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Noetherian orders
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Noether classes of posets arise in a natural way from the constructively meaningful variants

of the notion of a Noetherian ring. Using an axiomatic characterisation of a Noether class,

we prove that if a poset belongs to a Noether class, then so does the poset of the finite

descending chains. When applied to the poset of finitely generated ideals of a ring, this helps

towards a unified constructive proof of the Hilbert basis theorem for all Noether classes.

1. Introduction

This is the first of two papers whose objective is to deliver to constructive algebra

à la Kronecker and Bishop (Edwards 2005; Lombardi and Quitté, to appear; Mines

et al. 1988) a unified proof of several variants of the Hilbert basis theorem. The Hilbert

basis theorem says that if a (commutative) ring A is Noetherian, then so is the polynomial

ring A[X].

‘Standard classical proofs of the Hilbert basis theorem are constructive, if by Noetherian we

mean that every ideal is finitely generated, but only trivial rings are Noetherian in this sense from

a constructive point of view.’ (Mines et al. 1988, page 193)

A similar problem occurs with the condition that every ascending chain of ideals is

eventually constant.

Despite this, several constructively meaningful notions of a Noetherian ring have been

put forward in the past 40 years, each of which allowed for a constructively provable

variant of the Hilbert basis theorem (Jacobsson and Löfwall 1991; Perdry 2004; Rich-

man 1974; Richman 2003; Seidenberg 1974; Tennenbaum 1973); see also Perdry (2008)

and Schuster and Zappe (2006). The poset IA of the finitely generated ideals of the

ring A need not be decidable for some of these variants of the Hilbert basis theorem

(Perdry 2008; Richman 2003; Tennenbaum 1973), but in this, and the forthcoming second

paper, we restrict our attention to the case where IA is decidable, which is to say that A

is strongly discrete.

Many of the constructively provable variants of the Hilbert basis theorem rely purely

on properties of the poset IA, just as the ascending chain condition due to Noether

does. In the present paper we therefore abstract from the ring context and consider the

classes of posets that correspond to these properties. Each of these classes satisfies four

characteristic conditions, which define what we call a Noether class of posets. The best

known constructively meaningful property of IA is the chain condition introduced in
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Richman (1974) and Seidenberg (1974): every descending† sequence a0 � a1 � . . . halts,

that is, there is n with an = an+1. The posets that possess this property form the prime

example of a Noether class, the Richman–Seidenberg class (see Definition 3.1).

A less well-known example of a Noether class of posets is the one defined by the finite-

depth property: every finitely branching tree labelled by the poset under consideration

has finite depth; this defines the finite-depth class of posets (see Section 4). It contains

the class of well-founded posets, which was used in Jacobsson and Löfwall (1991)

to give a constructive proof of the Hilbert basis theorem‡, and is contained in the

class of posets that satisfy a variant of Richman’s tree condition (Richman 2003).

The latter was designed as a substitute for the chain condition introduced in Rich-

man (1974) and Seidenberg (1974) in order to avoid countable choice. Moreover, the

finite-depth class is equal to the Richman–Seidenberg class precisely when a fairly general

form of Brouwer’s fan theorem holds, which is the classical contrapositive of König’s

lemma.

Apart from investigating how the Noether classes in use are related to each other,

we develop their theory up to a point where we are able to tackle the Hilbert basis

theorem. In the vein of Coquand and Lombardi (2006), we undertake a constructive

rereading of one of the classical proofs of the Hilbert basis theorem (for example, the

first proof of Zariski and Samuel (1958, IV, Theorem 1)) in which the chain condition in

question is proved to propagate from the poset of ideals to the poset of infinite chains

of ideals. Our key observation is indeed that this also works with finite chains (our

Theorem 3.1): if a poset E is in a Noether class C, then the poset E� of the eventually

constant descending chains in E is also in C. We also need the third condition we have

imposed on the Noether classes (Definition 3.2 below): if a poset G is in a Noether

class C, then every poset F is in C that can be embedded into G along a (strictly)

increasing mapping. In fact, once all this is applied to the posets E = IA, F = I�A and

G = IA[X], all we need to do to complete the proof of the Hilbert basis theorem is to

show that the leading coefficients mapping from IA[X] to I�A are well-defined and strictly

increasing.

