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SUMMARY

The fundamental goal of conservation planning is
biodiversity persistence, yet most reserve selection
methods prioritize sites using occurrence data.
Numerous empirical studies support the notion
that defining and measuring objectives in terms
of species richness (where the value of a site is
equal to the number of species it contains, or
contributes to an existing reserve network) can be
inadequate for maintaining biodiversity in the long-
term. An existing site-assessment framework that
implicitly maximized the persistence probability of
multiple species was integrated with a dynamic
optimization model. The problem of sequential reserve
selection as a Markov decision process was combined
with stochastic dynamic programming to find the
optimal solution. The approach represents a com-
promise between representation-based approaches
(maximizing occurrences) and more complex tools,
like spatially-explicit population models. The method,
the inherent problems and interesting conclusions are
illustrated with a land acquisition case study on the
central Platte River.

Keywords: Bayesian network, Markov decision process,
reserve adequacy, reserve selection, stochastic dynamic
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INTRODUCTION

Land acquisition is one way that conservation organizations
try to cope with declines in biodiversity (Soule 1991).
The expense associated with such investments means that
decision-makers face a resource allocation dilemma. The
challenge is analogous to portfolio optimization; management
must select the subset of assets (sites) that gives the
highest return (conservation value) for an acceptably-
low risk (Markowitz 1952). This problem has promoted
the development of systematic conservation assessment
techniques, especially among organizations requiring efficient
well-informed methods for spatial priority-setting (see for
example Possingham et al. 2000).
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Systematic conservation assessment techniques (hereafter
referred to as ‘reserve selection methods’) generate priorities
from spatial data. These priorities, complemented with an
implementation strategy, can be viewed as a plan of action,
or investment. The utility of such plans is often questioned
(see Cowling et al. 2003; Faith et al. 2003) and conservation
scientists have been criticized for not adequately considering
the objectives and constraints of actual planning processes.
A primary reproach (Costello & Polasky 2004) is that most
methods are ‘static’ (see for example Kirkpatrick 1983;
Kirkpatrick & Harwood 1983; Margules et al. 1988; Pressey &
Nicholls 1989; Pressey & Tully 1994; Possingham et al. 2000),
namely the assumption is that once the assessment is complete,
the resulting plan can be executed immediately. Conservation
organizations regularly face financial and political imperatives
that render this assumption invalid. For instance, they cannot
buy what is not for sale. Land tenure is just one reason why
many conservation plans take time to execute, which makes
reserve selection a sequential decision-making process (papers
studying sequential reserve selection include Possingham et al.
1993; Costello & Polasky 2004; Snyder et al. 2004; Haight et al.
2005; McBride et al. 2005; McDonald-Madden et al. 2008).

A second criticism is that while the fundamental goal of
conservation planning is biodiversity persistence (Pressey
et al. 2007), most reserve selection methods (including all
those sequential methods cited above) prioritize sites using
occurrence data. Numerous empirical and theoretical studies
(see Margules et al. 1994; Araujo et al. 2002) support the
notion that defining and measuring objectives in terms of
species richness (that the value of a site is equal to the number
of species it contains, or contributes to an existing reserve
network) can be inadequate for maintaining biodiversity in
the long term.

One way to measure the impact of land use on viability is
with a population model. A population model can be used
to link factors such as habitat quantity and quality with a
direct measure of persistence (such as extinction probability).
Nicholson et al. (2006), for example, parameterized a set
of stochastic patch-occupancy models that predicted the
extinction probability of each of ten species of conservation
concern. They then used simulated annealing, a relatively
efficient alternative to linear programming, to find the reserve
network that minimized the expected number of extinctions
across all ten species. While this research represents a
pragmatic step forward, simulated annealing and similar
optimization algorithms assume that once the optimal reserve
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network has been identified, all sites appearing in the solution
can be acquired. Consequently, the utility of this and related
studies (see Calkin et al. 2002; Root et al. 2003) is still limited
by the fact that they are static, assuming a one-time decision
about which sites to protect. For conservation planning to be
relevant, dynamic approaches are required that in some way
account for population viability.

