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Abstract

Flowering rush (Butomus umbellatus L.) is an invasive aquatic and wetland plant capable of
developing monotypic stands in emergent and submersed sites. This plant can rapidly outcom-
pete native vegetation and impede human practices by reducing recreation (boating, fishing,
and skiing) and disrupting agricultural use of water resources (irrigation canals). Mechanical
removal practices occurring biweekly, monthly, bimonthly, and once per growing season were
compared with chemical control with diquat applied sequentially at 0.19 ppmv ai for two con-
secutive months over 2 yr (2016 and 2017). Biweekly removal gave the most consistent control
of B. umbellatus biomass and propagules. Diquat application along with monthly and
bimonthly clippings gave varying degrees of B. umbellatus control. Clipping once per growing
season did not control B. umbellatus when compared with reference plants, while clipping
B. umbellatus every 2 wk (biweekly) controlled rush propagules most effectively. However,
it is unlikely this method will be sufficient as a stand-alone control option due to the slow speed
of harvester boats, the potential these boats have to spread B. umbellatus propagules to more
sites, and the expense of mechanical operations. However, clipping could be used as part of an
integrated strategy for B. umbellatus control.

Introduction

Flowering rush (Butomus umbellatus L.) is an invasive plant in the northern United States and
southern Canada (Anderson et al. 1974; Kliber and Eckert 2005) that impedes water flow,
reduces human uses of water resources, and reduces biodiversity in aquatic and wetland habitats
(Bellaud 2009). Butomus umbellatus is native to Europe and Asia and first entered the United
States in 1928 (Muenscher 1930; Tutin et al. 1980). After introduction, B. umbellatusmost likely
expanded across North America via horticultural activities (Les and Mehrhoff 1999).

Butomus umbellatus has two biotypes (triploid and diploid) in its home and invaded ranges
(Hroudova et al. 1996; Kliber and Eckert 2005), suggesting multiple introductions to North
America. While the diploid biotype can reproduce sexually, vegetative propagation via rhizome
fragments and buds appears to be the primary means of dispersal and colonization for both
B. umbellatus biotypes (Hroudova et al. 1996). Carter et al. (2018) found that while initial
B. umbellatus propagule size affected final plant biomass over a growing season, it did not affect
propagule survivorship, suggesting the smallest rhizome fragments or individual rhizome buds
are sufficient to establish new colonies. In fact, rhizome fragments and buds can sprout leaves
and roots while free floating in water (GT, personal observation), which further prepares prop-
agules for invasion of new sites while in transit. Butomus umbellatus has an adaptive growth
form (Sarbu et al. 2009) and can grow as a wetland plant, a shallow-water emergent plant
(0 to 1.2 m), or as a completely submersed plant (1.2 to 6 m; Rice et al. 2010), which facilitates
survival in diverse environments with fluctuating water and light conditions (Carter et al. 2018;
Madsen et al. 2017). Additionally, because most of the starch content of B. umbellatus is stored
in the belowground structures (Marko et al. 2015) and because the species can produce
hundreds of rhizome buds per square meter (Madsen et al. 2016c), it is also capable of survival
and regrowth after many control activities targeting individual colonies.

Much has been learned about the biology and ecology of B. umbellatus in its invaded range
over the past two decades (Carter et al. 2018; Eckert et al. 2000; Gunderson et al. 2016; Madsen
et al. 2016c; Marko et al. 2015); however, few effective control measures have been found to
reduce B. umbellatus colonies. Several small-scale mesocosm and laboratory studies have iden-
tified herbicide chemistries that are effective for controlling B. umbellatus (Madsen et al. 2016a,
2016b; Poovey et al. 2012, 2013; Wersal et al. 2014), but few of these have been further
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substantiated with field trials. In fact, the contact herbicide diquat
is the only chemical control strategy with documented operational
use for the control of B. umbellatus (Madsen et al. 2016a; Turnage
et al. 2018). While control is evident with large-plot submersed
treatments of diquat, repeated treatments may be required
(Madsen et al. 2016a; Turnage et al. 2018), and in locations where
threatened or endangered species are present, herbicide applica-
tions may be prohibited.

Resource managers need alternatives to chemical control meth-
ods for B. umbellatus management in areas that restrict chemical
options and for management of herbicide resistance in treated
populations. At this time, no biological control options have been
identified for B. umbellatus. Madsen et al. (2017) investigated the
use of annual drawdown as an alternative to chemical control of
B. umbellatus and found that physical (benthic barriers) and
mechanical (hand pulling and excavation) control methods were
ineffective. The fact that B. umbellatus was already present at
the test sites suggests that drawdown is an ineffective control mea-
sure (Madsen et al. 2017).