Although we could well achieve the latter using some material provided in Mines

et al. (1988), in the next paper we will do it using standard bases, since we find that

approach more natural. More precisely, we will prove constructively that every (finitely

generated) ideal of A[X] has a standard basis. In other words, we will give a constructive

termination proof for a variant of the otherwise well-known algorithm for computing the

standard basis. This constructive existence proof of a standard basis will turn out to be

the only missing link between the order-theoretic results of the present paper and the

unified constructive proof of the Hilbert basis theorem for all Noether classes in the case

of strongly discrete coherent rings.

† In order to give a uniform presentation, we work with descending chains rather than ascending ones, so we

need to reverse the natural inclusion order on IA.
‡ A formal version of the Hilbert basis theorem over countable fields, which uses the construction ‘every ideal

is finitely generated’ as the definition of a Noetherian ring, is equivalent to saying the ordinal number ωω is

well-ordered (Simpson 1988; Simpson 1999).
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2. Preliminaries

2.1. Increasing mappings

Every partially ordered set (E,�) occurring in this paper will have a decidable order and

thus be a discrete set: that is, x � y and thus x = y are decidable relations between the

elements of E. We use x < y to denote the conjunction of x � y and x �= y, where the

latter stands for the negation of x = y.

Definition 2.1. Let E and F be posets. We say that a mapping ϕ : E → F is increasing if

for all a, b ∈ E,

a � b =⇒ ϕ(a) � ϕ(b),

and strictly increasing if for all a, b ∈ E,

a < b =⇒ ϕ(a) < ϕ(b)).

It is clear that if the mappings ϕ : E → F and ψ : F → G between posets are (strictly)

increasing, then ψ ◦ ϕ : E → G is (strictly) increasing. If ϕ is injective in the sense that

a = b whenever ϕ(a) = ϕ(b), then ϕ is strictly increasing if it is increasing. Conversely, if

E is totally ordered and ϕ is strictly increasing, then ϕ is injective.

Remark 2.1. A mapping ϕ : E → F between posets is strictly increasing if and only if it

is increasing and, in addition, for all a, b ∈ E,

a � b ∧ ϕ(a) = ϕ(b) =⇒ a = b.

Analogous shorthands are defined, and analogous assertions hold, in the dual case. A

mapping ϕ : E → F between posets is decreasing (respectively, strictly decreasing) if

ϕ : E → F◦ is increasing (respectively, strictly increasing) where F◦ stands for F with the

reverse order.

2.2. Direct and lexicographic products

We next recall and expand some material from Mines et al. (1988, I.6).

Definition 2.2. Let E and F be posets. We write E × F for the direct product ordered by

the product order for which

(x, y) � (x′, y′) ⇐⇒ x � x′ ∧ y � y′,

and write E · F for the direct product ordered by the lexicographic order with

(x, y) � (x′, y′) ⇐⇒ x < x′ ∨ (x = x′ ∧ y � y′).

For a poset E and k � 1, we write Ek for the k-fold product E × . . .× E.

The identity E × F → E · F is strictly increasing. Since E, F have a decidable order, so

too do E × F , E · F and Ek . The following slightly more complex construction will prove

useful.
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Definition 2.3. Let (Ei,�i)i∈I be a family of posets indexed by a poset (I,�). We use∑
i∈I Ei to denote the disjoint union {(i, x) : i ∈ I, x ∈ Ei} ordered by

(i, x) � (j, y) ⇐⇒ i < j ∨ (i = j ∧ x �i y).

We further write π :
∑

i∈I Ei → I for the projection with π((i, x)) = i, and note that it is

an increasing mapping.

In particular, (i, x) � (j, y) implies i � j, and

(i, x) < (j, y) ⇐⇒ i < j ∨ (i = j ∧ x <i y).

We sometimes identify Ei with the subset {i} × Ei; accordingly, u ∈ Eπ(u) for every

u ∈
∑

i∈I Ei.

If Ei = E for all i ∈ I , then
∑

i∈I Ei is just the lexicographic product I · E. Since the

partial orders on I and on the Ei with i ∈ I are decidable, so too is � on
∑

i∈I Ei. The

proofs of properties of
∑

i∈I Ei will be very similar to the proofs of properties of I · E.

Lemma 2.1. Let E be a poset and (Ei)i∈I be a family of posets indexed by a poset I . If

η : E → I and all the ϕi : E → Ei with i ∈ I are increasing mappings, then so too is

E →
∑
i∈I

Ei , a �→ (η(a), ϕη(a)(a)).

