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SUMMARY
An approach to planning time-optimal collision-free
motions of robotic manipulators is presented. It is based on
using a negative formulation of the Pontryagin Maximum
Principle which handles efficiently various control and/or
state constraints imposed on the manipulator motions,
which arise naturally out of manipulator joint limits and
obstacle avoidance. This approach becomes similar to that
described by Weinreb and Bryson, as well as by Bryson and
Ho if no state inequality constraints are imposed. In contrast
to the penalty function method, the proposed algorithm does
not require an initial admissible solution (i.e. an initial
admissible trajectory) and finds manipulator trajectories
with a smaller cost value than the penalty function
approach. A computer example involving a planar redun-
dant manipulator of three revolute kinematic pairs is
included. The numerical results are compared with those
obtained using an exterior penalty function method.

KEYWORDS: Time-optimal motions; Pontryagin’s Maximum
Principle; Redundant manipulator

1. INTRODUCTION
Optimal control of robotic manipulators is of great impor-
tance from both a theoretical and a practical point of view.
It has particular significance in repetition technological
processes and/or in the case when a robot performs
complicated tasks in complex work spaces containing many
obstacles. To avoid the collisions of manipulator links with
the obstacles, state inequality constraints must be taken into
account while determining optimal controls. Several
approaches can be distinguished in this context. Application
of potential, harmonic or magnetic field methods1–4 to find
manipulator motions realizing a given process seems to be
especially attractive in view of real-time computations.
However, these methods suffer from local optimality. It is
also difficult to find a feasible joint trajectory (although it
may exist) if the above methods were applied to a robotic
manipulator performing complex processes in a work space
containing complicated obstacles. This is a consequence of
local minima of potential functions1 and the stagnation
points as well as the structural local minima of harmonic

functions.3 In order to eliminate the above shortcomings,
methods involving global criteria of tasks performance seem
to be the most appropriate.

The studies5–7 use directly the Pontryagin Maximum
Principle to find optimal motions in a workspace without
obstacles. The penalty function method has been used to
find time-optimal8–10 and minimum-energy11 motions in
work spaces with obstacles. Minimum-energetic motions of
a redundant manipulator whose end-effector is to follow a
prescribed geometric path in a work space with obstacles
were also determined in the study.12 The discretization
methods convert the continuous-time problem to a discrete-
time one in order to exploit nonlinear programming
algorithms. Singh and Leu13 have found minimum-time
control for non-redundant manipulators using a sequence of
quadratic programming algorithms. Through the use of
Lagrange multipliers parameterizing the controls by switch-
ing points and a concept of velocity obstacles, time-optimal
motions have been found in reference [14].

This paper extends the results obtained by Galicki,15

where optimal motions in a work space without obstacles
have been considered. We propose a method of time-optimal
collision-free motion planning for both non-redundant and
redundant manipulators in work spaces with obstacles.
Manipulator joint limits and obstacle avoidance conditions
are incorporated through state inequality constraints. In
turn, the requirement that a given final location of the end-
effector be reached with zero final velocities results in a
state equality constraint. Additionally, some constraints
imposed directly on manipulator controls are taken into
consideration. The performance index is introduced to
determine the trajectory of manipulator limited by the afore-
mentioned constraints.

In the case considered, it is very difficult to use
Pontryagin’s Maximum Principle in its classical form,16

since it presents only a positive form of control. In fact, the
strong variation algorithms based on the Maximum Princi-
ple17,18 are not oriented towards optimal control problems
involving state inequality constraints. The methods of
sequential gradient restoration developed by Miele19

increase the number of unknown functions to be found by
converting this type of constraint to equality ones using
slack variables. Sakawa and Shindo20 have designed an
algorithm which handles the state variable inequality
constraints by using a prediction technique. Controls are
computed by minimizing the penalized Hamiltonian. Strend
and Balden21 have shown ineffectiveness of this algorithm in
the case of bang-bang control problem. The convergence
proofs of many implementable algorithms are based on
generating a sequence of controls (e.g. by maximizing the
Hamiltonian) and searching for a limit control. However, the
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optimal control problems with state inequality constraints
may not have limit controls (in a class of measurable
controls) although the optimal trajectories for such prob-
lems may exist.22,23 Therefore it is natural to make an
attempt to solve the constrained time-optimal problem
mentioned above by resorting to other techniques.

