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Abstract

Insecticide resistance is an increasing problem in citrus production. The Asian citrus psyllid,
Diaphornia citri Kuwayama, is recognized as one of the most important citrus pests world-
wide and it has developed resistance in areas where insecticides have been overused. The
development of insecticide resistance is often associated with fitness costs that only become
apparent in the absence of selection pressure. Here, the fitness costs associated with resistance
to thiamethoxam and imidacloprid were investigated in three agricultural populations of D.
citri as compared with susceptible laboratory colonies. Results showed that all field popula-
tions had greater resistance than laboratory susceptible colonies. For both thiamethoxam
and imidacloprid, a Candidatus Liberibacter asiaticus-positive (CLas+) colony was more sus-
ceptible than the CLas− colony. Resistance ratios ranged from 7.65–16.11 for imidacloprid and
26.79–49.09 for thiamethoxam in field populations as compared with a susceptible, CLas−

laboratory strain. Among three resistant field populations, a significantly reduced net repro-
ductive rate and finite rate of population increase were observed in a population from Lake
Wales, FL as compared to both susceptible strains. The fecundity of field populations from
Lake Wales, FL was statistically lower than both laboratory susceptible populations. Certain
changes in morphological characteristics were observed among resistant, as compared, with
susceptible strains. Our data suggest fitness disadvantages associated with insecticide resist-
ance in D. citri are related to both development and reproduction. The lower fitness of D.
citri populations that exhibit resistance to neonicotinoid insecticides should promote recovery
of sensitivity when those populations are no longer exposed to thiamethoxam and/or imida-
cloprid in the field. The results are congruent with a strategy of insecticide rotation for resist-
ance management.

Introduction

The Asian citrus psyllid, Diaphornia citri Kuwayama (Hemiptera: Liviidae), is a global economic
pest of citrus. It is a vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the putative
causal agent of the disease huanglongbing (HLB) (Halbert and Manjunath, 2004; Bové, 2006;
Gottwald, 2010; Grafton-Cardwell et al., 2013; Vázquez-García et al., 2013; Kanga et al., 2016;
Stockton et al., 2017). Vector suppression with insecticides is one of the primary current man-
agement practices for this disease (Grafton-Cardwell et al., 2013; Kanga et al., 2016; Chen et al.,
2018). The short generation time and high fecundity of D. citri have resulted in the development
of resistance to several insecticides (Tsai and Liu, 2000; Kanga et al., 2016; Chen and Stelinski,
2017; Chen et al., 2018).

The development of insecticide resistance is an increasing problem for citrus production
(Grafton-Cardwell et al., 2013; Chen et al., 2017). Resistance has been documented for orga-
nophosphates (Tiwari et al., 2013; Vázquez-García et al., 2013; Kanga et al., 2016), pyrethroids
(Tiwari et al., 2013; Kanga et al., 2016), neonicotinoids (Vázquez-García et al., 2013; Chen
et al., 2018), and carbamates (Kanga et al., 2016). Neonicotinoid insecticides have been an
important tool in pest control in citrus for well over a decade (Alyokhin et al., 2007). The
importance of these insecticides is in part due to their effectiveness against a broad spectrum
of insect pests including D. citri. Neonicotinoids are highly systemic and mobile within citrus
tissue and used as soil applications for young trees and foliar applications for mature trees. The
insecticide resistance action committee classifies neonicotinoids within the chemical sub-
group 4A, which acts on the nicotinic acetylcholine receptor (nAChR), thus hindering
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nerve impulse transmission as a result of a depolarizing effect
within the central nervous system of insects (Elbert et al., 2008;
Jeschke et al., 2011; Oliveira et al., 2011; Salgado, 2016).

Fitness is a measure of the expected reproductive potential of
an individual (Kilot and Ghanim, 2012). Differences in the bio-
logical parameters affecting the net reproductive rate are of particu-
lar interest for insecticide resistance management (Haunbruge and
Arnaud, 2001). It is critical to understand the fitness consequences
associated with the development of insecticide resistance. This issue
has fundamental implications for evolutionary responses to stress
and immediate applications for efforts to manage resistance
(Hollingsworth et al., 1997). Because resistant insects are typically
not present at high frequency before frequent use of insecticides,
it is generally assumed that resistance genotypes must have a repro-
ductive disadvantage in the absence of selection pressure
(Haubruge and Arnaud, 2001). If resistance genes have associated
negative consequences on fitness in the absence of insecticide,
then the frequency of resistant phenotypes should decline when
insecticide pressure is reduced (Arnaud and Haubruge, 2002).
Fitness costs associated with insecticide resistance have been
reported for many classes of insecticides and insect species, includ-
ing Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) (Puinean
et al., 2010), Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)
(Feng et al., 2009), Plutella xylostella (L.) (Lepidoptera: Plutellidae)
(Chen et al., 2006; Ribeiro et al., 2014), Musca domestica (L)
(Diptera: Muscidae) (Abbas et al., 2015, 2016a, 2016b),
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) (Abbas
et al., 2012, 2014), Heliothis virescens (Fabricius) (Lepidoptera:
Noctuidae) (Sayyed et al., 2008), and Phenacoccus solenopsis
(Tinsley) (Hemiptera: Pseudococcidae) (Afzal et al., 2015).

