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The P–P plot is a powerful graphical tool to compare stochastically the magnitudes of
two random variables. In this note, we introduce a new partial order, called P–P order
based on P–P plots. For a pair of random variables (X1, Y1) and (X2, Y2) one can see the
relative precedence of Y2 over X2 versus that of Y1 over X1 using P–P order. We show
that several seemingly very technical and difficult concepts like convex transform order
and super-additive ordering can be easily explained with the help of this new partial order.
Several concepts of positive dependence can also be expressed in terms of P–P orders of
the conditional distributions.

1. INTRODUCTION

Consider an experiment in which k treatments are to be compared with their controls and
we are interested in identifying the treatment which is most effective. A similar situation can
also arise if we want to examine the effectiveness of a treatment relative to its control across
different experimental conditions or different patient populations. The classical parametric
approach would be to compare the k differences between the means of the treatment and
the control effects or their standardized versions if the variances differ. As discussed in
Holmgren [8] such an approach may not be appropriate unless the underlying random
variables belong to the same parametric family differing only in their location parameters.
Here is an illustration of this fact.

Let X1, . . . X4 be independent random variables such that Xi ∼ N(μi, σ
2
i ), i = 1, . . . , 4.

Then,

P [X2 > X1] = Φ

(
μ2 − μ1√
(σ2

1 + σ2
2)

)

and

P [X4 > X3] = Φ

(
μ4 − μ3√
(σ2

3 + σ2
4)

)
.
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It can be seen that μ4 − μ3 > μ2 − μ1 may not imply P [X4 > X3] ≤ P [X2 > X1] for
certain choices of σ2

i ’s. Thus, it does not always make sense to make such comparisons by
looking at only the differences of the treatment means and the control means. The same is
true if we make decisions based on differences of medians or percentiles of a certain order.
Such comparisons become even less meaningful if the underlying distributions belong to
different families.

Let X and Y be two continuous type random variables with cumulative distribution
functions F and G, survival functions F̄ = 1 − F and Ḡ = 1 − G and density functions f
and g, respectively. We use the notation F−1 to denote the right continuous inverse of F .
For the sake of convenience, let us think of F as the control distribution and G as the
treatment distribution. The P–P plot is defined as the graph of G versus F and is thus
expressed in the function form as GF−1. Since the P–P plot can be expressed as

GF−1(p) = P [Y < F−1(p)] = P [F (Y ) < p ]

the P–P plot is the distribution function of F (Y ). Since F (.) transforms X into a random
variable with uniform distribution on [0, 1], the P–P plot is a graph of the treatment distri-
bution with the measurement scale transformed so that the control distribution is uniform
on the unit interval.

In this paper, we further study the stochastic properties of P–P plots and see how it
can help in understanding the various concepts in probability and statistics. Let us first
recall some notions of stochastic orders.

• X is said to be smaller than Y according to likelihood ratio ordering, denoted by
X ≤lr Y , if g(x)/f(x) is nondecreasing in x, where f and g denote the densities of
X and Y , respectively.

• X is said to be smaller than Y in the hazard rate order, denoted by X ≤hr Y , if

P (X − t > x|X > t) ≤ P (Y − t > x|Y > t), for all x ≥ 0 and all t.

• X is said to be smaller than Y in the reverse hazard rate order, denoted by X ≤rh Y ,
if

P (t − X > x|X ≤ t) ≥ P (t − Y > x|Y ≤ t), for all x ≥ 0 and all t.

• X is said to be stochastically smaller than Y written as X ≤st Y if

G(x) ≤ F (x),∀x.

We have the following chain of implications among the above stochastic orders

X ≤lr Y =⇒ X ≤hr Y
⇓ ⇓

X ≤rh Y =⇒ X ≤st Y.

The next theorem shows the usefulness of P–P plots as a powerful graphical tool in
detecting the above stochastic orders.

Theorem 1.1:

(a) X ≤lr Y if and only if the P–P plot GF−1 is convex.
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(b) X ≤hr Y if and only if the P–P plot GF−1 is convex at 1. That is,

GF−1(p + (1 − p)u) ≤ p + (1 − p) GF−1(u) for all p ∈ (0, 1) and all u ∈ [0, 1],
(1.1)

assuming that GF−1(1) = 1.
(c) X ≤rh Y if and only if the P–P plot GF−1 is convex at 0. That is,

GF−1(pu) ≤ p GF−1(u) for all p ∈ (0, 1) and all u ∈ [0, 1], (1.2)

assuming that GF−1(0) = 0.
(d) X ≤st Y if and only if the P–P plot GF−1 is entirely below the 45 degree line.