A new method, based on a negative formulation of
Pontryagin’s Maximum Principle24–26 given in variational
form, which makes it possible to handle the state inequality
constraints efficiently, is proposed here to determine time-
optimal controls. This approach, which consists in
transforming the state constraints into control-dependent
ones, in contrast to the penalty function method, does not
require an initial admissible solution (whose determination
may be very troublesome in practice). Additionally, the
values of the performance index obtained are usually
smaller than those determined by the penalty function
method. The technique of the proof of the convergence for
the algorithm presented here is different from that of
references [17,20] and is based on the search for a limit
trajectory whose existence is theoretically ensured. On the
other hand, due to an affine dependence of the dynamic
model of the robot on the control and the time criterion
considered in the paper, a limit control exists, too.

An outline of the remainder of the paper is as follows.
Section 2 describes how to employ the negative formulation
of the Pontryagin Maximum Principle to determine the
time-optional manipulator motions. Section 3 presents a
computer example to find optimal collision-free motions of
a planar manipulator with three revoltue kinematic pairs. A
numerical comparison of the presented approach with the
penalty function method is also given in the example.

2 APPLICATION OF NEGATIVE FORMULATION
OF THE PONTRYAGIN MAXIMUM PRINCIPLE
To express the robotic task in terms of an optimal control
problem, the state vector

�(t) =� q(t)
q̇(t) � (1)

is introduced, where q(t), q̇(t) � �n are the vectors of joint
angles and velocities of the manipulator, respectively. Then
the equation of the robot dynamic model can be written in
state-space form as (see Appendix)

�̇ (t) = f (� (t), � (t)), t � [0, T ] (2)

where � (t) � �m denotes the vector of controls (torques/
forces), with the initial condition

� (0) = �0 =� q0

0 �
the vector q0 being an initial collision-free manipulator
configuration.

Constant limits on controls are admitted (a case of state-
dependent limits is discussed in Section 4):

ul ≤ � (t) ≤ uu , t � [0, T] (3)

where ui and u u are lower and upper limits on control v(t),
respectively. For now, T is an unknown final moment of
performing the robotic task.

The motion of the robot is planned so as to bring the end-
effector to a given final location in minimum time, i.e. our
performance index is

J(�) = � T

0
1 dt (4)

The robotic task of the manipulator may be generally
expressed as follows:

�(� (T)) = 0 (5)

�t � [0, T ], {�(� (t), t) ≤ 0} (6)

where �(·) is a given scalar function expressing the fact of
reaching the final location by the end-effector with zero
manipulator velocity at this location, and {�(� (t), t) ≤ 0} is
a set of conditions with scalar functions �(·,·), which
involve the fulfilment of the constraints imposed by the
robot mechanical limits and the collision-free conditions of
the manipulator with (in general) moving obstacles.

Introducing a new variable � related to the real time t by
t = � T, where � � [0, 1], we obtain an optimal control
problem with parameter T and the fixed final time � = 1.
Consequently, the equation of robot dynamics (2) now
becomes

dx
d�

(�) = T f (x(�), u(�)) (7)

where x(�) = �(� T ) and u(�) = � (�T ).
It should be noted that, through eqn. (7), the state vector

x is functionally dependent on the control u and the final
time T. In this way, the constraints (5) and (6) also depend
on u and T. For further considerations, they will be
reformulated in a functional form which is equivalent to the
previous one. Therefore, the following notation is intro-
duced:

a(x(1)) = �(� (�T ))� = 1, b(x(�), �, T ) = �(� (�T ), �T ))

Thus, the constraints (5) and (6) assume the following
(functional) form: For the equality constraints:

g(u, T ) = 0 (8)

where g(u, T ) = a(x (1)), and for the inequality constraints:

{h(u, T ) ≤ 0} (9)

where h(u,T) = max
��[0,1]