Understanding the biological parameters associated with
insecticide resistance can improve integrated resistance manage-
ment; however, this information has been lacking for D. citri.
Therefore, we compared fitness and morphological characteristics
between three populations of D. citri from commercially managed
citrus groves in central Florida that exhibited resistance to neoni-
cotinoid insecticides (thiamethoxam and imidacloprid) and two
susceptible populations reared either in the absence (CLas−) or
presence (CLas+) of the CLas pathogen.

Materials and methods

Insects

A susceptible laboratory population of D. citri was reared in a
greenhouse at the Citrus Research and Education Center
(CREC), University of Florida, Lake Alfred, FL. The culture was
established in 2000 from field-collected insects in Polk County,
Florida (27°86′ N, 81°69′ W) prior to the discovery of HLB in
the state. This strain has been reared without exposure to insecti-
cides or subsequent input of field-collected D. citri for approxi-
mately 320 generations. CLas− D. citri were collected from a
subculture free of CLas that was tested monthly using a quantita-
tive real-time polymerase chain reaction (qPCR) assay for con-
firmation (Pelz-Stelinski et al., 2010). The colony was
maintained on sweet orange (Citrus sinensis (L) Osbeck)
‘Valencia’ in a temperature controlled greenhouse at 27–28°C,
with 60–65% relative humidity and a 14:10 h (light:dark) photo-
period. CLas+ D. citri were obtained from a population reared
on CLas-infected C. sinensis ‘Valencia’ plants housed in a separate
facility at the University of Florida, CREC. The infection status of

these insects was confirmed as described below and the infection
rate was 40%. All plants were 2–4 years of age.

The field populations of adult D. citri were collected from
commercial citrus orchards in central Florida located in:
Davenport (N: 28°09′933′′; W: 81°37′907′′), Clermont (N: 28°
26′986′′; W: 81°34′951′′), and Lake Wales (N: 27°57′759′′;
W: 81°34′951′′) in 2017. About 3000 adults were collected from
each location. Growers sprayed insecticides monthly for psyllid
control. Insects were collected using a D-Vac insect suction sam-
pler (Rincon-Vitova Insectaries, Ventura CA). Both the
Davenport and Lake Wales populations had a CLas infection
rate of 17%, while the infection rate in the Clermont population
was 20% as determined by the qPCR. Tested insecticides were
commercial formulations and included Admire Pro 4.6F (imida-
cloprid, LC) and Actara (thiamethoxam, SG). Admire pro 4.6F
was obtained from Bayer Crop Science, USA and Actara was
obtained from Syngenta, USA.

Adult feeding bioassay

An artificial diet (Hall et al., 2010; Langdon and Rogers, 2017)
was made by using 100 ml deionized water, 60 g sucrose (w/v;
Fisher Scientific, Fair Lawn, NJ, Cat. No: S5-500), 0.2 ml green
food dye (0.1% v/v; McCormick & Co., Inc. Hunt Valley, MD),
and 0.8 mL yellow food dye (0.4% v/v; McCormick & Co., Inc.
Hunt Valley, MD). The food solution was heated and mixed
with a magnetic stirrer. When the sucrose was completely dis-
solved, deionized water was added to bring the final volume up
to 100ml. Aliquots of the stock 30% sucrose solution were then
used to make serial dilutions of the insecticides. Caps were removed
from 8ml centrifuge tubes (Eppendorf Tubes, Hamburg, Germany,
Cat. No: 033381D); the approximate dimensions of the 8ml tubes
were 1.3 cm × 5.5 cm. Five hundred and fifty microliters of the
sucrose solution were added to each centrifuge tube cap and a
1.5 cm2 piece of Parafilm M® (Bemis®, Neenha, WI) was stretched
in both directions and placed over the treatment cap. While stretch-
ing the Parafilm tight, the excess Parafilm was wrapped over the
back side of the cap forming a feeding membrane. Four to six
adult D. citri were aspirated into the individual centrifuge tubes
and the treatment filled cap was then pressed onto the centrifuge
tube to allow feeding. The tubes were placed upright in a tray
and held at 25°C on a 14:10 h light:dark photoperiod for 72 h.
Each insecticide was tested over a range of concentrations
(0, 0.001, 0.01, 0.1, 1, 10, 100, and 1000 ng μl−1) and each concen-
tration was replicated four times. Approximately 300 D. citri
adults were tested from each resistant and susceptible population
for each insecticide using the feeding bioassay. The mortality was
determined 72 h after treatment. An insect was considered dead if
there was no movement after being touched with a probe.