Proof:

(a) Since
d

dx
GF−1(u) =

gF−1(u)
fF−1(u)

is nondecreasing in u if GF−1 is convex, it follows that g(x)
f(x) is nondecreasing in x in

that case, since F−1(u) is a nondecreasing function of u.
(b) Let Xt ≡ {X − t | X > t} denote the residual life of X at time t. It is known that

X ≤hr Y ⇔ Xt ≤st Yt for all t (1.3)

⇔ F−1
t (p) ≤ G−1

t (p) for all p ∈ [0, 1] and for all t,

where Ft denotes the distribution function of Xt. It is easy to see that

F−1
t (p) = F−1[1 − (1 − p)F̄ (t)] − t,

where F̄ = 1 − F , denotes the survival function of X.
Therefore, (1.3) holds if and only if

F−1[1 − (1 − p)F̄ (t)] ≤ G−1[1 − (1 − p) Ḡ(t)], for all p ∈ [0, 1] and for all t,

⇔ GF−1[p + (1 − p)F (t)] ≤ p + (1 − p)G(t), for all p ∈ [0, 1] and for all t,

⇔ GF−1[p · 1 + (1 − p)u] ≤ p GF−1(1) + (1 − p) GF−1(u),

for all p ∈ [0, 1] and for all u ∈ [0, 1],

assuming that GF−1(1) = 1. This proves the desired result.
(c) The proof is similar to the one in part (b).
(d) The proof is obvious. �

Remarks:

(a) The condition (1.1) means that any chord from (1, 1) to any point on the P–P plot
is entirely above the P–P plot.

(b) The condition (1.2) means that any chord from (0, 0) to any point on the P–P plot
is entirely above the P–P plot. We call such a function as star-shaped.

In Figure 1, we plot the P–P plot of G versus F , where F is the distribution function
of a parallel system having 3 independent exponential lifetimes each with same failure rate
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Figure 1. P–P Plot showing stochastic ordering.
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Figure 2. P–P Plot showing stochastic ordering but not RH ordering.

2 and G is the distribution function of a parallel system having 3 independent exponential
lifetimes with failure rates 1/4, 4, 8, respectively. We see that the P–P plot lies entirely below
the 45 degree line, thus showing that G is stochastically greater than F . In Figure 2, we see
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Figure 3. P–P Plot showing stochastic ordering.

that the chord joining (0, 0) to the point (0.6335, GF−1(0.6335)) on this P–P plot does not
lie above the P–P plot. This is an example where G is stochastically greater than F , but
they are not ordered according to reverse hazard rate ordering. However, any chord from
(1, 1) to any point on the P–P plot lies entirely above the curve confirming that the hazard
rate of G is smaller than that of F . A theoretical justification of this observation can be
found in Khaledi and Kochar [9].

Figure 3 shows the P–P plot of G versus F where F (x) and G(x) are the distribution
functions of two-component parallel systems with two independent exponential lifetimes
with failure rates (2, 15) and (2, 5), respectively. Figure 4 shows that a chord from (1, 1) to
(0, GF−1(0, .45)) does not lie above the P–P plot, indicating that hazard rate ordering does
not hold. However, the stochastic ordering holds since the P–P plot is entirely below the 45
degree line. In fact, any chord from (0, 0) to any point on the P–P plot lies above the chord
indicating reverse hazard rate ordering between F and G.

1.1. The P–P order

As seen above, X ≤st Y if and only if the P–P plot of G versus F lies entirely below the
45 degree line. The same idea can be extended to compare two random pairs (X1, Y1) and
(X2, Y2). We want to see whether the increase (or dominance) of Y2 over X2 is more than
that of Y1 over X1. In the context of examining the efficacy of a Treatment as compared to
the Control, we may like to see in which population Treatment is most effective.