{b( x(t), �, T)}, with the performance

index

J (u, T ) = � 1

0
T d� (10)

In order to use the negative formulation of Pontryagin’s
Maximum Principle, an initial performance time T 0 and an
initial admissible control u0 = u0(·) in the sense of satisfying
(3), but not necessarily state constraints (8) and (9), must be
known. Moreover, it is assumed that T 0 and u0 do not
minimize the performance index (10).
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The use of the negative formulation of Pontryagin’s
Maximum Principle necessitates incrementation of the
functionals given by the left-hand sides of relations (8) and
(9), and the right-hand side of (10). Therefore we assume
that the admissible control u0 = u0(�) and the initial time T 0

of the task performance are perturbed by a small function
(variation) �u = �u(�) = (�u1(�), . . . , �un (�))T, and a small
number of �T, respectively, where

��u � = max
��[0,1]

� max
1≤ i≤n

��ui (�) � � ≤ 	, ��T � ≤ 
, 	 and 
 being

given small numbers making correctness of the presented
method safe. According to the theory of small perturba-
tions,16 the value of the functional J(u,T ) for the perturbed
control u0 + �u and time T 0 + �T may simply be expressed
by

J (u 0 + �u, T 0 + �T) = T 0 + �T (11)

The value of the functional determined by the left-hand side
of eqn. (8), for control u0 + �u and time T 0 + �T, after simple
calculations, is given to first order by

g(u0 + �u, T 0 + �T) = g(u 0, T 0) + �g(u0, T 0; �u, �T) (12)

where

�g(u0, T 0; �u, �T) = T 0 � 1

0
	 f T

u (�)�g(�), �u(�)
d�

+ �T� 1

0
	 �g(�), f (�)
 d�

is the Fréchet differential of the functional g (u, T), the
adjoint mapping �g being the solution of the Cauchy
problem

d�g(�)
d�

+ T 0 f T
x (�)�g(�) = 0, �g(1) =� �a

�x �x = x 0(1)

with

f x(�) =� � f
� x �x = x 0(� )

u = u 0(� )

, fu(�) =� � f
�u �x = x 0(� )

u = u 0(� )

,

f (�) = f(x 0(�), u0(�))

The values of the functional increments determined by the
left-hand sides of inequalities (9), on account of the fact that
the Fréchet derivatives do not exist in a general case, call for
the Gâteaux derivatives. For the perturbed control
u0 + �u = u0 + �w, where � is a small positive number,
w = w(�) is a function from the same function space as u (the
direction of differentiation), and the perturbed final time of
task execution T 0 + �T, it may be concluded that

{h(u0 + �u, T 0 + �T) = h(u0, T 0) + �h(u0, T 0; �u, �T) ≤ 0}

(13)

where

�h(u0, T 0; �u, �T) = max
� ��S
�T 0 � 1

0
	 f T

u(�)�h(�; �� ), �u(�)
 d�

+ �T�� �b
�T �x = x 0(� �)

+ � 1

0
	�h(�; ��), f(�)
 d���

is the Gâteaux differential of the functional h(u, T),

d�h(� ; ��)
d�

+ T 0 f T
x (�)�h(�; � � ) =


� �b
�x �x = x 0(� � )

� (�
� � ), � h (1; � � ) = 0

�(·) is the Dirac delta distribution, and S = {��� [0, 1]:
b(x0(��), ��, T) = h(u0, T 0)}.

Note that the sets S include only the time moments which
correspond to the values of the state trajectory activating the
inequality constraints. This is in contrast to the discretiza-
tion methods which usually take into account the inequality
constraints in the optimization process for all the moments
of discretization of the interval [0,1] or they must find an
admissible triple (x0(·), u0(·), T 0) satisfying relations (8) and
(9) to decrease the total number of constraints.13

For properly selected variations �u and �T, the Fréchet
and Gâteaux differentials of functionals in (8) and (9) can
approximate the increments of these functionals with any
desired accuracy. In this way, the negative formulation of
Pontryagin’s Maximum Principle just amounts to solving
the problem: For given u 0 and T 0, minimize the functional

J(u 0 + �u1, T 0 + �T 1) = T 0 + �T (14)

with respect to �u1 and �T1, subject to the constraints:

g(u0, T 0) + �g(u0, T 0, �u1, � T 1) = 0

{h(u0, T 0) + �h(u0, T 0, �u1, � T 1) ≤ 0}

ul ≤ u0 + �u1 ≤ uu
(15)

