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Further inequalities and properties of
p-inner parallel bodies
Yingying Lou, Dongmeng Xi, and Zhenbing Zeng
Abstract. A. R. Martínez Fernández obtained upper bounds for quermassintegrals of the p-inner
parallel bodies: an extension of the classical inner parallel body to the Lp-Brunn-Minkowski theory.
In this paper, we establish (sharp) upper and lower bounds for quermassintegrals of p-inner parallel
bodies. Moreover, the sufficient and necessary conditions of the equality case for the main inequality
are obtained, which characterize the so-called tangential bodies.

1 Introduction

An important observation in convex geometry is that the volume of a linear combi-
nation of convex bodies (compact convex set with nonempty interior) behaves as a
polynomial. The coefficients of this polynomial are the so-called mixed volumes. That
is to say, given convex bodies K1 , . . . , Km , then

V(λ1K1 +⋯+ λm Km) =
m
∑
i1=1

⋯
m
∑
in=1

V(K i1 , . . . , K in)λ i1⋯λ in ,(1.1)

where λ i is non-negative, λ1K1 +⋯+ λm Km means their linear combination, and
V(K i1 , . . . , K in) are the mixed volumes of the convex bodies K i1 , . . . , K in . For the sake
of brevity, we denote (K1[r1], . . . , Km[rm]) ≡ (K1 , . . . , K1

����������������������������������������
r1

, . . . , Km , . . . , Km
����������������������������������������������������

rm

). If there

are only two convex bodies K , E involved in the above sum, then formula (1.1) becomes
the so-called relative Steiner formula:

V(K + λE) =
n
∑
i=0
(n

i
)Wi(K; E)λ i ,

where λ ≥ 0, and the Minkowski addition K + λE of K and λE is the outer parallel body
of K relative to E. The coefficients Wi(K; E) = V(K[n − i], E[i]) are called relative
quermassintegrals of K (see [11, Section 5.1]). In particular, we have W0(K; E) = V(K)
and Wn(K; E) = V(E).
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Complementing the outer parallel body, we find the so-called inner parallel body
Kλ of a convex body K relative to a convex body E for −r(K; E) ≤ λ ≤ 0:

Kλ = K ∼ ∣λ∣E = {x ∈ Rn ∶ ∣λ∣E + x ⊆ K};

i.e., Kλ is the Minkowski difference of K and ∣λ∣E. Here, r(K; E) = max{r ≥ 0 ∶
there is x ∈ Rn with x + rE ⊆ K} is the relative inradius of K with respect to E. We
write r = r(K; E) for the sake of brevity. K−r is the kernel of K with respect to E.

It is natural to consider whether there is a counterpart to the Steiner formula for
the inner parallel bodies. However, the boundary structure of the inner parallel bodies
is rather more difficult to control, and it also means that there is no direct way to
compute their volume (quermassintegrals). Therefore, Hernández Cifre et al. [5] gave
upper bounds for quermassintegrals of inner parallel bodies:

Theorem A Let K , E be convex bodies, and let E be strictly convex and regular. For
−r ≤ λ ≤ 0 and i = 0, . . . , n − 1,

Wi(Kλ ; E) ≤ Wi(K; E) − ∣λ∣
n−i−1
∑
k=0

V(Kλ[k], K[n − i − k − 1], K∗ , E[i]).(1.2)

If K is a tangential body of K−r + rE satisfying U0(K) = U0(Kλ + K∗), then equal-
ity holds in all the inequalities. Conversely, if equality holds in (1.2) for some i ∈
{0, . . . , n − 1}, then K is a tangential body of K−r + rE.

Here there are some important notions involved. A convex body K is called strictly
convex if its boundary bdK does not contain a segment and regular if the supporting
hyperplane (see Section 2 for the detailed definition) of K at any boundary point is
unique.

Let U0(K) denote the set of the so-called 0-extreme normal vectors of K, i.e., those
ones that cannot be written as a positive combination of two linearly independent
normal vectors at one and the same boundary point of K.

Now we introduce the definition of tangential body which is closely related to the
0-extreme normal vectors: a convex body K containing a convex body E is called a
tangential body of E, if each 0-extreme support plane (see Section 2 for the detailed
definition) of K supports E. Given a convex body E, a special tangential body of E is
the relative form body K∗ of a convex body K, i.e., the intersection of the supporting
half-spaces to E with outer normal vectors in U0(K) (see Section 2 for the detailed
definition).

