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Reconnection of skewed vortices
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Based on experimental evidence that vortex reconnection commences with the
approach of nearly antiparallel segments of vorticity, a linearised model is developed
in which two Burgers-type vortices are driven together and stretched by an ambient
irrotational strain field induced by more remote vorticity. When these Burgers vortices
are exactly antiparallel, they are annihilated on the strain time-scale, independent of
kinematic viscosity ν in the limit ν→ 0. When the vortices are skew to each other,
they are annihilated under this action over a local extent that increases exponentially
in the stretching direction, with clear evidence of reconnection on the same strain
time-scale. The initial helicity associated with the skewed geometry is eliminated
during the process of reconnection. The model applies equally to the reconnection of
weak magnetic flux tubes under the action of a strain field, when Lorentz forces are
negligible.
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1. Introduction

The reconnection of vortex filaments has been recently visualised in water in the
brilliant experiment of Kleckner & Irvine (2013). These authors have succeeded in
generating a vortex in the form of a trefoil knot, which is highly unstable. Figure 1
shows clips from the movie in the supplementary material to that paper. The upper
row (a–d) shows the evolution of the trefoil vortex from a time shortly after its
creation up to the moment of reconnection; the vortex is visualised by air bubbles,
which are drawn to the pressure minimum in the vortex core. The clips show three
regions where initially remote parts of the vortex are apparently swept into close
proximity, generating three nearly antiparallel vortex pairs in these regions. The lower
row (e–h) shows a close-up of one of these vortex pairs as it evolves; between the
times of clips (g) and (h), a rapid reconnection, which may fairly be described as
‘explosive’, has occurred, with complicated distortion at the ends of the reconnecting
region.

This situation as described by Kleckner & Irvine (2013) is represented schematically
in figure 2. The more rapid propagation of the inner strands of the vortex generates
three antiparallel vortex pairs that are necessarily slightly skewed. The stretching of
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150 ms 250 ms 300 ms 350 ms

(a) (b) (c) (d )

270 ms 297 ms 324 ms 350 ms

(e) ( f ) (g) (h)

FIGURE 1. Reconnection of a trefoil vortex in water (reproduced from Kleckner &
Irvine (2013), with permission). (a–d) Evolution of trefoil vortex through a reconnection
event; the area shown is approximately 120 mm × 120 mm. (e–h) Zoom of upper right
reconnection event, viewed from the side, which occurs between 324 ms and 350 ms; the
area shown is approximately 38 mm× 61 mm.

(a) (b)

FIGURE 2. Schematic diagram of the trefoil vortex just before reconnection. Arrows
indicate the direction of the vorticity. The plan view on (a), and side view on (b), show
the three stretched, antiparallel, skewed vortex pairs, where reconnection will occur. At the
instant considered, the upper ring propagates upwards more rapidly than the lower ring.

these vortex pairs due to the excess speed of the smaller ‘vortex ring’ is inevitably
associated with an inflow to each pair, which rapidly gives rise to the explosive
reconnection process. This is of course a highly idealised description; the actual flow
as viewed in the movie has a high degree of irregularity, but the ultimate product of
the trefoil reconnections does appear to be two vortex rings as indeed portrayed by
figure 2.

Two length-scales characterise this type of flow, the geometric scale L of the initial
trefoil knot, and the cross-sectional radius δ of the vortex core, i.e. the tubular region

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.233


Reconnection of skewed vortices 331

in which the vorticity is essentially concentrated; outside this region, the flow is
effectively irrotational. If the circulation of the vortex is Γ , then the induced velocity
at any point near the vortex is of order U0 ∼ Γ/L, and the rate of strain at any such
point is of order γ0 ∼ Γ/L2. (This ignores the swirl component of velocity Γ/2πr at
small distance r from any element of the vortex, which does not contribute to motion
of that element.) The vortex moves and is deformed under the action of the induced
velocity and strain fields, locally like the familiar Burgers vortex; its cross-sectional
scale is then given in order of magnitude by δ∼ (ν/γ0)

1/2∼Re−1/2L, where Re=Γ/ν
is the vortex Reynolds number, and ν is the kinematic viscosity of the fluid. We shall
assume throughout that Re� 1, so that δ � L. This condition was satisfied in the
above experiment, for which the Reynolds number of the initial flow was in the range
103–104. With Re = 104, and with L ∼ 10−1 m and ν ∼ 10−6 m2 s−1 for water, the
above estimates are δ ∼ 1 mm, U0 ∼ 10−1 m s−1, Γ ∼ 10−2 m2 s−1 and γ0 ∼ 1 s−1.

Now let a be any intermediate scale satisfying δ� a� L. Then in any sphere of
radius a, centred at or near any point of the vortex, the rate of strain may be treated
as approximately uniform. If we refer to the principal axes of strain, this strain field
may be written as

Us = (−αx,−βy, γ z), (1.1)

where, by virtue of incompressibility, α+β= γ , and we may suppose that α> 0, γ >
0, −α 6−β 6 γ .