2.3. Finite chains of arbitrary length

Now going beyond Mines et al. (1988, I.6), we study the eventually constant descending

sequences. In order to have a concept with a finite nature, we formally suppress the

constant tail of any such sequence.

Definition 2.4. By the set of the decreasing finite sequences in a poset E, we mean

E� =
⋃
n∈�

{(a0, . . . , an) ∈ En+1 : a0 � a1 � · · · � an} .

Every (a0, . . . , an) ∈ E� can be extended, by setting am = an for m > n, to a decreasing

infinite sequence, with which we often identify it. With this convention, we define for any

two a, b ∈ E�:

a � b ⇐⇒ ∀m ∈ � (am � bm)

a = b ⇐⇒ ∀m ∈ � (am = bm).

Note that:

— E� does not contain the empty sequence;

— � is a partial order with respect to the equality =; and

— � on E� is decidable since � on E is.

Definition 2.5. Let a = (a0, . . . , an) ∈ E�. We write λ(a) for the limit λ(a) = an of a and set

η(a) = min{m ∈ � : am = λ(a)}
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and ϕk(a) = (a0, . . . , ak) ∈ Ek+1 for every k ∈ �. For each e ∈ E, let

E�(e) = {a ∈ E� : λ(a) = e}

be the subset of E� consisting of all the sequences with the same limit e.

Note that for each m ∈ �, we have am � λ(a) with

am = λ(a) ⇐⇒ m � η(a) .

Lemma 2.2. Let E be a poset. Then λ : E� → E is increasing, and so is η : E�(e) → � for

every e ∈ E. Moreover, ϕi : E� → Ei+1 is increasing for every i ∈ �.

Proof. We only need to verify that if a � b in E� such that λ(a) = λ(b), then η(a) � η(b).

To this end, let i ∈ �. If i � η(b), that is, bi = λ(b), then

λ(a) � ai � bi = λ(b),

and thus we also have ai = λ(a), which is to say that i � η(a).

3. Noether classes

The following notion was introduced, for ideals, in Richman (1974) and Seidenberg (1974);

it is a way of putting the absence of strictly decreasing infinite sequences positively.

Definition 3.1. A poset E is in the Richman–Seidenberg class of posets whenever if a0 �
a1 � · · · in E, there is n ∈ � such that an = an+1. We use RS to denote the Richman–

Seidenberg class of posets.

If E ∈ RS, then for any descending chain a0 � a1 � · · · in E one can pin down the least

n with an = an+1 simply because E is a discrete set. In this way one can avoid having to

choose any such n.

Definition 3.2. We say that a class C of posets is a Noether class if it satisfies the following

four conditions:

(1) C ⊆ RS.

(2) � ∈ C.

(3) If there is a strictly increasing mapping from E to F , then E ∈ C whenever F ∈ C.

(4) Let I be a poset in C. If (Ei)i∈I is a family of posets in C, then
∑

i∈I Ei is in C.

In the rest of this paper we will simply refer to these four conditions as Conditions 1, 2,

3 and 4.

Proposition 3.1. The class RS is a Noether class.

Proof. It is clear that RS satisfies Conditions 1 and 2. To see that it fulfils Condition 3,

let ϕ : E → F be an increasing mapping with F ∈ RS. If a0 � a1 � · · · in E, then

ϕ(a0) � ϕ(a1) � · · · in F . So there is an n such that ϕ(an) � ϕ(an+1), and for this n we

also have an = an+1 (Remark 2.1).
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We still need to show that RS satisfies Condition 4. To do this, we let (Ei)i∈I be a

family of posets indexed by a poset I , and set E =
∑

i∈I Ei. Suppose I ∈ RS, and that

Ei ∈ RS for all i ∈ I . To prove that E is in RS, we use the projection π : E → I . Let

u0 � u1 � · · · be a sequence in E. We need to find an integer N � 1 with uN−1 = uN .

Observe that π(u0) � π(u1) � · · · in I .

We first show that for each n ∈ � we can find m > n such that either π(um) < π(un) or

um−1 = um. To this end, we define the sequence (vn,m)m�n in Eπ(un) by setting vn,n = un and

vn,m =

{
um if π(um) = π(un)

vn,m−1 otherwise

for m > n. Note that vn,n � vn,n+1 � · · · in Eπ(un), and this poset is in RS. So there is

m > n such that vn,m−1 = vn,m. Either π(um) < π(un) or π(um) = π(un). In the latter case,

vn,m = um, but also π(um−1) = π(un), so vn,m−1 = um−1, and thus um−1 = um.