Inspired by the work of Hernández Cifre et al., the aim of this paper is to give
(sharp) upper and lower bounds for quermassintegrals of inner parallel bodies in the
framework of the Lp-Brunn–Minkowski theory. This theory, extending the classical
Brunn–Minkowski theory to the Lp setting, has its origin in the early 1960s when
Firey [1] introduced the concept of Lp combinations of convex bodies. In [6] and
[7], the Lp combinations of convex bodies were further investigated by Lutwak which
leads to an embryonic Lp-Brunn–Minkowski theory. This new theory has attracted
the interest of a large number of researchers in recent years (see e.g. the references in
[11, Section 9.1]).
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In particular, Martínez Fernández et al. [9] introduced the p-inner parallel body
of convex bodies in the Lp-Brunn-Minkowski theory. For the sake of brevity, let
Kn denote the set of convex bodies, and Kn

0 denote the subset of Kn consisting
in all convex bodies containing the origin. For K ⊆ R

n , clK denotes its closure.
When dealing with the p-inner parallel bodies, we need the subfamily of convex sets
Kn

00(E) = {K ∈Kn
0 ∶ 0 ∈ K−r} for E ∈Kn

0 . We observe that if K ∈Kn
00(E), then 0 lies

in the interior of K. Let E ∈Kn
0 and K ∈Kn

00(E). The p-inner parallel body K p
λ of K

relative to E is defined by

K p
λ = ⋂

u∈Sn−1
{x ∈ Rn ∶ x ⋅ u ≤ [h(K , u)p − ∣λ∣p h(E , u)p]

1
p } for − r ≤ λ ≤ 0;

i.e., K p
λ is the p-difference of K and ∣λ∣E. Here, x ⋅ u denotes the standard inner product

of x and u in R
n , and h(K , ⋅) denotes the support function of K (see Section 2 for the

detailed definition). K p
−r is the p-kernel of K with respect to E. When p = 1, we obtain

the usual inner parallel body.
Our first main result is the following theorem.

Theorem 1.1 Let E ∈Kn
0 be regular, K ∈Kn

00(E) and 1 ≤ p < ∞. Then K = K p
λ +p

∣λ∣K∗ for any −r ≤ λ ≤ 0 if and only if K is a tangential body of K p
−r +p rE satisfying

that for any −r ≤ λ ≤ 0,

U0(K) = U0(K p
λ +p K∗).(1.3)

Here, “ +p " denotes the Lp Minkowski addition (see Section 2 for the detailed
definition). When p = 1, Hernández Cifre et al. [5] utilized the derivative of the support
function of the inner parallel body to study the above theorem. However, we will use
a different method to study it for all p ≥ 1.

In the following main result, we give upper and lower bounds of Wi(K p
λ ; E) and

the sufficient and necessary conditions for the equality case of the upper bound are
obtained.

Theorem 1.2 Let E ∈Kn
0 , K ∈Kn

00(E) and 1 ≤ p < ∞.
(1) For all −r < λ ≤ 0 and i = 0, . . . , n − 1, we have

Wi(K p
λ ; E) ≤ (1 − ∣ λ

r
∣

p
)
−(n−i)

q

Wi(K; E) − ∣λ∣∑n−i−1
k=0 ∣ λ

r
∣

p−1

× (1 − ∣ λ
r
∣

p
)
−(n−i−k)

q

V(K p
λ [k], K[n − i − k − 1], K∗, E[i]),(1.4)

where q is the Hölder conjugate of p, i.e., 1
p +

1
q = 1.

(2) Suppose E is regular and strictly convex. If K is homothetic to a tangential body of E
satisfying (1.3) for all −r < λ ≤ 0, then equality holds in (1.4) for all i = 0, . . . , n − 1
and all −r < λ ≤ 0. Conversely, if equality holds in (1.4) for some i ∈ {0, . . . , n − 1}
and some −r < λ < 0, then K is homothetic to a tangential body of E.
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(3) If clU0(K p
λ) = U0(K p

λ +p (K p
λ)∗) for all −r < λ ≤ 0, then, for any i = 0, . . . , n − 1,

Wi(K p
λ ; E) ≥ Wi(K; E) − ∣λ∣

n−i−1
∑
k=0

V(K p
λ [k], K[n − i − k − 1], (K p

λ)
∗, E[i]).

(1.5)

When p = 1, then q →∞ and, in this case, the limit of the coefficients (1 −
∣ λ

r ∣
p)
−(n−i)

q and ∣ λ
r ∣

p−1(1 − ∣ λ
r ∣

p)
−(n−i−k)

q in inequality (1.4) is 1. Inequality (1.4) reduces
to inequality (1.2).

