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Abstract
This paper presents a new feature based approach for place recognition using 2D LiDAR (Light Detection And
Ranging) data. The main contribution lies in the mapping process. It includes a keypoint selection strategy to model
places with persistent keypoints from concatenated LiDAR scans. Our objective is to achieve map data reduction
while maintaining good place recognition performace. LiDAR scans are concatenated with a registration algorithm
and keypoints are extracted from each scan. Based on a regular grid, our approach measures the occurrence of sim-
ilar keypoints in each region of interest defined by a grid cell. Only keypoints with occurrences beyond a threshold,
qualified as stable keypoints, are kept in the place model called submap. The environment is therefore modeled as a
collection of submaps, which constitutes the global map. Place recognition consists in submap matching followed
by a two steps geometric verification. In the first stage, optimal parameters are set using corrected data. Mapping
parameters satisfy six criteria among which is the spatial distribution distance, which represents another contri-
bution of our work. It gives a measure on how well keypoints are distributed in space. Place recognition optimal
parameters are set through global localization. In the second stage, the approach is evaluated using raw data in the
contexts of global localization, and loop closure detection in a SLAM framework. The results obtained using pop-
ular real data sets show that our approach achieves significant map data reduction (up to 92%) while maintaining
good place recognition performance, comparable to state-of-the-art methods.

1. Related work
The work presented in this article is in the area of place recognition, which is an important component of
localization and mapping fields. Using perceptual data, place recognition is the process of modeling the
current robot’s environment called place, in order to detect it, in a later stage, as an already visited place.
This information is crucial in applications such as loop closure in SLAM or global localization. As an
active research topic, place recognition literature is constantly growing, especially for image and 3D
LiDAR modalities. Because of richer data provided by 3D LiDARs and cameras, and since the former
sensors are becoming more accessible nowadays, place recognition literature is more furnished with
works using these sensors and references on place recognition with 2D LiDAR data remain insufficient.
Nevertheless, 2D LiDAR data present the interest of being considerably lighter and 2D sensors are still
widely spread as compared to their 3D counterparts.

There is no unique classification of place recognition approaches in the literature, but they can
coarsely be grouped into two major categories. There are methods based on photometric data and
methods based on geometric data. In the literature, methods of the first category are often qualified
as appearance based, although this term is sometimes used for the second category as well. In addition,
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since there are works using both data types thanks to sensors such as depth cameras [1, 30], the limit
between the two categories is not always clear.

Early works on modeling the appearance with photometric data use bag of visual words [2, 3].
One popular algorithm in this context is FAB-MAP for fast appearance based mapping, introduced by
Cummins and Newman [4, 5], a probabilistic approach for place recognition in the context of SLAM.
The authors model the appearance of a place with bags of words (BoW), based on a variant of the SURF
descriptor [6]. In ref. [7] loop closure is achieved with image retrieval using BoW in a Bayesian scheme.
The authors in ref. [8] obtain better performance than FAB-MAP thanks to feature-covisibility which
exploits spatial information between features allowing better robustness to visual aliasing. seqSLAM
introduced in ref. [9], models the appearance with image sequences. In a comparison to FAB-MAP the
authors show the ability of seqSLAM to cope with changing environments. Due to sequence matching,
the original algorithm is time consuming and an improved version is proposed in ref. [10].

Geometric data based approaches can be split into two groups, depending whether they use 2D or
3D data. Recently, 3D sensors became relatively affordable and less bulky. They offer a rich informa-
tion on the environment and are, therefore, more attractive. Magnusson et al. [11, 12] exploit the NDT
(Normal Distribution Transform) surface representation for 3D based place recognition for loop detec-
tion in SLAM. They use feature histograms based on surface orientation to describe a place. In ref. [13]
rotation invariant 3D features are defined and combined through machine learning using AdaBoost.
The authors perform real-time loop closure where no a priori knowledge of the robot’s displacement is
required. Muhammad and Lacroix [14] introduce small sized signatures for 3D cloud description applied
to loop closure in outdoor environments. Local surface normals quantized in an histogram form these
signatures. Place recognition is achieved by signature comparison using histogram distance. In ref. [15]
fast point features histogram features are used in FAB-MAP instead of visual features for loop closure
detection in difficult environments, such as austere tunnels. The authors found that their solution shows
less performance in terms of recall as compared to FAB-MAP with visual data.

Because 2D LiDAR data are lighter than 3D LiDAR data they are suitable for applications such as
large-scale mapping. However, this also means that 2D LiDAR data is less descriptive of the environ-
ment. Research works in this field aim at solving this dilemma by effectively exploiting this data type.
One of the earliest works on 2D LiDAR based place recognition is that of Bosse and Zlot [16]. The
authors developped a method for large-scale outdoor mapping that allows them to produce the largest
real-world SLAM map at the time of their publication, with almost 30 km length. Their method uses
range data provided by a pair of 2D LiDARs mounted back-to-back on a vehicle’s roof. The method
proceeds with two levels, local and global. In the local stage, laser scans are concatenated pairwise to
form local maps of a certain size, called submaps. Submaps are described with histogram based sig-
natures. During the global stage, each newly built submap is compared to previous submaps thanks
to their signatures, in order to detect loop closure events. The classification based approach in ref. [19]
shows better performance than Bosse’s and Zlot [16] algorithm on smaller maps, and requires no manual
parameter settings or heuristics. Tipaldi et al. [20] introduce a new scan signature called GFP for geomet-
rical FLIRT [21] (fast laser interest region transform) phrases. Similarly to bag of words, a vocabulary
of FLIRT words is learnt from a learning database. Every scan is translated into a clockwise-ordered
sequence of FLIRT words. FLIRT is a 2D LiDAR operator introduced by the same authors in ref. [21],
and which is used in our work for keypoint detection and description. In [23] Himstedt and Maehle
propose a new scan signature called GSR (geometric surface relations) that outperforms GFP [20]. It
is based on GLARE (geometrical landmark relations) operator [24] from the same authors. This sig-
nature makes use of geometric relations within cooccuring features in a scan. Feature ordering is also
exploited in ref. [25], in addition to neighbor relational information relating neighboring scans in the
SLAM graph. Here, place recognition is addressed as a BoW based document retrieval problem. In ref.
[26] the authors introduce geometric relation distribution, a new signature for place recognition in land-
mark based maps. This signature encodes pairwise geometric relations (angles and distances) among
landmarks of a local map into a probability density.
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We have briefly reviewed some popular works on place recognition using photometric or geometric
data. Most of them rely on local features that are quantized into signatures. Some approaches model
the place with an individual acquisition while others require more adjacent acquisitions resulting in
a sequence of images or local maps, depending on data modality. In our case, local features from
cumulated scans are combined to model a place.

