
Robotica (2005) volume 23, pp. 139–147. © 2005 Cambridge University Press
doi:10.1017/S0263574704000803 Printed in the United Kingdom

Teaching robots to plan through Q-learning
Dongbing Gu and Huosheng Hu
Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (UK)
E-mail: dgu@essex.ac.uk, hhu@essex.ac.uk

(Received in Final Form: June 21, 2004)

SUMMARY
This paper presents a Q-learning approach to state-based
planning of behaviour-based walking robots. The learning
process consists of a teaching stage and an autonomous
learning stage. During the teaching stage, the robot is
instructed to operate in some interesting areas of the solution
space to accumulate some prior knowledge. Then, the
learning is switched to the autonomous learning stage to
let the robot explore the solution space based on its prior
knowledge. Experiments are conducted in the RoboCup
domain and results show a good performance of the proposed
method.

KEYWORDS: Robot learning; Reinforcement learning; Beha-
viour co-ordination; State-based planning

1. INTRODUCTION
The major challenge for programming autonomous mobile
robots comes from dynamic environments, uncertain sensory
data, imperfect actuators and real-time requirements. To
address the challenge, it is necessary to endow the robot
with reactive behaviour, planning and learning abilities.
Therefore, the robot-programming methodology gradually
evolves from deliberative planning,1 behaviour-based archi-
tectures,2,3 hybrid systems,2 to state-based planning.4,5

In general, the pure planning method is well appropriate
to task-oriented planning which, however, heavily relies
on knowledge about the real world in order to predict its
actions. The main difficulty lies in dynamic or unpredictable
environments since frequent re-modelling and re-planning
deteriorates robot performance. The behaviour-based method
allows actions to directly respond to sensory inputs with less
computation. The autonomous system can be built up from
simpler behaviours, and gradually integrate more complex
behaviours. However, the behaviour-based robot is difficult to
be scaled up to large-scale systems since it lacks mechanisms
for managing complexity6 and it is unable to use real-world
models even if they are available.7

In contrast, the hybrid system method integrates both
deliberative planning and reactive behaviours into one entity.
A middle layer between deliberative planning and reactive
behaviours is used for their co-ordination, which makes
the control system become three-layer architectures.8 In
these hybrid systems, the responsibility of each level is not
strictly defined. In most cases, the middle layer separates the
planning layer from the reactive layer.9 Since different hybrid

systems are applied to different tasks, they are far from being
compatible. Lack of learning capability is common to all
hybrid systems due to the difficulty of integrating the learning
component into the system. Up to now, many robotic systems
have been built based on two-layer architectures,10 though
their co-ordination mechanisms may vary. For instance,
a voting mechanism is adopted in DAMN where each
behaviour votes for or against a set of actions.11 Maes used
a selection mechanism to arbitrate the behaviours.12 Fuzzy
logic is employed13 to co-ordinate behaviours.

Recently, the state-based method has been proposed to
model the dynamics of the behaviour co-ordination,5,14–16

in which the behaviour co-ordination is defined as a
Markovian Decision Process (MDP). Learning ability can be
included into the MDP by using reinforcement learning.17,18

Some typical examples include Q-learning algorithms for
foraging robots,16 an Augmented Markov Model (AMM) for
interaction dynamics,14 a state-based reinforcement learning
for a legged robot to learn its locomotion gaits,15 the Partially
Observable Markov Decision Process (POMDP) to model
planning,19 and a POMDP for navigation planning.5

This paper focuses on the state-based planning. The
objective is to develop a learning algorithm for the planning
algorithm based on the two-layer architecture that can
accommodate planning, reaction, and learning. Behaviours
are assumed to be pre-designed, and the robot employs Q-
learning to acquire its planning results. Due to the extensive
learning time for real robots, a behaviour-based Q-learning
is used in our algorithm instead of AMM and POMDP.
Our algorithm is similar to the Q-learning algorithm in
foraging robots16 apart from a two-stage learning scheme.
Although the abstraction of states and actions enables Q-
learning to operate only within a limited discrete space,
the learning system knows nothing about the interaction
between the robot and its environment at the early stage.
The learning system has to choose arbitrarily actions to
try until a reward is received. For reinforcement learning,
incorporating prior experience into a learning system is an
efficient way. Lin used hand-coded sequences of experience
to bootstrap information into value functions in order to
speed up the learning process.20 Other similar researches
are carried out for individual behaviour learning.21,22 In this
paper, a teaching method is employed to bootstrap human
experience into Q values, and then a two-stage Q-learning
is developed. In the first stage, a human operator chooses
behaviours for the robot to run. The robot accumulates the
human operator’s experience in the form of Q values. In the
second stage, the robot treats these prior Q values as initial

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

140 Q-learning

settings and autonomously updates them during exploring its
environment.