Maximizing persistence in sequential reserve selection is a
non-trivial task; the challenge grows as multiple species are
considered. One measure of persistence is the probability of
extinction over a given time frame (Beissinger & Westphal
1998). This quantity is straightforward to estimate using a
population model, and any model that can be expressed as a
Markov chain can, in principle, have an objective maximized
using stochastic dynamic programming (Mangel & Tier
1993). There are, however, both practical and computational
limits in the context of reserve selection. First, population
models require data (for example demographic data, patch
colonization and extinction rates) that link land use with
persistence. Because gathering such data is so costly, this
criterion will only be met in a few cases (Beissinger &
Westphal 1998). Second, formulating a population model as
a Markov chain is computationally demanding; adding new
state variables inevitably leads to large increases in the size
of the state space. Combined with existing constraints on
computer speed and storage capacity, Bellman’s (1961) ‘curse
of dimensionality’ can make generating exact solutions to even
single-species planning problems computationally impossible.
When the goal is to account for the viability of multiple species,
less intensive numerical approaches are needed.

Schapaugh and Tyre (2012) described a site-assessment
framework that implicitly maximizes the persistence
probability of multiple species. They dodged the practical
and computational limitations of population models by
developing a Bayesian network to assess site quality, which
assigns an expected value to a property based on conditions
arrayed into a causal diagram. This represents a compromise
between representation-based approaches (such as those using
occurrence data) and more complex tools, like spatially-
explicit population models. Here, we demonstrate how to
integrate this site-assessment framework with a dynamic
optimization model. We formulate the problem of sequential
reserve selection as a Markov decision process and use
stochastic dynamic programming to find the optimal solution.
The method, problems with it, and interesting conclusions
are illustrated with a land acquisition case study on the central
Platte River (Nebraska, USA).

METHODS

Overview

The decision context assumes that the objective of a
conservation agency is to maximize the persistence probability
of multiple species. The agency affects this probability by
acquiring sites through time. In doing so, the agency is

restricted to purchasing sites that have been placed on the
public market voluntarily. Adding this realism reflects the
possibility that site availability may be unpredictable in
advance (for example, the need for a willing seller). When
a site does become available, the agency faces a decision:
(1) purchase the site; or (2) reject the site. Making this
decision requires a way to assign value to the investment;
we have discussed how it would be desirable to parameterize
a set of population models (one for each species of concern)
that translate site-specific characteristics into contributions
to viability. To illustrate a typical data-poor scenario,
however, we assumed that this is not possible. Instead, a
Bayesian network was constructed that integrated correlates
of persistence into a single currency, namely site quality
(Schapaugh & Tyre 2012). This quantity is, in turn, an
explicit measure of performance used in optimization. Our
optimization framework is similar to those appearing in
Costello and Polasky (2004) and, although we focused our
attention on Bayesian networks, our method is applicable to
any site-assessment framework that prioritizes sites based
on a scoring system (as opposed to a system based on
complementarity). This is one of the primary differences
between our approach and related frameworks.

We modelled this problem as a Markov decision process
(MDP; Bellman 1957). MDPs provide a mathematical
framework for modelling sequential decision-making
problems. As the name implies, MDPs are an extension
of Markov chains; the difference is the addition of actions
(to influence the state of the system) and rewards (giving
motivation). This model for formal decision analysis is defined
by the following components: an overall objective; a set of
states s ∈ S; a set of actions: d ∈ D and constraints; a state
transition function; and a reward or value function: V (•).
At each time step, the decision-maker observes the state
of the system and selects an action. The state and action
choice produce two results: the decision-maker receives a
reward and the system transitions from one stage to the next.
These transitions are not deterministic; instead, each action is
represented by a transition matrix containing the probability
that performing action d in state s will move the system to
state s’ (Putterman 1994). Using a land acquisition problem
on the central Platte River as a case example, we elaborate on
the components of the MDP.