In [8], Martínez Fernández also gave an estimate for the upper bound of Wi(K p
λ ; E),

but without conditions for the equality case.

2 Background material

In this section, we will review some basic facts in convex geometry. Good general
references for the theory of convex bodies include the books of Gardner [2] and
Schneider [11].

If K ⊂ R
n is a closed convex set, then its support function, h(K , ⋅) ∶ Rn →

(−∞,+∞), is defined by

h(K , u) = max{x ⋅ u ∶ x ∈ K}, u ∈ Rn .

Obviously, for K , L ∈Kn ,

K ⊆ L if and only if h(K , ⋅) ≤ h(L, ⋅).(2.1)

Let K ∈Kn . For each u ∈ Rn/{0}, the hyperplane

HK(u) = {x ∈ Rn ∶ x ⋅ u = h(K , u)}

is called the supporting hyperplane of K with outer normal u.
In the early 1960s, Firey [1] introduced the concept of Lp Minkowski addition (also

known as the Minkowski–Firey addition) of convex bodies: if K , L ∈Kn
0 and p ≥ 1,

then the Lp Minkowski addition K +p E is defined by

h(K +p L, ⋅)p = h(K , ⋅)p + h(L, ⋅)p .

When p = 1, the usual Minkowski addition is obtained, namely,

K + L = {x + y ∶ x ∈ K , y ∈ L}.

Moreover, Firey [1] showed that for any 1 ≤ s ≤ t,

K +t L ⊆ K +s L.(2.2)

In addition, from the definition of p-inner parallel body, it follows that for 1 ≤ p <
∞ and all −r ≤ λ ≤ 0,

h(K p
λ , u)p ≤ h(K , u)p − ∣λ∣p h(E , u)p .

Notice that h(K p
λ , u)p = h(K , u)p − ∣λ∣p h(E , u)p for u ∈ clU0(K p

λ) (see e.g.
[11, p. 411]).
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For K , K1 , . . . , Kn−1 ∈Kn , the mixed volume has the integral representation (see
e.g. [11, Theorem 5.1.7])

V(K , K1 , . . . , Kn−1) =
1
n ∫

Sn−1
h(K , u)dS(K1 , . . . , Kn−1; u),(2.3)

where S(K1 , . . . , Kn−1; ⋅) is the mixed surface area measure of K1 , . . . , Kn−1 on Sn−1.
For an exhaustive study of mixed volumes and mixed surface area measures, we refer
to [11, Section 5.1].

An outer normal vector of K is called r-extreme normal vector, r = 0, 1, . . . , n − 1,
if it cannot be written as a positive combination of r + 2 linearly independent normal
vectors at one and the same boundary point of K. We denote the set of r-extreme
normal vectors of K by Ur(K). Notice that each r-extreme normal vector is also an
s-extreme one for r < s ≤ n − 1. When r = 0, we obtain the 0-extreme normal vector.
A support plane is said to be 0-extreme if its outer normal vector is 0-extreme. A useful
fact is that a convex body K is the intersection of the supporting half-spaces to K with
outer normal vectors in U0(K), namely,

K = ⋂
u∈U0(K)

{x ∶ x ⋅ u ≤ h(K , u)},

(see e.g. [10, (2.9)]). One can observe that the set U0(K) can be replaced by clU0(K)
from the continuity of the support function.

For the r-extreme normal vectors, there is the following property (see
[11, pp. 135–136]): if K , E ∈Kn , and E is regular and strictly convex, then clUr(K) =
suppS(K[n − r − 1], E[r]; ⋅). Here, suppν denotes the support of the measure ν.

The (relative) form body K∗ of K ∈Kn with respect to E ∈Kn is defined as

K∗ = ⋂
u∈U0(K)

{x ∶ x ⋅ u ≤ h(E , u)}.

In this definition, it is necessary to assume that K has interior points. If not so, the
form body K∗ could be even the whole R

n . Notice that the form body K∗ is always
a tangential body of E. In addition, the set U0(K) can also be replaced by clU0(K)
in the above definition, because of the continuity of the support function (see e.g.
[11, p. 386]).

3 Proofs of the main results

In order to prove the main results, we will list some particular properties of the p-
inner parallel bodies with respect to their 0-extreme normal vectors. Firstly, we need
the following equivalent definition of 0-extreme normal vector, see e.g. [10, Lemma
2.3], for its proof.

Lemma 3.1 If K ∈Kn , u ∈ U0(K) if and only if for any u1 , u2 ∈ Sn−1 and α, β > 0 such
that u = αu1 + βu2, it holds h(K , u) < αh(K , u1) + βh(K , u2).