Effect of insecticide resistance on Asian citrus psyllid fertility
and survivorship

One hundred and fifty to 200 mature nymphs reared from each
test strain were collected and caged on potted plants. Adults
that emerged within four days were aspirated into cylindrical
cages (diameter: 110 mm; height: 130 mm). For each experiment,
100 mixed sex adults from the above colonies were transferred to
a group of eight potted ‘Swingle’ C. aurantifolia (Chrism) plants
(1 year old) with new leaf flush (12 cm × 11 cm) for a 24-h ovipos-
ition period. At the end of this period, the adults were removed
from the plants and the number of eggs was counted using a
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stereomicroscope (Leica, Wild M3C, Leica Microsystems Inc,
Buffalo Grove, IL, 6.4X). Following egg hatch, the fertility of
each strain was determined at the onset of the experiment. The
plants were returned to the growth chamber at 25°C, 60% RH,
and a 14:10 h light:dark photoperiod. Thereafter, eggs and
nymphs were counted daily. The nymphal instars were identified
according to the size of the insect body and development of wing
pads (Tsai and Liu, 2000). Survival of psyllids was recorded for
each life stage: eggs, first-second-instar nymphs, third-instar
nymphs, fourth-fifth-instar nymphs, and adults to determine
cumulative mortality (K-value) of pysllids in response to pathogen
infection and insecticide resistance. This was calculated as:

K = −ln (s) andK =
∑

ki

where k was the negative natural logarithm of survival (s) for each
life stage and K was the sum of all k-values for the entire life cycle.
The magnitude of the K-value reflects the risk of mortality for a
treatment group, such that mortality of a group increases as
k-values increase (Pelz-Stelinski and Killiny, 2016).

Effect of insecticide resistance on fecundity and longevity

The objective of this experiment was to determine the effect of
insecticide resistance or CLas infection on D. citri fecundity and
longevity. Five colonies of D. citri were compared; two susceptible
laboratory cultures (CLas− and CLas+) and three field populations
exhibiting insecticide resistance and varying levels of CLas infec-
tion. Twenty pairs of virgin adults from each population were
sexed and then transferred as male and female pairs onto
CLas− ‘Swingle citrumelo’ (Citrus paradisi Macf. × Poncirus
trifoliata L. Raf) plants. Citrus plants with psyllids were held in
an environmental chamber at 25°C and 60% RH under a 14:10
h (light:dark) photoperiod to reflect typical field conditions. Egg
production was determined by counting the total number of
eggs laid by each female for 70 days. Eggs were counted and adults
were transferred to new plants at 3–5 days intervals to promote
feeding and oviposition on new flush throughout the experiment.
To determine total egg deposition per female, leaf flush was
removed with a sterile scalpel and the number of eggs was
counted using a stereomicroscope.

Population growth and reproductive rate

Data were analyzed as stage dependent life tables (Birch, 1948;
Pelz-Stelinski and Killiny, 2016; Chen et al., 2017). Life tables
were constructed from the cohort of eggs laid by the same females
on the same day. Twenty females were used for each treatment.
The net reproductive rate (R0) was calculated as the number of
female progeny produced per female per generation, assuming a
1:1 sex ratio, as per the following equation:

R0 =
∑

(1xmx)

x: time (days); lx: proportion of females alive at time x, and; mx :
age-specific fecundity (average daily number of eggs laid by
females per treatment divided by 2 to compensate for the 1:1
sex ratio of progeny).

The intrinsic rates of population increase for CLas+ and CLas−,
susceptible psyllids, as well as, field-collected, insecticide resistant

populations of varying infection status were calculated as
described by Birch (1948) and Chen et al. (2017) as: rm = ln R0/T

T is the generation time (in days) calculated as:

T =
∑

xlxmx∑
lxmx

The finite rate of population increase representing the number
of females produced per female per day was calculated (Birch,
1948; Pelz-Stelinski and Killiny, 2016) as:

l = exp (rm)

l = R1
0∑

x (lxmx)/R0

The relative fitness (Rf) was calculated by the following
method (Cao and Han, 2006; Afzal et al., 2015):

Rf = R0 of experimental population/R0 of susceptible population.