Land acquisition on the central Platte River

In 1997, Nebraska, Wyoming, Colorado and the USA’s
Department of the Interior signed a Cooperative Agreement for
Platte River Research and Other Efforts Relating to Endangered
Species Habitats along the Central Platte River, Nebraska
(Platte River Recovery Information Program 1997). This
agreement was negotiated as a means to maintain and improve
habitat for three threatened and endangered species: the
whooping crane (Grus americana), interior least tern (Sterna
antillarum athalassos) and piping plover (Charadrius melodus).
The relevant objectives of this agreement are: (1) to improve
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production (via number of nesting pairs and fledge ratios) of
the two shorebird species; and (2) to increase the migratory
survival of whooping cranes. These objectives serve as the
desired outcomes resulting from the acquisition of 4000
hectares of habitat along a 143 kilometre reach of the central
Platte River between Lexington and Chapman (Nebraska,
USA).

Objective

The Cooperative Agreement was negotiated as a means to
improve production of interior least terns and piping plovers
and to increase the migratory survival of whooping cranes. The
extent to which these objectives are met is positively related
to the quality of sites that are acquired, and, as described by
Schapaugh and Tyre (2012), site quality may be modelled
using a Bayesian network parameterized from an inventory of
site characteristics. Our objective was thus to maximize the
sum of the expected values of the realized site-quality index
(see Schapaugh & Tyre 2012) in the purchased sites.

States of the system

We define a state as a description of the system at a
particular point in time. More specifically, a state is the
minimally-dimensioned function of history relevant to the
decision-making process. The term ‘minimally-dimensioned’
is included such that the state is as compact as possible, while
still capturing the information needed to make a decision
at time t (Boutilier et al. 1999). To define the states of the
system, we first assumed that there were r sites to select
from, each having an expected value (EV) of realized site-
quality index. Then, let b be an r × 1 vector with elements,
bi = EVof site i, for i = 1, . . . , r.At any point in time, every
site is unreserved and unavailable, unreserved and available,
or included in the reserve network. We defined two state
variables, x (t) and y (t) , (each being an r × 1 vector) that
describe the state of the system at time t:

xi (t) =
⎧⎨
⎩

1 if site i is included in the reserve network
0 otherwise;

yi (t) =
⎧⎨
⎩

1 if site i becomes available in period t
0 otherwise.

Note that yi (t) can be 1 if and only if xi (t) = 0. The states
of the system are given by the different assignments to these
two vectors of state variables.

Actions and constraints

For simplicity, we restricted the feasible set of actions to
include only two options: (1) purchase or (2) reject the site
placed on the market. We defined the control variable zt as an

r × 1 vector where:

zi (t) =
⎧⎨
⎩

1 if site i is acquired in period t
0 otherwise.

However, if the system enters an absorbing state (where the
budget has been exhausted, see later), neither of these actions
is possible, and the decision is forced to be (3) do nothing.

We introduced two constraints. First, it is only possible to
purchase what is on the market. We also assumed a limited
budget, that is it was only possible to acquire a limited number
of sites, C. Thus, at any stage t, a site can only be acquired
if yi (t) = 1 and

∑
i

xi (t) < C . For simplicity, we did not

incorporate variation in site cost.

State transitions

The state transition function constitutes a model of how the
system evolves over time. We assumed that the system evolved
in stages, where the occurrence of an event marks the transition
from one stage to the next. The progression through stages is
analogous to the passage of time; the two are identical if an
action is taken at each stage and every action occupies one unit
of time. The system is Markovian in that knowledge of the
current state renders information about the past irrelevant to
predictions of the future, that is: Pr (s t |s t−1, s t−2, . . . , s0) =
Pr (s t |s t−1) . We can represent a stationary Markov chain (i.e.,
the distribution predicting the next state is the same regardless
of stage) with a single transition matrix, of size S × S, where S
is the number of states the system can occupy. This transition
matrix, A, captures the probabilities governing the system as
it moves from stage t to stage t + 1 (Boutilier et al. 1999).

