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A distributed four-dimensional (4D) trajectory generation method based on multi-agent Q learn-
ing is presented for multiple unmanned aerial vehicles (UAVs). Based on this method, each
vehicle can intelligently generate collision-free 4D trajectories for time-constrained cooperative
flight tasks. For a single UAV, the 4D trajectory is generated by the bionic improved tau grav-
ity guidance strategy, which can synchronously guide the position and velocity to the desired
values at the arrival time. Furthermore, to optimise trajectory parameters, the continuous state
and action wire fitting neural network Q (WFNNQ) learning method is applied. For multi-UAV
applications, the learning is organised by the win or learn fast-policy hill climbing (WoLF-PHC)
algorithm. Dynamic simulation results show that the proposed method can efficiently provide 4D
trajectories for the multi-UAV system in challenging simultaneous arrival tasks, and the fully
trained method can be used in similar trajectory generation scenarios.

K E Y W O R D S

1. Algorithm. 2. Flight. 3. Route Planning. 4. Unmanned Aerial System (UAS).

Submitted: 27 September 2018. Accepted: 23 December 2019. First published online: 12 February 2020.

1. INTRODUCTION. In cooperative flight missions such as simultaneous arrival
(Wang et al., 2017) and formation flight (Dong et al., 2018), unmanned aerial vehicles
(UAVs) are often asked to arrive at destinations exactly at the desired time. Therefore, it is
necessary for UAVs to generate four-dimensional (4D) trajectories, three-dimensional (3D)
points associated with time, which can reduce the uncertainty of multi-UAV applications
and improve their real-time performance.

The tasks of trajectory generation with fixed end parameters, such as time, coordinates,
velocities or more complicated conditions, are well known in termination control tasks of
classical control theory and practice (Tian et al., 2018). In recent research, cooperative
multi-agent Q learning (MAQL) has rapidly attracted interest in the decision-making logic
embedded within multi-robot (Liu and Nejat, 2016) and multi-UAV (Zhang et al., 2015;
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Hung and Givigi, 2017) systems. The distinguishing characteristic of Q learning is that
the knowledge is achieved by repeated trial-and-error progress without an exact model of
the environment and flight tasks. Although many MAQL algorithms (Xi et al., 2015; Yu
et al., 2016) have been designed for equilibrium policies in general-sum Markov games,
two main disadvantages limit the further applications of MAQL in the multi-UAV 4D tra-
jectory generation problem. Firstly, the existing trajectory generation approaches based on
MAQL usually adopt the cell decomposition of the working space. Accurate trajectory
planning requires small decomposing steps, which will cause a huge search space for tra-
jectory optimisation. Secondly, the existing MAQL trajectory generation only considers
the goal position and flight safety for UAVs but omits the mission arrival time, velocities
and other dynamic constraints.

To generate the 4D trajectory fit for MAQL, a bio-inspired 4D guidance strategy, named
the improved tau gravity (I-tau-G) guidance strategy (Yang et al., 2016), was proposed in
our previous work. With the help of bionic knowledge, the 4D trajectory planned by this
strategy is continuous and smooth, and the position and velocity gaps can be closed exactly
at the expected time. Furthermore, the mathematical expression of 4D trajectory provided
by I-tau-G strategy is quite simple, and the maximum velocity and acceleration can be
conveniently achieved to fulfil the dynamic constraints of the UAV.

The main contribution of this paper is a new multi-UAV 4D trajectory generation
method combining I-tau-G strategy with MAQL. Particularly, for the continuous state and
continuous action trajectory generation task, each UAV uses the wire fitting neural net-
work Q (WFNNQ) learning algorithm to adjust the parameters of the trajectory provided
by the I-tau-G strategy. In the multi-UAV case, the learning is organised by the win or
learn fast-policy hill climbing (WoLF-PHC) algorithm. Dynamic simulation and flight test
results show that the proposed 4D trajectory generation method can efficiently provide 4D
trajectories for time-constrained flights of multi-UAV systems. This method is intended to
control UAVs in areas free of manned aircraft.

