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We present experimentally obtained time-averaged vertical temperature profiles θ(z) in
horizontal convection (HC) in water (Prandtl number Pr � 6), which were measured near
the heating and cooling plates that are embedded in the bottom of HC samples. Three HC
rectangular samples of different sizes but the same aspect ratio Γ ≡ L : W : H = 10 : 1 : 1
(L, W and H are the length, width and height of the sample, respectively) were used in the
experiments, which allowed us to study HC in a Rayleigh-number range 2 × 1010 � Ra �
9 × 1012. The measurements revealed that above the cooling plate, the mean temperature
profiles have a universal scaling form θ(z/λc) with λc being a Ra-dependent thickness
of the cold thermal boundary layer (BL). The θ(z/λc)-profiles agree well with solutions
to a laminar BL equation in HC, which is derived under assumption that the large-scale
horizontal velocity achieves its maximum near the plate and vanishes in the bulk. Above
the heating plate, the mean temperature field has a double-layer structure: in the lower
layer, the θ profiles scale with the hot thermal BL thickness λh, while in the upper layer,
they again scale with λc. Both scaling forms are in good agreement with the solutions to
the BL equation with a proper parameter choice.

Key words: boundary layer structure

1. Introduction

Boundary layer (BL) has a great impact in wall-bounded thermal convection. It affects
global heat and momentum transport through the thermally driven flow, and influences
the mixing processes of mass and heat in the fluid. The thermal BL structure is probably
best studied in Rayleigh–Bénard convection (RBC), which occurs in a fluid layer heated
from below and cooled from above (Ahlers, Grossmann & Lohse 2009). Slightly above
the onset of convection, when the thermal driving (expressed by the Rayleigh number
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Ra) is relatively weak, the convective flow is laminar and therefore laminar Prandtl
BL equations with appropriate choice of the boundary conditions can approximate well
the temperature profiles (Schlichting & Gersten 2000). On the other side, when Ra is
extremely high, the turbulent interior flow renders the BL fully turbulent. In this case,
the BL structure is predicted to follow the logarithmic dependence on the distance from
the boundaries (Kraichnan 1962; Spiegel 1971; Shraiman & Siggia 1990; Grossmann &
Lohse 2011). In many practical RBC flows of interests, however, Ra is between the two
extreme cases and the BL structure is more complicated. For this case, in Shishkina et al.
(2015), Shishkina et al. (2017), Ching, Dung & Shishkina (2017) and Ching et al. (2019),
equations for the temperature BL were derived that take into account turbulent fluctuations
in terms of the eddy viscosity and eddy thermal diffusivity and also the fact that the mean
horizontal velocity (wind) has a single maximum, while vanishing at the plate and deep
in the bulk. This differs the BL equations for RBC from the Prandtl–Blasius–Pohlhausen
(PBP) equations that describe a laminar BL above a horizontal plate which is blown by a
constant wind. Analogously, equations for the temperature variance profiles were derived
for Pr � 1 (Wang, He & Tong 2016; Wang et al. 2018) and Pr � 1 (He, Bodenschatz &
Ahlers 2021; Xu et al. 2021). One should note that although the shape of the temperature
profiles in RBC differs from the PBP ones, the BLs in RBC and in a PBP flow are similar
scaling wise. In particular, in both cases, the mean heat transport, represented by the
Nusselt number Nu, scales as a square root of the Reynolds number Re. This property
is used, for example, in the BL dominated regimes in the unifying scaling theory by
Grossmann & Lohse (2000, 2001).