Next, we focused our attention on how the system evolves
given actions. At each stage and state of the process, the
agency has available a feasible set of actions (namely, buy
site or reject site). A transition matrix is required for
each action. The transition matrices take the form ai j =
Pr (s t+1 = s n |s t = sm , dt = d ). Recall that at any stage t, the
state of the system s is described by two vectors, x and y.
The transition matrix for each action is constructed in two
parts. First, it is necessary calculate a matrix of transitions for
the vector x. If the decision is made to purchase the site, the
transitions are:

X1 (m , n) =

⎧⎪⎪⎨
⎪⎪⎩

1, if m (x) = n (x + z)
1, if m (x) = n (x)
0, otherwise

where m (x) is the vector x in state m, n (x) is the vector x
in state n, and n (x + z) is the vector x + z in state n. If the
decision is made to reject the site, the transitions are:

X2 (m , n) =
⎧⎨
⎩

1, if m (x) = n (x)
0, otherwise.
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Second, we calculated a matrix of transitions for the vector y.
To do so, we had to estimate for each site a relative likelihood,
qi , that it becomes available at stage t ( qi may be thought of
as an instantaneous probability, whereupon its status in stage
t does not affect its availability in subsequent stages, unless
the site is purchased). For convenience, we also defined an
indicator variable, I, where

Ii =
⎧⎨
⎩

0, if site i has been acquired
1, otherwise.

If the decision is made to purchase a site, the transitions are:

Y1 (m , n) =
⎧⎨
⎩

qi Ii∑r
i=1 qi Ii

, if m (x) = n (x + z)
0, otherwise

If the decision is made to reject the site, the transitions are:

Y2 (m , n) =
⎧⎨
⎩

qi Ii∑r
i=1 qi Ii

, if m (x) = n (x)
0, otherwise

The full transition matrix for each action is thus constructed
from the component matrices by multiplication:

A1 = X1 × Y1;

A2 = X2 × Y2.

Rewards and solution

The problem facing the agency may be viewed as deciding
which action to perform given the current state of the system.
More generally, we seek a policy, π , which is defined as a
mapping from the state and stage to actions, that is π : s ×
t → d . The problem formulated above is solved optimally
by backward induction beginning at the end of the planning
horizon (namely the beginning of stage T + 1). We defined
a value function V(•) as a function mapping the state of the
system into the real numbers, that is V : S → R. At the
terminal time, the reward in each state is defined by the sum
of the expected value of the realized site-quality index in the
purchased sites:

V (T, T, s ) =
r∑

i=1

xi (t) bi

Stepping back one period to the beginning of T, we took
advantage of the fact that we know the value of endowing the
future (T + 1) with the levels of each state variable:

V (t, T, s ) = max
d∈D

{∑
s ′

V
(
t + 1, T, s ′) Ad s ′

}
(1)

where t is the current stage, sʹ is the current state, sʹ is the state
at the next stage, and Ad s ′ = Pr(s t+1 = s j |s t = s i , dt = d ). In
words, maximizing actions are chosen in reverse order. At the
terminal time, T, the best action in each state is selected. In
T – 1, V (t, T, s ) is found by selecting the action that

Table 1 Sites, their expected values, and associated
probabilities in the vector q. †EV = expected value realized
site-quality index. ‡Parameterization, denoting the site-
specific entries in the vector q. Each entry is a relative
likelihood, which can be thought of as an instantaneous
probability whereupon its status in stage t does not affect its
availability in subsequent stages, unless the site is purchased.

Site EV† Parameterization‡
A B

1 1 0.1 0.06
2 2 0.1 0.22
3 3 0.1 0.20
4 4 0.1 0.18
5 5 0.1 0.12
6 6 0.1 0.10
7 7 0.1 0.06
8 8 0.1 0.04
9 9 0.1 0.02
10 10 0.1 0.00

maximizes the expected terminal reward. These expected
values are calculated by weighting all possible outcomes
over the next time step by their probability of occurrence
and summing the results. This process is repeated in stage
T – 2, T – 3, and so on, until stage t = 1. This step-by-step
procedure accomplishes one primary objective: it finds the set
of actions that maximize the Bellman equation in Eq. (1). This
set of actions is the optimal policy. For more discussion on
MDPs and dynamic programming techniques, see Putterman
(1994) and Mangel and Clark (2000).

Example reserve selection problem

For the purpose of demonstration, consider the following
reserve selection problem: we assumed that ten sites were
available for acquisition, the budget allowed for the selection of
three of those sites, and the reward of each site was considered
known (Table 1). We developed this example to explore two
themes: (1) the importance of a finite decision period (we
assumed that the agency cannot ‘hold-out’ for the best sites
forever, therefore resources must be invested by the end of
the decision period); and (2) to investigate how uncertainty in
the distribution governing state transitions influences optimal
decision-making.