Following this introduction, the cooperative 4D trajectory generation problem based on
the bionic I-tau-G strategy is stated in Section 2. The multi-UAV trajectory generation
method based on MAQL is shown in Sections 3 and 4. Section 5 presents the dynamic
simulation and analysis of the flight test results. Finally, a conclusion is presented on our
proposed method.

2. 4D TRAJECTORY GENERATION BASED ON I-TAU-G STRATEGY.
2.1. Multi-UAV 4D trajectory problem. As shown in Figure 1, the members in a dis-

tributed multi-UAV system exchange their current states and trajectory decisions through
wireless communication. The communication topology is defined as the edge weighted
directed graph. The vertices of the graph depict the positions of the UAVs, and the directed
edge eij in edge set E refers to the information flow from UAVi to UAVj . Define the
Laplacian matrix L = [lij ]N×N ∈ RN×N of the graph as:

lij =

⎧⎪⎪⎨
⎪⎪⎩

−ωij if eij ∈ E, j �= i
N∑

j =1, j �=i

ωij if eij ∈ E, j = i
i, j = 1 · · · N (1)
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Figure 1. Communication topology of multi-UAV system.

where ωij is the weight of the edge between the vertices i and j . In particular ωij can be
defined as follows:

ωij =

⎧⎨
⎩

dij − Rc

Rc − Rsafe
if dij ≤ Rc

0 if dij > Rc

i, j = 1 · · · N (2)

The notation Rsafe refers to the minimum safe separation between UAVs and obstacles,
and Rc is the minimum valid communication distance. When the distance between UAVi
and UAVj meets the condition dij ≤ Rc (i, j = 1 · · · N ), then valid communication can be
established.

In the multi-UAV system described above, the cooperative 4D trajectory generation
problem is to provide safe and smooth 4D trajectories for N homogeneous vehicles with
optimal or near optimal performance. These trajectories can guide the UAVs moving from
arbitrary initial states

⋃N
i=1 Si(t0i) to goal states

⋃N
i=1 Si(t0i + Ti) at exactly the desired arrival

time Ti (i = 1 · · · N ).
2.2. I-tau-G strategy. The I-tau-G strategy is proposed based on the bio-inspired tau

theory (Lee, 2009), which was developed from the action planning mechanism of gannets
fishing, pigeons landing, ball catching, musical performance (Schogler et al., 2008), etc. In
the tau theory a visual variable named tau (τ ) provides the time-to-contact (TTC) informa-
tion which plays a key role in the time-constrained motion planning of animals. Based on
30 years of research into the tau theory, Lee (2009) generalised the range dimension of the
tau visual variable and proposed the general tau theory.

In general tau theory, τ is defined as the TTC of closing the gaps between any motion
states:

τχ =

{
χ/χ̇ , |χ̇ | ≥ χ̇min

sgn
(

χ

χ̇

)
τmax |χ̇ | < χ̇min

(3)

where χ is the motion gap between current and goal motion states, χ̇min refers to the min-
imum velocity to distinguish movement from stationary states, and τmax represents the
maximum tau value (Kendoul, 2014).

In I-tau-G strategy, a virtual uniformly accelerated guidance movement Gv(t) is designed
as shown in Equation (4), in which G0 refers to the initial intrinsic gap, and VG represents
the initial intrinsic velocity. With the non-zero coupling coefficient kχ , if τχ = kχτGv

, the
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action gaps of χ and Gv(t) will be closed simultaneously at the arrival time T.

⎧⎪⎨
⎪⎩

Gv(t) = − 1
2 gt2 + VGt + G0

Ġv(t) = −gt + VG

G̈v(t) = −g
(4)

The expressions of G0 and VG in Gv(t) are:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G0 =
ρx0gT2

2(ρx0 + kx�ẋ0T)

VG =
kx�ẋ0gT2

2(ρx0 + kx�ẋ0T)

(5)

where ρx0 = xT − x0 − ẋTT.
Take the movement along the x-axis as an example, the position gap χx = xT − x, and

the velocity gap �ẋ = ẋT − ẋ, in which xT and ẋT denote the goal position and velocity at
time T. By solving τx = kxτG, the relation between x(t) and Gv(t) is:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t) = xT + ẋT(t − T) − ρx0

G1/kx
0

G1/kx
v

ẋ(t) = ẋT − ρx0

kxG1/kx
0

ĠvG1/kx−1
v

ẍ(t) = − ρx0

kxG1/kx
0

G1/kx−2
v

(
1 − kx

kx
Ġ2

v + GvG̈v

) (6)

We can deduce that, if 0 < kx < 0 · 5, then the trajectory states (x, ẋ, ẍ) → (xT, ẋT, 0) when
t → T. The I-tau-G strategy can steadily guide both position and velocity to the expected
values at arrival time T.