Adult weight

The weight of male and female adults from the three field popula-
tions, as well as, the CLas− and CLas+, laboratory susceptible popu-
lations were recorded using a Mettler AE 160 (Mettler-Toledo
Columbus OH USA) balance. D. citri were sampled at random
from each population obtaining the following sample sizes:
laboratory Clas− (male: 28; female: 41), laboratory Clas+ (male:
20; female: 20), Clermont (male: 68; female: 65), Davenport
(male: 43; female: 45), and Lake Wales (male: 16; female: 6).

Morphological measurements

Morphological measurements for adult D. citri were made using a
stereomicroscope. Insects were killed by freezing (−20°C for 30min)
and held using a piece of double-sided sticky tape. Body length,
abdominal length, wing length, femur length, and head width
were measured for two laboratory susceptible cultures and three
field populations at 10 × magnification with a 1.2mm ocular
ruler. At least 40 individuals from each population were measured.

DNA isolation and real time PCR assays

Deoxyribonucleic acid (DNA) was isolated from D. citri using a
DNeasy Blood and Tissue kit (Qiagen, Valencia, CA) according
to the manufacturer’s protocol with a modification for the
isolation of bacterial DNA from arthropods (Li et al., 2006;
Pelz-Stelinski et al., 2010). A Las specific 16S ribosomal DNA
probe (5′-FAMAGACGGGTGAGTAACGCG-3BHQ-3′) and pri-
mers (LasF: 5′TCGAGCGCGTATGCAATACG-3′; LasR: 5′-
GCGTTATCCCGTAGAAAAAGGTAG-3′) were used in qPCR
assays to detect CLas (Li et al., 2006; Pelz-Stelinski and Killiny,
2016). In addition to target DNA, internal control primers were
used in multiplex qPCR amplification of samples, as described
previously (Pelz-Stelinski et al., 2010). Each reaction tube con-
tained a primer and probe set to amplify the psyllid wingless
gene (Wg) [(WgF: 5′GCTCTCAAAGATCGGTTTGACGG-3′;
WgR: 5′-GCTGCCACGA ACGTTACCTTC-3′), Wg probe
(5′-JOE-TTACTGACCATCAC TCTGGACGC-3BHQ2-3′)]. The
quantitative PCR scheme for all assays consisted of 2 min at
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50°C, 10 min at 95°C, and 3 min 40 cycles with 15 s at 95 and 60°
C 1 min. Samples were considered positive for CLas if a product
was amplified within the 40 amplification cycles used for
reactions.

Statistical analysis

Mortality data of D. citri were subjected to Probit analysis using
SAS software (SAS Institute Inc, Cary, 9.4, 2002–2012, NC,
USA) for the determination of LC50 values and their 95% fiducial
limits (FLs) (Finney, 1971). The data were corrected for control
mortality using Abbott’s formula (Abbott, 1925). In order to
determine the best response metric for calculating RRs, the rela-
tive precision of 95% FLs for LC50 values was calculated as the
width of the 95% FL divided by the LC50 values obtained from
the CLas− population. The RRs and their 95% FL were calculated
for each field-collected and laboratory population according to
Robertson and Preisler (1992) and Bilbo et al. (2019) using the
laboratory CLas− colony as the susceptible reference.

Insect survival was analyzed using the Kaplan–Meier method
and pairwise comparisons between treatment groups were made
using the log rank (Mantel Cox) test. The psyllid weight abdom-
inal length, femur length, head width, and wing length were ana-
lyzed using an analysis of variance (ANOVA) with sex and colony
as fixed effects (PROC GLM; SAS institute, 2002–2012).

Female longevity, number of eggs per female, finite rate of
population increase, and net reproductive rate were compared
between groups of the three insecticide resistant strains and the
CLas− and CLas+ susceptible strains using a one-way ANOVA
(α = 0.05) followed by Tukey’s mean separation (PROC GLM;
SAS Institute, 2002–2012). Population growth rate, reproductive
rate, fecundity, fertility, and morphological measurements were
dependent variables in linear regression models with the resist-
ance ratio as the independent variable (PROC GLM; SAS
Institute, 2002–2012). The models’ assumption of equality of vari-
ance was assessed using a plot of residuals vs. predicted values.
The assumption of normality in the residuals was assessed

using a q–q plot. The independent variable was log transformed
for ANOVA and both the dependent and independent variables
were log transformed for regression.