Starting from n(0) = 0, we can now recursively define a sequence n(0) < n(1) < · · ·
in � such that each n(k + 1) is the least m > n(k) such that either π(um) < π(un(k)) or

um−1 = um. Since π(un(0)) � π(un(1)) � · · · in I , and I is in RS, there is K ∈ � with

π(un(K)) = π(un(K+1)) for which un(K+1)−1 = un(K+1). In other words, N = n(K + 1) is as

required above.

3.1. Propagation results

Lemma 3.1. Let C be a Noether class, and let E, F be posets. If E and F are in C, then

E · F and E × F are in C. In particular, Ek is in C for all k � 1.

Proof. The implication from E ∈ C and F ∈ C to E · F ∈ C is a special case of

Condition 4. Applying Condition 3 to the strictly increasing mapping id : E × F → E · F ,

we see that E ·F ∈ C implies E×F ∈ C. Induction on k then yields the final statement.

Theorem 3.1. Let C be a Noether class and E be a poset. If E is in C, then so is E�.

Proof. Let E be a poset. By Lemmas 2.1 and 2.2, the two mappings

ϕ : E�(e) →
∑
n∈�

En+1 , a �→ (η(a), ϕη(a)(a))

ψ : E� →
∑
e∈E

E�(e) , a �→ (λ(a), a)

are increasing. Since both mappings are also injective, they are strictly increasing.

Now let E be in C. By Lemma 3.1, we have En+1 ∈ C for all n. We use Conditions 2–4

of a Noether class. Now, E�(e) is in C for every e ∈ E (use ϕ), so E� is in C (use ψ).

3.2. Further examples

3.2.1. Well foundedness. This is the constructively meaningful equivalent of a well-known

concept (see Mines et al. (1988, I.6)), which proved fruitful for the Hilbert basis theorem

discussed in Jacobsson and Löfwall (1991).
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Definition 3.3. A subset H of a poset E is hereditary if

{y ∈ E : y < x} ⊆ H =⇒ x ∈ H

for every x ∈ E. A poset E is well-founded if every hereditary subset H equals E. A

well-founded and totally ordered poset is well-ordered. We use WF to denote the class

of well-founded posets.

Proposition 3.2. The class WF is a Noether class.

Proof. It is easy to see that WF satisfies Condition 1 (this is Mines et al. (1988,

Chapter I, Exercise 4)). The proofs that WF satisfies Conditions 2–4 are given in Mines

et al. (1988, I.6.1–3).

3.2.2. Strong Noetherianity. Perdry (2004) introduced and investigated the following

notion of strong Noetherianity.

Definition 3.4. A poset E is strongly Noetherian if there exists a strictly increasing mapping

ϕ : E → F for a well-ordered poset F . We use SN to denote the class of strongly

Noetherian posets.

The next remark is a consequence of Condition 3 for WF.

Remark 3.1. The class SN is a subclass of WF.

Proposition 3.3. The class SN is a Noether class.

Proof. For every poset E, E ∈ SN implies E ∈ WF (Remark 3.1), which implies

E ∈ RS (Proposition 3.2), so SN fulfils Condition 1.

Since � is well-ordered and id� : � → � is strictly increasing, Condition 2 is fulfilled.

To see that SN satisfies Condition 3, let ϕ : E → F be a strictly increasing mapping

with F ∈ SN. The latter means that there is a strictly increasing mapping ψ : F → G

for a well-ordered poset G, for which ψ ◦ ϕ : E → G is also strictly increasing, and thus

E is in SN.

We still need to verify Condition 4, which we do by mimicking the proof of the second

item of Perdry (2004, Corollary 2.3). Let (Ei)i∈I be a family of posets in SN, indexed

by a poset I ∈ SN. For every i ∈ I we have a strictly increasing mapping ϕi : Ei → Fi,

where Fi is a well-founded poset. Now∑
i∈I

Ei →
∑
i∈I

Fi, (i, x) �→ (i, ϕi(x))

is strictly increasing. Since I is in SN, it is in WF, and thus
∑

i∈I Fi is well-founded

(Proposition 3.2), so
∑

i∈I Ei ∈ SN.

4. Labelled trees

Definition 4.1. A finitely branching tree is a poset T satisfying the following three

conditions:
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— It has a least element ε (the root of the tree).