2.3. 4D trajectory generation based on I-tau-G strategy. According to the I-tau-G
strategy, a 4D trajectory can be described by the following 3D time-variant movements:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ẋT − χx − ẋTT

kxG1/kx
0x

ĠvxG1/kx−1
vx

ẏ = ẏT − χy − ẏTT

kyG1/ky

0y

ĠvyG1/ky−1
vy

ż = żT − χz − żTT

kzG
1/kz
0z

ĠvzG
1/kz−1
vz

(7)

where (xT, yT, zT) refers to the goal position, (ẋT, ẏT, żT) denotes the target velocity, and
(χx, χy , χz) = (xT − x, yT − y, zT − z) is the 3D position gap.

In this 4D trajectory generation problem, the effect of an obstacle on the trajectory is
described by the artificial potential field approach with only virtual 3D repulsion force
Frep = [Frep, Frepy, Frepz]T, as shown in Figure 2. When the distance d between the UAV
and an obstacle or another UAV is less than the view range of the distance measurement
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Figure 2. Repulsion force of UAV from an obstacle.

sensor Ravoid, virtual repulsion Frep is activated. The expression of ||Frep|| is:

‖Frep‖ =

⎧⎨
⎩

ζ

(d − Rsafe)2 + ε
− ζ

(Ravoid − Rsafe)2 if d ≤ Ravoid

0 if d > Ravoid

(8)

in which ζ is the gain of repulsion, ε is a small positive number to avoid ||Frep|| → ∞
when d → Rsafe, and Ravoid is always bigger than Rsafe in order to ensure the safety of the
UAV.

According to the expressions of the I-tau-G strategy in Equations (7) and (8), the state
vector of the 4D trajectory generation problem is s = [χx, χy , χz, �ẋ, �ẏ, �ż, ẋT, ẏT, żT,
Frepx, Frepy , Frepz]T, and the action state of the UAV is the 3D coupling coefficient vector
u = [kx, ky , kz]T.

3. 4D TRAJECTORY GENERATION BASED ON MAQL. Based on the 4D trajectory
described by the I-tau-G strategy, a trajectory generation problem for multiple UAVs should
be constructed and optimised to obtain optimal or near optimal solutions. In a decentralised
UAV system, the optimisation problem is composed of N local problems according to the
number of UAVs. For every vehicle, continuous state-action WFNNQ learning is used
to select trajectory parameters, and the WoLF-PHC algorithm is adopted for multi-UAV
learning organisation.

3.1. WFNNQ learning. Note that in the 4D trajectory generation based on I-tau-G
strategy, it is not appropriate to discretise the continuous elements of state s and action u, as
it is difficult to justify the size level of position and velocity gap for individual arrival time
T. Furthermore, the trajectory adjustment capability of action u distinguishes for different
task parameters. Therefore, the discrete s and u cannot exactly describe the 4D trajectory,
which may cause trouble for cooperative task execution and flight safety.
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Figure 3. Structure of WFNNQ.

In this paper, a continuous state-action Q learning algorithm named wire fitting neural
network Q (WFNNQ) learning is carried out to address the cooperative 4D trajectory gen-
eration problem. Except for the continuous state-action requirement (Gaskett et al., 1999),
the continuous WFNNQ learning method can improve the accuracy of route planning, save
the discrete environmental data memory and overcome the problem of dimensionality of
multi-agent learning.

The structure of WFNNQ is shown in Figure 3. By inputting state s, the feed forward
neural network outputs n action-value pairs represented by [ui(s), fi(s)]T (i = 1 · · · n). The
notation ui(s) is the action of UAVi, and fi(s) denotes the value of performing ui(s). In
WFNNQ learning, fi(s) = Q(si, ui).