The rest of the paper is organised as follows: Section 2
presents how to model the state-based planning, including
a brief introduction to Q-learning, the behaviour design for
abstraction of the continuous motor actions, and the feature
state definition for abstraction of sensory physical states.
Section 3 describes the learning method for the state-based
planning, including the design of heterogeneous rewards,
Q-learning bootstrap, and autonomous learning. Section 4
reports some experiments and evaluation, including the
experimental set-up and results. Finally, conclusions and
future work are summarised in Section 5.

2. Q-LEARNING SETTING IN BEHAVIOUR
BASED ROBOTICS
In behaviour-based robotics, the task-oriented planning is
achieved by co-ordinating behaviours. The state-based plan-
ning is to model the co-ordination mechanism or the dynamic
interaction between a robot and its environment by using a
Markovian Decision Process (MDP). In a MDP, the robot
observes the current state st , takes an action at , moves into
next state st+1, and gains a reward rt . Within this model,
the planning objective of a robot is to find mappings from
states st to actions at through maximising the accumulating
rewards:

∞∑
t=0

γ t rt (1)

where γ is a discount factor. Q-learning can be used
to achieve the planning objective based on continuous
interaction between a robot and its environment.

2.1. Q-learning
When a robot interacts with its environment, it can collect
a data tuple (st , at , rt) at each time step t. After a learning
episode is completed, a set of data tuple is collected. In the
discrete Q-learning, both states st and actions at are discrete.
The collected data is compressed into a table Q(st , at) that is
an estimated accumulated rewards when the robot is in the
state st and takes the action at . The Q table can be updated
during learning when more episodes are run. In the one-step
Q-learning algorithm, Q values of all state and action pairs
are updated by the following learning rule:

Q(st , at) = Q(st , at) +α(rt + γ · max
a

Q(st+1, a)

−Q(st , at)) (2)

After learning, the final optimised action a∗
t at the state st

can be acquired by:

a∗
t (st) = arg max

at

Q(st , at) (3)

In a Markovian environment where the next state st+1

only depends on the current state st and the action at and is
independent to any previous states, Watkins and Dayan have

proved that Q-learning is convergent after the visit of each
state-action pair is infinitely often.23 But it is impractical
for real robots to achieve this during learning and so is
for simulation. Nevertheless, no matter how complex about
the convergence, there have been a lot of applications of
reinforcement learning so far since the learning results have
a potential to provide a good solution even not an optimal
one.

Real robots have continuous sensory physical states and
continuous motor actions. For the continuous Q-learning,
the learning becomes more difficult since the learning algo-
rithm cannot explore entire continuous solution space.
However, the learned Q values can be generalised to the
entire solution space through either a neural network for
the continuous state space,24 or some heuristic rules for a
continuous action space.25 In this paper, our method does
not adopt the generalised approach to handle the continuous
spaces. Instead, behaviours and feature states are defined as
the actions and states in the discrete Q-learning algorithm.
The continuous motor actions are abstracted as temporally
extended actions – behaviours and the continuous sensory
physical states are abstracted as physical events – feature
states. Then, the discrete Q-learning algorithm is used to
implement the learning.

The extracted feature states and behaviours are the
abstraction of sensory states and motor actions. They can
retain the major physical state and action features and ignore
less useful details. The abstraction separates entire sensory
state space into a number of connected local regions where
local low-level control strategies are easily achieved. The
high-level control strategies are left for planning that is
responsible to the transition between these local regions.

2.2. Robot behaviours
For a specific task, a group of primary behaviours can
be developed according to domain knowledge about the
task. These behaviours are the basic skills that the robot
should have in order to accomplish the task. In associated
with the local regions of the state space, each behaviour
operates within one of them until the perceived states have
been changed. Therefore, a behaviour can be viewed as a
temporally extended action. When a robot operates within the
regions, the corresponding behaviours maps current sensory
states into motor actions and handles uncertainties. The
limited ranges of local regions ease the design of behaviours
that are only required to handle uncertainties in local regions,
rather than in global regions.