Another classical system of thermally driven flow is horizontal convection (HC). It
occurs in a fluid layer where the heating part of the layer surface is at the same horizontal
level as the cooling part. Like RBC, HC is important in many geophysical systems and
technology. In the large-scale ocean circulation, for instance, heat exchange between the
ocean and atmosphere takes place at the ocean surface (Rossby 1965; Hughes & Griffiths
2008; Scotti & White 2011). The thermocline near the surface is of great importance
in fishing and mariculture. The ground temperature in a metropolitan area is hotter than
the rural area nearby, which causes significantly higher temperatures of the metropolitan
air than of its surroundings. This urban heat-island effect dramatically affects global
climate changes (Estrada, Botzen & Tol 2011). Horizontal convection is also relevant
to engineering processes, such as glass melting and furnaces (Gramberg, Howell &
Ockendon 2007; Chiu-Webster, Hinch & Liter 2008). Moreover, as it was shown recently
in Wang, Lohse & Shishkina (2021), HC is closely related to internally heated convection,
where the thermal driving is not due to specific thermal boundary conditions but a bulk
thermal source. A number of recent theoretical, experimental and numerical studies are
dedicated to the transport properties and large-scale circulation in HC under various
boundary conditions (Wang & Huang 2005; Sheard & King 2011; Griffiths, Hughes &
Gayen 2013; Shishkina, Grossmann & Lohse 2016; Shishkina & Wagner 2016; Wang et al.
2016; Passaggia et al. 2017a; Passaggia, Scotti & White 2017b; Shishkina 2017; Wang,
Huang & Xia 2018; Ramme & Hansen 2019; Reiter & Shishkina 2020; Tsai et al. 2020).
However, current understanding of the thermal BL structure in HC remains rather limited.

There are several major differences between the two convective systems, RBC and HC.
In RBC, emission of volumes of fluid, known as ‘plumes’, rise and sink from both hot and
cold BLs. They move towards the opposite plate and mix in the bulk interior, so that the BL
profiles are symmetric with the respect to the bulk temperature To under the Boussinesq
approximation. In HC, on the contrary, plumes emit from only one of the BLs and move
to the other, near which the fluid starts to move back along the horizontal boundary, under
the pressure gradient owing to the mean temperature difference. Such fluid motion forms
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Figure 1. Schematic diagram of HC sample with the aspect ratio L : W : H = 10 : 1 : 1. Cooling plate (blue
part) and heating plate (red part) are squares with the width W. Four vertical dashed lines indicate the locations
of measured temperature profiles at x/L = 0.01, 0.05, 0.95 and 0.99 in the plane of y/W = 0.5. Also sketched
are profiles of the large-scale horizontal flow and vertical mean temperature above the two plates.

a large-scale circulation that spans the whole sample. When the two BLs are separated
far apart, the plumes dissipate their thermal and kinematic energies before they reach the
other BL, leaving the majority of the bulk interior flow laminar except for the part near
the plume-emitting BL. As a result, the HC flow is rather difficult to become turbulent
compared with the RBC flow, and remains laminar in a broader Ra range. For laminar
HC, the resulting bulk temperature To depends on the lifetime of the plumes, which is
expected to be closer to the plume-emitting plate temperature as Ra increases. Therefore,
the two BL profiles in HC are not symmetric with the respect to To and this asymmetry
becomes clearer for larger Ra. Thus, the BL equations for RBC cannot be directly applied
to describe the thermal BL profiles in HC.

The goal of the present work is to understand better the structures for both hot and cold
thermal BLs in laminar HC and their influence on the global structure of the HC flows. We
first explain in § 2 the HC experiment and the measuring procedures of mean temperature
profiles near the BLs. In § 3, we propose a general thermal BL equation. We compare the
experimental data with the theoretical predictions in § 4, and find good agreement between
them for both BL structures. A brief summary is given in § 5.

2. Experiment

All measurements were conducted in three rectangular HC samples with the same
aspect ratio Γ = L : W : H = 10 : 1 : 1, filled with water. The samples have different
lengths (L = 0.5, 1.0 and 2.0 m) in order to extend the accessible Rayleigh number
Ra ≡ αgΔL3/(νκ) range. Here α, ν and κ denote, respectively, the isobaric thermal
expansion coefficient, the kinematic viscosity and the thermal diffusivity of the fluid; g
is the gravitational acceleration and Δ = Th − Tc is the temperature difference between
the heating (Th) and cooling (Tc) plates. As shown in figure 1, both plates are squares
with width W and a thickness of 5 cm, and they were placed on the sample bottom. They
were made of copper and their surfaces were electroplated with a thin layer of nickel.
The remaining parts of the samples were made of acrylic of 30 mm in thickness for good
thermal insulation. In experiment, the samples were carefully levelled relative to gravity
to within 10−3 rad.