If β > 0 (the case of ‘extensive strain’), then any small material element of fluid
is swept in towards the z-axis, and stretched in the ±z-directions. In this situation, if
any two initially remote elements of the vortex happen to come within a distance ∼a
of each other in such a region of extensive strain, they will be swept in towards the
z-axis and progressively aligned with it. It is this type of process that appears to be
taking place in figure 1(e–h); the length of the nearly antiparallel segments revealed
in this way is presumably ∼a. The explosive reconnection that occurs in passing from
figure 1(g) to 1(h) can then be interpreted as due to the persistent sweeping of these
antiparallel segments towards the z-axis. It is these considerations that motivate the
simple model considered in the following sections.

For a general discussion of the background to this problem, see Pullin & Saffman
(1998). In the turbulence context, attempts to represent turbulence as a random
distribution of vortex tubes and/or sheets go back to Burgers (1948), Townsend
(1951) and Rott (1958). Concentrated vortex filaments have been identified in many
direct numerical simulations (DNS) of turbulence (e.g. Vincent & Meneguzzi 1991;
Ishihara et al. 2007), and in the experiment of Douady, Couder & Brachet (1991)
in which vortices were visualised by small air bubbles. Vortex reconnection was
reviewed by Kida & Takaoka (1994), where an extensive list of references up to that
date may be found. In particular, Saffman (1990) considered the reconnection of two
antiparallel vortices confined to a plane and swept into close proximity by a strain
field; he took partial account of the vortex–vortex interaction by noting that, as the
vortex circulation is decreased, the axial pressure is locally increased, generating an
axial flow that accelerates the effect of the imposed strain. Boratav, Pelz & Zabusky
(1992) considered the interaction of skewed vortices, and to that extent their paper
is more relevant to the present investigation; however, no strain field other than that
induced by the local interacting vortices was imposed. For more recent investigations,
see, for example, van Rees, Hussain & Koumoutsakos (2012) and Kudela & Kosior
(2013).

The analogous problem of magnetic tube reconnection is treated in the monograph
of Priest & Forbes (2000); simple models have been treated by Moffatt & Hunt
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(2002) and Hattori & Moffatt (2005). For magnetic flux tubes, there is no counterpart
of the ‘vortex–vortex’ interaction that is the most difficult aspect of the vortex
reconnection problem. There is however a Lorentz force acting on the fluid that
obviously influences the dynamics, but if the magnetic field is weak, this effect is
negligible; in this limit, the magnetic reconnection model based on rapid distortion
theory (RDT), as adopted in the following sections, is exact. For vortex reconnection,
it is at best an approximation, most easily justified when the interacting vortices are
exactly or nearly antiparallel, as appears to be the case for the reconnecting trefoil
vortex.

2. Annihilation of Burgers vortices

For simplicity, we suppose that β = α, and we first consider the action of the
axisymmetric strain field

U = (−αx,−αy, 2αz), α > 0, (2.1)

on a vorticity distribution (0, 0, ω(x, y, t)). The vorticity is swept towards the z-axis
and stretched in the ±z-directions. Within the context of RDT (Hunt & Carruthers
1990), the linearised vorticity equation is

∂ω

∂t
− αx

∂ω

∂x
− αy

∂ω

∂y
= 2αω+ ν

(
∂2ω

∂x2
+ ∂

2ω

∂y2

)
. (2.2)

Here, the ‘self-interaction’ of the vorticity field is neglected in comparison with the
sweeping and stretching effect of the uniform strain field (2.1). Actually there is
a potential conflict between this RDT approximation and the assumption Re � 1
introduced above – see comment at the end of this section.

Equation (2.2) admits the well-known steady exact solution of the Navier–Stokes
equations (Burgers 1948)

ωB(x, y)= (Γ/πδ2) e−r2/δ2
, δ =√2ν/α, (2.3)

where r2 = x2 + y2, Γ is the circulation of the vortex and δ is its radial scale. If we
place a vortex of this structure with its centreline at position (0, y0) at time t= 0, then
it will be swept towards the line (0, 0), so that at time t its centreline is at (0, Y(t)),
where Y(t) = y0 e−αt. This moving vortex is still subject to the same uniform steady
rate of strain α, and its vorticity field is therefore given by

ω(x, y, t)=ωB(x, y− y0 e−αt)= (Γ/πδ2) e−r2
1(t)/δ

2
, (2.4)

where r2
1(t)= x2 + (y− y0 e−αt)2. It may be verified directly that (2.4) satisfies (2.2);

this is still an exact solution, but now of the unsteady Navier–Stokes equations, in
conjunction of course with the background uniform strain. (For details concerning the
more general non-axisymmetric situation, see appendix A; for extension of the Burgers
solution to include axial velocity, see appendix B.)