The remainder of this paper is organized as follows. Section 2 provides a summary on our approach
and presents the data sets used in our evaluations. The mapping and the place recognition processes
are detailed in Sections 3 and 4, respectively. Parameter setting for each process is given in Section 5.
In Section 6, we evaluate our approach and discuss the obtained results. Finally, our conclusions and
perspectives are given in Section 7.

2. Introduction
We are interested in performing 2D LiDAR place recognition based on local features, namely 2D key-
points. Local feature based methods, such as in refs. [20−25], model a place with keypoints extracted
from individual laser scans. With such a representation of the environment, map data keeps growing
with the number of laser readings. Our objective is to achieve map data reduction while maintaining
high place recognition performance. Instead of modeling each place with features from one scan, a
place can be modeled with features extracted from multiple concatenated scans. This principle was used
in refs. [16−18], where the authors model a place with keypoints extracted from adjacent scans regis-
tered to form local maps or submaps. We follow a similar reasoning, however, we proceed differently
for keypoint selection and submap construction and matching. In our case, keypoints are detected from
every new scan inserted in the submap using the state-of-the-art operator FLIRT [21]. As scans are con-
catenated, some regions of interest are more prone to produce similar detector responses than others.
We want to identify regions with higher probability of producing similar detector responses, and select
from each of these regions a representative keypoint. For every region of interest, we count the occur-
rences of similar keypoints from the concatenated scans. This occurrence count, normalized with the
number of scans reaching the region of interest, constitutes the keypoint stability score in our keypoint
selection strategy. Only keypoints selected from regions with a high keypoint stability score are kept in
the place model. These keypoints, which constitute the submap, have more chances of being extracted
in a later stage, with close descriptor values. Submap termination is based on two major criteria, among
which is the spatial distribution of keypoints and which represents another contribution of our work. To
the best of our knowledge, such stability score estimated online, for 2D LiDAR place recognition with
map data reduction was not done before. The results obtained using popular real data sets show that our
approach achieves significant map data reduction (up to 92%) while maintaining good place recognition
performance, comparable to state-of-the-art methods.

The mapping process consists of two levels of hierarchy, local and global. As schematized in the
dataflow of Fig. 1, the local mapping models places from cumulated scans to build local maps, also called
submaps. The global map is the list of submaps from all mapped places. Depending on the application,
the global map can be built online, for instance in the case of SLAM, or offline as it is the case for global
localization.

Place recognition dataflow is depicted in Fig. 2. It consists in a submap matching process followed by
a geometric verification step. For a submap describing the current location, place recognition looks for
a matching submap in the global map. The global pose can therefore be infered from this information.
In the subsection below, we give details on the data sets used in our experiments.

2.1. The data sets
For all experiments in this paper, we use real data from popular 2D LiDAR data sets. More specifically,
three data sets corresponding to different indoor environments are used. The first two data sets were
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Figure 1. Global and local mapping dataflow.

Figure 2. Place recognition dataflow.

Figure 3. Map using corrected data FR079.

acquired, respectively, in Freiburg university buildings 79 and 101, while the third was acquired in
Seattle’s Intel Research Laboratory. For each data set, we need the raw data as well as the corrected
data. Raw data contain all acquired laser scans together with odometry poses. Corrected data contain a
minimal subset of laser scans together with corrected transforms provided by SLAM. We consider these
corrected transforms as ground truth transforms, which we also qualify in this document as the provided
transforms. Figures 3−5 show maps obtained from the corrected data for these data sets.

Corrected data sets are named FR079, FR101, and Intel, corresponding respectively to Freiburg
building 79, Freiburg building 101, and Seattle’s Intel Research Laboratory. FR079 and Intel are pro-
vided in ref. [35], and FR101 is available in ref. [31]. Similarly, raw data are named FR079_r, FR101_r,
and Intel_r, all are available in Freiburg university’s database [31]. The number of scans in each data set
is given in Table I. Each environment has its characteristics. Building FR079 contains a long corridor
which is subject to visual aliasing. Building FR101 is an open space, with less geometric features and
can be assimilated to an outdoor environment. Intel Research Laboratory also presents a long corridor,
but more importantly it features many symmetries. On the other hand, the raw version of this data set
contains the largest number of scans. The evaluations in this paper were all run on a personal computer
with Intel i3 − 3217U CPU at 1.80 GHz, and 8 GB of RAM. Our approach is detailed, in the next two
sections, through its two major components that are the mapping and the place recognition processes.
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Table I. Number of scans in corrected and raw data.

Dataset FR079 FR079_r FR101 FR101_r Intel Intel_r
Number of scans 1464 4934 292 4758 2672 13,631

Figure 4. Map using corrected data FR101.

Figure 5. Map using corrected data Intel.

3. Mapping process description
The mapping process models the environment as a collection of places. We define a place as the imme-
diate environment surrounding the robot. Therefore, a place corresponds to a local map, also called
submap. Our mapping approach is hierarchical with two levels of hierarchy (see Fig. 1). The lowest
level is the local mapping, which is in charge of submap construction. The highest level is the global
mapping, which collects all submaps produced by the local mapping while exploring the environment,
in a list representing the global map. In the following subsection we expose the local and global mapping
algorithms.

3.1. Local mapping
Here, we are interested in modeling places with local maps of the environment using 2D LiDAR local
features. Instead of modeling a place with features extracted from a single laser reading, our approach
locally collects information from multiple scans in order to describe a place with persistent features only.
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(a) (b)

Figure 6. Illustration of the mapping process. Two 2D LiDAR scans acquired from two positions i and
j corresponding to blue and red colors.

We use FLIRT [21] operator to extract 2D keypoints from individual scans. This operator combines
a curvature-based detector with a beta-grid descriptor. It has shown good repeatability and precision
performance in refs. [21, 22]. Its multiscale capacity allows to cope with varying laser points density.
In addition, this operator is orientation invariant. More details on FLIRT operator are found in refs.
[21, 22]. Figure 6(a) shows two scans corresponding to sensor poses i and j, represented by the blue
and red dots, respectively. FLIRT features are symbolized with blue triangles and red stars, accordingly.
For instance, the region of interest a contains two keypoints (one from each scan) and detected with
different scales. They have different descriptor values (defined by support points spatial distributions in
each neighborhood, delimited by the blue and red circles, respectively). Conversely, region b contains
two keypoints with close descriptors at different scales. We qualify such keypoints as stable or persistent.
With an appropriate keypoint selection we can obtain a compact and yet consistent representation of the
environment. For instance, by keeping one keypoint instance from regions with persistent keypoints only
(such as in region b). Stable keypoint selection strategy is, therefore, key component of our work. It is
detailed in the next two subsections.