� �u1 � ≤ 	

� � T 1 � ≤ 


0 ≤ T 0 + � T 1

The assumption of non-optimality of the admissible control
u0(·) and of the initial performance time T 0 implies the
existence of sufficiently small variations �u1 and �T 1,
respectively, such that J (u0 + �u1, T 0 + �T 1) < J(u0, T 0), i.e.
the existence of the control u0 + �u1 and of the time T 0 + � T1

for the problem (14)–(15). The new control u1 = u0 + �u1 and
the new final time T 1 = T 0 + �T1 result from solution of this
infinite-dimensional linear programming problem. A finite-
dimensional approximation of the control variable in (14)
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and (15) seems to be very effective to solve this problem
numerically. The process of approximation for an admis-
sible control u0 may be accomplished e.g. by using
quasi-constant or quasi-linear functions, or splines. Then the
interval [0,1] is divided into N > 0 (e.g. equal) subintervals,
i.e. partition 0 = �0 < �1 < �2 < . . . < �N = 1 is formed, where
�i = i /N; i = 0, . . . , N. Our paper adopts looking for a
sequence of controls which minimize the performance index
(10) in a class of quasiconstant mappings

u(�) = 
N

k = 1

uk�k (�), �u(�) = 
N

k = 1

�uk�k(�) (16)

where

�k(�) = � 1
0

if � � [�k
1, �k ),
otherwise.

An important factor improving the speed of calculation of
the minimizing sequence is a possibility of using parallel
processors to calculate the Fréchet and Gâteaux functional
differentials �g and �h.

The process of minimization is then repeated for the
revised control u1 and final time T1. A sequence of pairs
{(uk, T k)} may thus be obtained as a result of solving the
iterative approximation scheme (14)–(15). Each element of
this sequence corresponds to a state trajectory x k according
to eqn. (7). From the practical point of view, it is not
essential to know a limit control (which may not exist for
some optimal control problems with state inequality
constraints or may be non-unique for time-optimal control
problems), whereas the convergence of the state trajectories
xk is of great importance.

We can now formulate our main result whose proof is
given in Appendix.

Theorem 1. 

The sequence of trajectories {xk }, corresponding to the
sequence of pairs {(uk, Tk )}, has a convergent sub-
sequence.

Thus the successive solutions of problems (14)–(15)
converge to an optimal (limit) trajectory x* and an optimal
time T*. Moreover, in the case considered, affine depend-
ence of the dynamic model (2) on the control implies the
existence of a time-optimal (limit) control u*, i.e. the
sequence {uk} has a convergent subsequence {u kn} such
that limn→ ∞ uk n = u*. As can be shown, the control u*
maximizes (locally) the Hamiltonian.

3 COMPUTER EXAMPLE
A planar manipulator of three revolute kinematic pairs
(n = 3, q = (q1, q2, q3)) shown in Figure 1 is considered. The
data used in simulations are as follows:

• the components of the dynamic model of manipulator:
– D(q) = diag[5, 3, 2];
– link lengths l1 = 3.0; l2 = 2.0, l3 = 1.0;

– link masses m1 = 0.3, m2 = 0.2, m3 = 0.1;
– the mass centres of the manipulator links represented

by the sections are located at their physical centres;
– moments of inertia of links with respect to their mass

centres I1 = 0.225, I2 = 0.067, I3 = 0.0083;
• for simplicity, a static obstacle O has been assumed of the

following boundary equation:

o( p) = (0.8)2 
 ( p1 
4)2 
 ( p2)
2 = 0, p = ( p1, p2)T � �2

• the discrete model of the manipulator assumed for
numerical simulations is shown in Figure 1 (dots);

• the constraints (3), (5), and (6) correspond to

q0 = (0.5, 1.7, 
1.7)T

ql = (0.18, 
3.0, 
3.0)T,
ul = (
20.0, 
7.0, 
2.3)T,
	 = 0.05, 
 = 0.01

lT = (4.0, 1.0)2

ql = (3.0, 3.0, 3.0)T

uu = (20.0, 7.0, 2.3)T

where lT is a given final location to be reached by the end-
effector;

• the number of subintervals in the control discretization
equals N = 75

To draw a comparison with other approaches, simulations
for the exterior penalty function method (EPFM) are also
carried out. Figures 2 and 3 present, respectively, the initial
controls and the corresponding initial manipulator motions
for the method presented in the paper and for the EPFM. Let
us note that the trajectory x0 does not satisfy the constraints
(8) and (9). The initial time equals T 0 = 1.5.