When Y(t)(= y0 e−αt)� δ, we may expand (2.4) in Taylor series:

ωB(x, y− Y(t))=ωB(x, y)− Y(t)
∂ωB(x, y)

∂y
+ 1

2
Y(t)2

∂2ωB(x, y)
∂y2

+ · · · . (2.5)
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Each term in this expansion is separately a solution of (2.2). In particular, the second
term is

ω2(x, y, t)= (2y0Γ/πδ
4) e−αt y e−(x

2+y2)/δ2
. (2.6)

(Subsequent terms in the series, decaying as e−nαt, may be expressed in terms of
Hermite polynomials Hn(y).)

Suppose now that we have two vortices of equal and opposite circulations ±Γ with
centrelines initially at positions (0, ±y0). The solutions are additive (vortex–vortex
interaction being neglected) so that now the required solution is

ω(x, y, t)=ωB(x, y− y0 e−αt)−ωB(x, y+ y0 e−αt)= Γ

πδ2
(e−r2

1(t)/δ
2 − e−r2

2(t)/δ
2
), (2.7)

where r2
1,2(t) = x2 + (y ∓ y0 e−αt)2. Again, this is an exact solution of (2.2); it is not

however an exact solution of the Navier–Stokes equations, because of the RDT neglect
of vortex–vortex interactions.

When Y(t)= y0 e−αt� δ, we may again expand (2.7) as a Taylor series, in which
now only the terms odd in y survive; at leading order,

ω(x, y, t)∼ 2ω2(x, y, t)= (4y0Γ/πδ
4) e−αt y e−(x

2+y2)/δ2
. (2.8)

This describes the exponential decay of vorticity (and this despite the persistent
stretching) on a time-scale ∼ α−1. It should be noted that, although this decay is
caused by viscosity ν > 0, the time-scale of decay is independent of ν in the limit
ν→ 0. It is in this sense that it may be considered to be a rapid, indeed explosive,
process, which it seems appropriate to describe as one of ‘annihilation’ of vorticity.

The neglected vortex–vortex interaction probably makes little difference to this
annihilation scenario. For so long as Y(t) is still large compared with δ, this
interaction merely provides an additional translational velocity Γ/2Y(t) in the
x-direction for the vortex pair. When Y(t) ∼ δ or smaller, this translational velocity
settles down to order Γ/δ; at this stage, the interaction presumably leads to some
shedding of vorticity into a wake region in the manner described by Buntine &
Pullin (1989), but the persistent inflow towards the (x, z)-plane will cause continuing
rapid annihilation of this shed vorticity also; indeed it seems likely that the
shedding of vorticity will, if anything, accelerate the overall annihilation process.
The enhanced-pressure mechanism of Saffman (1990) may also serve to accelerate
the process; indeed in the Kleckner & Irvine (2013) experiment, the vortex in clips
(a–d) of figure 1 evolves for a time ∼200 ms, whereas the annihilation process from
clips (g–h) occurs in less than 25 ms, evidently somewhat less than the strain rate
time-scale.

3. Skewed Burgers vortices
Suppose now that at time t = 0 we place a Burgers-type vortex with straight

centreline L0 on the plane y = y0 and tilted at an angle β0 (0 < β0 < π/2) to the
z-axis; L0 is given in parametric form by (x0, y0, z0) = (p sin β0, y0, p cos β0), where
p is a parameter on the line running from −∞ to +∞. The gradient of L0 is
m0 = x0/z0 = tan β0. We assume that the irrotational strain field (2.1) advects and
stretches this line, sweeping it towards the z-axis. At time t, the point initially at
(x0, y0, z0) has moved to (X, Y, Z) = (x0 e−αt, y0 e−αt, z0 e2αt), so that the gradient of
the line, now L(t), in the (x, z)-plane at time t is

m= tan β = X/Z = (x0/z0) e−3αt = e−3αt tan β0. (3.1)

Let
e(t)= (sin β(t), 0, cos β(t)), (3.2)
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FIGURE 3. (Colour online) The effective stretch γ (τ) as a function of τ = αt, as given
by (3.3) and (3.1), with initial condition β0 = π/4. As τ increases, β decreases to zero,
and γ (τ) rapidly asymptotes to 2α.

the unit vector directed along L(t). Then the rate of stretch γ (τ) acting on the vortex
at dimensionless time τ = αt is

γ (τ)= e · (∇U) · e= 2αs(τ ), where s(τ )= 1
2(3 cos2 β(τ)− 1), τ = αt. (3.3)

We may suppose that β0< cos−1(1/
√

3)≈ 55◦, so that γ (τ)> 0 for all τ > 0. Figure 3
shows the time variation of γ starting from an initial slope β0=π/4 (so γ (0)/α=0.5).
For large τ , γ rapidly asymptotes to 2α; in fact, γ − 2α ∼−3α e−6τ .