3.1.1. Keypoint stability score
In order to identify regions with high probability of producing similar detector responses, we need to
cumulate several scans and count, for each region of interest, the number of keypoint occurrences having
similar descriptor values. The submap is, then, built through online selection of stable keypoints among
all keypoints from concatenated scans. Scans are registered with ICP [29] based on libPointMatcher
open source library [32]. As stated before, we use FLIRT operator to extract and describe 2D keypoints
from individual scans. The FLIRT implementation used in this work is provided by the open source
library FLIRTLib [33].

A region of interest or ROI is a region of the environment containing at least one keypoint. In order
to count keypoint occurrences in different ROIs we need to define this region in the 2D space. One
convenient way to do this is through a regular grid G. Keypoints projected on the grid are grouped into
individual cells. In Fig. 6(b), an example of such grid is shown. The grid size adapts with cumulated
scan limits in a way that does not affect ROIs’ content. Details of how G is built and updated, as laser
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scans are concatenated, are given below.

G(i, j) = {H, h, m, ns} (1)

G(i, j) is a cell of G at row i and column j. For the sake of simplicity, we will mention row and column
indexes for elements of G(i, j) only when necessary. h and m are, respectively, the laser beam hit and
miss counts in this cell, while ns counts the number of laser scans reaching the cell. It is incremented
each time a scan produces a value of h greater than zero. H is a list that contains keypoints history for
the cell G(i, j). Its elements are keypoint sets having similar descriptor values, such as

H = {H0, H1, · · · , Hn−1} (2)

Hk with k in [0, n − 1] is a set of keypoints with similar descriptor values, called history cluster. Based
on the work of Tipaldi et al. [22], descriptors are similar when the symmetric χ 2 distance between them
is within the value 0.4. For every new keypoint falling in G(i, j), we look for a match with keypoints
in every history cluster of H. If a match is found, the keypoint is inserted in the corresponding cluster.
Otherwise, a new history cluster is created with the new keypoint.

Keypoint basic stability score sb(i, j) for every ROI delimited by G(i, j) is then easily defined as

sb(i, j) = occ
ns

(3)

occ corresponds to the occurrence count in the largest history cluster in H, such as

occ = |Hq| (4)

with q being the index of the largest history cluster in H. In practice, H is sorted by decreasing cluster
size. In that case, q = 0. Also, this means that for a new keypoint projected in G(i, j), the largest his-
tory clusters are the first to be considered for a match. In order to use keypoints from areas with high
occupancy probability, the stability score in Eq. (3) can be weighted with the density d as follows.

s(i, j) = d × sb(i, j) (5)

where d is the occupancy density defined by d = h/(h + m). In addition, one can set a lower bound nsmin

for ns (if ns < nsmin then ns = nsmin). This can be used to impose a minimal scan number reaching a
ROI before considering its contribution fully. We use the score defined in Eq. (5) with nsmin = 4. The
following subsection details the submap construction based on the keypoint stability score exposed here.

3.1.2. Stable keypoints selection for submap construction
Thanks to the stability score above, we can now select stable keypoints to be included in our submap as
scans are concatenated. The data structure of a submap S is defined below.

S = {P, F} (6)

where P = {p0, · · · , pnp−1} are the np global poses corresponding to the concatenated scans used during
the construction of S. F is the set of stable keypoints expressed in the local frame of S named pref and
which corresponds to the first element of P. The local mapping algorithm is given below.

Algorithm 1 builds a submap S starting at scan index iinit from a data set containing N laser scans and
their corresponding global poses. Functions ReadLaserData and GetPose respectively output the current
local laser reading L and the corresponding global pose p. Depending whether we use ground truth
transforms for scan concatenation or a registration algorithm, GetPose may simply read the provided
transforms, or employ scan registration to infer the global pose. ps is the current pose with regard to the
submap reference frame pref. G and S are updated with the functions UpdateG and UpdateS as follows.

• UpdateG(G, ps, L)

– Transform L data in the local frame of S thanks to ps such as Ls = ps ×L
– Update dimensions of G according to Ls
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– Update h, m, and ns counters in G with Ls

– Extract FLIRT keypoints from Ls and save them in the current keypoint list K
– For every keypoint in K

∗ Find its corresponding cell in G, G(i, j) and update its keypoint history H as described in
Section 3.1.1.

∗ Compute the corresponding stability score s(i, j) according to Eqs. (3)−(5)
• UpdateS(S, p, G)

– Insert global pose p in the list P
– For every cell G(i, j) with H(i, j) �= {}

∗ If s(i, j) ≥ smin select a keypoint from Hq(i, j) (for instance, the most recent keypoint) and
save it in the stable keypoints list Ks

– Overwrite the list of keypoints F with Ks

3.1.3. Submap completion criteria
During the mapping process, while exploring the environment, we consider that a robot has finished
visiting the current place when overlap ratio ρ between the current and initial submap areas drops below
a threshold. There are different ways to estimate this overlap ratio. For instance, it can easily be computed
from occupancy grid map as follows.

ρ = aint

auni
(7)

where aint and auni are respectively, the intersection and the union areas between initial and current occu-
pancy grids. The current occupancy grid map is available in G. This method requires to keep in memory
the initial occupancy grid corresponding to the grid built with the first scan only, during submap con-
struction. For the computation of aint and auni it is enough to use binary grids. Hence, keeping the initial
grid will have negligible memory footprint. In a study not reported in this document, we empirically set
the overlap ratio threshold ρmin to 0.75. In addition to this criterion, we introduce a submap quality mea-
sure that can serve as an additional criterion for submap termination. It is defined in the the following
paragraph.

Keypoint spatial distribution: a submap quality measure. As scans are concatenated, the population of
stable keypoints in S evolves. Their spatial distribution with regard to the distribution of laser points in
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(a) (b)

Figure 7. Illustration of spatial distribution quantification for keypoints and laser points.

the submap is an interesting feature to evaluate the submap quality. In some way, this parameter measures
the descriptiveness of the submap. It is defined as follows.