Results

Susceptibility of laboratory and field populations to
thiamethoxam and imidacloprid

All field populations exhibited more resistance than either of the
laboratory susceptible colonies (Lab CLas−: 0.22–1.52 ng μl−1; Lab
CLas+: 0.11–0.68 ng μl−1) except for the Clermont population to
imidacloprid (0.9–1263 ng μl−1) (table 1 and fig. 1). The Lake
Wales, Clermont, and Davenport populations exhibited resistance
to imidacloprid, with resistance ratios ranging from 7.65–16.11.
For thiamethoxam, resistance ratios in the field populations ran-
ged from 26.79–49.09 compared with the susceptible CLas−

laboratory population.

Fecundity and fertility

There was a significant relationship between resistance ratio and
fecundity, with a reduction in eggs with increasing resistance
ratio for both insecticides (table 2). There was a significant rela-
tionship between resistance ratio and fertility, with a reduction
in egg survival with increasing resistance ratio for both insecti-
cides (table 2).

Survival

Survival of first (F = 0.33; df = 4, 35; P = 0.86), second (F = 0.33;
df = 4, 35; P = 0.53), third (F = 0.53; df = 4; 35; P = 0.99), and
fourth (F = 0.99; df = 4, 35; P = 0.42) instar nymphs did not differ
between the three field populations and the susceptible populations
(table 3). Survival of fifth instar nymphs from the Davenport popu-
lation was significantly higher (F = 2.74; df = 4, 35; p = 0.044) than
that observed in all of the other populations measured (table 3).

Table 1. Susceptibility of D. citri adults to thiamethoxam and imidacloprid as measured by artificial diet feeding bioassay

Insecticides Population χ2 df P Slope ± SE
LC50 (95% FL)

(ng μL−1) RR50 (95% FL)

Thiamethoxam

Lab CLas− 1.66 5 0.36 0.60 ± 0.09 0.66 (0.22–1.52) 1 (0.22–4.50)

Lab CLas+ 3.28 5 0.35 0.72 ± 0.10 0.32 (0.11–0.68) 0.48 (0.11–1.99)

Clermont 2.42 5 0.79 0.33 ± 0.04 17.76 (2.50–26.05) 26.79 (4.40–163.16)

Davenport 3.99 5 0.55 0.34 ± 0.05 32.54 (10.10–151) 49.09 (7.13–338.10)

Lake Wales 7.34 5 0.20 0.32 ± 0.04 21.77 (6.95–92.11) 32.84 (6.42–168.06)

Imidacloprid

Lab CLas− 3.16 5 0.68 0.40 ± 0.04 0.82 (0.30–2.16) 1 (0.25–4.06)

Lab CLas+ 3.57 5 0.61 0.39 ± 0.04 0.67 (0.24–1.78) 0.83 (0.20–3.42)

Clermonta 2.19 5 0.87 0.18 ± 0.05 11.44 (0.9–1263) 14.10 (0.61–325.57)

Davenport 1.04 5 0.90 0.27 ± 0.04 6.22 (1.66–30.58) 7.65 (1.40–44.97)

Lake Wales 1.96 5 0.85 0.32 ± 0.04 13.09 (4.00–57.71) 16.11 (2.88–90.25)

aLC50 values generated by SAS exceed the maximum concentration while actual mortality was lower.
bResistance ratios calculated using LC50 from field populations or CLas+ colony divided by LC50 of CLas

− susceptible laboratory colony.
Robertson and Preisler (1992), Bilbo et al. (2019)
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Population growth and reproductive rate

The net reproductive rate of the Lake Wales field population was
significantly lower (F = 6.1; df = 4, 93; P < 0.001) than that for all
other field and laboratory populations (table 4). Similarly, the
finite rate of population increase was significantly lower
(F = 5.67; df = 4, 93; P < 0.001) for the Lake Wales population as
compared to all others measured (table 4). There were no signifi-
cant differences between the populations for adult longevity (F =
0.86; df = 5, 58; P = 0.50); however, CLas− and CLas+ laboratory
females laid significantly more (F = 3.26; df = 5, 58; P = 0.01)
eggs than females from the Lake Wales field population (table 4).

Adult weight

The source of collected insects (laboratory susceptible and field
collected populations) and sex were significant independent vari-
ables in a model predicting ln(weight) (F = 11.2; df = 9, 342; P <
0.001). Adult weight (F = 9.23; df = 4, 342; P < 0.001) and sex
(F = 58.25; df = 1, 342; P < 0.001) varied among colonies with a
non-significant interaction term (F = 1.09; df = 4, 342; P = 0.362)
that was removed from the model (fig. 2). While males were smal-
ler than females and size differed between populations, the size
difference between males and females did not vary depending
on source population. Examining population differences for
males using a Tukey test, we found that males from the CLas−,
laboratory population weighed more than CLas+, laboratory

males, and those from the Clermont population. There were no
statistical differences in female weight between the populations
examined.