According to the action selection strategy, choose action uk and carry it out. If the neural
network has been fully trained, uk may achieve the largest reward. The Q value of the
decision u = uk is calculated as the following wire fitting function:

Q (s, u) = lim
ε→0+

∑n
i=1

fi
‖u−ui‖2+c(fmax−fi)+ε∑n

i=1
1

‖u−ui‖2+c(fmax−fi)+ε

(9)

The wire fitting function is a moving least squares interpolator, in which c represents the
smoothing factor, and ε is a small positive number to avoid the denominator going to
infinity.

By the execution of u = uk, the UAV state s transforms to the new state s′, and receives
the instantaneous reward R (s, u, s′). Q(s, u) is renewed as:

Q (s, u) = (1 − α) Q (s, u) + α

[
R

(
s, u, s′) + γ max

u′∈U
Q

(
s′, u′)] (10)

in which α > 0 is the learning rate, and γ ∈ [0, 1] is the discount factor.
The wire fitting function has a lower computational load as it does not need the inverse

operation of the matrix. Furthermore, the interpolation of wire fitting is local, which will
not lead to oscillation of the polynomial interpolation. The most outstanding attribute of
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WFNNQ is that the partial derivative of Q(s, u) to [ui, fi]T can be easily calculated as⎧⎪⎪⎨
⎪⎪⎩

∂Q
∂fi

= lim
ε→0+

(Di+cfi)
∑n

i=1 D−1
i −c

∑n
i=1 fiD−1

i

(Di
∑n

i=1 D−1
i )

2

∂Q
∂uij

= lim
ε→0+

2(uj −uij )[fi
∑n

i=1 D−1
i −∑n

i=1 fiD−1
i ]

(Di
∑n

i=1 D−1
i )

2

(11)

in which Di = u − u2
i + c (fmax − fi) + ε, and uij is the component of ui. In the 4D trajec-

tory generation problem, uij (j = 1 · · · 3) equals the 3D coupling coefficients kx, ky and kz
respectively. These partial derivatives allow the error of the Q(s, u) to be propagated to the
neural network.

Uniformly express the partial derivative of Q to zk (fk or ukj ) as ∂Q
∂zk

= lim
�→0

�Q
�zk

. According

to the WFNNQ algorithm (Gaskett et al., 1999), a scaling factor a (zk) can be used to share
the correction of �Q on pairs of [ui, fi]T. The variation of zk is

�zk = a (zk)

(
∂Q
∂zk

)−1

�Q (12)

By continually training the neural network, the output Q function will converge to the
(ui, yi) with the best reward.

3.2. The reward function. In the distributed multi-UAV system, every vehicle should
learn to provide the local optimal trajectory according to its own states and information
about its neighbours. The objective of learning is described in the form of the reward
function R(s, u, s′). In this paper, the reward function of the ith UAV is designed as:

Ri = ωlLi + ωv

∥∥vmax,i
∥∥2 +

∑
eij ∈E

lij
∫ T

t=0

ωd

pi (t) − pj (t)2 + ε
dt

+ ωu

N∑
j =1

Cuij + ωo

Nobs∑
j =1

Coij (13)

where Ri is the weighted sum of each trajectory performance including the trajectory length
Li, the maximum velocity vmax,i, and the reciprocal of the distance between the ith UAV
and its neighbours. As the states of the nearer UAVs should be considered preferentially to
avoid potential conflicts, lij in Laplacian matrix L is used to describe the influence of UAVj
on the trajectory generation of UAVi.

At the beginning of training, the UAVs may frequently collide with neighbouring UAVs
and obstacles. Therefore, the collision penalties Cuij and Coij are added into Ri. Cuij is
the conflict between UAVi and UAVj , Coij denotes the collision between UAVi and the j th

obstacle, and Nobs represents the number of obstacles. The notations ωl, ωv , ωd, ωu and ωo
are the weights of the performances, pi = [Xi, Yi, Zi]T is the position of UAVi.