In this research, Fuzzy logic controllers (FLC) and
decision trees are used to design behaviours. In a FLC,
uncertainty is represented by fuzzy sets and an action is
generated co-operatively by several rules, each one triggering
to some degree to produce smooth, reasonable and robust
control effects. The design of a FLC can be based on human
experience.26 The behaviours are designed independently
and keep unchanged during the learning discussed in this
paper. The following five behaviours are pre-designed for
Sony legged robots to play soccer.

� Find-ball behaviour (FB): The robot starts to scan the pitch
through its onboard camera. Once the ball is found, the

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

Q-learning 141

robot updates the ball’s position and its confident value.
Simultaneously the robot turns its heading toward the
ball.

� Chase-ball behaviour (CB): The robot moves its head to
track the ball, and moves towards the ball. The sensory
states of this behaviour include ball position, goal position,
and robot position.

� Align with goal behaviour (AG): The robot slightly adjusts
its position to align the ball, its orientation with the goal
in order to kick the ball into the goal. The sensory states
of this behaviour include ball position, goal position, and
robot position.

� Kick-ball behaviour (KB): some specialised kick skills are
applied.

� Dribble-ball behaviour (DB): The robot kicks the ball by
using its feet and keeps its body moving. It’s very useful
when the ball is close to edges or corners.

2.3. Feature states
Based on the behaviour design, task-oriented planning
operates within the cognition level and reflects high-level
mental states. The details of sensory data may not contribute
too much for planning, and may instead trap it into deadlocks
or local optima. For the learning stage, the algorithm that
directly searches on sensory data could meet an inhibited
large state space. It is necessary to extract the state features
in sensory data to ignore information that is less useful in
high-level reasoning. Often, for robot tasks, some significant
physical events are existed, and represent critical points in a
sensory state space and can be described by binary values.
The combination of the significant physical events forms a
feature state space. Planning can be conducted within the
feature state space.15,16

Formally, each physical event can be represented by
a binary state p (p = 1 for the event occurring). For a
specific task, there are n physical events (p1, . . . , pn) that
can be defined to characterise the task. The combination
of these events or binary values constitutes a feature state
s =p1 . . . pn. There are 2n feature states in total in the feature
state space S. Decision trees or clustering techniques can be
used to map sensory physical states into feature states. In this
research, four physical events are defined for a legged robot
to play soccer.

� Is the ball found (p1): simply compare the ball confidence
value with a threshold.

� Is the ball near enough (p2): since the robot always tracks
the ball, its tilt angle and pan angle show if the ball is just
in the front of the robot.

� Is the robot behind the ball (p3): it depends on the distance
and angle between the ball and the robot, and the angle
between the robot and the goal.

� Is the robot aligned with the goal (p4): it again depends on
the information same as p3, but with more accurate values.

For example, s = 1010 represents the robot find the ball
and is behind the ball, but not near enough and not align with
the goal.

Rewards

Teaching

Autonomous Learning

Look-up Table

Objective Functions

Modelling

Controller Design

Parameter Optimising

Task Specification

Teaching
method

Traditional
method

Fig. 1. A comparison between the teaching method and traditional
optimising design method.

3. LEARNING SCHEME
Using reinforcement learning, and Q-learning in particular,
to acquire control algorithms for robots enables human
designers to concentrate on task description in the form
of rewards. Normally, designing rewards is generally easier
than designing control algorithms, especially in the noisy
and unpredictable environment. The control algorithms are
acquired automatically through learning guided by rewards.
Figure 1 shows both the teaching method (left branch) and
the traditional design method (right branch). Given task
specifications, the objective of both methods is to acquire
final control algorithms. More specifically,
� In the traditional design method, objective functions are

first established according to task specifications. It is
followed by modelling control environments and designing
controller structures. Finally, controller parameters are
optimised through optimisation. For real robots, modelling
is a difficult step due to the uncertainty and unpredictability
in the real world.

