given by the sum of the reserves of the individual groups;
its initial level is u> 0. Let ψn(γ ) denote the double transform of the probability of ruin over
an exponentially distributed interval (with, as usual, mean ϑ−1), given that there are nj obligors
in group j that have not yet gone into default. Then, by the same argumentation as before, we
find, for n component-wise at least equal to 1, and with ej the jth unit vector

ψn(γ ) =
G∑

j=1

λjnj∑G
k=1 λknk + ϑ

1

γ
+

G∑
j=1

λjnj∑G
k=1 λknk + ϑ − γ rjnj

×
(

Bj

(
λj + ϑ/nj

rj
, ψn−ej

(
λj + ϑ/nj

rj

))
− Bj(γ, ψn−ej(γ ))

)
,

where

Bj(x, y) := �j(x)

(
1

x
− y

)
.

We have thus expressed ψn(γ ) as a linear function of ψn−e1 (γ ) up to ψn−eG(γ ). A similar
recursive relation be found if some of the entries of n equal 0. Given that ψ0(γ ) = 0, with
0 denoting the G-dimensional all-zeros vector, we have thus devised a procedure to identify
ψn(γ ).

Remark 7. The above model extension with multiple classes offers an important additional
flexibility. In the first place, one could cluster the obligors in terms of the loss distributions.
Per class this loss can even be deterministic; this is a useful property, as in the credit context
the losses of some obligors may be a priori known. In addition, we could work with some
classes in which the obligors do not go bankrupt and some classes in which they do. Also, one
could work with a class-specific income rate.

5. Numerical experiments

In this section we focus on issues concerning the numerical evaluation of the ruin prob-
ability. In the first subsection we specialize to the case when the losses are exponentially
distributed, where some of the quantities that feature in the numerical analysis allow closed-
form analysis. In the second subsection we present a couple of illustrative examples. These in
particular quantify the effect of the size of the obligor population.

5.1. Exponentially distributed losses

In Section 2.2 the focus was on finding an expression for the double transformψn(γ ), which
can then be inverted numerically. In Section 3 we presented a couple of other approaches:
asymptotics, an efficient importance sampling algorithm, and bounds. In this section we
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present an alternative technique, namely an iterative procedure that directly provides the ruin
probabilities pn(u, t) themselves. We consider the model variant in which the default rate and
the income rate are λi and ri, respectively, during time periods in which there are i obligors
left.

As in Section 2.2, the idea is to condition on the first default. We thus obtain, with W( · ) as
introduced in Section 3, the following recursive relation:

pn(u, t) =
∫ t

0
λn e−λns P

(
sup

0≤v≤t−s

n−1∑
i=1

Wi(v) + L ≥ u + rns

)
ds

=
∫ t

0
λn e−λns ds −

∫ t

0
λn e−λns P

(
sup

0≤v≤t−s

n−1∑
i=1

Wi(v) + L ≤ u + rns

)
ds

= 1 − e−λnt −
∫ t

0

∫ u+rns

0
λn e−λns(1 − pn−1(u + rns − x, t − s)) P(L ∈ dx) ds. (13)

When there is only one obligor left, there is only one scenario leading to ruin: default
should take place before the exponential clock (with mean ϑ−1) expires and the loss should be
sufficiently large. In other words,

p1(u, t) =
∫ t

0

∫ ∞

u+r1s
λ1 e−λ1s P(L ∈ dx) ds =

∫ t

0
λ1 e−λ1s P(L ≥ u + r1s) ds

From this point on we focus on the case of exponentially distributed claims with mean μ−1,
i.e. P(L ≥ x) = e−μx. We readily obtain

p1(u, t) =
∫ t

0
λ1 e−λ1s e−μ(u+r1s) ds = λ1 e−μu

λ1 +μr1
(1 − e−(λ1+μr1)t).

We can thus obtain p2(u, t) applying numerical integration to (13) with n = 2. Continuing along
these lines, pn(u, t) can be numerically evaluated for higher values of n.

We now point out how to evaluate the large-deviations asymptotics that were presented in
Section 3.2, in the case of exponentially distributed claims. The moment generating function
of W1(s) for α <μ is given by

ωs(α) = (1 − e−(λ+rα)s)
λ

λ+ rα

μ

μ− α
+ e−(λ+rα)s,

whereas for α ≥μ the moment generating function is infinite. We continue by computing the
mean net loss corresponding to a single obligor (as a function of time):

m(s) :=EW1(s)

= 1

μ
(1 − e−λs) − r

∫ s

0
u λ e−λv dv − rs

∫ ∞

s
λ e−λv dv

=
(

1

μ
− r

λ

)
(1 − e−λs).

Henceforth we will assume u>m(∞), or equivalently λ− rμ< λμu, to make sure the event
under consideration is rare.
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The Legendre transform pertaining to W1(s) reads

I(s) := sup
0<α<μ

(αu − log ωs(α));

we can rule out α ≥μ as ωs(α) = ∞ for these α. Because the first-order condition does not
allow an explicit solution, one cannot write I(s) in closed form. Two boundary cases can be
dealt with explicitly, though. It is first observed that, letting ω′

s,1(α) denote the derivative of
ωs(α) with respect to α, and letting ω′

s,2(α) be the derivative of ωs(α) with respect to s,

I′(s) = d

ds
(α(s)u − logωs(α(s)))

= dα(s)

ds

(
u − ω′

s,1(α(s))

ωs(α(s))

)
− ω′

s,2(α(s))

ωs(α(s))

= −ω
′
s,2(α(s))

ωs(α(s))
, (14)

where the last equality is due to the definition of α(s). By an elementary computation,

ω′
s,2(α) =

(
λμ

μ− α
− (λ+ rα)

)
e−(λ+rα)s = rα2 + λα − rμα

μ− α
e−(λ+rα)s. (15)

We observe that the Legendre transform I(s) is decreasing in s whenever α∗(s)>μ− λ/r.