δ = dist(hlp, hkp) (8)

where dist is an histogram distance function, in our case it corresponds to the symmetric χ 2 distance.
hlp and hkp correspond to the laser points histogram and the keypoints histogram, respectively. They are
2D binary histograms obtained from the occupancy grid map extracted from G. Figure 7(a) shows the
occupancy grid map with laser points in white and keypoints surrounded with red circles. We use another
grid D to divide space into cells of size l. In our case l is set to 0.5 m, which represents a suitable spatial
discretization step for indoor environments. Laser points histogram hlp is a 2D matrix with the same
dimensions as D. When a cell D(i, j) contains a laser point, hlp(i, j) takes value 1, which corresponds to
all non black cells in Fig. 7(b), otherwise it is set to 0. The same reasoning is applied to hkp, for which
cells take value 1 for keypoints only, corresponding to the red cells in Fig. 7(b). The histograms are
normalized with the respective population in each category of points. Thus, the maximum value for the
histogram ditance δ is 1.

The submap S is complete if the overlap ratio ρ, defined in Eq. (7) becomes inferior to ρmin = 0.75.
Furthermore, the spatial distribution distance defined in Eq. (8) can be used as an additional submap
completion criterion, as we will see in Section 5.2.

3.2. Global mapping
We have seen, so far, how to build a local map, corresponding to a place. The global map is a collection of
places and is, therefore, represented by a list of submaps with a certain overlapping between successive
submaps. The following pseudo-code (Algorithm 2) summarizes the global mapping process that results
in the global map M, using N laser scans.

The function LocalMapping calls the local mapping Algorithm 1. It takes as argument the index iinit

and builds a new submap S starting from scan index iinit. When S is complete (S �= {}) it is inserted as a
new element of the list M. The boolean variable Success is then set to true, and iinit is updated such that
the next submap starts at the scan positioned after the last scan in S. Therefore, ilast corresponds to the
size of P, which gives the number of poses (and the number of scans) in S. The global mapping ends
when LocalMapping returns an empty submap. When this happens, it means that LocalMapping has
reached final scan index N in the data set, without being able to complete the submap S. In practice,
this occurs when iinit becomes too close to N (or becomes larger than N), in such a way that there is not
enough scans (or no more scans) left to complete a submap.

https://doi.org/10.1017/S0263574722000613 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000613


Robotica 3795

4. Place recognition process description
The previous section detailed our modeling of places with submaps. Place recognition sums up to
submap matching. This matching process is followed by a geometric verification step intended to filter
out wrong place matches. The following two subsections describe the submap matching process and the
geometric verification method.

4.1. Submap matching
A submap consists of a list of stable keypoints. For submap matching we can either match individual
keypoints or use a submap signature, for instance in the form of an histogram. In this work, we follow
the first approach based on a nearest neighbor pairing. The second approach will thoroughly be studied
in another work.

To describe our submap matching algorithm, let us consider two submaps Sr and Sc. The first is the
reference submap belonging to the global map M, while the second is the currently built submap and
for which we look for a match in M. Our matching algorithm proceeds as follows.

where pair is a pair formed by keypoint kpc from Fc and its matched keypoint kpr from Fr. Keypoints kpc

and kpr are matched if the distance between their descriptors is below 0.4 and if none of them was already
matched before. The set pairs contains all unique matches between keypoints from Sr and keypoints from
Sc. We remind that coordinates of keypoints in pairs are expressed in their respective submap coordinate
systems, corresponding to the first elements of Pr and Pc. The two submaps are considered a successful
match if there is enough unique matches between them. We will see later how we set the threshold μ.

For the submap Sc, there may be more than one match in M. All successfully matched submaps from
M are stored in the candidates set C. This set is sorted by increasing average descriptor distance, between
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matched keypoints in the set pairs. Hence, the first element in C is the best match with Sc in terms of
average descriptor distance.

4.1.1. Pose estimation
Depending whether we perform global localization or SLAM, the global map M is either complete or
in progress. In both cases poses in Pr are known and expressed in the global frame. The poses in Pc for
submap Sc are expressed with regard to Pc[0] (in the case of global localization) or global but inaccurate
(in the case of SLAM). The estimated global pose p̂ is obtained using RANSAC [28] which takes as
inputs the local keypoints in Fr and Fc, and returns the rigid transform T̂c

r expressing the pose Pc[0] with
regard to Pr[0] (X[0] symbolizes the first element of the set X). p̂ is given by Eq. (9)

p̂ = Pr[0] × T̂c
r × pc (9)

where pc corresponds to the last element of Pc expressed with regard to Pc[0].
We use RANSAC implementation provided in the FLIRT open source library from ref. [33]. The

algorithm randomly selects a pair of descriptor based matches and infers a rigid transform relating their
2D coordinates. Applying this transform to bring the two keypoint sets in the same frame, the algorithm
counts the number of inliers having an Euclidean distance below an acceptance threshold (set to 0.1 m
in our case, based on the works in ref. [22]). The random selection is repeated for a number of iterations
and the consensus corresponds to the largest inliers set, for which the infered transform T̂c

r is returned
as output.

4.2. Geometric verification
In the literature, place recognition usualy includes a geometric verification step, to eliminate wrong
place matches. Indeed, the appearance of a place may have more than one match in the global map,
which do not necessarily correspond to the same location. This is mainly due to visual aliasing and to
environments featuring symmetries. This issue is even worsen in the case of 2D LiDAR data, because
of its poor nature. The main idea behind geometric verification is to verify the validity of the place
matching using geometric criteria, such as the consistency of the rigid transform relating the matched
places. In our case, this verification is applied on the first nc elements of the set C defined in Section 4.1.
We set nc equal to 500 in order to consider most of the candidate matches during geometric verification.
Our geometric verification, described below, is twofold.

4.2.1. First geometric verification
The first level of verification imposes a minimal size for the consensus in RANSAC [28]. In ref. [22],
Tipaldi et al. found that the minimal consensus size is 9 pairs. We apply this constraint as a first geometric
verification. If it is satisfied, the algorithm proceeds to the second verification.

4.2.2. Second geometric verification
In the first verification, a minimal size for RANSAC [28] consensus is imposed. However, this is not
enough since we are not sure that all elements of the consensus constitute descriptor based matches.
Indeed, they are paired using Euclidean geometric distance only. For the second verification, let us con-
sider the case of a perfect submap match, resulting in a correct loop transform T̂c

r . Using this transform
to bring the keypoints from both submaps in the same coordinate system, we obtain a keypoint overlap
area. Our assumption is that most keypoint matches in this area should be correct matches, not only
from a geometric point of view, but also with their descriptors. However, since we are not in an ideal
case (the detector and descriptor are not ideal, and the scans are not perfectly aligned), we expect that
only a certain proportion γ of keypoints in that area has close neighbors that are also matched based
on their descriptors. We qualify these points as "doubly” matched keypoints. A pair of keypoints is said
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doubly matched when the symmetric χ 2 distance between their descriptors is within 0.4 and the geo-
metric distance between their positions does not exceed the threshold λ, set in Section 5.2. We define
the proportion γ in Eq. (10) below.