We made two different assumptions about the site-specific
entries in the vector q . The first (hereafter referred to as
parameterization A) assumes no prior knowledge and thus, we
adopted the ‘principle of indifference’ as the rule for assigning
these epistemic probabilities. In this context, the principle
of indifference states that if there are m sites, then each
entry in the vector q should be assigned an equal probability
of 1/m. In Bayesian statistics, this would be referred to as
the simplest non-informative prior. The second (hereafter
referred to as parameterization B) assumes that the entries
in the vector q are related to site quality. We assigned these
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Figure 1 Optimal decision space for a portion of the state space. The optimal decision is given by the colour of the square: White = reject
site; grey = purchase site; black indicates the site(s) that have already been purchased. Parameterization A (uniform probabilities) is the top
row of the panel; parameterization B (weighted probabilities) is the bottom row of the panel. The left column represents a sub-portion of the
state space where no sites have been purchased; the centre column represents a sub-portion of the state space where one site has been
purchased; the right column represents a sub-portion of the state space where two sites have been purchased. RSQI-(parcel offered) refers to
the realized site-quality index (value) of the property put up for sale.

probabilities according to the frequency distribution of the
realized site-quality index on a sample of 50 properties in
the Central Platte River Basin (see Schapaugh & Tyre 2012).
This parameterization was selected to reflect the possibility
that higher quality sites, for multiple reasons, may be harder
to come by.

In the results that follow, it is cumbersome to examine
the complete decision space; most of the information in
the optimal policy will not be realized because, given any
particular trajectory, the system will not visit much of the
state space. Instead, we focused on general patterns in the
results and illustrate our discussion with relevant examples.

RESULTS

We first considered the portion of the state space where no
sites have been purchased. Stochastic dynamic programming
simultaneously gives the optimal dt (the decision to
purchase or reject a site in stage t) and the value function
one stage forward. Irrespective of which parameterization we
chose, the optimal decision to purchase or reject depends
on the time remaining in the decision period (Fig. 1, left
column). As the number of purchase opportunities remaining
decreases, the likelihood of high-quality sites becoming
available decreases. The optimal decision to purchase or reject
also depends on the distribution governing state transitions.
The expected terminal reward for rejecting low-quality sites
(namely EV = 1, 2, 3) was higher when we assumed uniform
probabilities (Fig. 1, left column). When the best properties

are harder to come by (as in our second parameterization), the
optimal policy is to become less selective.

We next considered the portion of the state space where
one site has been purchased. Again, the optimal decision
to purchase or reject depends on the time remaining in
the decision period and on the distribution governing state
transitions (Fig. 1, central column). The expected terminal
reward for rejecting low-quality sites was substantially higher
when we assumed uniform probabilities. The optimal policy
given parameterization A associates less risk with rejecting
high quality properties, especially early in the decision period,
as compared to the optimal policy given parameterization B.
Comparing this portion of the state space with the last (where
no sites have been purchased), we found that the information
in the optimal policy accounts for the number of investments
that have already been made. Having already purchased one
site, management can be more selective.

We finally considered the portion of the state space where
two sites have been purchased. It is under these circumstances
that the optimal policy is the most selective. Again, the
expected terminal reward for rejecting low quality sites was
substantially higher when we assumed uniform probabilities
(Fig. 1, right column). With only one site left to purchase,
we found that a time-independent strategy existed within the
10-purchase opportunities time horizon. With at least seven
purchase opportunities remaining, the optimal strategy was
generally to simply wait for the highest quality site (EV = 10)
to become available (parameterization A). Given our second
parameterization, the optimal strategy was more conservative,
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nonetheless it is necessary to still hold out for a high quality
site (EV = 7, 8, 9, 10; Fig. 1, right column).