Two types of optimal motions for both methods are
considered. The first one is an unconstrained motion (only
control limits (3) are taken into account) between the initial
state �0 and final end-effector location lT. The optimal
controls are shown in Figure 4. As was expected, the
controls for the method presented here are approximately of
bang-bang type. The minimum time equals T* = 0.884 and
is smaller than that determined by the EPFM
(T*EPFM = 0.983). Figure 5 shows the corresponding manip-
ulator manipulatory motions for both algorithms.

The optimal motion for this case is shown in Figure 5.
The constrained time-optimal controls are shown in

Figure 6. The optimal performance time T* = 1.207 is again

Fig. 1. Scheme of the manipulator and the obstracle O.
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smaller than that determined by the penalty function method
(T*EPFM = 1.221).

Let us note that, at each moment of the manipulator
control, at least one of the actuators is saturated even when
the collision-free constraints are active. This agrees with
theoretical results obtained by Sontag and Sussman27 for
unconstrained time-optimal motions.

The optimal motion of manipulator is displayed in
Figure 7.

4. CONCLUDING REMARKS
An application of the negative formulation of the Pontryagin
Maximum Principle to find time-optimal controls of robotic
manipulators is proposed in the paper. An important factor
which affects the speed of determining the minimizing
sequence of controls is a possibility of using parallel
processors to calculate the Fréchet and Gâteaux functional
differentials in the constraints (15). Moreover, the present
approach adopts solution of the linear programming prob-
lem (14)–(16) through the so-called Upper-Bounding
Simplex Method 28 exploiting the sparse structure of the
coefficient matrix (let us note that after discretization the
simple constraints max(
	, ul 
u0

k) ≤ �uk ≤ min(	, uu 
u0
k),

k = 1, . . . , N hold an overwhelming majority). Such a
technique enables us to consider non-trivial-sized dis-

Fig. 2. Initial admissible control u0.

Fig. 4. Controls for unconstrained motion. (a) Proposed method and (b) EPFM.

Fig. 3. Initial manipulator motion in the work space.
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cretizations on one hand, and on the other hand to reduce
significantly the time of computations. In this way, the
minimum hardware is needed to run the corresponding code
(in the case considered here, a low-cost PC-486 has been
used).

A case of state-dependent control constraints can be
tackled by introducing a new control vector � such that u̇ = �
for ul (x) ≤ u ≤ uu (x), where ul (x) and uu(x) are state
dependent lower and upper limits imposed on vector u,

respectively. Thus, a modified control problem is obtained
with a new trajectory (x, u) and the control vector �.

It is important to note that the method presented here does
not call for knowledge of an initial solution satisfying the
constraints (8) and (9). It is only required that the admissible
control should satisfy relations (3). In such a case, at initial
iterations the trajectory x is forced by the algorithm to
satisfy (8) and (9), and then the proper minimization of the
functional (10) follows. Numerical simulations show that

Fig. 5. Unconstrained manipulator motion. (a) Proposed method and (b) EPFM.

Fig. 6. Controls for constrained motion. (a) Proposed method and (b) EPFM.
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the presented method finds smaller values of the perform-
ance index that the penalty-function approach for both
unconstrained and collision-free motions of the robot. The
problem formulation and the given approach to its solution
may be directly applicable to multiple manipulators inter-
acting in a three-dimensional workspace with obstacles.
This method is also useful in finding admissible trajectories
(in the sense of satisfying state constraints (8) and (9)),
which is often encountered in practice.
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APPENDIX
We outline only the main ideas of the proof of Theorem 1.
The existence of a finite optimal time less than a fixed
number A>0 follows from standard existence theorems.29