Definition 1.2: We say that a pair of random variables (X2, Y2) is preferred to another
pair of random variables (X1, Y1) according to P–P order (written as (X2, Y2) �PP (X1, Y1))
if and only if the P–P plot of (X2, Y2) is below that of (X1, Y1). That is, if and only if,

G2F
−1
2 (u) ≤ G1F

−1
1 (u), ∀ u in [0, 1]. (1.4)
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Figure 4. P–P Plot showing stochastic ordering but not HR ordering.
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Figure 5. (Color online) P–P plots of Weibull distributions.

Let F (x) = 1 − exp(−(x/aF )bF ) and G(x) = 1 − exp(−(x/aG)bG) be two Weibull dis-
tribution functions. Then

GF−1(p) = 1 − exp(−abG [−log(1 − p)]b),

where a = aF /aG and b = bG/bF .
Figure 5 shows the P–P plots of Weibull distributions for various choices of the scale and

shape parameters. Let (F1, G1), (F2, G2), and (F3, G3) be three pairs of Weibull distributions
with shape parameters (2, 1.818), (0.899, 0.818), and (0.899, 0.428), respectively. The ratio of
the scale parameters a = 0.4545 in all the three cases. Then, clearly G2F

−1
2 (u) ≤ G1F

−1
1 (u),

(green curve is below the violet curve) clearly indicating that (X2, Y2) �PP (X1, Y1). The
brown curve crosses the other two curves, showing that this is a partial order. There is no
P–P order between (X1, Y1) and (X3, Y3) and (X2, Y2) and (X3, Y3). The red line indicates
the P–P plot with F (x) = G(x).

For 0 ≤ p ≤ 1, let ξp,1 and ξp,2 denote the quantiles of order p of F1 and F2, respectively.
Then, (X2, Y2) �PP (X1, Y1) means that

G2(ξp,2) ≤ G1(ξp,2) ⇔ P [Y2 ≥ ξp,2] ≥ P [Y1 ≥ ξp,2] for all p ∈ (0, 1).
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As explained in Holmgren [7], with the help of P–P plots, treatments and controls
from different studies can be compared directly to see the relative magnitudes of different
treatment effects as if the control distributions are homogeneous across studies.

Remarks: If in (1.4) above

(a) F1 = G1, then G2F
−1
2 (x) ≤ x, that is, X2 <st Y2,

(b) F2 = G2, then G1F
−1
1 (x) ≥ x, that is, X1 >st Y1.

(c) It is easy to show that (1.4) is also equivalent to

F−1
2 F1(x) ≤ G−1

2 G1(x) for all x. (1.5)

Theorem 1.3: Let Xi and Yi be independent for i = 1, 2. Then

(X2, Y2) �PP (X1, Y1) ⇒ P (X2 ≤ Y2) ≥ P (X1 ≤ Y1).

Proof: G2F
−1
2 (u) ≤ G1F

−1
1 (u) for all u ∈ (0, 1) implies that

∫ 1

0

G2F
−1
2 (u)du ≤

∫ 1

0

G1F
−1
1 (u)du

which is equivalent to ∫ ∞

−∞
G2(x)dF2(x) ≤

∫ ∞

−∞
G1(x)dF1(x)

⇔ P (Y2 < X2) ≤ P (Y1 < X1)

⇔ P (X2 ≤ Y2) ≥ P (X1 ≤ Y1).

�

Now we look at some models which lead to P–P ordering between two pairs of
independent random variables.

1.2. The Location Family

Let X1 and X2 be two continuous random variables belonging to a location family of
distributions and let Y1 and Y2 belong to possibly another location family of distributions.
It is shown in the next theorem that if the differences of location parameters in the two
populations are ordered, then the pair of random variables are P–P ordered.

Theorem 1.4: Suppose F1(x) = F (x − μ1), G1(x) = G(x − μ2);F2(x) = F (x − μ3), G2(x) =
G(x − μ4) for every x. Further assume that μ2 − μ1 < μ4 − μ3. Then (X2, Y2) �PP (X1, Y1).

Proof: It is easy to see that F−1
1 (u) = μ1 + F−1(u). Then

G1F
−1
1 (u) = G1[μ1 + F−1(u)] = G[μ1 − μ2 + F−1(u)].

Similarly
G2F

−1
2 (u) = G2[μ3 + F−1(u)] = G[μ3 − μ4 + F−1(u)].