The following two lemmas, proved in [8, Propositions 4.1.11 and 4.1.8], will be
needed.
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Lemma 3.2 Let E ∈Kn
0 , K ∈Kn

00(E) and 1 ≤ p < ∞. Then for any −r < λ ≤ 0

U0(K p
λ) ⊆ U0(K).(3.1)

Lemma 3.3 Let K , L ∈Kn
0 and 1 ≤ p < ∞. Then

U0(K) ∪U0(L) ⊆ U0(K +p L).

Let +p ∶ R ×R→ R denote the binary operation which was introduced in [9]:

a +p b =
⎧⎪⎪⎨⎪⎪⎩

sgn2(a, b)(∣a∣p + ∣b∣p)
1
p if ab ≥ 0,

sgn2(a, b)(max{∣a∣, ∣b∣}p −min{∣a∣, ∣b∣}p)
1
p if ab ≤ 0,

where the function sgn2 ∶ R ×R→ R is given by

sgn2(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sgn(a) = sgn(b) if ab > 0,
sgn(a) if ab ≤ 0 and ∣a∣ ≥ ∣b∣,
sgn(b) if ab ≤ 0 and ∣a∣ < ∣b∣.

Here, sgn denotes the usual sign function. Obviously, this operation satisfies two facts:
1. a +p b = b +p a for all a, b ∈ R; i.e., +p is commutative.
2. (a +p b) +p c = a +p (b +p c) = (a +p c) +p b for all a, b, c ∈ R; i.e., +p is

associative.
The next three lemmas are extensions from the classical Brunn-Minkowski theory

to its Lp counterpart (see [5, Lemmas 3.1–3.3]). However, the proofs require quite
different techniques.

Lemma 3.4 Let K , L ∈Kn
0 , λ > 0, and 1 ≤ p < ∞. Then

U0(K +p L) = U0(K +p λL).

Proof First, we assume that 0 < λ ≤ 1. Let u ∈ U0(K +p L) and let u1 , u2 ∈ Sn−1,
u1 ≠ u2 be such that u = αu1 + βu2 with α, β > 0. Then by Lemma 3.1, we have
h(K +p L, u) < αh(K +p L, u1) + βh(K +p L, u2). By Minkowski’s inequality (see e.g.
[3, p. 30]), we obtain

h(K +p λL, u) = [h(K , u)p + λp h(L, u)p]
1
p

= [λp h(K , u)p + λp h(L, u)p + (1 − λp)h(K , u)p]
1
p

= [λp h(K +p L, u)p + (1 − λp)h(K , u)p]
1
p

< {λp[αh(K +p L, u1) + βh(K +p L, u2)]p

+ (1 − λp)[αh(K , u1) + βh(K , u2)]p}
1
p

≤ [αp λp h(K +p L, u1)p + αp(1 − λp)h(K , u1)p]
1
p

+ [βp λp h(K +p L, u2)p + βp(1 − λp)h(K , u2)p]
1
p

= αh(K +p λL, u1) + βh(K +p λL, u2).

That implies u ∈ U0(K +p λL), i.e., U0(K +p L) ⊆ U0(K +p λL).
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Using now that h(K +p L, u) = [h(K +p λL, u)p + (1 − λp)h(L, u)p]
1
p , the same

argument shows the reverse inclusion.
The case λ ≥ 1 is analogous. ∎
In the following two lemmas, we discuss the equality conditions of (3.1). If E ∈Kn

0
is regular, we give a sufficient condition for the equality case of (3.1).

Lemma 3.5 Let E ∈Kn
0 be regular, K ∈Kn

00(E) and 1 ≤ p < ∞. If K is a tangential
body of K p

−r +p rE, then for any −r < λ ≤ 0,

U0(K) = U0(K p
λ).

Proof First we prove thatU0(K) ⊆ U0(K p
λ) for any−r < λ ≤ 0. Let u ∈ U0(K). Since

K is a tangential body of K p
−r +p rE, then h(K , u) = h(K p

−r +p rE , u). it follows from
the regularity of E ∈Kn

0 that u ∈ U0(K) ⊆ U0(E). Let u1 , u2 ∈ Sn−1, u1 ≠ u2 be such
that u = αu1 + βu2 with α, β > 0. Then, by Lemma 3.1, we have

h(E , u) < αh(E , u1) + βh(E , u2).