� In the teaching method, task specifications are first
interpreted into rewards. It is followed by leading the
robot to some interesting areas through teaching. Based
on the learned knowledge about interesting areas, the
robot autonomously explores its environment to update
utility values of state-action pairs. Finally, the robot simply
searches the look-up table to find those state-action pairs
with maximum utility values.

3.1. Heterogeneous rewards
In Q-learning, the learner executes a policy, accumulates and
updates the estimated rewards. The rewards can be singular
values to indicate goals or sub-goals and usually cannot be
gained immediately. For some tasks, rewards are designed to
show if the goal is achieved. These rewards are sparse in both
temporal and spatial senses. For complex tasks, Q-learning
takes a long time when only sparse rewards are available.
For real robots, dense rewards22 or progress estimators16 are
necessary.

The rewards are the payoff returned from the environment
to indicate the effect of robot’s actions taken so far. Due to

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

142 Q-learning

noisy sensory data, the dense rewards may contain uncer-
tainty as well or be wrongly interpreted by perceptual
algorithms. The aliasing perceptual is more possibly occurred
in a high level of abstraction. Therefore, it is necessary
to provide the accurate information about the interaction
between robots and environments to the learned robots. The
information should be produced from independent sources
that act as assessors to evaluate robots behaviours that lear-
ned, instead from onboard sensors that are used to perceive
environment states.

In this research, a monitor system is adopted as an
assessor. The robot uses both sparse and dense rewards during
its learning and these rewards come both from on-board sen-
sors and the monitor system. These heterogeneous rewards
include:

� Task reward: this is the most significant reward for a
learning robot. It is rewarded for their achievement toward
the goal. For soccer playing robots, shooting a goal will be
rewarded by the monitor system.

� Sub-task rewards: these rewards are provided to evaluate
the performance of individual behaviours. They can be sub-
task goals denoted by sparse values or progress estimation
in a dense form. Two rewards are used in the soccer playing
robots. One is the distance between the robot and the ball,
which is provided by the monitor system. Another is the
angle distance between a robot and the ball, which is taken
from on-board sensors. These rewards can continuously
evaluate the robot performance.

3.2. Teaching stage
The teaching stage is to provide initial Q values to Q-leaning
algorithms in the second stage in order to guide learning to
search within interesting areas rather than blindly explore
solution spaces at the early learning stage. With these prior
experiences, the robot could behaviour reasonably.

The teaching consists of several lessons, each of which
starts from the robot’s initial position and runs until the
terminal condition is met. The condition is either scoring a
goal or over time. Figure 2 shows the flowchart of the teaching

Localisation

Send feature states

Tracking robot and ball

Select & Send behaviour

Terminate?

Off-learning Q Learning

Send tracking results

Start

Run behaviour

Start

Send Q table Receive & Save Q table

No

Yes

Teacher

Fig. 2. The flowchart of the teaching processing.

processing. There are two loops that run in parallel on both
the robot and the computer in the monitor system. Two
loops run asynchronously and communicate with each other
through the Internet. When the robot is started, it localises
itself first in order to extract environment information. The
feature states are then sent to the monitor system to help the
teacher to select behaviours. The robot executes one step of
the behaviour selected by the teacher. Then it checks if the
terminal condition is met. If not, the robot goes to send feature
states and run the inner loop again. Finally the robot stops
moving and starts to run the off-line Q-learning algorithm to
update the Q table that is sent to the monitor system. The
robot completes its current lesson and goes back to localise
again for next lesson.

The monitor loop starts from the object tracking algorithm
that searches images and provides the ball and robot’s
position. The teacher (human operator) selects one of
behaviours according to his/her view of the field and feature
states received from the robot. The selected behaviour and
tracking results are both sent to the robot for its learning
process. The monitor system also records all of the learnt
results, i.e. Q tables, when one lesson is completed.

During the teaching process, the Q table is the knowledge
learned from lessons. The robot completely follows
instructions (the behaviours) and collects whole data set of
the behaviour, feature states, and rewards. After one lesson,
it employs the off-line Q-learning algorithm to update the
Q table. Although the whole data set is also available to the
monitor computer, learning is still executed on the robot’s
side since data in the monitor system is delayed by its
communication channel.