Under the basic assumption Re� 1, the response of the vortex to this changing rate
of stretch is quasi-static; the radial scale σ(t) of the vortex adapts accordingly, and is
given by

1
σ(t)2

= γ

4ν
= α

2ν
s(τ )= 1

δ2
s(τ ). (3.4)

Note that, although the strain field is not axisymmetric about the direction of e(t), the
vortex itself at leading order (for Γ/ν� 1) remains axisymmetric about this direction,
according to the asymptotic analysis of Moffatt, Kida & Ohkitani (1994).

Now the perpendicular distance rp from any point x = (x, y, z) to the line L(t) is
given by

r2
p(x, t)= (x cos β(t)− z sin β(t))2 + (y− Y(t))2, (3.5)

where still Y(t) = y0 e−αt. The Burgers-type vortex centred on L(t) may then be
expected to have time-dependent vorticity field

ω1(x, t)= Γ

πσ(t)2
exp

[
−r2

p(x, t)

σ (t)2

]
e(t)= γ (t)Γ

4πν
exp

[
−γ (t)r

2
p(x, t)

4ν

]
e(t), (3.6)

where e(t), γ (t) and rp(x, t) are given by (3.2), (3.3) and (3.5), respectively.
Unlike (2.4), this is not an exact solution of the Navier–Stokes equation, but it

provides a leading-order approximation for the evolution of the vortex when Re� 1.
Note that, for large t, when β(t)→ 0, the solution approaches the exact solution (2.4)
of the Navier–Stokes equation, so the field (3.6) becomes increasingly accurate as a
solution of this equation, as time increases.
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Now, just as in § 2, we can superpose two solutions. We place a second
vortex with circulation −Γ , centreline on the plane y = −Y(t) and directed along
e′ = (−sin β, 0, cos β), and with the same Burgers-type cross-sectional structure; this
is in effect the ‘chopsticks model’ of Kimura & Koikari (2004). For the second
vortex, the vorticity field is

ω2(x, t)=−(γ Γ/4πν) exp (−γ r′p
2
/4ν) e′, (3.7)

with
r′ 2p = (x cos β(t)+ z sin β(t))2 + (y+ Y(t))2. (3.8)

The two vortices are now swept towards each other and overlap in a slicing scissor
movement on the plane y= 0. The z-components of vorticity annihilate on the z-axis
in a neighbourhood of z = 0 (that increases as e3τ ), just as in § 2 above, resulting
in reconnection of the vortex tubes. The combined solution is given by ω(x, t) =
ω1(x, t)+ω2(x, t). With dimensionless variables

(x̂, ŷ, ẑ, Ŷ, ŷ0)= δ−1(x, y, z, Y, y0), (3.9)

this is given by

πδ2ω(x̂, ŷ, ẑ, τ )
Γ s(τ )
= exp{−s(τ )[(x̂ cos β − ẑ sin β)2 + (ŷ− Ŷ)2]}(sin β, 0, cos β)

− exp{−s(τ )[(x̂ cos β + ẑ sin β)2 + (ŷ+ Ŷ)2]}(−sin β, 0, cos β), (3.10)

from which contours |ω(x̂, τ )| = const. may be readily drawn.
Figure 4 shows two views of these contours, at the initial instant τ = 0 and at a

later (dimensionless) time τ = 0.63. The initial separation y0/δ = 1.356 is chosen so
that reconnection is just beginning (as indicated by the presence of the ‘bridge’ of
vorticity magnitude in the lower view – see Kida & Takaoka (1987), Melander &
Hussain (1989) and Kida & Takaoka (1994)). By the time τ = 0.63, reconnection is
already well advanced.

An alternative view of the bridge phenomenon is shown in figure 5. The appearance
is extremely sensitive to the contour levels chosen. Here, as in figure 4, the contour
surfaces |ω(0, ŷ, 0, 0)|/|ωmax(0, ŷ, 0, 0)| = 0.85 and 0.95 are shown at time τ = 0;
the former is bridged but not the latter. An instant later at time τ = 0.1, this bridge
has disappeared, but it is still present at the lower contour level 0.75, as shown in
figure 5(c).

We may formalise the definition of a bridge in terms of an arbitrary threshold k (0<
k< 1): we shall say that the vortices are ‘k-bridged’ if, on the line x= z= 0, |ω| is
minimal as a function of y at y= 0, but its value there is greater than k|ω|max. The
larger the value of k, the stronger the bridge. Thus, for example, at time τ = 0, the
vortices of figure 5 are 0.85-bridged but not 0.95-bridged, while at time τ = 0.1, they
are 0.75-bridged but not 0.85-bridged.