— For every a ∈ T the set Da = {x ∈ T : a < x} (of the descendants of a) has a finite

number of minimal elements (the children of a).

— For every a ∈ T , the set {x ∈ T : x < a} (of the ancestors of a) is a finite chain

(whose greatest element is the parent of a).

As every tree will be finitely branching, from now on we will just say tree without any

further qualification.

Definition 4.2. Let T be a tree. If Da = �, then a is a leaf of T . The elements of T are

the nodes of the tree. A branch of T is a (possibly finite) sequence a0 = ε, a1, a2, . . . in T

such that ai+1 is a child of ai for all i.

If u = a0, a1, a2, . . . , an is a finite branch of T , then we say the node an terminates u or

the branch u ends with an, and |u| = n is the length of u. We use the conventions that the

length of the empty sequence () is < 0, and that an infinite branch of T has length � n

for all n ∈ �.

If every branch of T is finite, then T is a well-founded tree. If there is N ∈ � such that

every branch of T is finite and has length � N, then T is a finite tree.

Note that the length of a finite branch is the number of steps rather than the number of

elements.

Definition 4.3. Let T be a tree. A mapping ϕ from T to a set E is called a labelling of

(the nodes of) T by (the elements of) E.

Let T be labelled by a poset E with labelling ϕ : T → E. We say that T is a (strictly)

decreasing tree if ϕ is a (strictly) decreasing mapping.

Let N ∈ �. A (finite or infinite) branch u = a0, a1, a2, . . . of T halts before N if either

|u| < N or |u| � N and there is n < N with ϕ(an) = ϕ(an+1). We say that T has depth

� N if every branch of T halts before N. Finally, T has finite depth if it has depth � N

for some N ∈ �.

This notion of depth is essentially the one given in Mines et al. (1988, I.5). If a branch

halts before N, then it halts beforeM for everyM � N; a finite branch u = a0, a1, a2, . . . , aN
halts before |u| = N precisely when ϕ(an) = ϕ(an+1) for some n < N. Last but not least,

only () halts before 0.

4.1. The finite-depth property

Definition 4.4. A poset E has the finite-depth property if every decreasing tree T labelled

by E has finite depth. We use FD to denote the class of posets with the finite-depth

property.

Proposition 4.1. The class WF is a subclass of FD.

Proof. We need to prove that if E is in WF, then it is in FD. Let H ⊆ E consist of the

z ∈ H for which every decreasing tree with root labelled by z has finite depth. To show

that H is hereditary, we assume that ∀x < y (x ∈ H), and deduce y ∈ H as follows. Let T
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be a decreasing tree with root labelled by y. To prove that T has finite depth, let a1, . . . , ak
with k � 0 be the children of the root of T , labelled by x1, . . . , xk . If y = xi for some i,

then T has depth � 1. If, otherwise, y > xi for all i, then x1, . . . , xk ∈ H by hypothesis,

so all the subtrees of T with roots a1, . . . , ak have finite depth, and thus T also has finite

depth.

If a branch in a strictly decreasing tree halts before n, then it has length < n.

Remark 4.1. If a poset E is in FD, then every strictly decreasing tree T labelled by E is

finite.

We next check that FD is a Noether class – the difficult point is Condition 4.

Lemma 4.1. Let I be a poset and Ei be a family of posets indexed by I . If I ∈ C and

Ei ∈ C for all i ∈ I , then
∑

i∈I Ei ∈ C.

Proof. Let T be a tree and ϕ be a decreasing mapping ϕ : T →
∑

i∈I Ei. Let

ψ = π ◦ϕ : T → I , that is, ψ(a) = i precisely when ϕ(a) ∈ Ei. Note that ψ is a decreasing

mapping.

For each a ∈ T , the set

Ta = {x ∈ T : a � x and ψ(x) = ψ(a)}

is a tree with root a. Moreover, the restriction of ϕ to Ta assumes its values in Eψ(a) and

is decreasing. Since Eψ(a) is in C, the tree Ta has finite depth Na. Let La be the finite set

consisting of all the leaves of Ta that terminate a branch of length � Na. Considering the

elements of La as elements of T , we use Ca to denote the finite set of their children.