Since μ2 − μ1 < μ4 − μ3, it follows that G2F
−1
2 (u) ≤ G1F

−1
1 (u) for all u ∈ (0, 1). �
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1.3. The Scale Family

A similar result holds for the scale family of distributions for non-negative random variables.

Theorem 1.5: Suppose F1(x) = F (x/σ1), G1(x) = G(x/σ2);F2(x) = F (x/σ3), G2(x) =
G(x/σ4) for x ≥ 0. Further assume that σ3

σ4
< σ1

σ2
. Then (X2, Y2) �PP (X1, Y1).

Proof: It is easy to see that F−1
1 (x) = σ1F

−1(x). Then

G1F
−1
1 (x) = G1[σ1F

−1(x)] = G

[
σ1

σ2
F−1(x)

]
.

Similarly

G2F
−1
2 (x) = G2[σ3F

−1(x)] = G

[
σ3

σ4
F−1(x)

]
.

Since σ3/σ4 < σ1/σ2, the result follows. �

In particular, results in Theorems 1.4 and 1.5 hold if all the four random variables
belong to the same location and scale family, respectively.

1.4. The Proportional Hazard Rate Family

Theorem 1.6: Suppose F̄1(x) = F̄α1(x), Ḡ1(x) = F̄α2(x) and F̄2(x) = Ḡα3(x), Ḡ2(x) =
Ḡα4(x). Then α2

α1
> α4

α3
implies (X2, Y2) �PP (X1, Y1).

Proof: The proof follows once we note that G1F
−1
1 (u) = 1 − (1 − u)

α2
α1 and G2F

−1
2 (u) =

1 − (1 − u)
α4
α3 and since 0 ≤ (1 − u) ≤ 1. �

1.5. The Proportional Reverse Hazard Rate Family

Theorem 1.7: Suppose F1(x) = Fα1(x), G1(x) = Fα2(x) and F2(x) = Gα3(x), G2(x) =
Gα4(x). Then α2

α1
< α4

α3
implies (X2, Y2) �PP (X1, Y1).

Proof: The proof follows once we note that G1F
−1
1 (u) = uα2/α1 and G2F

−1
2 (u) = uα4/α3

and since 0 ≤ u ≤ 1. �

In this note we show that several partial orderings and concepts on stochastic order-
ings can be conveniently interpreted in terms of P–P order. In Section 2, we show that
various aging orders like convex transform ordering and super-additive ordering can be
easily explained by comparing the P–P plots of the residual life times. The last section is
devoted to the study of various positive dependence orders where we show that these can
be expressed in terms of the P–P orders between appropriate conditional distributions.

2. AGING COMPARISONS

In this section, we show that several aging orderings of life distributions can be easily
explained with the help of P–P orders between the residual life times.
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2.1. More IFR Comparisons

The residual life of a random variable X at time t is given by Xt = X − t|X > t. A random
variable X with cdf F is said to have increasing failure rate (IFR) distribution if Xt is
stochastically decreasing in t. That is, if and only if for all s < t, Xt ≤st Xs or equivalently if

Xξq
≤st Xξp

for all 0 ≤ p < q ≤ 1, (2.1)

where ξp = F−1(p) denotes the pth quantile of X.
van Zwet [16] introduced the following concept of convex transform ordering to compare

the shapes of two probability distributions.

Definition 2.1: X is said to be smaller than Y in the convex transform order, denoted by
X ≤c Y if and only if, G−1F (x) is convex in x on the support of X.

If X ≤c Y , then Y is more skewed than X as explained in van Zwet [16] and Marshall
and Olkin [14]. The convex transform order is also known as more IFR order in reliability
theory, since when f and g exist, the convexity of G−1F (x) is equivalent to

f
(
F−1(u)

)
g (G−1(u))

=
rX

(
F−1(u)

)
rY (G−1(u))

being increasing in u ∈ [0, 1],

where rX and rY denote the failure (or hazard) rates of X and Y , respectively. Thus,
X ≤c Y can be interpreted to mean that X ages faster than Y in some sense. This partial
order is scale invariant. Note that, neither F nor G need to be IFR for this definition to
hold. It can be seen that a random variable X has an IFR distribution if and only if it
is convex ordered with respect to exponential distribution, which has a constant failure
rate. It is known that if Xαi

has Gamma distribution with shape parameter αi, i = 1, 2,
then Xα1 ≤c Xα2 for α2 ≤ α1. Kochar and Xu [12] used this order to compare two parallel
systems with exponential components.