Obviously, if two vortices are k-bridged, then they are also k′-bridged for any 0<
k′ < k. We may say that they are ‘strongly bridged’ if they are at least 0.5-bridged.
Figure 6 shows the function |ω(0, ŷ, 0, 0)| for β0 = π/4 and for three values of the
initial separation ŷ0. The vortices are not strongly bridged for ŷ0=3; as ŷ0 is decreased
(keeping β0 = π/4 fixed), a (strong) bridge appears at ŷ0 ≈ 2; this bridge persists as
ŷ0 is further decreased, but the minimum at ŷ disappears when ŷ0 ≈ 1, and for ŷ0 < 1
the bridge concept no longer applies.
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FIGURE 4. (Colour online) Skewed vortices offset in the y-direction (viewed in (a,b) the
y-direction and (c,d) the x-direction) subjected to the straining flow (2.1) that aligns them
onto the z-axis, showing unmistakable evidence of reconnection by the time τ = 0.63.
Contour surfaces are |ω|/|ω|max= 0.95 (darker) and 0.85 (lighter). Parameter values: β0=
π/4, ŷ0= y0/δ= 1.356. Note the ‘bridge’ in the lower view at τ = 0, evidence of incipient
reconnection.

Figure 7 shows the reconnection process for ŷ0 = 4. In this case, no bridging is
evident at τ = 0 (although there is in fact a bridge at the extremely low threshold level
k= 0.0258), and the vortices become nearly aligned and significantly overlapping by
time τ = 2. The z-axis is scaled by the factor e−3τ in order to show how reconnection
takes place over a range of z that, as indicated above, increases as e3τ .

The vortex lines given by (3.10) evidently lie in planes y = const. This means
that the vorticity components can be expressed in terms of a ‘vorticity function’
χ(x̂, ŷ, ẑ, τ ):

ω(x, t)= Γ

2
√

πδ2

(
∂χ

∂ ẑ
, 0,−∂χ

∂ x̂

)
, (3.11)

where, in fact,

χ(x̂, ŷ, ẑ, τ ) =
√

s(τ )
[
e−s(τ )(ŷ+Ŷ)2erf

{√
s(τ )(x̂ cos β + ẑ sin β)

}
− e−s(τ )(ŷ−Ŷ)2erf

{√
s(τ )(x̂ cos β − ẑ sin β)

}]
. (3.12)
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FIGURE 5. (Colour online) Contours of |ω|/|ω|max for same conditions as in figure 4.
(a) Contour levels 0.85 and 0.95; the bridge is evident at the 0.85 level. (b) Same contour
levels at τ = 0.1, showing that the bridge has disappeared. (c) Contour levels 0.75, 0.85
and 0.95 at the same time τ = 0.1, showing that the bridge is still present at the weaker
level 0.75.
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FIGURE 6. Plot of |ω(0, ŷ, 0, 0)|/|ωmax(0, ŷ, 0, 0)| for β0=π/4 and for three values of the
initial separation ŷ0 = y0/δ. (a) At ω(0, ŷ, 0, 0)|< 0.5 |ωmax(0, ŷ, 0, 0)|, there is no bridge
at the k = 0.5 threshold. (b) At |ω(0, ŷ, 0, 0)| > 0.5 |ωmax(0, ŷ, 0, 0)|, a k-bridge exists
with k = 0.5. (c) The minimum at ŷ = 0 has disappeared, indicating that for this initial
separation the vortices significantly overlap and the bridge concept no longer applies.

Figure 8 shows a sample member of the family of surfaces χ = const., and of sections
of seven members of the family by three planes ŷ = 1, 0.25 and 0; the lines of
intersection are vortex lines of the flow in these planes.

The vorticity component ωz as given by (3.11) is antisymmetric about the plane
y= 0. Let

Γ+(t)=
∫ ∞

y=0

∫ ∞
x=−∞

ωz dx dy, (3.13)

the flux of vorticity over the half-plane −∞ < x <∞, y > 0, i.e. from (3.10) in
dimensional form,

Γ+(t)= γΓ cos β
4πν

∫ ∞
y=0

∫ ∞
x=−∞

e−(γ /4ν)x
2 cos2 β[e−(γ (y−Y)2/4ν) − e−(γ (y+Y)2/4ν)] dx dy. (3.14)

This integrates to give, on simplification,

Γ+(t)= Γ erf[Y(t)/δ] ∼ Γ ŷ0 e−τ as τ→∞. (3.15)
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FIGURE 7. (Colour online) As in figure 4, but with ŷ0= 4. Here the z-coordinate is scaled
by the factor e−3τ in order to show that the field reconnects (with concomitant annihilation)
for τ > 2 over an extent of the z-axis that increases as e3τ .

Thus, the total circulation in the half-plane y>0 decreases exponentially to zero as the
reconnection proceeds. (Similarly, of course, for the flux of vorticity Γ−(t)=−Γ+(t)
over the half-plane y< 0.)