Let S be a finite subset of T . We use S ′ to denote the set S ′ =
⋃
a∈S Ca, and NS to

denote the supremum NS = supa∈S Na with N� = 0. Let S0 = {ε} and Sn+1 = S ′
n, and set

Nn = NSn . By construction, a branch of length greater than N0 that does not halt before

N0 cuts S1; a branch of length greater than N0 + N1 that does not halt before N0 + N1

cuts S2; and so on.

(We can give a more precise argument for the induction step as follows. Let n ∈ �
and u = a0, a1, . . . a branch in T of length � N0 + · · · + Nn+1, and ap ∈ Sn with

1 � p � N0 + · · · +Nn, and if n = 0, then p = 0. If u does not halt before N0 + · · · +Nn+1,

then aq �∈ Tap for some q with

p+ 1 � q � p+Nn+1 � N0 + · · · +Nn+1 .

If q is the least number with this property, then aq−1 ∈ Lap and aq ∈ Cap ⊆ Sn+1.)

The union Sω =
⋃
n Sn is a tree. The restriction of ψ to Sω is a strictly decreasing

mapping, and I is in FD, so Sω is finite. Hence, there is N ∈ � such that SN = �, so T

has finite depth
∑
Nn.

Proposition 4.2. The class FD is a Noether class.

Proof. We first prove Condition 1. Given x0 � x1 � · · · in a poset E, consider T = �
as the decreasing tree labelled by E with n �→ xn. The one and only infinite branch of T

is 0, 1, 2, . . . Now, if E ∈ FD, this branch halts, that is, xi = xi+1 for some i.
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Condition 2 is readily seen from the fact that if T is a decreasing tree with labelling

ϕ : T → �, then T has depth � N = ϕ(ε) + 1.

To verify Condition 3, let ϕ : T → E be an increasing mapping, and ψ : E → F be a

strictly increasing mapping. Suppose that F is in FD, so T as labelled by ψ ◦ϕ : T → F

has depth � N. Since ψ is strictly increasing, T also has depth � N, as labelled by ϕ

(Remark 2.1).

Finally, Condition 4 is Lemma 4.1.

By Proposition 4.2, FD is a subclass of RS; we will now classify the reverse inclusion.

Every finite tree is well–founded; the converse is (a general form of) Brouwer’s fan

theorem.

Definition 4.5. The generalized fan theorem (GFT) says that for every tree T , if T is

well-founded, then T is finite.

Proposition 4.3. The GFT is equivalent to the assertion that RS is a subclass of FD.

Proof. Assume first that GFT is valid. Let E be a poset in RS. To show that E is in

FD, let T be a decreasing tree with labelling ϕ : T → E. By RS(E), every branch of T

halts. The tree

Tϕ = {a ∈ R : ∀x < a , (ϕ(x) > ϕ(a))}
is obtained from T by dropping every subtree of T whose root b is a child of some a ∈ T

with ϕ(a) = ϕ(b). Now Tϕ is well-founded. By the GFT, Tϕ is finite, so T has finite depth.

Conversely, suppose RS is a subclass of FD. To prove the GFT, let T be a tree, and

assume that T is well-founded. With T ◦ for T with the reverse order, we have T ◦ ∈ RS,

as we shall show below. From this we arrive at T ◦ ∈ FD by hypothesis. By applying

the latter to T labelled by the identity mapping id : T → T ◦, we have that T with

this labelling has finite depth. Since T with this labelling is strictly decreasing, T is finite

(Remark 4.1).

To prove that T ◦ is in RS, let a0 � a1 � . . . be a non–decreasing sequence in T , that

is, a decreasing sequence in T ◦. Set

Ni = |{x ∈ T : x < ai}|

for every i � 0, and for which N0 � N1 � . . . and

Ni < Ni+1 ⇐⇒ ai < ai+1 .

Arrange the x ∈ T with x < a0 as the finite branch u0 = b0, b1, . . . , bN0−1. In particular,

b0 = ε unless N0 = 0, in which case u0 = (). Extend u0 to the branch u = b0, b1, b2, . . .

as follows. Assume that the b0, b1, . . . , bNi−1 are already constructed; this is the case for

i = 0. If aj < aj+1 for all j < i but ai = ai+1, then let u terminate with bNi
= ai, for

which |u| = Ni. If, however, aj < aj+1 for all j � i, then extend u by the bNi
, . . . , bNi+1−1

that exhaust the x ∈ T with ai � x < ai+1. Now if T is well–founded, then u is finite, so

|u| = Ni for some i for which ai = ai+1.
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4.2. The descending tree property

Finally, we adapt Richman’s ascending tree property (Richman 2003) to our setting.