The temperature difference Δ was set in the range of 10 K ≤ Δ ≤ 35 K in three
samples, and the corresponding Ra range is 2 × 1010 � Ra � 9 × 1012. The data show
that the HC bulk temperature To = Tc + χΔ with the obtained χ from 0.81 to 0.89 over
the Ra range, while χ = 0.5 for RBC under the Boussinesq approximation. As a result,
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the Prandtl number Pr ≡ ν/κ , which is evaluated at To, varies from 3.9 to 6.5 accordingly.
For Pr � 1 the global heat transport in laminar HC, as expressed by the Nusselt number
Nu ≡ qL/(kΔ) (q is the heat flux through the heated plate and k is the fluid thermal
conductivity), is independent of Pr, while for small Pr, it scales as Nu ∼ Pr1/10 (Shishkina
et al. 2016; Shishkina & Wagner 2016). Therefore, the variations of Pr in the experiment
might lead, at most, to a 5 % error in the Nu data, which would not affect much the results
on the temperature profiles. However, in order to eliminate this weak Pr dependence, we
selected the measurements at Pr � 6 only.

The procedures of temperature control and measurements in HC are similar to those
in RBC described previously by He & Tong (2009). We used the calibrated thermistors
(Honeywell 112-104KAJ-B01) with a diameter of 1.13 mm and accuracy of 5 mK to
measure the temperature on the plates. Two thermistors were installed in each plate at
a distance of 5 mm away from the top surface to ensure good thermal homogeneity. The
entire HC sample was thermally insulated by several layers of rubber shields and was
placed inside a temperature-controlled box. The temperature in the box was regulated at
To with a long-time stability of ±0.1 K, in order to prevent heat exchanges between the
convection flow and the surroundings.

We used smaller glass-encapsulated thermistors (Honeywell 111-104HAK-H01) to
measure time-dependent temperature profiles in the vertical z-direction, at four horizontal
locations x/L above both plates, as sketched in figure 1. These thermistors have a diameter
of 0.36 mm and were calibrated with 5 mK precision. We used a double-hole ceramic
tube with a diameter of 0.8 mm to assemble one thermistor, and mount it on a vertical
translational stage with the spatial resolution of 10 µm. Details about the temperature
calibration and measurements were reported before by Wang et al. (2018). At each
measuring location along a profile, we took 2 h-long real-time data at the rate of 15 Hz.

3. Theoretical model for laminar thermal BL in HC

For all Ra in the experiment, the maximal normalized root-mean-square (r.m.s.)
temperature σT/Δ above the cooling plate is 0.005. In comparison, the maximal σT/Δ
near the thermal BL in RBC for Ra � 109 is approximately 0.08 (Shishkina & Thess
2009; He, Ching & Tong 2011). Recent DNS results also showed that both the kinetic
energy and dissipation rate above the cooling plate are more than one decade smaller
than those above the heating plate (Shishkina 2017). From these results we conclude that
the turbulent fluctuations above the cooling plate are negligible, and the large-scale mean
horizontal velocity U and temperature T above the cooling plate are governed by the
laminar equations

U∂xU + V∂zU = −ρ−1∂xP + ∂z(ν∂zU), (3.1)

U∂xT + V∂zT = ∂z(κ∂zT), (3.2)

where ρ is the fluid density, V is the vertical mean velocity and P the hydrodynamic
pressure. Such laminar HC flow can be described by a two-dimensional stream function
Ψ (x, z) that gives U = ∂zΨ and V = −∂xΨ , and can be written as

Ψ (x, z) = Umax(x)λ(x)ψ(ξ). (3.3)

Here Umax is the maximal U which is achieved at z = zp, λ(x) is the local thermal BL
thickness, ξ = z/λ is the local similarity variable, and ψ(ξ) is the universal dimensionless
stream function. Previous studies (Mullarney, Griffiths & Hughes 2004; Shishkina 2017)
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have shown that the z-profile of U has a single maximum. For growing z, z > zp, U
gradually decreases from Umax to 0. Thus, the boundary conditions for ψ are

ψ(0) = 0, ψξ (0) = 0, ψξ (∞) = 0, (3.4a–c)

where the subscript ξ means the derivative with respect to ξ . We denote the normalized
temperature profile as