The neglected vortex–vortex interaction effect is a serious complicating factor,
because vortices that are not parallel have a tendency to crank each other into double
spirals in the region of closest approach. Actually, in the experiment of Kleckner
& Irvine (2013), this interactive winding effect appears to be concentrated near the
ends of the nearly antiparallel segments, where the vortex structure becomes quite
convoluted after reconnection (see figure 1h). It again seems likely that, under the
persistent action of the ambient strain, this interactive effect will, if anything, simply
accelerate the reconnection process.

4. Helicity evolution during vortex reconnection
We can now address the interesting question of how the helicity of the vorticity

distribution changes during the above type of reconnection process. We recall that, for
a single knotted vortex tube of circulation Γ , the helicity is given by

H = Γ 2(Wr+ Tw), (4.1)

where Wr is the writhe of the axis C of the vortex, and Tw is the twist, partly
associated with the torsion of C and partly with ‘internal twist’ of the vortex lines
within the vortex tube (Moffatt & Ricca 1992). The writhe Wr can be interpreted as
the average over all projections of the sum of the (signed) crossings of the knot. For
the trefoil knot created by Kleckner & Irvine (2013), Wr= 3, and after reconnection
into two unlinked vortex rings, Wr = 0. Thus the writhe ingredient of helicity is
changed as a result of vortex evolution. It is conceivable that some or all of this
writhe helicity is converted to twist helicity during reconnection. We now investigate
this possibility on the basis of the solution (3.10).
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FIGURE 8. (Colour online) (a,b) Sample vortex surface χ = 0.3 for ŷ0= 3 at two instants
(a) before and (b) during reconnection. (c–e) Vortex lines at time τ = 1 given as sections
of surfaces χ =0, ±0.2, ±0.4, ±0.6, by planes ŷ= const.: (c) no reconnection is evident;
(d) slight reconnection; (e) advanced reconnection. The abscissa in these plots is x̂ cosβ(τ)
and the ordinate is ẑ sin β(τ).

For the analogous problem of magnetic flux-tube reconnection, it has been argued
by Wright & Berger (1989) that (magnetic) helicity is converted in this way (from
writhe to twist) during reconnection, the total net helicity remaining nearly constant;
this requires an appropriately ordered reconnection of ‘sub-tubes’, but it has never
been convincingly established that this ordering is favoured by a natural diffusive
process. The issue is important because the idea that magnetic fields relax in such
a way as to minimise energy subject to conserved helicity (Taylor 1974) is one of
the cornerstones of the magnetohydrodynamics of turbulent fusion plasmas.

We start from the consideration that, for the two skewed vortices considered above,
even without axial flow in either vortex, there is an interaction (or ‘writhe’) helicity
arising from the fact that the velocity induced by either vortex has a non-zero
component parallel to the other. It is easiest to consider the interaction of a steady
Burgers vortex B0 (with vorticity ω0 and associated velocity u0) as given by (2.3),
and a second Burgers vortex B1(ω1,u1) as described by (3.6). Consider first the initial
situation when, at time t= 0, the vortices are well separated, i.e. y0� δ, and suppose
that the vortices have circulations ±Γ , respectively. With r2 = x2 + y2, the velocity
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field for r� δ due to B0 is just that due to a concentrated line vortex, i.e.

u0(x)= (Γ/2πr2)(−y, x, 0), (4.2)

and this is approximately constant on any cross-section p= const. of B1. So, on B1,

u0 = (Γ/2π)(p2 sin2 β + y2
0)
−1(−y0, p sin β, 0); (4.3)

hence, with e= (sin β, 0, cos β),

u0 · e= (−Γ y0 sin β/2π)(p2 sin2 β + y2
0)
−1, (4.4)

and so, integrating first over the cross-section of B1, then along its axis,∫
B1

u0 ·ω1 dV = Γ
2y0 sin β

2π

∫ ∞
−∞

dp
p2 sin2 β + y2

0

= Γ
2

2
. (4.5)

By symmetry, we have a similar result for the integral over B0, and hence the total
initial helicity is

H =
∫

u ·ω dV = Γ 2, (4.6)

the integral now being over all space. Note that this helicity is determined solely
by the instantaneous vorticity distribution and is unaffected by the presence of the
background irrotational strain. It admits interpretation as the writhe helicity (Moffatt
& Ricca 1992), there being one crossing viewed from all projections (except a set of
measure zero). If the sign of circulation of one of the vortices is changed, then of
course the helicity changes sign also.