Unlike Richman, we restrict our attention to trees that are finitely branching, but focus on

trees that are spreads (that is, without leaves) after a while. For simplicity, and to follow

Richman’s terminology more closely, from now on we will write descending tree whenever

we mean a decreasing tree.

Definition 4.6. A descending tree halts if either T has a leaf or there is a finite branch u

in T that halts before |u|. A poset E has the descending tree property if every descending

tree labelled by E halts. We use DT to denote the class of posets with the descending

tree property.

Note that every finite tree halts since it has a leaf – in general it has more than one.

Proposition 4.4. The class FD is a subclass of DT.

Proof. Let T be a descending tree labelled by a poset E. Since E is in FD, there is

N ∈ � such that every branch in T halts before N. We look at the finitely many branches

u in T with |u| � N. Either |u| < N for every branch u of this sort, in which case T is

finite and thus halts, or there is a branch u in T with |u| = N, which halts before |u| by

our choice of N. This proves that E is in DT.

We will now relate DT to Richman’s original concept (Richman 2003).

Definition 4.7. A spread is a tree in which every node has a successor. A spread family in

a poset E is a family (et)t∈T of elements of E indexed by a spread T . Any such family is

descending if es � et whenever s � t for all s, t ∈ T ; it halts if there are s, t ∈ T with s < t

such that es = et.

A spread has no leaves at all. If a descending spread family (et)t∈T halts, then there are

s, t ∈ T with s < t such that es = et and, in addition, s is the parent of t.

Lemma 4.2. A poset E is in DT if and only if every descending spread family in E halts.

Proof. Let E be a poset. Assume first that E is in DT and let (et)t∈T be a descending

family in E indexed by a spread T . View T as labelled by E with labelling t �→ et. Since

E is in DT, this descending tree halts. As a spread, T has no leaves, so (et)t∈T halts.

Assume next that every descending spread family in E halts, and let T be a descending

tree labelled by ϕ : T → E. We extend T to a spread T ′ by attaching a linear spread to

each leaf of T : for instance, let

T ′ = T ∪
⋃
t∈L

{(t, n) : n ∈ �}

where L is the set of leaves of T and

t < (t, 0) < (t, 1) < . . .

for every t ∈ L. Also, we extend ϕ to a labelling ϕ′ : T ′ → E by setting ϕ′ (b) = ϕ (a)

whenever b is a successor of a leaf a of T . Now
(
ϕ′ (t)

)
t∈T ′ is a descending spread family
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in E, so, by hypothesis, there are s, t ∈ T ′ with s < t such that ϕ′ (s) = ϕ′ (t). If t /∈ T ,

then T has a leaf. If t ∈ T , the finite branch u in T leading from ε through s to t halts

before |u|.

A descending chain is just a descending family indexed by the spread �.

Corollary 4.1. The class DT is a subclass of RS.

By dependent choice, every spread has an infinite branch.

Remark 4.2. By dependent choice, RS is a subclass of DT.

It is noteworthy that, in view of Propositions 4.4 and 4.3, the inclusion RS ⊆ DT also

follows from the GFT. Moreover, the statement

‘every spread has an infinite branch’, (∗)

which is sufficient for RS ⊆ DT, is a consequence of König’s Lemma, since every spread

is an infinite tree (that is, has finite branches of arbitrary length). As recalled in Berger

et al. (2009) for detachable binary trees, (∗) can be proved without any choice whenever

one can distinguish a child of each node (for example, ‘the first child’), in which case an

infinite branch of a spread can be defined recursively by taking the distinguished child as

the next node at any step.

Lemma 4.3. Let E and F be posets such that there is an increasing mapping ϕ : E → F .

If F is in DT, then so is E.

Proof. We understand DT to be as characterised by Lemma 4.2. Let (et)t∈T be a

descending family of elements of E indexed by a spread T . Since ϕ is increasing, the

family (ϕ (et))t∈T of elements of F indexed by the same spread T is also descending. Since

F is in DT, there are s, t ∈ T with s < t such that ϕ (es) = ϕ (et). Since es � et and ϕ is

increasing, by Remark 2.1, we have es = et.

Lemma 4.4. Let (Ei)i∈I be a family of posets indexed by a poset I . In the presence of

dependent choice, if I ∈ RS and Ei ∈ DT for all i ∈ I , then
∑

i∈I Ei ∈ DT.