For the state vector (1) we have to show that � q̇ � is bounded
(the boundedness of �q � is a consequence of inequalities
(6), i.e. q
qu ≤ 0, ql 
q ≤ 0 where ql and qu are, respec-
tively, the given lower and upper limits on the configuration
q. The robot dynamics is described by:

f(�, �) =� q̇

 I
1(q)(q̇TC(q)q̇ + D(q)q̇ + G(q)) �

+ � 0
I 
1(q) � � (A1)

where I(q) is an n� n inertia matrix, C(q) is an n� n� n
tensor whose coordinates are Christoffel’s coefficients, D(q)
stands for an n� n viscous friction matrix, and G(q) denotes
an n-dimensional vector representing gravity forces. We
assume that q(·) and q̇(·) belong to the class of mappings
which are absolutely continuous with respect to time t.
Additionally, the control �(·) is an integrable Lebesgue
function. It follows that

q̈ = I 
1(q)(�
 q̇TCq̇
D(q)q̇
G(q)) (A2)

Hence

� q̈ � ≤ � + � � q̇ � + � � q̇� 2 (A3)

where � · � denotes the Euclidean norm,

� = max
q,�

� I 
1(q)(�
G(q)) � ,

� = max
q

� I 
1(q)D(q) � ,

� = max
q

� I 
1(q)C(q) � ,

Since 
d

dt
� q̇ � ≤ � q̈ � , we see that

d( � q̇ � )
� + � � q̇ � + � � q̇ � 2 ≤ dt (A4)

Not decreasing the character of considerations, we assume
that � = � 2 
4�� < 0 (the case � ≥ 0 is considered analo-

gously). Integrating both sides of (A4) over the time interval
[0,A], we obtain the following bound on � q̇ � :

� q̇(t) � ≤ M (A5)

where

M = max
t�[0,A]

1
2�

��
� tan ��
�

2
t = arctan

�

�
�
� 
� �

and �dq/d� � ≤ AM. Hence the state vector x is bounded,
i.e.

� ql


AM1n
� ≤ x ≤ � qu

AM1n
� (A6)

where ln is the n-dimensional vector with all the coordinates
equal to 1.

By solving the successive minimization problems
(14)–(15), the sequence of triples {(uk, xk, Tk)} which satisfy
the conditions

a(xk(1)) = 0, max
��[0,1]

{b(xk(�), �, Tk)} ≤ 0, 0 ≤ Tk ≤ A (A7)

is generated.
Let us note that

� ql


AM1n
� ≤ xk ≤ � qu

AM1n
� (A8)

and

�dxk

d� � = �T k f (xk, uk ) � ≤ � (A9)

where

� = A max
x,u

� f (x, u) �

The inequality (A8) means that the set {xk : k = 0, 1, 2, . . . }
is uniformly bounded, whereas the inequality (A9) means
that this set is also equi-continuous. Thus, the Arzela-Ascoli
theorem30 holds for {xk} and the Bolzano theorem holds for
{T k}. Convergent subsequences {xkn} and {T kn}, for which
lim
n→ ∞

xkn = x* and lim
n→ ∞

T kn = T*, may be selected from the

sequences {xk and {T k}, respectively. It follows from
Fillipov’s theorem22 that x* is an absolutely continuous
function. Moreover, the continuity of a(x(1)) and max

��[0,1]

{b(x(�), �, T *)} with respect to x and T implies the relations
a(x*(1)) = 0 and max

��[0,1]
{b(x*(�), �, T *)} ≤ 0.

If an admissible pair (u0, T 0 ) does not satisfy the state
constraints (8) and (9), then we may replace the equality (8)
by an equivalent functional inequality of the form
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g�(u,T ) = [a(x(1))]2 � 0. Thus, there exist sufficiently small
variations �u1 and �T 1 for which T 0 + �T 1 = T 0 + min {�T }
and �g�(u0, T 0; �u1, �T 1)≤0, {�h(u0, T0; �u1, �T1)≤0},
where �g�(u0, T0; �u1, �T1) is the Fréchet differential of g�(u,

T). The fulfilment of the constraints (8) and (9) is then
forced by successive solution of the minimization problems
(14)–(15) which generate decreasing sequences {g�(uk, tk)}
and {h(uk, T k)}.
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