As a direct consequence of [9, Proposition 4.2(ii)] one has K p
−r +p (r +p λ)E ⊆ K p

λ .
Combining these with the definition of p-inner parallel body and Minkowski’s

inequality, we obtain

h(K p
λ , u) ≤ [h(K , u)p − ∣λ∣p h(E , u)p]

1
p

= [h(K p
−r +p rE , u)p − ∣λ∣p h(E , u)p]

1
p

= [h(K p
−r , u)p + (rp − ∣λ∣p)h(E , u)p]

1
p

< {[αh(K p
−r , u1) + βh(K p

−r , u2)]p

+ [αh((rp − ∣λ∣p)
1
p E , u1) + βh((rp − ∣λ∣p)

1
p E , u2)]p}

1
p

≤ [αp h(K p
−r , u1)p + αp h((rp − ∣λ∣p)

1
p E , u1)p]

1
p

+ [βp h(K p
−r , u2)p + βp h((rp − ∣λ∣p)

1
p E , u2)p]

1
p

= αh(K p
−r +p (r +p λ)E , u1) + βh(K p

−r +p (r +p λ)E , u2)
≤ αh(K p

λ , u1) + βh(K p
λ , u2).

Using the characterization of 0-extreme normal vectors which is given in Lemma
3.1, we get u ∈ U0(K p

λ). Thus, U0(K) ⊆ U0(K p
λ). From (3.1), we obtain U0(K) =

U0(K p
λ) for any −r < λ ≤ 0. ∎

If K ∈Kn
00(E) is regular, we obtain the necessary and sufficient conditions for the

equality case of (3.1).
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Lemma 3.6 Let E ∈Kn
0 , K ∈Kn

00(E) be regular and 1 ≤ p < ∞. Then U0(K) =
U0(K p

λ) for any −r < λ ≤ 0 if and only if K = K p
−r +p rE.

Proof If

K = K p
−r +p rE ,

then, by [9, Proposition 4.2 (iv)], we get for any −r < λ ≤ 0

K p
λ = K p

−r +p (r +p λ)E .

This together with Lemma 3.4 implies

U0(K p
λ) = U0(K p

−r +p (r +p λ)E) = U0(K p
−r +p rE) = U0(K).

Conversely, supposeU0(K p
λ) = U0(K) for any−r < λ ≤ 0. Since K is regular, we get

U0(K p
λ) = U0(K) = Sn−1 .

If u ∈ U0(K p
λ) = U0(K) = Sn−1, we know

h(K p
λ , u)p = h(K , u)p − ∣λ∣p h(E , u)p .

That is

h(K , u) = [h(K p
λ , u)p + ∣λ∣p h(E , u)p]

1
p

= h(K p
λ +p ∣λ∣E , u) for all u ∈ Sn−1 ,

i.e.,

K = K p
λ +p ∣λ∣E for any − r < λ ≤ 0.

Taking into account that limλ→−r K p
λ = K p

−r (see [9, Proposition 4.3]) and the
continuity of the support function with respect to the Hausdorff metric, we have

h(K , u)p = lim
λ→−r

[h(K p
λ , u)p + ∣λ∣p h(E , u)p]

= h(K p
−r , u)p + rp h(E , u)p for all u ∈ Sn−1 .

This implies

K = K p
−r +p rE . ∎

Remark 3.7 Notice that if K = K p
λ +p ∣λ∣E for −r < λ ≤ 0, then it also holds that K =

K p
−r +p rE .

Using an analogous argument as in the proof of Lemma 3.6, the following proper-
ties hold:

(1) If K is a tangential body of K p
λ +p ∣λ∣E for−r < λ ≤ 0, then K is a tangential body

of K p
−r +p rE;

(2) If K is a tangential body of K p
λ +p ∣λ∣K∗ for −r < λ ≤ 0, then K is a tangential

body of K p
−r +p rK∗.

Now we are in a position to prove Theorem 1.1.
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Proof of Theorem 1.1 Suppose K = K p
λ +p ∣λ∣K∗ for any−r ≤ λ ≤ 0, and in particular,

that K = K p
−r +p rK∗. Thus, for any u ∈ U0(K),

h(K , u) = h(K p
−r +p rK∗ , u)

= [h(K p
−r , u)p + rp h(K∗ , u)p]

1
p

= [h(K p
−r , u)p + rp h(E , u)p]

1
p

= h(K p
−r +p rE , u).

Since K p
−r +p rE ⊆ K (see [9, Proposition 4.2(ii)]), K is a tangential body of K p

−r +p rE.
Moreover, from Lemma 3.4, we get U0(K) = U0(K p

λ +p ∣λ∣K∗) = U0(K p
λ +p K∗) for

all −r ≤ λ ≤ 0.