The above definition of more IFR ordering does not explicitly relate to the residual
lifetimes of random variables. In the next theorem we show that convex ordering can also
be expressed in terms of the more P–P ordering of the residual lifetimes and thus giving us
a better insight into this seemingly technical concept.

Theorem 2.2: X ≤c Y if and only if for all 0 ≤ p < q ≤ 1,

(Xξq
,Xξp

) �PP (Yξ∗
q
, Yξ∗

p
), (2.2)

where ξ∗p = G−1(p) denotes the pth quantile of Y .

Proof: As noted earlier, the survival function of Xt is

F̄t(x) =
F̄ (t + x)

F̄ (t)
and F−1

t (x) = F−1[1 − (1 − x)F̄ (t)] − t.

Suppose that (2.2) holds. In the light of the equivalence of (1.4) and (1.5), (2.2) is
equivalent to

F−1
ξq

Gξ∗
q
(x) ≤ F−1

ξp
Gξ∗

p
(x) for all x and 0 ≤ p < q ≤ 1, (2.3)

or equivalently
F−1

ξp
Gξ∗

p
(x) decreasing in p for every x. (2.4)
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Now

F−1
ξp

Gξ∗
p
(x) = F−1

[
1 − Ḡ(x + ξ∗p)

]− ξp

= F−1G(x + G−1(p)) − F−1(p)

is decreasing in p for every x if and only if

F−1G(x + y) − F−1G(y) is decreasing in y for every x ≥ 0,

which is equivalent to F−1G(x) being concave or equivalently G−1F (x) being convex. Hence
the proof. �

The relation expressed by (2.2) gives a natural and intuitive way of comparing the
relative aging of two units. As a consequence of Theorem 2.2, it follows that X ≤c Y implies
P (Xξq

≤ Xξp
) ≥ P (Yξ∗

q
≤ Yξ∗

p
) for all 0 ≤ p < q ≤ 1. If Y has exponential distribution, then

the distribution of Yξ∗
p

does not depend on p and P (Yξ∗
q
≤ Yξ∗

p
) = 1/2.

2.2. More New Better Than Used Comparisons

A random variable X with cdf F is said to be new better than used (NBU) if the residual
life of a new component is better than that of a used component which has been working
for a time t for all t > 0. This is equivalent to saying that

Xt ≤st X for all t > 0.

To compare the relative aging of two arbitrary non-negative random variables X and Y
with distribution functions F and G, respectively, the following definition of super-additive
ordering is well known in the literature (cf. Barlow and Proschan [3]).

Definition 2.3: X is said to be smaller than Y in super-additive order, denoted by X ≤su

Y if and only if, G−1F (x) is super-additive in x on the support of X. That is, if and only if

G−1F (x + y) ≥ G−1F (x) + G−1F (y) for all x, y ≥ 0. (2.5)

If X ≤su Y holds we also say that X is more NBU than Y . Like convex ordering,
superadditive ordering is also scale invariant. It is known that convex ordering implies
superadditive ordering, but the converse is not true. It is easy to show that if in the above
definition, G is exponential, then F is NBU. Again the above definition of super-additive
ordering is very technical and does not help in understanding the concept of one distribution
aging faster than another. The next theorem gives an easy interpretation of this concept in
terms of the P–P plots of the residual lifetimes.

Theorem 2.4: X ≤su Y if and only if for all 0 ≤ p ≤ 1,

(Xξp
,X) �PP (Yξ∗

p
, Y ), (2.6)

where ξ∗p = G−1(p) denotes the pth quantile of Y .
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Proof: Note that (2.6) is equivalent to

F−1
ξp

Gξ∗
p
(x) ≤ F−1G(x) for all x ≥ 0 and p ∈ (0, 1)

⇔ F−1G(x + G−1(p)) − F−1(p) ≤ F−1G(x) for all x ≥ 0 and p ∈ (0, 1)

⇔ F−1G(x + G−1(p)) ≤ F−1G(x) + F−1(p) for all x ≥ 0 and p ∈ (0, 1)

⇔ F−1G(x + y) ≤ F−1G(x) + F−1G(y) for all x, y ≥ 0.