• For s = 0, we immediately see that ω0(α) = 1 for all α, so α(0) =μ and I(0) =μu. In
addition, we obtain by some straightforward algebra that

I′(0) = − lim
α↑μ

ω′
0,2(α)

ω0(α)
= −∞.

• For s = ∞,

I(s) = sup
0<α<μ

κ(α), κ(α) := αu − log (λμ) + log (λ+ rα) + log (μ− α).

Observe that κ( · ) is concave, with κ ′(0)> 0 (under the assumption u>m(∞)) and
κ(α) → −∞ as α ↑μ. In other words, κ( · ) attains a maximum in (0, μ). The first order
condition, determining α(∞), is

u = 1

μ− α
− r

λ+ rα
,

or equivalently

ruα2 + ((λ− rμ)u + 2r)α− λμ(u − m(∞)) = 0.

As λμ(u − m(∞))> 0, this equation has a positive and negative root. Consequently
α(∞) is the positive root, that is,

α(∞) = −2r − λu + rμu + √
4r2 + λ2u2 + 2rλμu2 + r2μ2u2

2ru
,

so I(∞) = κ(α(∞)). Next, we want to find the sign of I(s) as s → ∞. Based on (14)
and (15), this is the sign of −rα(∞) − λ+ rμ. Using the explicit solution of α(∞),
it requires some straightforward calculus to verify that this leads to a negative sign, i.e.
I(s) is decreasing as s → ∞, if and only if λ− rμ>−λμu.
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FIGURE 1: The Legendre transform I(s) and the underlying optimal α(s) parameter as a function of time
s (for s ∈ [0, 5]): (a,b) u = 5, (c,d) u = 0.1.

5.2. Numerical example

For the numerical results we have used a set-up that aligns with that considered in [3].

• We consider the case when both the income rates ri and the default intensity λi are linear
in the number of obligors i that have not yet gone into default. We let the proportionality
constants be r = 1 and λ= 0.9, respectively. In other words, when there are i obligors
in the system that have not yet gone into default, the income rate is given by i and the
default intensity rate by 0.9 i.

• The losses are exponentially distributed with parameter μ= 1.

With these parameter settings the rarity condition m(∞)< u is satisfied for all u> 0, as we
have 0.9 − 1 = −0.1< 0< 0.9 u.

First we focus on the evaluation of the large-deviation asymptotics. For s → ∞, the
Legendre transform I(s) is decreasing (increasing) if u> 1

9 (if u< 1
9 , respectively). For illus-

trational purposes we have plotted the functions α(s) and I(s) in Figure 1, as a function of time
s, for u = 5 as well as u = 0.1. In the first instance, with u = 5, the function I( · ) is decreasing,
so the optimal t = ∞, whereas for u = 0.1 we see that I( · ) attains a minimal value at t = 2.3.
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FIGURE 2: Ruin probabilities over time: pn(u, t) as a function of t, for n = 1 (bottom line) to n = 10 (top
line), with u = 5.

In Figure 2 we present, for different values of the initial number of obligors n and u = 5, the
ruin probabilities as a function of time. This has been done relying on the iterative approach
presented in Section 5.1. The double integral involved has been evaluated analytically for n =
1, 2 while numerical integration methods have been employed for n> 2. We observe that the
ruin probability increases in the length of the time interval, as desired. The upper bound (as
derived in Section 3.4) in this instance is given by 0.6065, and is independent of the number
of obligors n. As can be observed, this upper bound is rather conservative, in particular when
there are only a few obligors in the system.

In a next experiment we study the performance of the importance sampling technique that
was presented in Section 3.3. Figure 3(a) shows, for the initial capital reserve u being equal to
5, the estimates of the ruin probability as a function of time, obtained by simulation, using our
importance sampling algorithm. The values nearly coincide with what is obtained by applying
the naïve, direct simulation approach (i.e. without a change of measure); from Figure 2 we
also observe that there is a highly accurate match with the values computed using the iterative
approach of Section 5.1. Regarding the importance sampling simulations it is noted that we let
the events Ej correspond to the event where the net cumulative loss process exceeds the initial
level u (instead of nu), as u in this example corresponds to the unscaled initial capital level.
The fact that we have used as many as 106 runs guarantees estimates with a high precision.
The importance-sampling-based approach substantially outperforms direct simulation, in that
it greatly reduces the variance of the estimator, as can be observed in Figure 3(b,c).

6. Concluding remarks

Motivated by applications in credit risk, in this paper we have analyzed a transient coun-
terpart of the classical Cramér–Lundberg model. We have presented a broad range of results:
exact analysis in terms of transforms, asymptotic analysis including an efficient rare-event sim-
ulation algorithm, and four model variants (i.e. a set-up that also includes non-default losses,
one with Markov modulation to make the obligors dependent, one in which the linear drifts are
replaced by Brownian motions, and a last one in which there are multiple groups of obligors).
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FIGURE 3: (a) Ruin probabilities, as simulated by importance sampling: pn(u, t) as a function of time
t. (b) Variance of the estimator under direct simulation as a function of t. (c) Variance of the estimator

under importance sampling as a function of t. In all experiments we took u = 5.
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Follow-up research could relate to the next steps to make this model operational. A main
challenge concerns dealing with the heterogeneity between the obligors. When there are rela-
tively few groups (with homogeneity within these groups) the approach of Section 4.4 can be
relied upon, but when effectively all obligors have a specific time-to-default and loss distribu-
tion, an alternative approach needs to be developed. Another topic for future research could
concern procedures to adjust the capital level given realizations of the defaults on-the-fly; see
for example the approach proposed in [12].
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