3.3. The organisation of multi-UAV learning by WoLF-PHC. In the 4D trajectory
generation method for multiple UAVs, the learning of the multi-agent system is organised
by the WoLF-PHC algorithm. WoLF-PHC uses the mixed strategy π = [πi]n to select action
u, which means that the ith strategy [ui, fi]T (i = 1 · · · n) is selected with the probability πi.
There have been some attempts to apply the mixed strategy in continuous state and action
spaces, such as the function approximation (Tao and Li, 2006), but general methods to
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Figure 4. Combination of WFNNQ and WoLF-PHC.

design the approximate function are not provided. In this paper, we use the neural network
to renew πi and the estimate of average policy π̄i (s, ui) in a similar way as WFNNQ. The
WFNNQ learning structure with mixed strategy is shown in Figure 4.

At the beginning of learning, WoLF-PHC initialises the mixed strategy of the neural
network output as πi = pi(ui, yi) = 1/n. Training then goes on continually to search for the
best strategy with the PHC algorithm.

At the first step of iteration, input state s into the neural network, the output includes
[ui, fi]T, πi and π̄i (i = 1 · · · n). After carrying out action ui according to πi(s, ui), the
probability πi and π̄i should be corrected.

The correction δi of πi is called the learning rate. To balance the rationality and con-
vergence of learning, WoLF-PHC adopts the WoLF principle to calculate δi, as shown in
Equation (14).

δi =

⎧⎨
⎩

δwin if
∑

ui∈U
πi (s, ui) Qi (s, ui) >

∑
ui∈U

π̄i (s, ui) Qi (s, ui)

δlose otherwise
(14)

if
∑

ui∈U πi (s, ui) fi (s, ui) >
∑

ui∈U π̄i (s, ui) fi (s, ui), the strategy ui is winning, otherwise
the strategy is justified as ‘lose’. The algorithm applies δlose > δwin, and the learning rate
decreases with the learning times.

After the selection of action ui, the correction of the mixed strategy πi is

πi (s, ui) = πi (s, ui) +

⎧⎨
⎩

δi if ui = u
−δi

|U| − 1
otherwise

(15)

in which u is the selected action.
The average strategy is then renewed as

π̄i (s, ui) = π̄i (s, ui) + β
πi (s, ui) − π̄i (s, ui)

nl
(16)

in which nl is the number of iterations, and β is the discount factor.

https://doi.org/10.1017/S0373463320000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463320000016


882 WENJIE ZHAO AND OTHERS VOL. 73

Figure 5. 4D-trajectory generation based on MAQL.

The neural network is then trained with the state s and the output actions
ai = [ui, fi, πi, π̄i]T (i = 1 · · · n). By continual correction of πi, the best rewarded strategy
will achieve the highest decision probability. The 4D trajectory generation method based
on multi-agent WFNNQ learning is summed up in Figure 5.

4. SIMULATIONS AND RESULTS. The simulations carried out to validate the perfor-
mance of the proposed 4D trajectory generation method based on the I-tau-G strategy and
MAQL (tau-MAQL) are summarised in this section. For comparison, the tests are handled
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Figure 6. Mean cost of 4D trajectories for five UAVs: (a) first case, (b) fifth case.

Table 1. Performance comparison of generation of 4D trajectories.

1 UAV 2 UAVs 3 UAVs 4 UAVs 5 UAVs C̄r

Tau-MAQL 0·0729 s 0·0715 s 0·0713 s 0·0677 s 0·0780 s 1·646
I-tau-GDRHO 0·247 s 0·319 s 0·403 s 0·407 s 0·695 s 1

Table 2. Number of cases with conflicts.

Ncu Nco Ncb

Tau-MAQL 2 1 1
I-tau-GDRHO 0 0 0

Figure 7. Visualised 3D simulation scenario.
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Figure 8. Spatial tracking results of 4D trajectories.

by the 4D trajectory generation method based on the I-tau-G strategy and decentralised
receding horizontal optimisation (I-tau-GDRHO) (Yang et al., 2016).