DISCUSSION

The primary goal of this exercise has been to build upon the
framework first described by Schapaugh and Tyre (2012).
In this framework, a Bayesian network is used to integrate
correlates of persistence for multiple species into a single
currency: site quality. This quantity is, in turn, an explicit
measure of performance used in optimization. In their initial
presentation, Schapaugh and Tyre (2012) focused on a single
acquisition; we have extended this model to the problem of
acquiring multiple sites through time. We stress that this
framework is not intended to be a replacement for more
traditional population-level analyses when sufficient data and
expertise are present. Instead, we consider it an alternative that
extends the reserve selection framework to include population
viability. We hope to provide a discussion of the method
and results as they relate, generally speaking, to the problem
of accounting for reserve adequacy in sequential reserve
selection. In doing so, we discuss limitations of and alternatives
to our approach and suggest directions for extending this
work.

Systematic approaches to decision-making are essential,
especially in this context, which involves deciding how to
allocate limited resources in space and time. Reserve selection
methods are simply one way of seeking the ‘biggest bang for
the conservation buck’ (Moilanen et al. 2009). Our method
illustrates how such rewards will respond to changes in key
(sometimes circumstantial) factors, such as the number of
purchase opportunities remaining and how the system evolves
over time. The first of these, the temporal or opportunity
aspect, is important regardless of how the system evolves
(speaking primarily of the vector q ) or the current state of
the system. Our results indicate that the conservation agency
should become less selective as the number of purchase
opportunities remaining decreases, and accept sites with
lower, but guaranteed, rewards. This strategy may result in
the rejection of a property with a comparatively high realized
site-quality index early in the decision period, only to later
purchase one or more sites with a lower reward. The optimal
policy, which is generated by explicit state-space enumeration,
accounts for this possibility, and has determined that such
time-dependent selectivity will result in superior expected
terminal rewards (for a similar result, see McDonald-Madden
et al. 2008).

The second key factor is the vector q ; the optimal
decision to purchase or reject depends on the distribution
governing state transitions. The expected terminal reward
for rejecting low quality sites was higher when we assumed
uniform probabilities. This is because the expected values are
calculated by weighting all of the possible outcomes over the
next time step by their probability of occurrence and summing
the results. When high quality sites are harder to come by
(as in parameterization B), the expected terminal reward for

‘holding out’ for such sites is lower because their associated
probability of occurrence is also lower. The optimal policy
is thus to become less selective (see Haight et al. 2005 for a
similar result).

A simple way of including dynamics into the reserve
selection problem is to assume land managers are restricted to
purchasing sites that have been placed on the public market
voluntarily. It should be noted, however, that every aspect of a
planning problem can be a function of time (Possingham et al.
2009). Consider, for instance, the chance of habitat loss in sites
that have not been purchased. This could be incorporated with
a relatively minor modification of the existing model. The
probability of being put up for sale could be reinterpreted
as the probability of development in a given stage. Then a
site cannot be reserved once it is developed. It would also
be possible to accommodate additional complexities such as
varying levels of protection (through compensation payments
or conservation easements), ecological restoration, or the
possibility of selling previously acquired sites. We presented
a binary case, where a site was purchased or rejected, and
purchases were assumed to be irreversible. ‘Un-reserving’ a
site, however, is conceptually simple; the model must include
an additional control variable that allows the decision-maker
to sell back a previously acquired site. This idea of swapping
out some areas for others is relatively new (see Fuller et al.
2010), even though global investments in land acquisition have
slowed in recent decades (Emerton et al. 2006). Return-on-
investment analyses should therefore receive more attention,
especially considering that a ‘trade-in to trade-up’ strategy can
increase the quality, and perhaps amount, of area that can be
protected, with no increase in spending (Fuller et al. 2010).

We assumed that land values and rewards were independent
of what sites had been purchased or put up for sale. It is
unlikely that site availability, land values or rewards will not
depend on what has happened on neighbouring or nearby sites
(Costello & Polasky 2004). For example, if a site is reserved, the
value of neighbouring sites may increase (sensu Sabbadin et al.
2007; Toth et al. 2011), which introduces spatial correlation
among land prices. In this case, decisions must take into
account not only the reward of the site, but also the effect that
buying the site would have on land values of other potential
acquisitions. Dynamic optimization models can incorporate
value functions that depend on the history of decisions (the
pattern of reserve selection). The complete history would be
the sequence of states and actions from stage 0 to the point
of interest, and would be represented by a (possibly infinite)
sequence of tuples of the form s0, xo , s1, x1, . . . , s T, xT . The
value function would be additive, namely the sum of the
reward and/or cost function values amassed over the history of
stages. Because of the probable influence of spatial correlation,
making land values and/or rewards endogenous in this way
would most likely increase the value of a dynamic approach
(Costello & Polasky 2004).