θ(ξ) = (T − Tc)/(To − Tc), (3.5)

and the boundary conditions for θ are

θ(0) = 0, θξ (0) = 1, θ(∞) = 1. (3.6a–c)

Substituting (3.3) and (3.5) into (3.2), one obtains the mean temperature equation:

θξξ + Bψθξ = 0 (3.7)

with B = λ(Umaxλx + Umax
x λ)/κ . For laminar BL, λ(x) follows λ(x)/x ∝ Re(x)−1/2 with

the local Reynolds number Re(x) = Umax(x)x/ν. From that, one has λ2(x)Umax(x) ∝ x
and its derivative λ(2Umaxλx + λUmax

x ) ∝ x0. Therefore, the parameter B is a constant,
independent of x.

A simple form of ψ(ξ) that satisfies (3.4a–c) is given by

ψ(ξ) = c1ξ
2

1 + c2
2ξ

2
(3.8)

and its derivative is given by

ψξ(ξ) = U(ξ)
Umax = 2c1ξ

(1 + c2
2ξ

2)2
. (3.9)

The function ψξ(ξ) has a maximum of 1 at ξ = ξp = √
3/(3c2), leading to c1 =

(8
√

3/9)c2. Substituting (3.8) into (3.7), one derives the analytical solution of the mean
temperature equation:

θ(ξ) =
∫ ξ

0
exp

{
− 8B

9
√

3ξ2
p

[
η√
3ξp

− arctan

(
η√
3ξp

)]}
dη. (3.10)

Here B is chosen to satisfy θ(∞) = 1, and ξp = zp/λ = √
3/(3c2). Both, zp and λ, are

expected to depend on x, so does their ratio ξp. When ξp → ∞, i.e. the thermal BL is
nested infinitely deep within the linear part of U(ξ), the temperature profile tends to the
PBP profile for infinite Pr. Note that for large Pr (and this is also the considered case of
water), the thermal BL is nested in the viscous one and therefore the choice of the stream
function form (e.g. as in (3.8)) is quite flexible and not that influential on the accuracy
of the temperature profiles predictions, as soon as the boundary conditions (3.4a–c) are
fulfilled and the stream function form allows flexibility for zp.

4. Experimental results

Figure 2(a) shows a typical example of a mean (time-averaged) temperature profile T as
a function of z above the cooling plate (x/L = 0.01 and 0.05) and above the heating plate
(x/L = 0.95 and 0.99) at a half-width (y/W = 0.5) for Ra = 3.57 × 1012. We determine
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Figure 2. (a) Measured time-averaged temperature T as a function of z, for Ra = 3.57 × 1012. Two short
dashed lines are tangents of T near the plates for x/L = 0.05 and 0.95. The long horizontal dashed line indicates
To = 29.8 ◦C at the sample centre. (b) Reduced thermal BL thickness (λ/L)Ra0.22 as a function of Ra for
varying x/L. Dashed line represents the power function λ/L = 3.42 Ra−0.22. Vertical dotted line is placed at
Ra = 6 × 1010. Dotted-dashed line represents the power function λ/L = 73.5 Ra−0.40. In panels (a,b), blue
solid (open) squares are for x/L = 0.01 (0.05), and red solid (open) circles for x/L = 0.95 (0.99).

the local thermal BL thickness λ by the intersection of the tangent of T for z � 0 and the
bulk temperature To for large z. It is found that the thermal BL above the cooling plate is
much thicker than that above the heating plate, indicating different structures of the cold
and hot thermal BLs.

Figure 2(b) shows the Ra dependence of λ/L measured at the four locations. The
two sets of data above the cooling plate are nearly the same, and they both follow the
power-law scaling λ/L = 3.42 Ra−0.22 over the studied Ra range. For simplicity, we use
λc = λ(x/L = 0.05) to denote the cold thermal BL thickness. In contrast to the data for
the cooling plate, the two datasets above the heating plate are close but do not follow
the universal scaling with Ra. We use λh = λ(x/L = 0.95) to denote the hot thermal BL
thickness. The ratio of λh to λc has a maximum of 0.28 at the lowest Ra = 2 × 1010, and
it decreases down to around 0.1 as Ra increases above 1012.