A realistic multi-UAV cooperation simulation scenario is designed as there is no bench-
mark to verify the validity of the 4D trajectory generation method for multiple UAVs (Alejo
et al., 2013). In this scenario, five homogeneous UAVs complete a typical cooperative
formation aggregation mission in a virtual 3D space of 25 × 25 × 25 m3. UAVs should
generate collision-free trajectories and simultaneously approach the aggression position
with the desired speed at the arrival time. For each UAV, the maximum velocity was set to
vmax = 6 m/s, the distance measurement range Ravoid = 15 m, the safe separation Rsafe = 1 m,
and the valid communication distance Rc = 20 m. The initial and goal motion states of
UAVs are randomly generated for each test case, and the arrival time for the formation
aggregation mission is T = 20 s. All of the simulations were performed on a laptop with a
2·6 GHz Core i5-3230M CPU and 4 GB of RAM running Matlab R2015a.

4.1. Simulations of 4D trajectory generation capability. To validate the 4D trajectory
generation capability of the proposed tau-MAQL method, 100 test cases were randomly
generated. The proposed method is trained by the cases one by one until the reward function
of reinforcement learning approaches convergence. Each of the cases was trained for 200
episodes.

Figure 6 shows the mean cost of the 4D trajectories in the first (Figure 6(a)) and fifth
(Figure 6(b)) cases, in which the cost is the reward of movement along a trajectory, as
shown in Equation (13). In Figure 6(a), along with the training steps, the total trajectory
cost of the multi-UAV system descends and converges. After the training of five cases, as
shown in Figure 6(b), the standard deviation in the 200 episodes is less than 10% of the
average cost. Therefore, it can be concluded that the tau-MAQL method converged. The
other 95 cases are used to test the adaptive capability of tau-MAQL to similar missions and
environments.

4.2. Simulations of adaptive capability to similar tasks. The trained tau-MAQL
method was used to solve the other 95 test cases. The statistical data of the performance
is shown in Table 1. The notation t̄ is the mean decision time for different numbers of
communication-established UAVs. Because tau-MAQL does not need to optimise the prob-
lem repeatedly, its decision time t̄ is obviously smaller than that of I-tau-GDRHO for
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Figure 9. Closest distance of each UAV from another UAV.

Figure 10. Distance between each UAV and the nearest obstacles.

Figure 11. 3D positions of UAV4.
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Figure 12. Velocity of UAVs.

different UAV numbers. C̄r = R̄MAQL/R̄DRHO refers to the mean cost ratio between trajec-
tories generated by tau-MAQL and I-tau-GDRHO, in which R̄MAQL and R̄DRHO denote the
motion cost for a UAV to move along the trajectory provided by individual methods. The
calculation of the trajectory cost is the same as the reward function shown in Equation (13).
On average, the motion cost of trajectories generated by tau-MAQL is 64·6% larger than
the comparison method with receding optimisation. Hence the proposed tau-MAQL can
generate near optimal 4D trajectories with less time consumption than I-tau-GDRHO.

The flight security of trajectories is compared in Table 2. The notations Ncu, Nco and
Ncb denote the number of cases in which the trajectories conflict with only UAVs, only
obstacles, and both UAVs and obstacles, respectively. A total of 95 test cases were carried
out, four of which encountered collision problems using the tau-MAQL method. Though
the flight security of I-tau-GDRHO is better, tau-MAQL plans trajectory directly with
learning experience, but without complicated optimisation time and again. Therefore, the
proposed tau-MAQL method can generate near optimal 4D trajectories with less time con-
sumption, and can guarantee flight safety for similar but untrained cases. Furthermore,
flight safety will be gradually improved by training for more cases.

4.3. Simulations of 4D trajectory tracking. To examine the flyability and tracking
error tolerance of the generated 4D trajectories, the kinematics and dynamics model of
five quad-rotor UAVs was designed in Simulink. To visualise the simulated results, a 3D
scenario was designed by the Virtual and Reality Toolbox of Matlab, as shown in Figure 7.
A video of this simulation is shown in the attachment to this paper.

Figure 8 shows the spatial tracking results of the 4D trajectories planned by tau-MAQL.
The arbitrarily generated initial positions are marked by hovering UAVs from UAV1 to
UAV5, the destinations are numbered from G1 to G5, and the obstacles are described by
spheres.