The teacher plays a key role in the teaching process, and
decides which behaviour is to run next. The information
available is from two views of the environment: the teacher’s
own view of the field and the robot’s view (feature states).
Since a behaviour is a temporal extended action (not a single
action), the teacher has time to make decisions. During the
run of a behaviour, the robot has to decide which low-level
action to execute based on sensory data and behaviour’s
rules. The teacher may have mistakes (the wrong behaviour
is selected), which means that the lesson may contain wrong
data. However, the knowledge obtained in the teaching is
only used for initial values in the next Q-learning stage. The
final result of the teaching is a Q table that represents prior
experiences or part solutions.

3.3. Autonomous learning stage
In this second stage learning, the robot starts to learn
autonomously without instructions from a teacher. It is a
standard Q-learning process, in which the robot needs to
explore the solution space and exploit the learned experience.
The monitor system is still required to provide rewards and
to save the Q table, but without the need for instructions. The
learning system still follows the similar procedure as shown
in Figure 3. Only three different steps are taken.

� The robot has to select its behaviour rather than follow the
received one. The ε-greedy method is employed to balance
exploration and exploitation. With the prior experience
learned in the teaching stage, the robot can act reasonably

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

Q-learning 143

1) Initialisation. The initial behaviour is set as Find-ball behaviour.

2) If enough learning episodes are completed, exit

3) Self-localisation.

4) Loop.
a. Perceive environment.
b. Extract the feature states.
c. If the feature states have changed

i. Calculating the rewards.
ii. Q value updating using (2)(3).
iii. Select a behaviour using the ε-greedy algorithm.

d. Run the behaviour.
e. If the terminal conditions are met

i. Send Q table back to the monitor system
ii. Back to step 2 for next episode.

f. Otherwise, back to step 4) for next loop.

Fig. 3. The on-line Q-learning algorithm.

rather than randomly though some behaviours are selected
randomly with a small exploration probability.

� An on-line Q-learning version is implemented to replace
off-line Q-learning in Figure 3. It means that Q values are
updated when the robot changes from one feature state to
another while no need to wait for the terminal condition.

� There is no teacher or human operator to intervene the
learning process at the monitor system that works as a
server to supply the rewards to the robot client.

The temporal credit assignment problem is solved by
TD(λ), in which a replacing eligibility trace e(s, a) is used to
distribute rewards, and records the occurrence of the visiting
of state-action pair (s, a). The formula (2) can be rewritten as
follows.

Q(st , at) = Q(st , at) +α(rt + γ · max
a

Q(st+1, a)

− Q(st , at))e(st , at) (4)

e(s, a) =
{

1 st = s, at = a

e(s, a)γ λ otherwise
(5)

where s and a represent the current behaviour and the feature
state respectively.

The on-line Q-learning algorithm is as follows. The Q
value is updated every loop in Step 4) only when feature
states changes (at step c).

4. EXPERIMENTS

4.1. The robot and its monitor system
Sony legged robots are quadruped robots that resemble the
basic behaviour of dogs. They are controlled by an embedded
R4000 microprocessor with over 100 MIPS performance.
There are 20 motors for action. The main sensors include
20 encoders for motion control of 20 motors, a colour
CCD camera, an infrared range sensor, 3 gyros for
posture measurement (roll, pitch, yaw), and touch sensors.
Additionally, there is a stereo microphone and a loud speaker
for communication.27

The playing field for the Sony Legged Robot League is
4 m in length and 3 m in width. Figure 4 shows a top view

Fig. 4. The top view of the playing field from the overhead camera.

Fig. 5. The monitor systems and the operator.

of the playing field from the overhead camera. The goals
are centred on both ends of the field, and are 60 cm wide
and 30 cm high. Six unique coloured landmarks are placed
around edges of the field, with one at each corner and one
on each side of the halfway line. Each landmark is painted
with two different colours of which pink is either at the top
of landmarks on the one-side of the pitch or at the bottom
of landmarks on the other side. These landmarks are used
by robots to localise themselves within the field. The ball,
walls, goals, landmarks and robot uniforms are painted with
eight different colours distributed in the colour space so that
a robot can easily distinguish them.

A global monitor system is set up in our laboratory as
shown in Figure 5, which includes an overhead camera,
a desktop computer, and visual tracking software.28,29 The
monitor recognises the robot and the ball according to their
colours. Through image processing, the monitor updates their
positions continuously. The tracking results are displayed via
images (see values in Figure 4). These tracking results and
judgement about scoring are transferred to the robot. The
robot and the monitor computer are connected through the
wireless network with client/server architecture. The robot
works as a client and continuously asks for information from
the server. The monitor system updates its image and tracking
results in the rate of about 30 frames per second and the robot
operates in the rate of about 20 frames per second, which is
adequate to the learning process being conducted.