Conversely, suppose that K is a tangential body of K p
−r +p rE satisfying U0(K) =

U0(K p
λ +p K∗) for any −r ≤ λ ≤ 0. Since E is regular, by Lemma 3.5, we get U0(K) =

U0(K p
λ) for any −r < λ ≤ 0. Combining this with Lemma 3.4, we obtain for any −r <

λ ≤ 0

K p
λ +p ∣λ∣K∗ = ⋂

u∈U0(K p
λ+p ∣λ∣K∗)

{x ∶ x ⋅ u ≤ h(K p
λ +p ∣λ∣K∗ , u)}

= ⋂
u∈U0(K p

λ+p K∗)
{x ∶ x ⋅ u ≤ h(K p

λ +p ∣λ∣K∗ , u)}

= ⋂
u∈U0(K)

{x ∶ x ⋅ u ≤ [h(K p
λ , u)p + ∣λ∣p h(E , u)p]

1
p }

= ⋂
u∈U0(K p

λ)

{x ∶ x ⋅ u ≤ [h(K , u)p − ∣λ∣p h(E , u)p + ∣λ∣p h(E , u)p]
1
p }

= ⋂
u∈U0(K p

λ)

{x ∶ x ⋅ u ≤ h(K , u)}

= ⋂
u∈U0(K)

{x ∶ x ⋅ u ≤ h(K , u)}

= K .

Remark 3.7 ensures that K p
−r +p rK∗ = K. Hence K p

λ +p ∣λ∣K∗ = K for any −r ≤ λ ≤ 0.
The following lemma can be found in [8, Proposition 4.2.3].

Lemma 3.8 Let E ∈Kn
0 , K ∈Kn

00(E) and 1 ≤ p < ∞. Then for any −r ≤ λ ≤ 0

K p
λ +p ∣λ∣K∗ ⊆ K .(3.2)

In order to get lower bounds for the quermassintegrals of the p-inner parallel bodies
of a convex body, we need the following lemma.

Lemma 3.9 Let E ∈Kn
0 , K ∈Kn

00(E) and 1 ≤ p < ∞. If for any −r < λ ≤ 0

clU0(K p
λ) = U0(K p

λ +p (K p
λ)
∗),

then the following property holds:
K ⊆ K p

λ +p ∣λ∣(K p
λ)
∗.(3.3)
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If E is regular, equality holds for any −r < λ ≤ 0 if and only if K is a tangential body of
K p
−r +p rE.

Proof Since clU0(K p
λ) = U0(K p

λ +p (K p
λ)∗) for any −r < λ ≤ 0, then, by Lemma 3.4

and Lemma 3.2, we get

K p
λ +p ∣λ∣(K p

λ)
∗ = ⋂

u∈U0(K p
λ+p ∣λ∣(K p

λ)
∗)

{x ∶ x ⋅ u ≤ h(K p
λ +p ∣λ∣(K p

λ)
∗ , u)}

= ⋂
u∈U0(K p

λ+p(K p
λ)
∗)

{x ∶ x ⋅ u ≤ h(K p
λ +p ∣λ∣(K p

λ)
∗ , u)}

= ⋂
u∈clU0(K p

λ)

{x ∶ x ⋅ u ≤ [h(K p
λ , u)p + ∣λ∣p h((K p

λ)
∗ , u)p]

1
p }

= ⋂
u∈clU0(K p

λ)

{x ∶ x ⋅ u ≤ [h(K , u)p − ∣λ∣p h(E , u)p + ∣λ∣p h(E , u)p]
1
p }

= ⋂
u∈clU0(K p

λ)

{x ∶ x ⋅ u ≤ h(K , u)}

⊇ ⋂
u∈clU0(K)

{x ∶ x ⋅ u ≤ h(K , u)}

= K .

Now we discuss the equality case of (3.3). Since E is regular, if K is a tangential body
of K p

−r +p rE, Lemma 3.5 ensures that U0(K p
λ) = U0(K) for any −r < λ ≤ 0, and hence

equality holds in (3.3) for any −r < λ ≤ 0.
Conversely, if K = K p

λ +p ∣λ∣(K p
λ)∗ for any −r < λ ≤ 0, then, by Lemma 3.4, we

obtain U0(K) = U0(K p
λ +p ∣λ∣(K p

λ)∗) = U0(K p
λ +p (K p

λ)∗) = clU0(K p
λ), and hence

K∗ = (K p
λ)∗. Thus, K = K p

λ +p ∣λ∣K∗ for −r < λ ≤ 0 and hence, by Remark 3.7, also
K = K p

−r +p rK∗. Then Theorem 1.1 shows that K is a tangential body of K p
−r +p rE. ∎

Finally, we give (sharp) upper and lower bounds for quermassintegrals of p-inner
parallel bodies following the same idea as the one in [5]: we prove Theorem 1.2.