γ = 2 × nol
dm

nol
r + nol

c

(10)

where nol
dm stands for the number of doubly matched keypoints (dm subscript) in the overlap area (ol

superscript), nol
r and nol

c are, respectively, the number of keypoints from Sr and Sc in that area. The higher
is γ the better is the submap match quality. In the ideal case, every keypoint from one submap in the
overlap area has a doubly matched keypoint in the other submap, hence nol

dm = nol
r = nol

c , meaning that γ

would be equal to 1, its maximal value. The submap Sr is finally considered a valid match with Sc if γ

is beyond a threshold γmin, which value is set in Section 5.2. The overlapping area is approximated by
the intersection of the bounding boxes delimited by keypoint coordinates from each submap.

5. Parameter setting
In the previous two sections, we detailed our approach through its mapping and place recognition com-
ponents. In this section, we show how to set parameters in each component. We have identified a total
of five parameters listed below. Parameter setting requires running the mapping and place recognition
algorithms for a considerable number of parameter combinations. To save execution time, we use the
corrected data sets described in Section I. In that case, instead of running ICP for scan registration dur-
ing submap construction, scans are directly concatenated using the provided transforms. We will show
in Section 6 that the parameters found here can be generalized to raw data.

• Mapping parameters

– lg : metric cell size in G
– smin : minimal threshold for keypoint stability score

• Place recognition parameters

– μ : minimal number of unique keypoint matches required for submap matching
– γmin : minimal ratio of doubly matched pairs in the second geometric verification
– λ : maximal threshold for geometric distance between doubly matched keypoints in the

second geometric verification

5.1. Mapping parameter setting
We assess the mapping algorithm for different values of lg and smin. In order to find optimal values for
these parameters, we define the following quality criteria that the map should meet.

• Compression ratio − The compression ratio is the ratio between the number of stable keypoints
in the global map and the total number of keypoints from all scans. The lower it is, the higher is
map data reduction.

• Average number of scans in a submap − This criterion measures an average of the number of
scans in a submap, from all the submaps in the global map. This gives a sense of how many scans
are required to map a place.

• Average number of keypoints in a submap, and
• Average spatial distribution distance − The spatial distribution distance measures the difference

between the spatial distribution of keypoints and that of all laser points in a submap, as defined
in Eq. (8). The two latter quantities inform us on keypoint population in the submaps. A submap
must contain enough keypoints to be distinguishable among other places. On the other hand,
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Evolution of mapping quality criteria as a function of parameters smin and lg.

these keypoints should be well distributed in space. The lower is the spatial distribution distance
the better is the submap description of a place.

• Total number of submaps in the global map
• Average elapsed time in building a submap

The six criteria above are evaluated while varying smin from 0 to 1 with a step of 0.1. This is repeated
for three grid cell size values lg = 0.05 m, lg = 0.1 m, and lg = 0.15 m.
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Table II. Mapping criteria results for optimal parameter values, and for the three corrected maps.
Compress. corresponds to the average compression ratio, # Scans is the average number of scans
required to build a submap, # Keypoints is the average number of stable keypoints in a submap, Distrib.
is the average spatial distribution distance, and # Submaps is the number of submaps in the global map.
Time is the average spent time in submap construction.

Data set Compress. #Scans #Keypoints Distrib. #Submaps Time (s)
FR079 0.12 5.20 17.80 0.45 281 0.057
FR101 0.12 4.04 14.79 0.54 72 0.109
Intel 0.15 5.83 16.04 0.46 457 0.075

We want to maximize keypoint population in a submap while minimizing the compression ratio, the
spatial distribution distance, the number of scans in a submap and the elapsed time in building a submap.
Observing Fig. 8, the values smin = 0.3 and lg = 0.1 represent a good tradeoff to reach this objective.
Table II summarizes the results obtained for all data sets using these parameter values. The compression
ratio is in the worst case equal to 0.15, corresponding to a reduction of 85% in map data, which is
significant. This reduction reaches 88% in the best case. Less than six scans, in average, are needed
to map a place. Submap keypoint population is beyond 14 keypoints with spatial distribution distance
not exceeding 0.54. This value is acceptable, considering that the maximal value for this distance is 1.
Submaps are built with a rate of 9.2 Hz in the worst case and 17.5 Hz in the best case.

5.2. Place recognition parameter setting
There are three main parameters in the place recognition process. The first is the minimal number of
unique keypoint matches, μ in the submap matching step described in Section 4.1. The second parameter
is the minimal ratio of doubly matched pairs γmin in the second geometric verification described in
Section 4.2.2. The third parameter is the maximal geometric distance λ separating a pair of doubly
matched keypoints, in the second geometric verification as well. In order to set optimal values for these
parameters, we measure performance of our algorithm in terms of precision and recall, in the context
of global localization. A global map M is built beforehand using the corrected data. Then, using these
data a submap Sc is started from an arbitrary global position, unknown to Sc. In this case, Pc[0] is the
identity matrix. Finally, the place recognition algorithm provides an estimate of the global pose p̂ by
finding for Sc the matching submap Sr in the global map M, as described in Section 4.1.1. In order to
avoid automatching with an identical submap from M, if a matched submap Sr is built with the exact
same scans as Sc, the match is ignored. A similar evaluation process is used in the literature, such as in
refs. [20–22, 25].

The algorithm is assessed for 4 values of μ and 11 values of γmin, respectively {5, 10, 15, 20}, and
[0, 1] with a step of 0.1. This experiment is run for λ = 0.05 m. In a later stage, the obtained optimal
parameters are used for performance evaluation with λ = 0.1 m. In addition to these parameters, we
impose a minimal number of keypoints in a submap to be consistent with the minimal required size for
RANSAC’s consensus (set to 9). Therefore, we decide to set 10 as a minimal size for the submap, in
terms of keypoint population. On the other hand, based on previous analysis on the mapping process
given in Section 5.1, in addition to the drop in overlap ratio, we impose another criterion for submap
completion that is the spatial distribution distance δ, which should not exceed 0.5, in order to guarantee
an optimal spatial distribution of keypoints. We remind that, based on the results obtained in Section 5.1,
the average submap’s keypoint population is beyond 10 and the average spatial distribution is around
0.5. This evaluation is performed using the data set FR079, then the obtained parameters are used for
FR101 and Intel data sets.