4.2. Results
All experiments are conducted in five situations, each of
which is called a play and has different setting for initial ball

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

144 Q-learning

Fig. 6. Play 1.

Fig. 7. Play 2.

Fig. 8. Play 3.

position and initial robot position. Figure 6 to Figure 10 show
these five plays with the arrows pointing to initial positions.
The parameters of Q-learning algorithms are chosen as:

α = 0.1, ε = 1%, λ = 0.9, γ = 0.9

Fig. 9. Play 4.

Fig. 10. Play 5.

The Q-learning terminal conditions are either that a goal
is scored or that 2000 steps are executed. The experiment
procedure is as follows:

Phase 1. Teaching stage: 5 teaching lessons are taken. For
each play, one lesson is run. The off-line Q-learning
is preceded at the end of each lesson.

Phase 2. Demonstration after teaching: 30 trials are run
after teaching (the off-line Q-learning) by using
those behaviours with maximum Q values. For each
play, 6 trials are executed.

Phase 3. Autonomous learning stage: 30 episodes are run
by using the on-line Q-learning algorithm shown
in Figure 3. For each play, 6 episodes are imple-
mented.

Phase 4. Demonstration after autonomous learning: 30 trials
are run after on-line Q-learning by using behaviours
with maximum Q values. For each play, 6 trials are
implemented.

Phase 2 is an off-policy learning process where the
executed behaviours are selected by a teacher, which are not
necessarily same as behaviours that the robot wants to learn.

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

Q-learning 145

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Episodes

R
ew

ar
d

s

Fig. 11. The average received rewards.

0

20

40

60

80

100

P
o

lic
y

ch
an

g
es

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Episodes

Fig. 12. The number of the policy changes.

Phase 4 is an on-policy learning process where the behaviours
executed are determined by the ε-greedy method and only
1% behaviours are selected randomly. Figure 11 shows the
increasing trend of the average received rewards received
during Phase 4. Several decreasing points in the curve reflect
the exploration mechanism. The number of policy changes
also indicates that learning is going toward steady results, as
shown in Figure 12.

The estimated reward is distributed into a Q table.
Figure 13 shows the change of Q values in two feature states
during the learning process. The first 5 episodes are run for
Phase 1 teaching and other 30 episodes are run for on-line
Q-learning. The CB behaviour won at the end of teaching in
both feature states. Therefore the CB behaviour is used for
these two feature states after the teaching stage. However,
the situation changes during on-line Q-learning where the
DB behaviour gradually outperforms the CB behaviour as
shown in Figure 13(a) and the FB behaviour outperforms the
CB behaviour in Figure 13(b). The function of the teaching
is to find some useful behaviours in the feature states in order
to bootstrap the on-line Q-learning to save the learning time.
The decreasing of the maximum Q value in Figure 13(a)
demonstrates that the knowledge acquired during the teach-
ing can be corrected by Q-learning.

At the autonomous learning stage, 30 learning trials are
run in six rounds with the order play1, play2, play3, play4,
and play5. The average steps in each round are calculated and
displayed in Figure 14. It indicates that both average steps in
six rounds and their standard derivations are decreased. The
robot gradually scores a goal in less steps or shorter time.

The evaluation of experiments are further carried out in
terms of average steps of a trial, average rewards of a trial,
and the number of failures for scoring a goal in 2000 steps. In
Figure 15, average steps of trials for both Phase 2 and Phase 4
are compared. The white bars represent the results after
teaching (phase 2) and the grey bars represent the results

0

0.2

0.4

0.6

0.8

1

1 11 16 21 26 31 36

Episodes

FB
CB
KB
AG
DB

After teaching

(a)

0

0.2

0.4

0.6

0.8

1

Episodes

FB
CB
KB
AG
DB

After teaching

(b)

Q
 v

al
u

es
Q

 v
al

u
es

6

1 11 16 21 26 31 366

Fig. 13. The Q value changes in two feature states during the
Q-learning.