Proof of Theorem 1.2 (1) If λ = 0 the result is trivial. Therefore, from now, on we
will work in the range−r < λ < 0. From (2.3), combining with (2.1), (3.2), and Hölder’s
inequality (see e.g. [3, p. 21]), we get for any −r ≤ λ < 0 that

Wi(K; E) = V(K[n − i], E[i]) = 1
n ∫

Sn−1
h(K , u)dS(K[n − i − 1], E[i]; u)

≥ 1
n ∫

Sn−1
h(K p

λ +p ∣λ∣K∗ , u)dS(K[n − i − 1], E[i]; u)

= 1
n ∫

Sn−1
[h(K p

λ , u)p + ∣λ∣p h(K∗ , u)p]
1
p dS(K[n − i − 1], E[i]; u)

≥ 1
n ∫

Sn−1

⎡⎢⎢⎢⎢⎣
(1 − ∣ λ

r
∣

p
)

1
q

h(K p
λ , u) + ∣ λ

r
∣

p
q

∣λ∣h(K∗ , u)
⎤⎥⎥⎥⎥⎦

dS(K[n − i − 1], E[i]; u)

= (1 − ∣ λ
r
∣

p
)

1
q

V(K p
λ , K[n − i − 1], E[i]) + ∣ λ

r
∣

p−1
∣λ∣V(K[n − i − 1], K∗ , E[i])
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≥ (1 − ∣ λ
r
∣

p
)

2
q

V(K p
λ [2], K[n − i − 2], E[i])

+ (1 − ∣ λ
r
∣

p
)

1
q

∣ λ
r
∣

p−1
∣λ∣V(K p

λ , K[n − i − 2], K∗ , E[i])

+ ∣ λ
r
∣

p−1
∣λ∣V(K[n − i − 1], K∗ , E[i]) ≥ ⋯ ≥ (1 − ∣ λ

r
∣

p
)

n−i
q

Wi(K p
λ ; E)

+ ∣λ∣
n−i−1
∑
k=0

(1 − ∣ λ
r
∣

p
)

k
q

∣ λ
r
∣

p−1
V(K p

λ [k], K[n − i − k − 1], K∗ , E[i]).

(3.4)

This gives inequality (1.4) when −r < λ ≤ 0.
(2) Now we deal with the equality case of (1.4). Again we assume that λ < 0,

otherwise the result is trivial. If K is homothetic to a tangential body of E, then [4,
Lemma 19] yields (1 − ∣ λ

r ∣
p)

1
p K = K p

λ for all −r < λ < 0 and hence U0(K) = U0(K p
λ).

It is known that h(K p
λ , u)p = h(K , u)p − ∣λ∣p h(E , u)p for any u ∈ U0(K) = U0(K p

λ).
That is h(K p

λ +p ∣λ∣E , u) = h(K , u) for any u ∈ U0(K), which means that K is a
tangential body of K p

λ +p ∣λ∣E for all −r < λ < 0. Remark 3.7 ensures that K is a
tangential body of K p

−r +p rE. Moreover, since K satisfies (1.3) for all −r < λ < 0, by
Theorem 1.1, we obtain K = K p

λ +p ∣λ∣K∗ for all −r < λ < 0. Therefore, we have equality
in the first inequality of (3.4).

On the other hand, since (1 − ∣ λ
r ∣

p)
1
p K = K p

λ for all −r < λ < 0, then 1 − ∣ λ
r ∣

p =
h(K p

λ ,u)p

h(K ,u)p = h(K p
λ ,u)p

h(K p
λ ,u)p+∣λ∣p h(K∗ ,u)p for every u ∈ Sn−1. That is

1−∣ λ
r ∣

p

∣ λ
r ∣

p = h(K p
λ ,u)p

∣λ∣p h(K∗ ,u)p for all

−r < λ < 0. Therefore, by the equality conditions of Hölder’s inequality, equality holds
in the second inequality of (3.4). In conclusion, equality holds in all the inequalities
of (3.4) for all −r < λ < 0 and hence equality holds in (1.4) for all i = 0, . . . , n − 1.