Morphological characteristics

There were no significant differences between the populations for
either head width or femur length (table 5). The CLas+ laboratory
population had significantly shorter wings than the Clermont
population, but there were no other differences in the wing length.
Psyllids from Lake Wales had shorter body length than any other
population, but D. citri from both Lake Wales and Clermont had
shorter abdomens than the other four populations. There was a
significant effect of sex for all measurements except femur length
and in all cases, females were larger than males (table 5).

Discussion

We detected reduced susceptibility to neonicotinoids among the
tested D. citri field populations (table 1 and fig. 1). In general,
resistance was more pronounced with thiamethoxam than with
imidacloprid and occurred at all sampled locations.
Furthermore, the CLas+ susceptible colony was more sensitive
to the insecticides evaluated than the CLas− laboratory popula-
tion. This is consistent with earlier surveys of D. citri populations
in Florida (Chen et al., 2017; Langdon and Rogers, 2017).
Candidatus Liberibacter asiaticus infection increased the

Figure 1. Dose-response curves for D. citri populations treated with serial dilutions of thiamethoxam or imidacloprid in water. Abbreviations identify geographic
origins of each population (LB−, Laboratory CLas−; LB+, Laboratory CLas+; CM, Clermont; DP, Davenport; LW, Lake Wales).

Table 2. Regressions of fecundity and fertility against the thiamethoxam and imidacloprid resistance ratio.

Parametera Insecticide

Intercept Resistance ratio

Estimate SE t-Value P-value Estimate SE t-Value P-Value

Fertility

Thiamethoxam −0.42 0.02 −22.21 <0.0002 0.05 0.01 7.90 0.0042

Imidacloprid −0.43 0.03 −16.66 <0.0005 0.08 0.01 6.02 0.0092

Fecundity

Thiamethoxam 13.43 0.49 27.40 <0.0001 −0.64 0.18 −3.63 0.03596

Imidacloprid 13.61 0.43 32.02 <0.0001 −0.1.00 0.22 −4.58 0.0.0195

aModels with fertility as dependent variable were log transformed. Models with fecundity as dependent variable were square root transformed; fertility: df = 1, 38; fecundity: df = 1, 98.
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susceptibility of D. citri to insecticides relative to CLas− D. citri
and this result is also consistent with previous investigations
(Tiwari et al., 2010). nAChRs are ligand-gated ion channel recep-
tor complexes that mediate fast cholinergic synaptic transmission.
nAChRs play a central role in the mediation of fast excitatory syn-
aptic transmission in the insect central nervous system and are
also the targets of commercially important classes of insecticides
(Salgado and Saar, 2004; Oliveira et al., 2010). Neonicotinoids are
agonists that mimic the action of acetylcholine and therefore have
widespread use against a broad spectrum of sucking and certain
chewing insect pests (Oliveira et al., 2011; Salgado, 2016).
Following instances of misuse or overuse, nicotinic insecticide

resistance can contribute to potentially reduced performance of
these insecticides (Oliveira et al., 2011; Salgado, 2016).

Several biological parameters were compared between D. citri
that exhibited resistance to thiamethoxam and imidacloprid in
the field vs. their counterparts from known laboratory susceptible
cultures. There was a significant relationship between resistance
ratio and fecundity with egg production reduced proportionally
with increasing resistance ratio for both insecticides (table 2).
As indicated in tables 3 and 4, both laboratory susceptible popu-
lations exhibited higher egg to adult survival than field resistance
populations. Furthermore, the egg to adult survival rate in the
Lake Wales population was between 2.6 and 3.4-fold lower than

Table 3. Survival rate of immature stages of D. citri from three field resistant and laboratory susceptible populations.

Populationa
Laboratory

CLas−
Laboratory

CLas+ Clermont Lake Wales Davenport

1st instar

Survival rate 78.30a 82.72a 68.14a 42.43a 65.39a

K-Value 0.25 0.19 0.38 0.86 0.43

2nd instar

Survival rate 86.30a 89.38a 81.67a 78.72a 83.33a

K-Value 0.15 0.11 0.20 0.24 0.18

3rd instar

Survival rate 85.10a 87.20a 84.06a 81.25a 74.58a

K-Value 0.16 0.14 0.17 0.21 0.29

4th instar

Survival rate 91.96a 90.28a 87.50a 87.50a 80.63a

K-Value 0.08 0.10 0.13 0.13 0.21

5th instar

Survival rate 88.42a 93.75a 85.42a 87.50a 100b

K-Value 0.12 0.07 0.16 0.13 0

Egg to adult

Survival rate 38.68a 54.43a 24.25a 14.92a 15.97a

K-Value 0.94 0.60 1.41 1.90 1.83

K 1.7 1.21 2.45 3.34 4.26

aMeans followed by the same letter within a row are not significantly different.