As not all the details of the flights can be displayed in this part, the most dangerous
trajectory, namely the trajectory of the UAV, is chosen to show the tracking results. The
closest distances between each UAV and other UAVs are shown in Figure 9, and the dis-
tances between each UAV and the nearest obstacles are shown in Figure 10. The dashed
bold line represents the warning separation of 1 m. According to Figures 9 and 10, the
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Figure 13. Tracking results of 4D trajectories of three UAVs.

Figure 14. 3D relative distances of UAV1 and UAV3 from UAV2.

UAVs keep a safe distance from each other and a safe distance from obstacles, so the flight
safety of all UAVs is guaranteed.

Figure 11 shows the 3D tracking results of UAV4. The 4D trajectory provides smooth
guidance for movements along three axes, and the UAV arrives at its destination at the pre-
scribed arrival time. The velocities of the five UAVs during trajectory tracking are shown
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Figure 15. Forward distances of UAV1 and UAV3 from UAV2.

Figure 16. Lateral distances of UAV1 and UAV3 from the planned trajectory of UAV2.

in Figure 12, showing that the 4D guidance is able to fulfil the dynamic constraints of the
UAVs, as the trajectories rapidly become smooth.

5. REAL-TIME FLIGHT SIMULATION FOR SUBSONIC UAVS. In order to eval-
uate sufficiently the performance of 4D trajectory generation using tau-MAQL for high-
speed fixed-wing UAVs, a real-time flight simulation based on our high subsonic UAVs
was carried out, using an aerodynamic model of the UAVs. In the simulation. three UAVs
took off from the same airport at different times (at 30 s intervals), and performed a for-
mation flight task that involved assembly at the desired time, a triangle shaped formation
flight, and then separation from each other. Figure 13 shows the tracking results of the
4D trajectories planned by tau-MAQL. Tau-MAQL provided a circuitous route for UAV1,
which took off first, and planned a shortcut for UAV3 to save time. The result manifested
that the three aircraft finally arrived at the rally point close to the desired time, and the
errors were kept within 3·2 s.

Relative distances from the second UAV in 3D, and the forward components, are shown
in Figures 14 and 15, respectively. Figure 16 shows lateral distances from the planned
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Figure 17. Forward velocities of UAV1 and UAV3 relative to UAV2.

Figure 18. Lateral velocities of UAV1 and UAV3 relative to UAV2.

trajectory of the second UAV. When the UAVs arrived at the rally point, they continued
flying side by side with 500 m lateral separation from their neighbours as designed, and
their relative velocities were close to zero, as shown in Figures 17 and 18. The flight
formation then transformed into the ‘�’ and ‘∇’ forms successively, as planned by tau-
MAQL. The UAVs arrived at their own destinations simultaneously, with the same desired
velocity (170 m/s). The UAVs then separated and flew away from each other in a lateral
direction with the desired relative velocities and finally returned to the airport.

Although there were no other obstacles in the air, except for neighbour UAVs, the posi-
tion errors shown in Figures 14–16, and the relative velocities shown in Figures 17 and 18,
demonstrate that the 4D trajectories planned by tau-MAQL were safe and flyable for our
UAVs, which were capable of 4D guidance.

6. CONCLUSION. In this paper, a multi-UAV 4D trajectory generation method (tau-
MAQL) based on the I-tau-G guidance strategy and MAQL is presented. The 4D trajec-
tories generated by the improved tau-G strategy were found to guide both position and
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velocity to the desired values at the desired time. As it is not appropriate to discretise the
states and actions of the trajectories provided by the I-tau-G strategy, WFNNQ learning was
adopted. The WoLF-PHC algorithm was also applied to organise the multi-UAV system.

The main advantage of this method is the combination of bionic tau theory and rein-
forcement learning in multi-UAV applications. With the benefit of the I-tau-G strategy, the
4D trajectory can guide the UAV movements smoothly with desired initial and terminal
velocities. Furthermore, the trained MAQL can obviously improve the planning efficiency
better than optimisation methods.