As the vortex B1 is swept towards B0 by the strain field, this helicity remains
constant until the separation Y(t) reduces to O(δ). We may calculate the helicity as
a function of the dimensionless time τ = αt as follows. The velocity u0 induced by
the vortex B0 is

u0(x)= (Γ/2πr2)(1− e−r2/δ2
)(−y, x, 0), (4.7)

which of course asymptotes to (4.2) for r� δ, and the vorticity field ω1(x, t) of B1
is (from (3.6))

ω1(x, t)= γ (t)Γ
4πν

exp

[
−γ (t)r

2
p(x, t)

4ν

]
e(t), (4.8)

where e(t), γ (t) and rp(x, t) are still given by (3.2), (3.3) and (3.5), respectively. The
helicity is given by

H (τ )=
∫

u ·ω dV =
∫
(u1 ·ω0 + u0 ·ω1) dV =H0(τ )+H1(τ ), say. (4.9)

Let us first calculate H1(τ ). Substituting (4.7) and (4.8) and rearranging, we obtain,

H1(τ )= Γ 2

2π2
s(τ ) sin β

∫∫∫
y
r2
(1− e−r2/δ2

) e−s(τ )r2
p/δ

2
dx dy dz, (4.10)

where, as before, s(τ )= (3 cos2 β − 1)/2.
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With the dimensionless variables (x̂, ŷ, ẑ, Ŷ, ŷ0) already introduced, and with
Z = ẑ sin β ∼ ẑ e−3τ (a change of variable that reflects the increasing scale in the
z-direction), (4.10) becomes

H1(τ )= Γ 2

2π2
s(τ )

∫∫∫
ŷ

x̂2 + ŷ2
(1− e−(x̂

2+ŷ2)) e−s(τ )[(x̂ cos β−Z)2+(ŷ−Ŷ)2] dx̂ dŷ dZ. (4.11)

Integration with respect to Z (from −∞ to +∞) gives

H1(τ )= s1/2Γ 2

2π3/2

∫∫
ŷ

x̂2 + ŷ2
(1− e−(x̂

2+ŷ2)) e−s(ŷ−Ŷ)2 dx̂ dŷ. (4.12)

Integration with respect to x̂ (again from −∞ to +∞) is now possible. Care is needed
to treat separately the cases for which ŷ is positive or negative, the latter being then
transformed by the change of variable ŷ→−ŷ; the result, after simplification, is

H1(τ )= s1/2Γ 2

2π1/2

∫ ∞
0

erf ŷ (e−s(ŷ−Ŷ)2 − e−s(ŷ+Ŷ)2) dŷ. (4.13)

It is now evident from (4.13) that H1(τ ) depends on τ only through the
dimensionless separation Ŷ = ŷ0 e−τ and s(τ ), i.e. on the instantaneous relative
configuration of the two vortices, and this even when Ŷ is small so that they overlap.
It follows that H0(τ ) =H1(τ ), because we could equally have chosen coordinates
with origin on B1 and z-axis parallel to e. Hence

H (τ )= 2H1(τ )= s1/2Γ 2

π1/2

∫ ∞
0

erf ŷ (e−s(ŷ−Ŷ)2 − e−s(ŷ+Ŷ)2) dŷ. (4.14)

The integral (4.14) is easily evaluated using Mathematica (note that, for large Ŷ ,
the dominant contribution comes from the neighbourhood of ŷ= Ŷ). Figure 9 shows
the result for an initial skewness angle β0 = π/4, and for six values of the initial
dimensionless separation ŷ0. As expected, for ŷ0 � 1, H /Γ 2 remains very nearly
equal to 1 (as anticipated in (4.6)) for so long as the vortices are well separated;
however, as Ŷ(τ ) decreases to O(1) and smaller, the helicity decays exponentially to
zero in a time of order α−1. (For ŷ0 ∼ 1, the initial increase of helicity is caused by
the increase of the stretch rate s(t) (figure 3), which decreases the cross-section of
B1, and so decreases the extent of its overlap with B0; this effect is soon more than
compensated by the exponential approach (Ŷ ∼ e−τ ) of the vortex centrelines.)

We therefore find no evidence for helicity conservation during reconnection within
the framework of our present model. On the contrary, the initial helicity is destroyed
during the reconnection process. Again, of course, one may ask: ‘What if the
vortex–vortex interaction terms are retained in this model problem? Can twist, and so
helicity, be generated by vortex–vortex interaction?’ To address this, a perturbation
procedure taking first-order account of the interaction terms might provide an answer;
alternatively, a full numerical simulation of the 3D time-dependent Navier–Stokes
equations could in principle be carried out for the trefoil configuration, but this would
no doubt run into the unsolved and deeply challenging finite-time singularity problem.
In the meantime, all that can be said is that the linearised model described in this
paper provides no evidence for conservation of helicity during viscous reconnection
of vortex tubes.