The pseudo code for global localization evaluation, used here, is given in Algorithm 4. The func-
tion PlaceRecognition combines submap matching and geometric verification. The function Evaluation
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(a) (b)

Figure 9. Global localization − Precision and recall for FR079, λ = 0.05 m.

computes precision and recall by comparing p̂ with p, respectively the estimated pose given by Eq. (9),
and ground truth pose. The pose estimate p̂ is considered correct if the translation and rotation errors,
with regard to p, are within 0.5 m and 10◦, respectively [20−22, 25, 26]. The global localization is per-
formed npos times corresponding to equally spaced starting positions for the current submap Sc. In our
case, npos = 500. The average precision and recall is computed over npos, for all combinations of place
recognition algorithm parameters. Precision and recall are defined as

precision = ncor

nacc
(11)

recall = ncor

npos
(12)

ncor and nacc correspond respectively, to the number of truly correct localizations (true positives), and the
number of localizations considered correct (accepted) by the algorithm (true positives + false positives).

Figure 9 shows precision and recall obtained for FR079 data set with λ = 0.05 m. In terms of preci-
sion, the results obtained with the four values of μ are similar and reach the maximum precision value
1, although one can notice that the precision is better for larger values of μ and γmin together. The impact
of μ and γmin is more visible when observing recall results. For μ = 10 and γmin = 0.4 we obtain a recall
and precision tradeoff that maximizes precision. Table III summarizes results obtained applying these
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Table III. Global localization results for corrected data, obtained with μ = 10,
γmin = 0.4, and λ = 0.05 m.

Data set Precision Recall # Scans Time (s)
FR079 1 0.71 6.05 0.067
FR101 1 0.67 6.98 0.020
Intel 1 0.73 7.81 0.088

Table IV. Global localization results for corrected data, obtained
with μ = 10, γmin = 0.4, and λ = 0.1 m.

Data set Precision Recall #Scans Time(s)
FR079 0.99 0.83 5.98 0.065
FR101 1 0.81 6.86 0.021
Intel 0.99 0.82 7.76 0.086

Table V. Optimal parameters.

Mapping parameters Place recognition parameters
lg (m) smin μ γmin λ (m)
0.1 0.3 10 0.4 0.05

values to the other corrected data sets. For all three data sets, we obtain a good recall level at precision
of 1, which is particularly recommended for loop closure detection in SLAM.

Table IV gives the results obtained for λ = 0.1 m. Comparing with the results in Table III, increasing
this parameter improves recall results while keeping the precision at a high level. The last two columns
in Tables III and IV inform us on the average number of scans required to perform a correct localization
and the corresponding spent time.

5.3. Summary of parameter setting
We summarize, here, the results obtained for the five parameters in our approach. Table V gives parame-
ter values for the mapping and place recognition algorithms. These parameters are imposed by mapping
quality criteria and place recognition objectives. For the mapping stage, we have defined in Section 5.1
six criteria among which the most important, in our case, is the map data compression ratio. Place recog-
nition parameter setting relies on precision and recall optimization in the context of global localization.
We made the choice of maximizing precision while keeping an acceptable recall level.

6. Evaluation and discussions
In this section, we apply the mapping and place recognition algorithms on raw data. Algorithm param-
eters are set to the values obtained in previous section and summarized in Table V. The results obtained
for each process are discussed in the next two subsections.

6.1. Mapping evaluation
We apply the mapping algorithm on the raw data sets FR079_r, FR101_r, and Intel_r, using parameter
values obtained from previous section, that is, smin = 0.3 and lg = 0.1. Scans are registered with ICP. The
results are given in Table VI. Comparing with the results in Table II, we first notice an increase in the
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Table VI. Mapping criteria results for optimal parameter values and for the three raw data sets.

Data set Compress. #Scans #Keypoints Distrib #Submaps Time (s)
FR079_r 0.12 7.95 26.93 0.37 620 0.31
FR101_r 0.14 9.95 40.91 0.35 478 0.46
Intel_r 0.15 7.69 20.30 0.40 1772 0.26

Table VII. Global localization results for raw data, obtained with μ = 10,
γmin = 0.4, and λ = 0.05 m.

Data set Precision Recall #Scans Time (s)
FR079_r 0.99 0.59 12.74 0.117
FR101_r 1 0.22 9.97 0.041
Intel_r 1 0.60 15.30 0.136

number of scans required to build a submap. This is mainly due to the density of raw data in terms of
scans, which also explains the increase in the number of submaps in the global map. As a consequence,
the average keypoint population is higher, with a better spatial distributions (δ = 0.4 for the worst case).
The compression ratio remains at a very low level, corresponding to 85% of map data reduction in the
case of Intel_r, and 88% for FR079_r. Execution time shows that we can build submaps, in the worst
case at a rate of 2.17 Hz, and 3.85 Hz for the best case. The mapping process takes more time here, due
to scan registration with ICP and to a larger number of scans in the submaps.

6.2. Place recognition evaluation
Place recognition is evaluated using raw data for two applications. The first is global localization and
the second is loop closure detection in the context of SLAM.

6.2.1. Global localization
Similarly to Section 5.2, a global map M is built using the corrected data, then starting from an unknown
position, a submap Sc is built in order to perform global localization using our place recognition
approach. The main difference with the experiment in Section 5.2 is that Sc is built using raw data.
Scans in Sc are registered with ICP. Not all raw poses have a corresponding ground truth pose among
corrected data. In order to measure precisison and recall, we need a mapping that relates each ground
truth pose with its corresponding raw pose. Submap Sc starts at arbitrary positions among raw poses for
which a ground truth value exists. ICP is initialized with the odometry provided in raw data. We run the
global localization algorithm using parameters from previous section, that is, μ = 10, γmin = 0.4, and
λ = 0.05. An additional evaluation is performed for λ = 0.1. Mapping algorithm parameters are those
given in Table V.

Comparing the results in Tables VII and VIII with the results in Tables III and IV, we notice that
the precision remains very high (almost 1) in all cases but the recall level decreased. This is particularly
true for FR101_r data set, when using a value of 0.05 m for λ. It takes more scans, in the raw data
case, to correctly localize the robot, which is expected since in this case the displacements are smaller.
Compared to the case of corrected data, localization takes more time due to higher keypoint population
in raw data submaps, and larger global maps in term of submap population.

Comparing the results in Tables VII and VIII, the same conclusion as in Section 5.2 can be drawn
regarding how λ impacts recall results. For FR101_r with λ = 0.1 m, recall has significantly improved
(more than doubled) in comparison with the recall obtained for λ = 0.05 m. Considering the last column

https://doi.org/10.1017/S0263574722000613 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000613


Robotica 3803

Table VIII. Global localization results for raw data, obtained with μ = 10,
γmin = 0.4, and λ = 0.1 m.