In figure 3, we show the normalized profiles (T − Tc)/(To − Tc) as function of z/λc
measured at x/L = 0.01 and 0.05 for different Ra. It is found that the two sets of data
collapse and agree well with the θ -profile predicted by (3.10) with ξp = 0.44. It indicates
that our model captures essential physics behind the cold thermal BL structure. The value
of ξp indicates that the location of Umax is at zp = 0.44λc, inside the cold thermal BL.
When zp is far outside the thermal BL (for instance ξp = 5), the θ predicted by (3.10)
tends to the PBP temperature profile for Pr → ∞, as illustrated in the inset of figure 3.

Figure 4(a) shows the normalized profiles (Th − T)/(Th − To) measured at x = 0.95L
for varying Ra and Pr � 6. For z < λh, the Nusselt number can be approximately
expressed by Nu = (L/Δ)(∂T/∂z)|z<λh . Recent DNS results (Reiter & Shishkina 2020)
revealed that the heat transport dynamics undergoes several transitions from steady state to
chaotic state as Ra increases. For Pr = 10, the Nu(t) data start to oscillate at Ra � 3 × 1010

and transit to a chaotic state at Ra � 5 × 1011. The multiple states of Nu dynamics have
different effects on the thermal BL structure above the heating plate. Consequently, the
normalized profiles near the thermal BL do not have a universal scaling over the studied
Ra range. With the same data as in figure 4(a), we plot (T − Tc)/(To − Tc) as a function
of z/λc in figure 4(b). It is found that for large z, the data collapse onto a single master
curve. As z decreases while moving from the bulk towards the plate, T decreases from To
to a minimal value, in a similar way as that near the cold thermal BL. When z is further
down to the heating plate, T starts to increase as it is heated by the hot thermal BL. At
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Figure 3. Normalized mean temperature (T − Tc)/(To − Tc) as a function of z/λc for varying Ra. Crosses are
for Pr = 3.9 and other symbols for Pr � 6. The measurements were made above the cooling plate at x/L = 0.01
and 0.05. The red solid (dotted) line represents (3.10) with ξp = 0.44 (5). The black dashed line shows the PBP
temperature profile for Pr → ∞. Inset shows an enlarged view.
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Figure 4. (a) Measured (Th − T(z))/(Th − To) as a function of z/λh at x/L = 0.95 for varying Ra. Crosses
are for Pr = 3.9 and other symbols for Pr � 6. The red solid line is a linear function. (b) Measured (T(z)−
Tc)/(To − Tc) as a function of z/λc. The data are the same as in panel (a). The red solid line represents (3.10)
with ξp = 0.44. The black dashed (dotted) line represents (4.2) with ξp = 0.44 and a/χ = 0.84 (0.94).

z = 0, the normalized profile has the amplitude of χ ≡ (To − Tc)/(Th − Tc). Different χ
values clearly show that the normalized temperature data no longer overlap.

Figure 4 thus reveals that the thermal flow above the heating plate can be divided into
two regions: a hot lower region with T � To, where the normalized temperature scales with
λh, and a cold upper one with T(z) � To, where the normalized temperature scales with
λc and follows the predicted shape (3.10). The separation between the two length scales,
λh and λc, increases as Ra increases, therefore the normalized T cannot scale as either
one of them over the two regions. For the cold region, we define a reference temperature
T∗

c = Tc + aΔ (0 ≤ a ≤ χ ) so that T between T∗
c and To follows the predicted scaling for

θ(z/λc) ≡ (T − T∗
c )/(To − T∗

c ). (4.1)

Then we have
T − Tc

To − Tc
= θ(z/λc)+ a

χ

[
1 − θ(z/λc)

]
. (4.2)

As shown in figure 4(b), the overlapped profiles in the cold region can be well described
by (4.2) with ξp = 0.44 and a = 0.84χ , both independent of Ra. However, the obtained χ
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Figure 5. Measured (Th − T)/(Th − To) as a function of z/λh, measured at x/L = 0.95 and 0.99 for varying
Ra. For these measurements, χ = 0.82. The black dashed line represents (4.1) with ξp = 0.44 and a = 0.69.
The red solid line is (4.5) with ξp = 1.6 and b = 0.77.

increases with Ra from 0.81 to 0.89 (the bulk becomes hotter with increasing Ra) over the
range 2 × 1010 � Ra � 9 × 1012.

