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Abstract We consider a family of nonlinear rational recurrences of odd order which was introduced
by Heideman and Hogan, and recently rediscovered in the theory of Laurent phenomenon algebras (a
generalization of cluster algebras). All of these recurrences have the Laurent property, implying that for
a particular choice of initial data (all initial values set to 1) they generate an integer sequence. For these
particular sequences, Heideman and Hogan gave a direct proof of integrality by showing that the terms
of the sequence also satisfy a linear recurrence relation with constant coefficients. Here we present an
analogous result for the general solution of each of these recurrences.
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1. Introduction

The theory of integer sequences generated by linear recurrences has a long history in
number theory, and finds many applications in areas such as coding and cryptography
[6], but the case of nonlinear recurrences is much less well studied. For some time there
has been considerable interest in rational recurrence relations of the form

xn+N xn = F (xn+1, . . . , xn+N−1), (1.1)

where F is a polynomial inN − 1 variables, which surprisingly generate integer sequences.
Several quadratic recurrences of this kind were found by Somos, and this inspired others
to find new examples, as described in the articles by Gale [11]. An important early
observation was that if (1.1) has the Laurent property, meaning that it generates Laurent
polynomials in the initial values with integer coefficients, i.e.

xn ∈ Z[x±1
0 , x±1

1 , . . . , x±1
N−1], ∀n ∈ Z,

then an integer sequence is generated automatically by choosing the initial values to be
x0 = x1 = · · · = xN−1 = 1. Subsequently, as an offshoot of their development of cluster
algebras, Fomin and Zelevinsky introduced the Caterpillar lemma [7], which is a useful
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tool for proving the Laurent property for many recurrences of the form (1.1). In the
special case where F is a sum of two monomials, Fordy and Marsh explained how such
recurrences arise from cluster algebras associated with quivers that are periodic under
cluster mutations [9], while for more general F a range of examples were found recently by
Alman et al. [1], who considered mutation periodicity in the broader context of Laurent
phenomenon (LP) algebras [17].

In this paper we are concerned with a particular family of nonlinear recurrences of odd
order N = 2k + 1, given by

xn+2k+1xn = xn+2kxn+1 + a(xn+k + xn+k+1), (1.2)

where a is a non-zero parameter. This family was introduced in the case a = 1 by Heide-
man and Hogan [12], who proved that the sequence generated by (1.2) with the initial
values x0 = x1 = · · · = x2k = 1 consists entirely of integers. (By rescaling xn → axn, the
parameter a can always be removed, but it will be useful to retain it here for bookkeeping
purposes.) One way to see the integrality of this particular sequence is to show that (1.2)
has the Laurent property, which was noted in [12] and proved in [13]. More recently,
the family (1.2) was rediscovered in a search for period 1 seeds in LP algebras: it is a
particular case of the Little Pi polynomial, part 13 of Theorem 3.10 in [1], which provides
an alternative proof of the Laurent property. However, Heideman and Hogan’s original
proof of integrality was based on the following result.

Theorem 1.1. The terms of the sequence generated by the recurrence (1.2) with initial
values xj = 1 for j = 0, 1, . . . , 2k and a = 1 satisfy the linear relation

xn+6k − (2k2 + 8k + 4)(xn+4k − xn+2k) − xn = 0 (1.3)

for all n ∈ Z.

The integrality result in [12] is proved by starting from xj = 1, 0 ≤ j ≤ 2k, then deter-
mining the explicit form of the next 4k values xj , 2k + 1 ≤ j ≤ 6k obtained by iterating
(1.2) for 0 ≤ n ≤ 4k − 1, where the value of x6k is used to verify that (1.3) holds for
n = 0, and finally showing by induction that if (1.3) is assumed to hold for all n ≥ 0 then
(1.2) also holds for all n ≥ 4k. This particular sequence is also symmetric under reversal,
in the sense that

x−n = xn+2k, ∀n ∈ Z. (1.4)

In that case, the efficacy of this inductive approach can be seen directly from an operator
identity (Lemma 1.3 below) connecting the linear operator in (1.3) with the nonlinear
equation (1.2), which can be rewritten in the form ξn = 0, where

ξn :=
∣∣∣∣ xn xn+2k

xn+1 xn+2k+1

∣∣∣∣− a(xn+k + xn+k+1). (1.5)

The main result of this paper is the analogue of Theorem 1.1 for the case of arbitrary
initial data.
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Theorem 1.2. The iterates of the recurrence (1.2) satisfy the linear relation

xn+6k −K(xn+4k − xn+2k) − xn = 0 (1.6)

for all n ∈ Z, where

K = P (0) + aP (1) + a2P (2), (1.7)

with

P (0) = 1 +
x0

x2k
+
x2k

x0
,

P (1) =
(

1 +
x2k

x0

) k∑
j=1

xj−1 + xj

xj+k−1xj+k
+
(

1 +
x0

x2k

) k∑
j=1

xj+k−1 + xj+k

xj−1xj
,

P (2) =
1

xkx2k
+

k−1∑
j=0

1
xj

(
1

xj+k
+

1
xj+k+1

)
+

k−1∑
�=1

�∑
m=1

(x� + x�+1)(xk+m−1 + xk+m)
xk+�xk+�+1xm−1xm

.

In principle, it is possible to prove the above result directly by adapting the argument
from [12] and using the following identity.

Lemma 1.3. Let S denote the shift operator, such that Sxn = xn+1 for all n, and let

L = S6k −K(S4k − S2k) − 1,

where K is some fixed constant. Then

Lξn = Mn · Lxn, (1.8)

where Mn is the linear operator

Mn = xn+6kS2k+1 − xn+6k+1S2k − xn+2kS + xn+2k+1 − a(Sk+1 + Sk).