0

500

1000

1500

2000

2500

1 2 3 4 5 6
Round

S
te

ps

Fig. 14. The average steps of a trial in six rounds.

0

400

800

1200

1600

2000

1 4 Plays

After teaching
After Q-learning

S
te

p
s

2 3 5

Fig. 15. The average steps of a trial in a play.

after autonomous learning within Phase 4. Due to different
situations in five plays, they are separately compared.

In all five plays, the average step used to score a goal
after autonomous learning is less than those used just after
teaching at Phase 1. The grey bars also show that average

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

146 Q-learning

0

0.4

0.8

1.2

1.6

2

1 2 3 4 5 Plays

After teaching
After Q-learning

R
ew

ar
d

s

Fig. 16. The average rewards of a trial in a play.

0

1

2

3

4

F
ai

lu
re

s

1 2 3 4 5 6
Round

After teaching After Q-learning

Fig. 17. The total number of failures after 1500 steps for each round.

steps used in five plays increase in the order of play1, play2,
play5, play4, and play3. This order coincides with difficulties
in initial settings shown in Figure 6 to Figure 10. Figure 16
shows average received rewards of a trial. Again in each
play, the results after autonomous learning are better than
those just after teaching at Phase 1.

The robot may fail to score a goal during a trial due to
the uncertain nature of experiments. Figure 17 shows the
total number of failures after 1500 steps for each round. The
number in each five plays after autonomous learning is less or
equal to the number after teaching. The five successful plays
are displayed in Figures 6 to 10. The dark curves represent the
robot’s trajectories and the light curves represent the ball’s
trajectories. The robot can move to the ball and manoeuvre
the ball into the goal. It demonstrates that the robot ac-
quires the state planning strategy after learning.

5. CONCLUSIONS AND FUTURE WORK
This paper describes the application of Q-learning algorithms
to the mapping from sensory physical states into motor
actions. The challenges include the large continuous solution
space and uncertainties in real robots. Some measures are
taken to address these challenges. Firstly, continuous spaces
are converted into discrete spaces. It is implemented by the
behaviours design for motor actions and the feature states
extraction for sensory physical states. Secondly, two-stage
learning is developed to speed up the learning process for
real robots. After the robot gains prior experiences through
teacher’s instructions at the first stage, the robot uses these
experiences to explore interesting areas in the solution space
rather than randomly searching. Finally the heterogeneous
rewards are employed to guide the robot towards optimal

points. They can be provided from both a global monitor
system and robot’s on-board sensors. All efforts are made to
permit the robot to speed up the exploration process.

The approach developed in this paper can also be viewed
as high-level planning. Although the combination of reactive
behaviours and task-oriented planning has been a challenge
for many robotic systems, the learning method discussed
in this paper makes use of both state-based planning and
Q-learning to implement the control design. Based on this
method, the planning tasks have been implemented by
designing high-level rewards, and make the robot be able
to acquire low-level control algorithms through Q-learning.

Although the behaviours and the feature states discussed in
this paper are all pre-defined, both of them can be embedded
into the learning system to be further modified through
learning. This can be achieved by keeping the high-level
planning unchanged and evolving low-level rules, which is
to be investigated.

References
1. J. Albus, “Outline for a Theory of Intelligence,” IEEE Trans-

actions on SMC 21(3), 473–509 (1991).
2. R. C. Arkin, Behaviour-based Robotics (The MIT Press,

1998).
3. R. Brooks, “A Robust Layered Control System for a Mobile

Robot,” IEEE J. Robotics and Automation 2(1), 14–23
(1986).

4. J. Kosecka and R. Bajcsy, “Discrete Event Systems for Auto-
nomous Mobile Agents,” Robotics and Autonomous Systems
12, 187–198 (1994).

5. L. D. Pyeatt, “Integrating of Partially Observable Markov
Decision Processes and Reinforcement Learning for Simulated
Robot Navigation,” PhD Thesis (Colorado State University,
1999).

6. R. Hartley and F. Pipitone, “Experiments with the Subsumption
Architecture,” Proc. of IEEE International Conference on
Robotics and Automation (April 9–11, 1991) pp. 1652–1658.