The last equation is the definition of F−1G being sub-additive or equivalently G−1F
being super-additive. Hence the proof. �

2.3. More New Better Than Used in Expectation Comparisons

Let {Tn, n ≥ 1} denote the occurrence times of a renewal process with common renewal
distribution F and let X be the random variable associated with F . Let A(t) = TN(t)+1 − t
denote the forward recurrence time at time t. It is known that

lim
t→∞

1
t

∫ ∞

t

P [A(s) > x]ds =
1
μ

∫ ∞

x

F̄ (s)ds.

The distribution with density function F e(x) = [F̄ (x)]/μ is called the equilibrium dis-
tribution. Let us denote the random variable associated with the equilibrium distribution
by Xe. If the arrival times {Tn} denote the times at which buses arrive at a stand, then
A(t) is the amount of time you must wait at the stand for the next bus if you arrive at the
stand at time t and Xe is the waiting time for the next bus if you were to arrive at the
stand way out in the (infinite) future at random. It is easy to see that [Xe] = E[X2]

2E[X] .

Definition 2.5: X is said to be new better than used in expectation (NBUE) if E[X −
t|X > t] ≤ E[X] for all t ≥ 0.

Kochar and Wiens [11] introduced the concept of more NBUE. Let μF (t) = E[X −
t|X > t] denotes the mean residual life function of X at time t.

Definition 2.6: We say that F is more NBUE than G if

μF (F−1(u))
μG(G−1(u)

≤ μF

μG
for all 0 < u < 1.

For relation of more NBUE ordering with other partial orders, see Kochar, Li, and
Shaked [10].

It is easy to see that X is NBUE if and only if Xe ≤st X. It follows from Proposi-
tion 3.1(e) of Kochar and Wiens [11] that F is more NBUE than G if and only if

(Xe,X) �PP (Ye, Y ).

3. DEPENDENCE ORDERINGS

In this section, we use the P–P plots of the conditional distributions to describe various
dependence orderings.
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3.1. More Monotone Regression Dependence

The following definition of monotone regression dependence or stochastic increasingness was
introduced by Lehmann [13] and can also be found in Chapter 5 of Barlow and Proschan [3].

Definition 3.1: Given two random variables X and Y , we say that Y is stochastically
increasing in X, denoted by SI(Y |X), if P (Y > y | X = x) is increasing in x for all y; or
equivalently,

P (Y ≤ y|X = x) ≥ P (Y ≤ y|X = x∗), x ≤ x∗. (3.1)

Observing that when X and Y are continuous, inequality (3.1) can be written as

H[ξq ]H
−1
[ξp](u) ≤ u for all 0 < u < 1 and for 0 < p ≤ q < 1,

where ξp = F−1(p) stands for the pth quantile of the marginal distribution of X, and H[s]

denotes the conditional distribution of Y given X = s.
The concept of more regression dependence or more SI was originally considered by

Yanagimoto and Okamoto [17] and later extended and further investigated by Schriever [15],
Capéraà and Genest [4] and Fang and Joe [6]. The following formulation of more monotone
regression dependence as given in Avérous, Genest, and Kochar [2] is copula based.

Definition 3.2: Y1 is said to be less stochastic increasing (or monotone regression depen-
dent) in X1 than Y2 is in X2, denoted by (Y1|X1) �SI (Y2|X2), if and only if, for 0 ≤ u ≤ 1
and 0 < p ≤ q < 1,

H2,[ξ2q]H
−1
2,[ξ2p](u) ≤ H1,[ξ1q]H

−1
1,[ξ1p](u), (3.2)

where ξip = F−1
i (p) stands for the pth quantile of the marginal distribution of Xi, and Hi,[s]

denotes the conditional distribution of Yi given Xi = s, for i = 1, 2.

Let Yi,[ξip] denote the random variable with distribution function Hi,[ξip] for i = 1, 2.
Then (3.2) is equivalent to

0 < p ≤ q < 1 =⇒ (Y2,[ξ2p], Y2,[ξ2q ]) �PP (Y1,[ξ1p], Y1,[ξ1q ]) (3.3)

Avérous et al. [2] used this order to compare the relative degree of dependence among
order statistics.