Dataset Precision Recall #Scans Time (s)
FR079_r 0.99 0.80 11.99 0.112
FR101_r 0.99 0.49 10.24 0.044
Intel_r 0.99 0.80 15.21 0.133

in Tables VI−VIII, we can map a place and correctly localize the robot at a rate of 2.55 Hz in the best
case, and 1.98 Hz in the worst case.

6.2.2. Loop closure
Here, we are interested in evaluating the possibility of integrating our place recognition approach in
a SLAM framework, for loop closure detection using parameters in Table V. To this end, we employ
a SLAM implementation provided in the GTSAM open source library [34]. It is a pose-graph SLAM
variant based on factor graphs. For our evaluation we use this tool with its defaults parameters, except
for covariances that we have set empirically. Furthermore, only submap poses are included in the graph
and no features are used in the graph optimization process. Therefore, we do not expect to build pre-
cise maps. However, with this setup, we aim at evaluating our approach by examining the produced
trajectories using raw data. We remind that for these data, not all poses have a corresponding ground
truth in the corrected data. There is no guaranty that a submap built with raw data contains a pose for
which the ground truth is known. Therefore, in order to decide wether a loop is correct, we rely on
overlap rate between matched submaps. The overlap rate is also used in ref. [17] to decide for correct
submap matches. Obviously, this assumes a limited drift due to odometry and scan registration errors.
Considering this assumption, we reject all matches of submap pairs with no overlap, and we impose a
minimal overlap ratio of 0.01 between matched submaps.

Loop closure and mapping analysis. Figure 10(a,c,e) depict the trajectories obtained with SLAM using
our place recognition approach for loop closure, respectively for FR079_r, FR101_r, and Intel_r data
sets. The trajectory drawn with red dots correspond to estimated submap poses. As a reference, for visual
comparison, we display the trajectory produced by the corrected data with green dots.

For FR079_r and FR101_r, the trajectory obtained with SLAM is consistent with the correct trajec-
tory. As expected, due to pose drift and to possible false loop closures, it does not exactly match the
ground truth trajectory. In the case of Intel_r, the trajectory is globally consistent. However, because of
an erroneous loop closure, we notice an inconsistency at the bottom left side of Fig. 10(e). We remind
that our pose-graph considers poses only, and does not include features, which impacts the graph SLAM
performance. In addition, among all detected loops, only a small subset of loops is used in the graph
optimization. Since we update the graph each time a new loop is detected in order to update the global
map M, we do not use all the detected loops, as these two update operations are time consuming.

Figure 10(b,d,f) show histograms of overlap rate between all matched submaps for each data set.
The histogram has five bins corresponding to overlap rates in the following intervals [0, 10[, [10, 20[,
[20, 30[, [30, 40[, and [40, 100]. For all data sets, most matched submaps overlap with a rate larger or
equal to 40%. For FR079_r, a total of 82 loops are detected while 184 are detected in FR101_r and
572 in Intel_r (among all these loops, only a limited number of 13, 12, and 47 loops are used in the
pose graph, respectively for FR079_r, FR101_r, and Intel_r). In a pessimistic evaluation, if we consider
that 30% overlap is required to decide for a correct match, then the precision values are respectively
73/82 = 0.89, 169/184 = 0.92, and 503/572 = 0.88 for the three maps. In a more tolerent evaluation,
if 10% overlap rate is enough to decide for a correct loop closure, then the precision values raise to
82/82 = 1, 184/184 = 1, and 569/572 = 0.99, respectively. In both evaluations, Intel_r gives the lowest
precision value.
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Figure 10. Left: SLAM trajectory in red versus ground truth trajectory in green. White discs represent
positions of loop detections used in the pose graph, large green disc is the initial position, small green
disc is the first loop detection position. Right: matched submap overlap histograms. Results for FR079_r,
FR101_r, and Intel_r are given in each row, respectively.

Table IX gives map characteristics for the three data sets. Compared to Table VI, all maps feature
better map data reduction (up to 92% for FR079) with less submaps in the global map. This is due
to map correction with SLAM, which also explains the decrease in submap keypoints population. We
notice also a slight improvement in keypoints spatial distribution.

Trajectory error analysis. As an additional evaluation, we measure RPE (relative position error) and
ATE (absolute trajectory error) for all trajectories. The RPE gives a sense of the drift for different time
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Table IX. Mapping criteria results for optimal parameters, and for the three corrected maps with
SLAM using raw data.

Data set Compress. #Scans #Keypoints Distrib. #Submaps Time (s)
FR079_r 0.08 9.17 21.52 0.35 530 0.34
FR101_r 0.11 10.71 34.74 0.34 444 0.54
Intel_r 0.11 9.56 19.10 0.37 1421 0.30

intervals between two poses of the robot. It is defined in Eq. (13)

Ei := (Q−1
i Qi+�)−1(P−1

i Pi+�) (13)

with Qi and Pi being respectively ground truth and estimated poses at time index i. � is a fixed time
interval. For a trajectory with n poses, we obtain m = (n − �) RPE values along the trajectory [36]. In
the literature, authors often evaluate the RMSE (root mean square error) obtained for different values of
� and define in Eq. (14). Note that in our case, � corresponds to data index interval.

RMSE(E1:n, �) :=
(

1

m

m∑
i=1

(‖Trans(Ei)‖2
)) 1

2

(14)

The operator Trans returns the translation component of error matrix Ei. One can also obtain the
RMSE of the rotation RPE by infering the rotation from Ei.

The ATE measures absolute translation and rotation errors between the estimated poses and the
corresponding ground truth poses. It is defined as follows.

Fi := Q−1
i APi (15)

where A is the transform that maps the estimated trajectory on the ground truth trajectory [36]. Figure 11
shows RMSE of RPE results for each data set. For FR079_r and FR101_r translation and rotation errors
do not exceed 1.3 m and 9◦, respectively. In comparison, the case of Intel_r data set exhibits higher error
levels, especially for the rotation. Figure 12 shows ATE errors for each data set, as a function of path
length. Similar conclusions can be drawn for the quality of trajectories that is better for FR079_r and
FR101_r, compared to Intel_r. It is interesting to notice the peaks in ATE errors for Intel_r, especially
between path lengths 150 and 200 m. This corresponds to erroneous loops which consequence on the
trajectory can be observed on Fig. 10(e) (bottom left side). This explains the high RPE errors for this
map. This also shows that the algorithm manages to find new correct loops that help to rectify the
trajectory.