7. D. Kirsh, “Today the Earwig, Tomorrow Man,” Artificial Intel-
ligence 47, 161–184 (1991).

8. E. Gat, “On Three-Layer Architecture,” In: Artificial Intel-
ligence and Mobile Robots (D. Kortenkamp, R. P. Bonnasso
and R. Murphy, eds.) (MIT/AAAI Press, 1998) pp. 195–210.

9. R. Volpe et al., “The CLARAty Architecture for Robotic
Autonomy.” Proc. of the IEEE Aerospace Conference (Big
Sky Montana, 2001) pp. 10–17.

10. P. Pirjanian, “Behaviour Co-ordination Mechanism – State-
of-the -art,” Tech-report IRIS-99-375 (Institute for Robotics
and Intelligent Systems, School of Engineering, University of
Southern California, 1999).

11. J. K. Rosenblatt, “DAMN: A Distributed Architecture for
Mobile Navigation,” PhD Thesis (Carnegie Mellon University,
1997).

12. P. Maes, “Situate Agents Can Have Goals,” Robotics and
Autonomous Systems 6, 49–76 (1990).

13. A. Saffiotti, E. Ruspini and K. Konolige, “Using Fuzzy Logic
for Mobile Robot Control,” In: Practical Applications of Fuzzy
Technologies (H. J. Zimmermann, Ed.) (Kluwer Academic,
1999) pp. 185–206.

14. D. Goldberg, “Evaluation the Dynamics of Agent-Environment
Interaction,” PhD Thesis (University of Southern California,
2001).

15. M. Huber, “A hybrid Architecture for Hierarchical Rein-
forcement Learning,” Proc. of IEEE International Conference
on Robotics and Automation (Detroit San Francisco, 2000)
pp. 3290–3295.

16. M. J. Mataric, “Reinforcement Learning in the Multi-Robot
Domain,” International Journal of Autonomous Robots 4(1),
73–83 (1997).

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

Q-learning 147

17. R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning (MIT Press, 1998).

18. L. P. Kaelbling and A. W. Moor, “Reinforcement Learning: A
Survey,” Journal of Artificial Intelligence Research 4, 237–285
(1996).

19. S. Koenig and R. G. Simmons, “Unsupervised Learning of
Probabilistic Models for Robot Navigation,” Proc. of the 1996
IEEE International Conference on Robotics and Automation
(1996) pp. 2301–2308.

20. L. J. Lin, “Self-improving Reactive Agents Based on Re-
inforcement learning, planning, and teaching,” Machine
Learning 55, 293–321 (1992).

21. M. Dorigo and M. Colombetti, “The Role of the Trainer in
Reinforcement Learning,” Proc. of MLC-COLT ’94 Workshop
on Robot Learning (July 10th, New Brunswick, NJ, USA,
1994) pp. 37–45.

22. W. D. Smart and L. P. Kaelbling, “Effective Reinforcement
Learning for Mobile Robots,” Proc. of the IEEE International
Conference on Robotics and Automation (2002) pp. 3404–
3410.

23. C. J. Watkins and P. Dayan, “Technical note: Q-learning,”
Machine Learning 8(3/4), 323–339 (1992).

24. G. A. Rummery, “On-Line Q-Learning Using Connectionist
Systems,” Technical Report CUED/F-INFENG/TR 166
(Cambridge University, 1994).

25. J. R. Millan, D. Posenato and E. Dedieu, “Continuous-Action
Q-Learning,” Machine Learning 49, 247–265 (2002).

26. D. Gu and H. Hu, “Evolving Fuzzy Logic Controllers for Sony
Legged Robots,” Proc. of the RoboCup 2001 International
Symposium (Seattle, Washington, 2001) pp. 4–10.

27. M. Fujita, “Development of an Autonomous Quadruped
Robot for Robot Entertainment,” Autonomous Robots 7, 7–20
(1998).

28. D. Golubovic and H. Hu, “An Interactive Software
Environment for Gait Generation and Control Design of Sony
Legged Robots,” Proc. of the 6th Int. Symposium on RoboCup
(Fukuoka, Japan, 2002) pp. 24–25.

29. B. Li, H. Hu and L. Spacek, “A Hybrid Experimental Platform
for Sony Legged Robots,” Proc. of CACSCUK’2002 (UMIST,
England, ISBN 0 9533890 5 9, 2002) pp. 7–12.

https://doi.org/10.1017/S0263574704000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000803