Proof. Suppose I ∈ RS and Ei ∈ DT for all i ∈ I , and set E =
∑

i∈I Ei. To prove

that E is in DT as characterised by Lemma 4.2, let (et)t∈T be a descending family in E

indexed by a spread T . Let et = (it, xt) where it ∈ I and xt ∈ Eit for every t ∈ T , and note

that (it)t∈T is a descending family in I indexed by T . For each t ∈ T , consider the subtree

Tt = {s ∈ T : s � t} of T with root t. We write p (s) for the parent of any s ∈ Tt with

s > t and define a descending family
(
yt,s

)
s∈Tt in Eit indexed by Tt by setting yt,s = xs

when is = it (in particular, yt,t = xt) and yt,s = yt,p(s) whenever is < it (in which case s > t).

Note that Tt is a spread for every t ∈ T .

Next, we construct a chain t (0) < t (1) < . . . in T with

yt(k),p(t(k+1)) = yt(k),t(k+1) (1)

for every k � 0 as follows. Set t (0) = ε. If t(k) has already been constructed, consider

the descending family
(
yt(k),s

)
s∈Tt(k) in Eit(k) indexed by Tt(k). Since Eit(k) is in DT, there is
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s > t (k) with yt(k),p(s) = yt(k),s. Set t (k + 1) = s for any such s. (This construction requires

a certain amount of dependent choice.)

Since I is in RS, there is k � 0 with it(k) = it(k+1). Take the least k of this sort and set

s = p (t (k + 1)). Note that it(k) = is = it(k+1) because t (k) � s < t (k + 1). Now yt(k),s = xs
and yt(k),t(k+1) = xt(k+1) by their definition, so, in view of (1), we have xs = xt(k+1) and thus

es = et(k+1) as required (recall that is = it(k+1)).

Note that I ∈ RS was sufficient for this proof, which, however, required some dependent

choice. This leads us to ask whether this can be done without any choice by using I ∈ DT
instead, which we anyway have at our disposal when Condition 4 of ‘DT is a Noether

class’ is at stake.

Proposition 4.5. The class DT is a Noether class.

Proof. Corollary 4.1 says that DT satisfies Condition 1. Since � is in FD by

Proposition 4.2, and thus in DT by Lemma 4.4, Condition 2 is fulfilled. Conditions

3 and 4 are just Lemmas 4.3 and 4.4, respectively.

5. Discussion

We have proved the following inclusions between Noether properties:

SN ⊆ WF ⊆ FD ⊆ DT ⊆ RS.

While the converse of DT ⊆ RS can be proved using dependent choice (Remark 4.2),

the converse of FD ⊆ RS is equivalent to the generalised fan theorem (Proposition 4.3).

One may ask whether there are any (Brouwerian) counterexamples, or (sheaf/topos)

countermodels, for the converses of SN ⊆ WF and WF ⊆ FD. And is the statement

‘every spread has an infinite branch’, which we used to prove RS ⊆ DT, also necessary

for this implication, or to which form of dependent choice is this implication equivalent?

In the follow-up paper, we will show how, with reasonable conditions imposed on the

ring, a minimal prime decomposition à la Lasker–Noether can be achieved with FD in

place of SN, which was used for this purpose prior to Perdry (2004). One may ask

whether FD, or perhaps DT, is enough to prove the termination of further algorithms

in commutative algebra, or elsewhere? And last, but not least, does Theorem 3.1 have

any applications in proof theory or in descriptive set theory?
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projectifs de type fini, Calvage and Mounet. (English version forthcoming at Springer-Verlag;

preliminary version available at the home page of H. Lombardi.)

Mines, R., Richman, F. and Ruitenburg, W. (1988) A Course in Constructive Algebra , Universitext,

Springer-Verlag.

Perdry, H. (2004) Strongly noetherian rings and constructive ideal theory. J. Symb. Comput. 37 (4)

511–535.

Perdry, H. (2008) Lazy bases: a minimalist constructive theory of Noetherian rings. Math. Log. Quart.

54 (1) 70–82.

Richman, F. (1974) Constructive aspects of Noetherian rings. Proc. Amer. Math. Soc. 44 436–441.

Richman, F. (2003) The ascending tree condition: constructive algebra without countable choice.

Comm. Algebra 31 1993–2002.

Schuster, P. and Zappe, J. (2006) Do Noetherian rings have Noetherian basis functions? In:
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