Usingmechanical harvesting tomanage aquatic nuisance plants
has not been investigated for B. umbellatus. Clipping, done often
enough, should reduce nutrient stores in the rhizome complex of
B. umbellatus comparable to repeated contact herbicide applica-
tions. Therefore, the purpose of this study was to evaluate short-
(over a growing season) and long-term (across years) efficacy of
mechanical harvesting on B. umbellatus.

Materials and Methods

Experiments were conducted twice (2016 and 2017) at the R.R. Foil
Plant Research Center’s Aquatic Plant Research Facility at
Mississippi State University in 378-L (100-gal) mesocosms. Six
treatments were used over a 4-mo period: a nontreated reference,
plants that received two submersed diquat (Harvester® Aquatic
Herbicide, Applied Biochemists, 1200 Bluegrass Lakes Parkway,
Alpharetta, GA 30004) applications (0.19 ppmv ai) 1 mo apart,

plants clipped twice per month (biweekly, eight clippings), plants
clipped every month (four clippings), plants clipped every other
month (bimonthly, two clippings), and plants clipped once per
growing season (Table 1). Mesocosm water treated with diquat
was in contact with plants for 12 h, then mesocosms were drained
and refilled. Pots (3.78 L) filled with sand amended with fertilizer
(Osmocote® 19-6-12 fertilizer, Scotts-Sierra Horticultural
Products, 14111 Scottslawn Road Marysville, OH 43041) at a rate
of 2 g L−1 of sand were planted with two 8-cm-long (3-inch-long)
B. umbellatus rhizome segments. Ten pots of B. umbellatus were
placed in each mesocosm. Mesocosms were filled with water to
a volume of 216 L (16-inch depth), and plants were given 1.5
mo to become established. Each treatment was replicated in three
mesocosms. Two extra mesocosms were planted for harvesting
pretreatment data for a total of 20 mesocosms and 200 pots.
Pretreatment plants (20 pots) were harvested the day before the
first treatments were administered. Harvested plant tissues were
separated into above- and belowground biomass, placed in labeled
paper bags, and dried in a forced-air oven at 70 C for 5 d. Rhizome
bud number was recorded before drying. Biomass weights were
recorded after drying.

Mechanically treated plants were clipped approximately 5 cm
(2 inches) above the sediment surface. Clipped biomass was
removed from themesocosms to simulatemechanical control from
harvesting-boat operations in field settings. At 16 wk after initial
treatment (WAT), half the pots in each mesocosm were harvested
in the same manner as pretreatment samples. The remaining pots
were harvested at 52 WAT.

Samples were analyzed statistically using a mixed model to
determine whether significant differences existed in mean biomass
and bud density. Treatment was considered a fixed variable, while
year of experiment (2016 and 2017) was considered a random var-
iable. Differences in means were further separated using a Tukey’s
post hoc test. All statistical tests were conducted at the P ≤ 0.05
significance level in the statistical software R using the ‘lmerTest’
and ‘emmeans’ packages (R Core Team 2017).

Results and Discussion

At 16 WAT, aboveground biomass of B. umbellatus was only
reduced by diquat treatments (80%) and biweekly clippings
(95%) when compared with reference plants (Figure 1). However,
control of aboveground biomass at 16 WAT was not significantly
different between all clipping and diquat treatments. At 52 WAT,
only biweekly clippings had reduced B. umbellatus aboveground
biomass (95%) compared with reference plants, but monthly
clippings had the same level of control as biweekly clippings.

Butomus umbellatus belowground biomass was reduced 71% by
diquat, 76% with monthly clippings, and 91% with biweekly clip-
pings when compared with reference plants at 16 WAT. Clipping
every other month (bimonthly) had the same level of control on
B. umbellatus belowground biomass as biweekly clippings at 16
WAT. At 52 WAT, only monthly (84%) and biweekly (99%) clip-
ping reduced belowground tissues compared with reference plants;
however, the two sequential diquat applications caused the same
level of control as both monthly and biweekly clippings, while
bimonthly clippings had the same level of control as diquat and
monthly clippings (Figure 1).

Reduction of B. umbellatus rhizome bud density was only
achieved by diquat (66%), monthly (70%), and biweekly (81%)
clippings compared with reference plants at 16 WAT. Rhizome
bud density was still controlled by diquat (54%), monthly

Management Implications

Butomus umbellatus (flowering rush) is an invasive plant species
with an adaptive growth form capable of growing in aquatic and
wetland habitats. This requires resource managers to control
B. umbellatus in a variety of environments, and resource managers
therefore need multiple control strategies. In most aquatic environ-
ments, B. umbellatus is controlled with the use of herbicides labeled
for use in aquatic sites; however, in some locations herbicides may be
prohibited ormay not be a feasible control option due to high rates of
water exchange. In areas such as these, mechanical control in the
form of clipping and harvesting may be a suitable control option.
However, mechanical removal requires frequent repetition at
2-wk intervals, if control is the ultimate objective. Monthly or
bimonthly clipping had varying degrees of success for control of
B. umbellatus tissues and propagules. Two potential negative effects
of mechanical control are spawn disturbance of fish or other desir-
able aquatic fauna and spreading B. umbellatus propagules in hydro-
soil; areas targeted for clipping would need to have floating booms
placed around them to capture floating propagules for containment
and later disposal.
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(78%), and biweekly (89%) clippings compared with reference
plants at 52 WAT. Bimonthly clippings had the same level of
control over B. umbellatus rhizome buds as diquat at 52 WAT
(Figure 1).