While the framework we have presented provides a suitable
conceptual foundation for sequential reserve selection, the
direct implementation of dynamic programming algorithms

https://doi.org/10.1017/S0376892913000544 Published online by Cambridge University Press

https://doi.org/10.1017/S0376892913000544


204 A. W. Schapaugh and A. J. Tyre

often proves difficult when applied to some realistically-sized
problems (i.e., hundreds of sites). Our approach does not take
advantage of the fact that the goal and initial states may be
known; we compute the value assignments for all states at all
stages. This can be wasteful from a computational perspective
since optimal actions will be computed for states that cannot
possibly be reached from an initial state or lead to a goal
region. When the initial and goal states are known, it may
be advantageous to consider the problem as a tree (or graph)
search. Each state in the state space would correspond to a leaf
(or node) of the tree. With the initial and goal states identified,
the search proceeds forward or backward through the tree. In
forward search, the initial state forms the root of the search
tree. Then, each action is applied which extends the plan by
one stage, generating a unique successor state (this is a new
leaf node). This node can be bounded if the state it defines
is already in the tree or the search may end when a state is
identified as a member of the goal set (in which case a solution
can be drawn from the tree). In backward search, the goal state
forms the root of the search tree, and the search is expanded by
adding all states that a given action would prompt the system
to enter the chosen state. A state can again be pruned if it
appears in the tree already. The search terminates when the
initial state is added to the tree, giving a solution that can be
extracted. The important point to observe is that both forward
and backward searches restrict their attention to the relevant
and reachable states. Both can have advantages over explicit
enumeration strategies, especially if only a fraction of the state
space is reachable or connected to the goal region (Boutilier
et al. 1999).

State-based search techniques are not limited to
deterministic goal-oriented problems. Knowledge of the
initial state can also be exploited in stochastic settings, forming
the basis of decision tree search. Each action at the initial state
forms the first level of the tree. The states that result when
each action is applied are placed at the second level. The third
level has the actions applicable at the states at the second level,
and so on. Values at the leaves of the tree are computed first
and then values at successively higher levels are determined
using the preceding values. This is referred to as a ‘rollback’
procedure and the maximizing actions form the optimal policy
(Boutilier et al. 1999).

Unfortunately, the branching factor for stochastic problems
is generally much greater than that in deterministic settings.
One way around this difficulty is real-time dynamic
programming (Barto et al. 1995). Nicol et al. (2010) provided
the only example (to our knowledge) of this in the ecological
literature. They applied an on-line sparse sampling algorithm
developed by Kearns et al. (2002) to a hypothetical fish
metapopulation, where the objective was to maximize the
number of occupied patches during the management horizon.
The term ‘on-line’ means that the policy is evaluated one
step at a time based on the current state of the system. The
algorithm looks ahead a defined number of steps and a rollback
procedure is applied to this partially expanded search. Because
the algorithm only looks at states in the vicinity of the current

state, the policy will only approximate the optimal solution.
Nonetheless, the method is attractive because the running time
is determined primarily by the number of look-ahead steps,
which is independent of the size of the state space (Kearns
et al. 2002).

CONCLUSION

While research on the development and refinement of reserve
selection methods is accelerating, many authors have criticized
conservation planners of being preoccupied with the process
which has, in turn, manifested an implementation crisis (see,
for example, Knight et al. 2006). Carefully deciding which
method is best suited to the task at hand, while considering
who the intended user is, is just as important to the process
as evaluating decisions. Maximizing site quality represents a
compromise between the use of ad hoc or generic spatial design
criteria and more intensive computational tools, like spatially-
explicit population models. There may be a loss in precision
by using site quality as a surrogate for more direct measures
of persistence. However, we believe this simplification is
defensible when sufficient data, expertise, or other resources
are lacking. We hope that our work will stimulate additional
interest in the problem of accounting for reserve adequacy in
conservation planning.
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