6.3. Discussions with regard to state-of-the-art
In the previous subsections, we have shown that we can achieve a high level of map data reduction while
maintaining good performance in terms of precision and recall. In the literature, most local feature based
methods in this field encode a place with a single scan, such as in refs. [20−25]. In that case, the global
map contains all features from all scans. As a consequence, the map data size inevitably keeps growing
with the number of laser readings. For larger environments, it is of great interest to reduce the map data.
The work of Bosse and Zlot [16, 17] is the most similar to ours as they model places with local maps
or submaps. Submaps contain keypoints selected from concatenated laser scans. The authors provide
no significant results on map data reduction. They terminate a submap when the state vector (used in
local mapping through a Kalman filter) reaches a certain size. In our work, a keypoint stability score
allows to detect areas with persistent features from concatenated scans, and achieve considerable map
data reduction. We use the state-of-the-art operator FLIRT, which has shown interesting performance
in refs. [21, 22]. Regarding submap termination, we introduce a submap quality measure based on the
spatial distribution of keypoints. This metric together with the overlap rate drop between the current and
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(e) (f)

Figure 11. RMSE of RPE as a function of �. Left: translation error. Right: rotation error. Results for
FR079_r, FR101_r, and Intel_r are given in each row, respectively.

initial submap areas, serve as criteria for submap completion. Instead of a rigid criterion, our solution
is adaptive. It allows to set a minimal overlap between consecutive submaps, and insures that a place is
well described before starting a new submap.

Among prominent works on local feature based place recognition using 2D LiDAR data, is that of
Tipaldi et al. [20−22]. The authors introduced the FLIRT operator used in our work. They measure two
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(a) (b)

(c) (d)

(e) (f)

Figure 12. ATE as a function of path length. Left: translation error. Right: rotation error. Results for
FR079_r, FR101_r, and Intel_r are given in each row, respectively.

metrics for performance evaluation, namely PGL and PCL. The first is the probability of correct global
localization, and it corresponds to precision at maximal recall. The second metric is the probability of
loop closure given by recall value at 0.95 precision. As stated before, the authors encode a place with
features from a single scan and no map data reduction is considered (the global map contains all features
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Table X. Performance comparison with Tipaldi et al. approach [22]. Data reduc. stands
for map data reduction rate. Ours-X-Y is our approach where μ = X and λ = Y . TIP-
FLIRT is Tipaldi’s approach. For easy comparison, TIP-FLIRT results and the best
values obtained with our approach are shown in boldface.

FR079 Intel

PGL PCL Data reduc. (%) PGL PCL Data reduc. (%)

OURS-5-0.05 0.88 0.80 88 0.90 0.83 85
OURS-5-0.1 0.91 0.84 0.98 0.86
OURS-10-0.05 0.89 0.79 0.98 0.80
OURS-10-0.1 0.91 0.83 0.91 0.83

TIP-FLIRT 0.98 0.98 0 0.96 0.96 0

from every scan). We have evaluated PGL and PCL for data sets FR079 and Intel, since these data sets
are also used in ref. [22]. This evaluation corresponds to the global localization performed in Section
6.2.1. Table X summarizes the results obtained for our approach in comparison with Tipaldi’s residual
based approach from ref. [22]. We remind that for our evaluation we compare a submap built using
raw data (scans registered with ICP) with a global map built from corrected data, whereas Tipaldi’s
evaluation compares a scan from the corrected data with the remaining scans from the same corrected
data. Despite this condition, the results show that even with a considerable map compression rate (88%
for FR079 and 85% Intel data sets, respectively) our approach maintains high loop closure and global
localization performance. This conclusion is also valid when comparing to the work of Himstedt et al.
[23, 24] on GLARE features and GSR signature. The authors obtain good recall and precision levels but
require complex signature calculations and do not consider map data reduction the way it is done here.
Finally, approaches such as GFP [20] and in ref. [25] encode scans with words similarly to bag of words,
and therefore require training data sets to generate vocabularies, which is not the case of our approach.

7. Conclusion and future works
We have prensented in this article a new approach for place recognition with 2D LiDAR data. Our
method allows to achieve considerable map data reduction while maintaining high place recognition
performance. Places are modeled with submaps obtained from multiple registered laser scans. A submap
describes the local environment with stable keypoints. Our keypoint selection strategy extracts persis-
tent keypoints online among all keypoints from the registered scans. This process eliminates unstable
keypoints, and significantly reduces data redundency in the global map, by keeping only one keypoint
instance from regions of interest with persistent keypoints.

Submap termination criteria constitute another contribution of our work. In addition to the drop in
overlap between the current and initial submap areas, we decide that a submap is complete when stable
keypoints are well distributed in space. This is done thanks to the spatial distribution distance, which
measures the difference between keypoints and laser points distributions.

The main components of our approach are the mapping and the place recognition processes. The place
recognition process includes a submap matching step followed by a two steps geometric verification. In
a first stage, parameter setting for each process is performed using corrected version of three popular real
data sets FR079, FR101, and Intel, corresponding to Freiburg University buildings 079 and 101, and
Seattle’s Intel Research Laboratory, respectively. For the mapping process, parameters were optimized
with regard to six map quality criteria among which are the map data reduction and keypoints spatial
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distribution. For the place recognition process, parameters were optimized as a function of recall and
precision in the context of global localization.

In a second stage, the mapping and place recognition processes were evaluated with raw versions
of the three data sets above with the same parameter values obtained in the parameter setting stage.
The mapping results show high data reduction levels (up to 92%) with consistent spatial distribution of
keypoints. Regarding place recognition performance, the approach is evaluated for global localization
and loop closure. The first evaluation shows that even with considerable map data reduction, the perfor-
mance in terms of precision and recall is comparable to state-of-the-art methods, which do not consider
map data reduction. In the second evaluation we show how our approach can be integrated in a SLAM
framework for loop closure detection.

As future works we aim at improving the second geometric verification. Instead of a rigid value, the
threshold λ should adapt to data range in order to be less sensitive to rotation errors. For instance, in
the case of open spaces (such as in FR101), we notice that this threshold has bigger impact on recall
performance than in narrow environments (such as FR079 and Intel). We also aim at improving the algo-
rithm’s execution time during submap matching process. This can be achieved by the use of a suitable
submap signature allowing for tree-based nearest neighbor search structures, such as kd-trees. Stable
keypoints quantified in a signature, like histograms, may improve performance in terms of precision and
recall as well.
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