Similar to the cold region, the temperature profiles in the hot region are expected to
follow the predicted θ -form over the range from Th to a reference temperature T∗

h = Tc +
bΔ (0 ≤ b ≤ χ ) for

θ(z/λ∗h) ≡ (Th − T)/(Th − T∗
h ), (4.3)

where λ∗h ≥ λh is the effective hot thermal BL thickness that accounts for the excessive
temperature drop To − T∗

h . For laminar BL, one has

λ∗h
λh

= Th − T∗
h

Th − To
= 1 − b

1 − χ
. (4.4)

From (4.3) and (4.4), the dimensionless mean temperature equation for the hot region can
be written as

Th − T(z)
Th − To

= 1 − b
1 − χ

θ(z/λ∗h). (4.5)

Since θ has a maximum of 1, the value of b is determined by the minimal value of T from
the measurements.

In figure 5, we show (Th − T)/(Th − To) as a function of z/λh, measured at x/L = 0.95
and 0.99 above the heating plate. We choose the data for Ra � 6 × 1010 in order to exclude
the Nu oscillation effects on the BL structures, and we take the averaged χ = 0.82 over the
Ra range. It is found that the three dimensionless profiles for x/L = 0.95 scale with λh for
z/λh � 2.2, and they are well described by (4.5) with ξp = 1.6 and b = 0.77. In the cold
region, the three profiles almost overlap as well, since the ratio of λc/λh is nearly constant
≈ 0.28 for these values of Ra.

The black dashed line in figure 5 represents the same calculated T-values as those in
figure 4(b), but re-scaled in a different dimensionless form. The ratio of ξp = 1.6 for the
hot region to ξp = 0.44 for the cold region is consistent with the ratio of λc/λh. Note that
for x/L = 0.95 the two fitting ranges intersect at the same temperature. It indicates that the
hot and cold regions are nearly adjacent to each other, which forms a double-BL structure
above the heating plate. At x/L = 0.99 near the vertical sidewall, the normalized T-data
are almost constant around z/λh = 2.2, close to the interface between the two regions. It
may be caused by the mixing of uprising thermal plumes. As Ra increases, both the mixing
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intensity and the separation of the two scales increase. Above a certain Ra, (for instance,
when Ra � 1012, λc/λh = 10), the double-BL structure is expected to be highly unstable
and HC eventually transits to a chaotic state.

5. Summary

We presented experimental results for the time-averaged vertical temperature profiles θ
near the thermal BLs at the bottom of HC samples over the range 2 × 1010 � Ra � 9 ×
1012 and for Pr � 6 and demonstrated that the profiles scale with the thicknesses λc and
λh of, respectively, cold and hot thermal BLs. Near the cold thermal BL, all temperature
profiles have a universal scaling form θ(z/λc) for 0 � z/λc � 3.5. Under assumption of a
single maximum in the vertical profile of the large-scale horizontal velocity U near the BL,
we derived (3.10) for θ(z/λc) that can well describe the collapsing experimental θ(z/λc)
profiles.

The θ -profile above the heating plate has, however, a more complicated structure, which
can be split into two regions. In the hot region below, the θ data scale with the similarity
variable z/λh, while in the cold region above, they scale with z/λc. In both regions, the
shapes of the profiles are in good agreement with the predicted form (3.10) for laminar
BL. The result thus reveals a double-layer structure for the temperature field above the
heated plate. For Ra � 6 × 1010, the scaling ranges of the two regions nearly coincide,
which indicates that the entire hot thermal BL is laminar. As Ra increases, the increasing
scale separation allows fluctuations in the hot region. In the range 1011 � Ra � 4.3 ×
1011, local θ -profiles have spatial oscillations for λh � z � λc. Above Ra � 1012, at which
λc/λh � 10, there are more fluctuations in the hot region that render the shape of θ further
different from what can be predicted with the laminar BL equation. The profiles in the cold
region, however, still follow the laminar equation. This suggests that the rest of the HC flow
remains to be rather laminar. The change of the scaling form θ(z/λh) in the hot region with
growing Ra is consistent with the change of the Nu dependence on Ra observed by Reiter
& Shishkina (2020).
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