3.2. More Right Tail Increasing Dependence

Let (X,Y ) be a bivariate random vector with joint cdf H and with marginal cdfs F and G,
respectively. Y is said to be right tail increasing in X if

x < x′ ⇒ {Y |X > x} ≤st {Y |X > x′},
or equivalently if

0 < p ≤ q < 1 ⇒ {Y |X > ξp} ≤st {Y |X > ξq}. (3.4)

Let Hx denote the cdf of the conditional distribution of Y given X > x. Then (3.4) is
equivalent to

Hξq
H−1

ξp
(u) ≤ u for all 0 < u < 1 and 0 < p ≤ q < 1. (3.5)

Now for i = 1, 2, let (Xi, Yi) be a pair of continuous random variables with joint cumu-
lative distribution function Hi and marginals Fi and Gi. Dolati, Genest, and Kochar [5]
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introduced the following concept of more right tail increasing dependence to compare the
relative degree of dependence between two pairs of random variables. This version based on
copulas is a modification of the one originally proposed by Avérous and Dortet–Bernadet [1].

Definition 3.3: Y2 is said to be more right tail increasing in X2 than Y1 is in X1, denoted
by (Y1|X1) ≺RTI (Y2|X2) or H1 ≺RTI H2, if and only if

0 < p ≤ q < 1 =⇒ H2,ξ2q
H−1

2,ξ2p](u) ≤ H1,ξ1q
H−1

1,ξ1p
(u), (3.6)

for all u ∈ (0, 1), where for i = 1, 2, Hi,s denotes the conditional distribution of Yi given
Xi > s, and ξip = F−1

i (p) stands for the pth quantile of the marginal distribution of Xi.

Let Yi,ξip
denote the random variable with distribution function Hi,ξip

for i = 1, 2.
Then (3.6) is equivalent to

0 < p ≤ q < 1 =⇒ (Y2,ξ2p
, Y2,ξ2q

) �PP (Y1,ξ1p
, Y1,ξ1q

) (3.7)

Obviously, (3.6) implies that Y2 is right tail increasing in X2 if X1 and Y1 are indepen-
dent. It also implies that if Y1 is stochastically increasing in X1, then so is Y2 in X2; and
conversely, if Y2 is stochastically decreasing in X2, then so is Y1 in X1. Dolati et al. [5] used
this concept to compare the degree of dependence of the largest order statistic on the small-
est order statistic in a proportional hazard rate model as a function of the proportionality
parameters.

3.3. More Positive Quadrant Dependence

Let (X,Y ) be a bivariate random vector with joint cdf H and with marginal cdfs F and G,
respectively. Then the pair (X,Y ) is said to be positive quadrant dependent (PQD) (Barlow
and Proschan [3]) if

H(x, y) ≥ F (x)G(y), ∀x, y,

or equivalently if

H(ξp, ξq) ≥ pq, ∀ 0 < p, q < 1, (3.8)

where F (ξp) = p and G(ξq) = q, which can be rewritten as

C(u, v) ≥ uv ∀ 0 < u, v < 1,

where C(u, v) = H(ξu, ξv) denotes the copula of the pair (X,Y ). Note that C(u, v) = uv if
X and Y are independent.

For i = 1, 2, let (Xi, Yi), be a pair of continuous random variables with joint cumulative
distribution function Hi and marginals Fi and Gi. The following concept of more positive
quadrant dependence has been widely discussed in the literature.

Definition 3.4: Y2 is said to be more positive quadrant dependent in X2 than Y1 is in X1,
denoted by (Y1|X1) ≺PQD (Y2|X2) or H1 ≺PQD H2 if and only if

C1(u, v) ≤ C2(u, v) for all 0 ≤ u, v ≤ 1, (3.9)

where Ci is the copula of Hi for i = 1, 2.
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It is easy to see that (3.9) is equivalent to

0 < p < 1 =⇒ (Y2, Y2,ξ2p
) �PP (Y1, Y1,ξ1p

) (3.10)

where Yi,ξip
, i = 1, 2 is as defined in Section 3.2.

We have the following chain of implications among the above partial orderings

(Y1|X1) �SI (Y2|X2) ⇒ (Y1|X1) �RTI (Y2|X2) ⇒ (Y1|X1) �PQD (Y2|X2).
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