We note finally that the model is much more reliable in the magnetic context, in
which the magnetic analogue of (2.2) is exact in the weak magnetic field limit in
which Lorentz forces are negligible. Our conclusion here is that magnetic helicity is
not conserved under diffusive reconnection of magnetic flux tubes.
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FIGURE 9. Dimensionless helicity H /Γ 2 as a function of dimensionless time τ = αt for
the skewed vortices B0 and B1 driven together by the strain field (2.1), as evaluated from
(4.14) for β0 = π/4 and six values of the initial dimensionless separation ŷ0 = y0/δ. For
ŷ0� 1, the helicity remains constant until the vortices overlap, and then decays to zero
exponentially in a time of order α−1.
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Appendix A. Burgers vortex convected by non-axisymmetric strain

With the general non-axisymmetric strain (1.1), the linearised vorticity equation
takes the form

∂ω

∂t
= αx

∂ω

∂x
+ βy

∂ω

∂y
+ (α + β)ω+ ν

(
∂2ω

∂x2
+ ∂

2ω

∂y2

)
. (A 1)

It is well known that the non-axisymmetric Burgers vortex

ωB(x, y)= (Γ/πδxδy) exp[−(x2/δ2
x + y2/δ2

y )] (A 2)

with δx=√2ν/α and δy=√2ν/β, is a steady solution of this equation (but not, unless
α = β, an exact solution of the nonlinear Navier–Stokes equation).

If a vortex of this type is initially centred at (x0, y0), then by time t its centre will
have moved to (x0 e−αt, y0 e−βt). We may therefore assert (cf. (2.4)) that

ω(x, y, t) = ωB(x− x0 e−αt, y− y0 e−βt)

= Γ

πδxδy
exp

[
−
(
(x− x0 e−αt)2

δ2
x

+ (y− y0 e−βt)2

δ2
y

)]
(A 3)
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is a solution of (A 1). This may be verified directly. For, from (A 3),

∂ω

∂t
=−2

[
αx0

δ2
x

(x− x0e−αt)+ βy0

δ2
y

(y− y0e−βt)

]
ω. (A 4)

Also,

∂ω

∂x
=−2(x− x0 e−αt)

δ2
x

ω,
∂2ω

∂x2
=
(
− 2
δ2

x

+ 4(x− x0 e−αt)2

δ4
x

)
ω; (A 5a,b)

hence, after some simplification,

αx
∂ω

∂x
+ αω+ ν ∂

2ω

∂x2
=−2

[
αx0

δ2
x

(x− x0 e−αt)

]
ω, (A 6)

and, similarly,

βy
∂ω

∂y
+ βω+ ν ∂

2ω

∂y2
=−2

[
βy0

δ2
y

(y− y0 e−βt)

]
ω. (A 7)

Comparing (A 4), (A 6) and (A 7), it is evident that (A 3) does indeed satisfy (A 1) as
expected.

Note that, with x̂= x/δx and x̂0 = x0/δx, we have the Taylor expansion

exp[−(x̂− x̂0 e−αt)2] =
∞∑

n=0

x̂n
0 e−nαt

n! e−x̂2
Hn(x̂), (A 8)

where
Hn(x)= (−1)nex2 dn

dxn
e−x2

, (A 9)

the Hermite polynomial of order n; similarly, for exp[−(ŷ− ŷ0 e−βt)2] (with ŷ= y/δy
and ŷ0 = y0/δy). Thus the solution (A 3) may be expanded as the double sum

ω(x, y, t)= Γ

πδxδy

∞∑
n=0

∞∑
m=0

x̂n
0ŷm

0 e−(nαt+mβt)

n!m! e−(x̂
2+ŷ2)Hn(x̂)Hm(ŷ), (A 10)

each term being separately a solution of (A 1).

Appendix B. Effect of axial velocity in vortex cores
We consider here the addition to the Burgers vortex of an axial component of

velocity (0, 0, w(x, y, t)), which evolves under the effect of the strain field (2.1)
according to the equation

∂w
∂t
− αx

∂w
∂x
− αy

∂w
∂y
= ν

(
∂2w
∂x2
+ ∂

2w
∂y2

)
, (B 1)

or equivalently

∂w
∂t
− α

(
∂(xw)
∂x
+ ∂(yw)

∂y

)
+ 2αw= ν

(
∂2w
∂x2
+ ∂

2w
∂y2

)
. (B 2)

There is no pressure-gradient contribution in this equation because ∂w/∂z= 0.
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We assume that w(x, y, t) is exponentially small for large r2 = x2 + y2. Let

Q(t)=
∫

w(x, y, t) dx dy, (B 3)

the axial flux within the vortex. Integrating (B 2) over the (x, y)-plane, we immediately
have that dQ/dt+ 2αQ= 0, so that this axial flux decays exponentially:

Q(t)=Q0 e−2αt. (B 4)

It is then not difficult to show that (B 2) admits a corresponding solution

w(x, y, t)= (Q0/πδ
2) e−2αt e−r2/δ2

, (B 5)

where still δ2 = 2ν/α. When combined with the Burgers solution (2.3), the vortex
lines become helices, which are stretched in the z-direction (with pitch increasing
like e2αt) while being simultaneously subject to radial diffusion (cf. the ‘strained
spiral vortex’ underlying Lundgren’s (1982) model of turbulent fine structure). This
combined solution provides a helical generalisation of the Burgers vortex, also an
exact (albeit unsteady) solution of the Navier–Stokes equation.
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