These data are the first to provide evidence that mechanical
control of B. umbellatus is possible. In locations where herbicide
use is restricted, mechanical harvesting may be the only option
to control B. umbellatus. However, there are concerns that should
be considered before initiating a mechanical harvesting program.
For example, the timing of clipping/harvesting would need to be
such that it did not coincide with spawning of desirable fish species,
as the cutter head would likely kill or injure any fish or other desir-
able aquatic fauna it contacts, or kill these same organisms by trap-
ping them in harvested vegetation (Booms 1999; Mikol 1985; Wile
1978). Also, the cutter head could disturb spawning sites, as veg-
etation below the cutter head would move in such a way as to dis-
turb the habitat around it. Additionally, if B. umbellatus is growing
in a heterogeneous plant stand with desirable native species, clip-
ping/harvesting activities may need to be avoided or timed when
B. umbellatus would be controlled and desirable plant species
avoided (e.g., B. umbellatus is the only sprouted species present
or the tallest species).

Similar studies examining mechanical control of other invasive
aquatic and wetland plant species have also shown that control was
enhanced with higher-frequency clipping events (Derr 2008; Wile
1978). While effective at high intensity (every 2 wk), mechanical
control via clipping/harvesting may be too time-consuming and
expensive (Bryant 1970, 1974; Charudattan 2001; Haller 2009) to
see wide use among resource managers dealing with B. umbellatus
infestations. Culpepper and Decell (1978) found that less than
9,072 kg (10 tons) of waterhyacinth [Eichhornia crassipes
(Mart.) Solms] and less than 4,536 kg (5 tons) of hydrilla [Hydrilla
verticillata (L. f.) Royle] could be removed per hour from a body
of water via clipping/harvesting; which was lower than their
minimum stated management goal of 72,575 kg (80 tons) h−1.
Culpepper and Decell (1978) also found that the pace for
clipping/harvesting operations is usually set by the time needed
to transport clipped vegetation to shore and/or disposal sites rather
than the rate at which the harvester operates.

If B. umbellatus populations are large, mechanical clipping/har-
vesting may not provide control, as harvester boats may not be
capable of clipping an entire infestation in 2 wk due to their slow
speeds (Culpepper and Decell 1978) and need to periodically off-
load clipped vegetation (Culpepper and Decell 1978; Haller 2009;

Newroth 1979; Unmuth et al. 1998). Additionally, harvesting oper-
ations can release vegetative propagules from clipped aquatic
plants, which can drift away in water currents and infest new sites
(Culpepper and Decell 1978; Haller 2009). Placing floating booms
around B. umbellatus sites targeted for clipping may help to con-
tain dislodged propagules for later collection and disposal.

Mechanical harvesting could be effectively used as part of an
integrated management approach for B. umbellatus in areas where
herbicide use may not reach an appropriate concentration expo-
sure time. Similarly, clipping/harvesting could be useful as a
short-term control option for small B. umbellatus colonies until

Table 1. Diquat and clipping treatments.

Treatment
no. Treatment

No. of
applications Timing

1 Reference NA NA
2 Diquat 0.19

ppmv ai
2 June, July

3 Clipped once per
season

1 June

4 Clipped every other
month (bimonthly)

2 June, August

5 Clipped once per
month (monthly)

4 June, July,
August,
September

6 Clipped twice per
month (biweekly)

8 June (2×), July
(2×),
August (2×),
September (2×)

Figure 1. Butomus umbellatus aboveground biomass, belowground biomass, and
rhizome bud density at 16 and 52 wk after initial treatment (WAT). Solid lines represent
pretreatment levels of each plant metric. Error bars are 1 standard error of the
mean. Bars sharing the same letter are not statistically different from one another at
the P = 0.05 level of significance. Time periods (16 and 52 WAT) were analyzed
separately.
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resource managers can identify other more suitable control meth-
odologies for their management areas. Regardless, these data indi-
cate that both chemical and mechanical options can be effective
alone, and possibly together, to manage this troublesome plant.
Future studies should investigate the use and timing of clipping/
harvesting as part of an integrated control strategy using chemical,
physical, and mechanical control techniques on B. umbellatus.
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