Conversely, since (1.4) is established from (3.4), if equality holds in (1.4) for some
i ∈ {0, . . . , n − 1} and some −r < λ < 0, we must have, in particular

∫
Sn−1

h(K , u)dS(K[n − i − 1], E[i]; u)

= ∫
Sn−1

h(K p
λ +p ∣λ∣K∗ , u)dS(K[n − i − 1], E[i]; u),(3.5)

and

∫
Sn−1

[h(K p
λ , u)p + ∣λ∣p h(K∗ , u)p]

1
p dS(K[n − i − 1], E[i]; u)

= ∫
Sn−1

⎡⎢⎢⎢⎢⎣
(1 − ∣ λ

r
∣

p
)

1
q

h(K p
λ , u) + ∣ λ

r
∣

p
q

∣λ∣h(K∗ , u)
⎤⎥⎥⎥⎥⎦

dS(K[n − i − 1], E[i]; u).

Firstly, by (3.5) and (3.2), we deduce h(K , u) = h(K p
λ +p ∣λ∣K∗ , u) for all u ∈

suppS(K[n − i − 1], E[i]; u). Since E ∈Kn
0 is regular and strictly convex, then
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suppS(K[n − i − 1], E[i]; ⋅) = clUi(K) ⊇ clU0(K). Hence, for all u ∈ U0(K), we have
h(K , u) = h(K p

λ +p ∣λ∣K∗ , u).
Secondly, from Hölder’s inequality, we get

[h(K p
λ , u)p + ∣λ∣p h(K∗ , u)p]

1
p ≥ (1 − ∣ λ

r
∣

p
)

1
q

h(K p
λ , u) + ∣ λ

r
∣

p
q

∣λ∣h(K∗ , u).

This together with (3.6) implies [h(K p
λ , u)p + ∣λ∣p h(K∗ , u)p]

1
p = (1 − ∣ λ

r ∣
p)

1
q

h(K p
λ , u) + ∣ λ

r ∣
p
q ∣λ∣h(K∗ , u) for all u ∈ suppS(K[n − i − 1], E[i]; u). According

to the equality conditions of Hölder’s inequality, then
1−∣ λ

r ∣
p

∣ λ
r ∣

p = h(K p
λ ,u)p

∣λ∣p h(K∗ ,u)p

for all u ∈ suppS(K[n − i − 1], E[i]; ⋅) = clUi(K) ⊇ clU0(K) and hence
1 − ∣ λ

r ∣
p = h(K p

λ ,u)p

h(K p
λ ,u)p+∣λ∣p h(K∗ ,u)p =

h(K p
λ ,u)p

h(K ,u)p for all u ∈ U0(K). Thus,

K p
λ = ⋂

u∈Sn−1
{x ⋅ u ≤ h(K p

λ , u)}

⊆ ⋂
u∈U0(K)

{x ⋅ u ≤ (1 − ∣ λ
r
∣p)

1
p h(K , u)}

= (1 − ∣ λ
r
∣p)

1
p K .

Since [4, Lemma 19] shows that (1 − ∣ λ
r ∣

p)
1
p K ⊆ K p

λ , we have (1 − ∣ λ
r ∣

p)
1
p K = K p

λ . By the
equality conditions of [4, Lemma 19], we obtain that K is homothetic to a tangential
body of E.

(3) We finally prove (1.5). Let clU0(K p
λ) = U0(K p

λ +p (K p
λ)∗) for all −r < λ ≤ 0.

Using (2.3), (2.1), (2.2) and Lemma 3.9, we get

Wi(K; E) = V(K[n − i], E[i]) = 1
n ∫

Sn−1
h(K , u)dS(K[n − i − 1], E[i]; u)

≤ 1
n ∫

Sn−1
h(K p

λ +p ∣λ∣(K p
λ)
∗ , u)dS(K[n − i − 1], E[i]; u)

≤ 1
n ∫

Sn−1
[h(K p

λ , u) + ∣λ∣h((K p
λ)
∗, u)]dS(K[n − i − 1], E[i]; u)

= V(K p
λ , K[n − i − 1], E[i]) + ∣λ∣V(K[n − i − 1], (K p

λ)
∗ , E[i])

≤ V(K p
λ [2], K[n − i − 2], E[i]) + ∣λ∣V(K p

λ , K[n − i − 2], (K p
λ)
∗ , E[i])

+ ∣λ∣V(K[n − i − 1], (K p
λ)
∗ , E[i]) ≤ ⋯

≤ Wi(K p
λ ; E) + ∣λ∣

n−i−1
∑
k=0

V(K p
λ [k], K[n − i − k − 1], (K p

λ)
∗ , E[i]),

which implies

Wi(K; E) − ∣λ∣
n−i−1
∑
k=0

V(K p
λ [k], K[n − i − k − 1], (K p

λ)
∗ , E[i]) ≤ Wi(K p

λ ; E).
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