Table 4. Fitness parameters (± SE) of thiamethoxam and imidacloprid resistant field populations of D. citri as compared with laboratory controls

Analyzed parameter Lab CLas− Lab CLas+ Clermont Davenport Lake Wales

Insecticide susceptibilitya SS SS RR RR RR

Finite rate of increase (λ)b 1.90 ± 0.27a 2.01 ± 0.32a 1.41 ± 0.32a 1.38 ± 0.91a 1.09 ± 0.28b

Longevity of female (day) 50.35 ± 3.24a 52.70 ± 3.63a 50.75 ± 3.43a 52.50 ± 3.38a 51.95 ± 3.84a

Egg number of per female 182.40 ± 27.46a 192.35 ± 22.29a 138.30 ± 23.17a 133.15 ± 21.02a 101.95 ± 23.53b

Net reproductive rate (R0) 91.20 ± 11.72a 96.18 ± 11.15a 89.15 ± 11.58a 66.58 ± 11.51a 50.98 ± 11.75b

Relative fitnessc 1 1.05 0.98 0.73 0.56

aSS: susceptible line; RR: insecticide resistant line.
bMeans followed by the same letter within a row are not significantly different.
cRf = R0 of experiment population/R0 of laboratory susceptible CLas− population.
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that of the susceptible populations. Higher mortality of resistant
than susceptible D. citri is an indicator of a fitness disadvantage.
In this case, both fecundity and egg survival were lower in popu-
lations exhibiting insecticide resistance. Collectively, our results
indicate that resistance to thiamethoxam and imidacloprid in D.
citri corresponded with a developmental disadvantage and suggest
a trade off between the distribution of resources toward detoxifi-
cation and fitness. Analogous fitness costs associated with insecti-
cide resistance have been reported previously (Liu and Han, 2008;
Feng et al., 2009; Abbas et al., 2012; Kilot and Ghanim, 2012).

The finite rate of increase provides an estimate of insect popu-
lation growth potential (Stark and Banks, 2003), which provides
broader insight than individual life history parameters. Net repro-
duction is not, however, the only component needed to assess the
potential of population growth because the finite rate of increase
depends on fecundity, percentage egg hatch, and growth (Stark
and Banks, 2003). In this study, the finite rate of increase in resist-
ant populations was 23–43% lower than that of the laboratory sus-
ceptible (CLas−) population. This type of difference in net
reproductive and finite rate of increase has also been observed
between susceptible and resistant populations of Tetranychus urti-
cae Koch (Acari: Tetranychidae) and is known to contribute the
instability of milbemectin resistance (Nicastro et al., 2010).
Similarly, imidacloprid resistance is associated with a lower net

reproductive rate in Spodoptera litura (Fabricius) compared
with laboratory susceptible counterparts (Abbas et al., 2012).
The decline in population growth of D. citri observed here
appeared to be mainly due to the decreased fecundity and hatch
rate.

Decreased Rf associated with insecticide resistance has been
reported previously in various insect taxa and for various chem-
istries including thiamethoxam resistant B. tabaci (Rf = 0.53)
(Feng et al., 2009); imidacloprid resistant S. litura (Rf = 0.38)
(Abbas et al., 2012) and two populations of N. lugens (Rf = 0.17
and 0.10) (Liu and Han, 2008) and acetamiprid resistant P. sole-
nopsis (Rf = 0.22) (Afzal et al., 2015). The present study indicated
that the Rf of the resistant Lake Wales population was 0.56 of the
laboratory susceptible (CLas−) population (table 4). Our results
are thus congruent with the general convention that insecticide
resistant populations exhibit reduced fitness compared with sus-
ceptible counterparts (Denholm and Rowland, 1992).

In contrast, there are instances where limited fitness costs have
been associated with insecticide resistance (Haubruge and
Arnaud, 2001; Chen and Nakasuji, 2004; Baker et al., 2007;
Bielza et al., 2008) or certain modifiers can compensate for resist-
ance costs (Coustau et al., 2000). The lack of quantifiable fitness
costs related to resistance typically occurs under specific environ-
mental conditions that would not be detected under experimental

Figure 2. Mean weight (±SE) of adult D. citri from laboratory susceptible and three insecticide resistant field populations (LB−, Laboratory CLas−; LB+, Laboratory
CLas+; CM, Clermont; DP, Davenport; LW, Lake Wales) (SE < 0.0009).