Challenging dynamic simulations of multi-UAV formations were carried out to validate
the convergence, execution time, adaptive capability and trajectory quality of the proposed
tau-MAQL method. The simulation results show that tau-MAQL can provide near opti-
mal 4D trajectories with conspicuously greater efficiency in terms of computing time. The
flight safety, flyability and 4D guidance capability of the trajectories can meet the require-
ments for cooperative flight. Meanwhile, the trained tau-MAQL was found to have enough
adaptive capability to deal with similar environments and missions.

ACKNOWLEDGEMENTS

This work was jointly funded by the National Natural Science Foundation of China (Nos.
61703366), and the Fundamental Research Funds for the Central Universities (No. 2016|FZA4023,
2017QN81006).

REFERENCES

Alejo, D., Cobano, J., Heredia, G. and Ollero, A. (2013). Particle Swarm Optimization for Collision-Free 4D
Trajectory Planning in Unmanned Aerial Vehicles. Proceedings of the 2013 International Conference on
Unmanned Aircraft Systems, Atlanta, USA, 298–307.

Dong, X. W., Li, Y. F., Lu, C., Hu, G. Q., Li, Q. D. and Ren, Z. (2018). Time-varying formation tracking for
UAV swarm systems with switching directed topologies. IEEE Transactions on Neural Networks and Learning
Systems, 30(12), 3674–3685.

Gaskett, C., Wettergreen, D. and Zelinsky, A. (1999). Reinforcement Learning Applied to the Control of an
Autonomous Underwater Vehicle. Proceedings of the Australian Conference on Robotics and Automation,
Brisbane, Australia, March 1999.

Hung, S. M. and Givigi, S. N. (2017). A Q-learning approach to flocking with UAVs in a stochastic environment.
IEEE Transactions on Cybernetics, 47, 186–197.

Kendoul, F. (2014). Four-dimensional guidance and control of movement using time-to-contact: application
to automated docking and landing of unmanned rotorcraft systems. The International Journal of Robotics
Research, 33, 237–267.

Lee, D. N. (2009). General Tau Theory: evolution to date. Perception, 38(6), 837–858.
Liu, Y. and Nejat, G. (2016). Multirobot cooperative learning for semiautonomous control in urban search and

rescue applications. Journal of Field Robotics, 33(4), 512–536.
Schogler, B., Pepping, G. J. and Lee, D. N. (2008). Tau G-guidance of transients in expressive musical

performance. Experimental Brain Research, 189(3), 361–372.
Tao, J. Y. and Li, D. S. (2006). Cooperative Strategy Learning in Multi-Agent Environment with Contin-

uous State Space. 2006 International Conference on Machine Learning and Cybernetics, Dalian, China,
2107–2111.

Tian, B. L., Liu, L. H., Lu, H. C. and Zuo, Z. Y. (2018). Multivariable finite time attitude control
for quadrotor UAV: theory and experimentation. IEEE Transections on Industrial Electronics, 65(3),
2567–2577.

Wang, Y., Wang, S., Tan, M. and Yu, J. (2017). Simultaneous arrival planning for multiple unmanned vehicles
formation reconfiguration. International Journal of Robotics and Automation, 32(4), 360–368.

https://doi.org/10.1017/S0373463320000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463320000016


NO. 4 FOUR-DIMENSIONAL TRAJECTORY GENERATION FOR UAVS 891

Xi, L., Yu, T., Yang, B. and Zhang, X. S. (2015). A novel multi-agent decentralized win or learn fast policy hill-
climbing with eligibility trace algorithm for smart generation control of interconnected complex power grids.
Energy Conversion and Management, 103, 82–93.

Yang, Z., Fang, Z. and Li, P. (2016). Decentralized 4D trajectory generation for UAVs based on improved intrinsic
tau guidance strategy. International Journal of Advanced Robotic Systems, 13(3), 88.

Yu, T., Zhang, X. S., Zhou, B. and Chan, K. W. (2016). Hierarchical correlated Q-learning for multi-layer optimal
generation command dispatch. International Journal of Electrical Power & Energy Systems, 78, 1–12.

Zhang, B., Mao, Z., Liu, W. and Liu, J. (2015). Geometric reinforcement learning for path planning of UAVs.
Journal of Intelligent & Robotic Systems, 77(2), 391–409.

https://doi.org/10.1017/S0373463320000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463320000016