Table 5. Morphometric comparison of five adult body characteristics (± SE) of D. citri from three field resistant and two susceptible populations

Populations Abdomen length (mm) Body length (mm) Femur length (mm) Head width (mm) Wing length (mm)

Lab CLas− 1.40 ± 0.020a 2.93 ± 0.018a 0.36 ± 0.008a 0.54 ± 0.009a 2.00 ± 0.021ab

Lab CLas+ 1.39 ± 0.020a 2.95 ± 0.018a 0.36 ± 0.008a 0.51 ± 0.009a 1.99 ± 0.021b

Clermont 1.27 ± 0.020b 2.95 ± 0.018a 0.36 ± 0.008a 0.52 ± 0.009a 2.08 ± 0.021a

Davenport 1.42 ± 0.020a 2.96 ± 0.018a 0.37 ± 0.008a 0.53 ± 0.009a 2.02 ± 0.021ab

Lake Wales 1.28 ± 0.020b 2.85 ± 0.018b 0.36 ± 0.008a 0.53 ± 0.009a 2.01 ± 0.021ab

Model 0.0001 0.0001 0.9437 0.0301 0.0007

Sex 0.0001 0.0438 0.3158 0.034 0.0001

Population 0.0001 0.0002 0.99 0.2326 0.025

Sex × Population 0.0191 0.0238 0.7152 0.0699 0.6704

Means for each colony followed by a different letter are significantly different by the Tukey test. ANOVA model P-values with sex and population as fixed effects are given below the LS means
with df = 9, 200. The P-values for each variable follow.
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laboratory conditions (Bourguet et al., 2004). Also, certain pleio-
tropic effects might not be detected with current methods to
measure costs dependent on body size and reproduction (Fry,
1993).

Given the interaction between D. citri and CLas and its asso-
ciated consequences on insect fitness, the Rf costs associated
with insecticide resistance cannot be investigated in D. citri with-
out considering this additional interaction. Acquisition of phyto-
pathogens by herbivorous insect vectors can have population scale
fitness consequences. Several leafhopper vectors exhibit enhanced
fitness following acquisition of plant pathogens. Beanland et al.
(2000) and Ebbert and Nault (2001) reported that leafhoppers
exposed to plant pathogens live longer than their uninfected
counterparts. Pelz-Stelinski and Killiny (2016) indicated that
fecundity of CLas+ D. citri is greater than that of uninfected coun-
terparts and that there is a consequential trade off associated with
CLas acquisition, which decreases life span compared with unin-
fected counterparts. Our results were congruent with previous
investigations in that more adult female D. citri were produced
per day by CLas+, as compared, with CLas− counterparts
(Pelz-Stelinski and Killiny, 2016). Propagative pathogens can
impose metabolic or immune costs on their hosts associated
with multiplication (Nault, 1997). The hormonal regulation of
immune function and metabolic allocation likely underlie life his-
tory trade-offs (Harshman and Zera, 2007). Our results confirm
that acquisition of CLas by D. citri causes a fitness costs, which
should be compounded by the negative fitness consequences asso-
ciated with insecticide resistance in this species.

In summary, our investigation indicates that CLas infection
increased susceptibility of D. citri to both thiamethoxam and imi-
dacloprid. We then showed that field-collected populations of
D. citri exhibited resistance to these insecticides. The net repro-
ductive rate of resistant populations declined with increasing
resistance ratio. An additional cost of resistance appears to be
smaller body size in D. citri. The smaller size of resistant D.
citri may result in reduced maximum dispersal distance and
reduced reproduction (Langellotto et al., 2000; Baguette and
Schtickzelle, 2006; Lewis-Rosenblum et al., 2015; Pelz-Stelinski
and Killiny, 2016; Ejsmond et al., 2018; Villa et al., 2018).
Further research is needed to identify cause and effect mechan-
isms vs. correlations between insecticide resistance in D. citri
and fitness costs. Our investigation also suggests that the current
widespread problem of insecticide resistance to neonicotinoids
among populations of D. citri across Florida (Chen et al., 2018)
should be effectively mitigated by ceasing thiamethoxam and imi-
dacloprid use for a period of at least 6 months (Chen et al., 2018).
Additional resistance management should include rotations of at
least six insecticide modes of action to diversify selection forces
and complicate the evolution of resistance (Chen and Stelinski,
2017).
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