To apply the operator identity (1.8) one should take 2k + 1 initial values x0, . . . , x2k for
the nonlinear recurrence (1.2), which requires the 4k vanishing conditions ξ0 = ξ1 = · · · =
ξ4k−1 = 0 which fix 6k initial values x0, x1, . . . , x6k−1 for the linear equation Lxn = 0
together with the value of K, determined as

K =
x6k − x0

x4k − x2k
, (1.9)

and then further verify that ξj = 0 for a total of 6k adjacent values of j (including the
range 0 ≤ j ≤ 4k − 1 already assumed); this implies that the corresponding solution of the
initial value problem for Lξn = 0 is the zero solution ξn = 0 for all n. Heideman and Hogan
made this argument effective with the use of computer algebra, which they used (for
arbitrary k) to calculate explicit expressions for the values of x2k+1, . . . , x6k corresponding
to x0 = x1 = · · · = x2k = 1, and hence to verify the value K = 2k2 + 8k + 4 in (1.3) and
other necessary identities; they also implicitly used the fact that this special sequence
has the reversal symmetry (1.4) (although this fact was not stated in [12]), which means
that once ξj = 0 holds for 0 ≤ j ≤ 4k − 1 it automatically holds for −2k + 1 ≤ j ≤ −1 as
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well, so it is enough to verify in addition that ξ4k = 0 in order to show that ξn = 0 for all
n by induction. However, this argument is much harder to apply to the case of generic
initial data, because the corresponding sequence need not have the symmetry (1.4), so
here we prefer to adopt a different approach. Nevertheless, we are able to exploit the fact
that the recurrence (1.2) is itself reversible in the sense of [18], making the proof below
much simpler than it might be otherwise.

The result (1.2) can be restated as saying that the recurrence (1.2) is linearizable,
with the coefficient K appearing in the linear relation (1.6) being a conserved quantity
(this terminology is explained in more detail in the next section); the general solution for
the case k = 1 was already covered in [14]. There are many other examples of nonlinear
recurrences that are linearizable, which arise in diverse contexts ranging from cluster
algebras associated with affine A-type Dynkin diagrams [8–10,16], to frieze relations [2],
Q-systems for characters in representation theory [4], and period 1 seeds in LP algebras
[1,15]. In all these examples, the key to obtaining the linear recurrences is provided
by certain determinantal identities for discrete Wronskians. The fact that (1.2) can be
rewritten as the vanishing of the expression (1.5) involving a 2 × 2 determinant permits
a linear relation to be derived in a straightforward way, although it turns out that this
approach is insufficient to obtain the precise form of (1.6).

In the next section we provide the proof of Theorem 1.2, and in § 3 we present various
corollaries, including some inhomogeneous linear relations (Corollary 3.2), and an expres-
sion for the solution in terms of Chebyshev polynomials (Corollary 3.3), before making
some conclusions.

2. Proof of the main theorem

Before proceeding with the proof, we give some discussion of terminology, and describe
properties of (1.2) that will be useful later on. First of all, note that iterating the nonlinear
recurrence is equivalent to iterating a birational map in dimension 2k + 1, namely

ϕ : (x0, x1, . . . , x2k) �→
(
x1, x2, . . . ,

x1x2k + a(xk+1 + xk)
x0

)
. (2.1)

If we always use this map to iterate then it is useful to regard the terms in the sequence
(xn)n∈Z as rational functions (in fact, Laurent polynomials, but we will not need this) in
the initial coordinates x0, x1, . . . , x2k and a, obtained by the pullback of ϕ (or its inverse)
applied to these variables, so that

(ϕ∗)nx0 = xn, ∀n ∈ Z,

with (ϕ−1)∗ = (ϕ∗)−1. We say that a non-constant function F (x0, x1, . . . , x2k) is a con-
served quantity, or first integral, for the map ϕ if it is invariant under pullback, i.e.
ϕ∗F = F · ϕ = F , and we say that it is a p-invariant if it is periodic with period p, i.e.
(ϕ∗)pF = F .

From Theorem 3.10 in [1], the map can be factored as ϕ = ρ · μ, where ρ is a cyclic
permutation of the coordinates and μ is a mutation in an LP algebra, but more interesting
for our purposes is the fact that it is a reversible map (it has the discrete analogue of
time-reversal symmetry [18]), meaning that it is conjugate to its own inverse.
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Lemma 2.1. The map ϕ satisfies

ϕ = σ · ϕ−1 · σ,
where the reversing symmetry σ is the involution

σ : (x0, x1, . . . , x2k) �→ (x2k, x2k−1, . . . , x0).

Reversibility means that the reversing symmetry σ can extended to the level of the whole
sequence (xn) by pullback, so that it acts according to

σ∗xn = x2k−n, ∀n ∈ Z. (2.2)

In order to obtain linear relations for the terms of the sequence, it will be convenient
to introduce the 3 × 3 discrete Wronskian matrix

Ψn :=

( xn xn+2k xn+4k

xn+1 xn+2k+1 xn+4k+1

xn+2 xn+2k+2 xn+4k+2

)
, (2.3)

which has 2 × 2 minors of the form appearing in (1.5).

Proposition 2.2. The determinant

δn := det Ψn

is a k-invariant for the map ϕ.

Proof. Using Dodgson condensation [5] (also known as the Desnanot–Jacobi identity)
to expand the 3 × 3 determinant in terms of its 2 × 2 connected minors yields

xn+2k+1δn =
∣∣∣∣ ξn + asn+k ξn+2k + asn+3k

ξn+1 + asn+k+1 ξn+2k+1 + asn+3k+1

∣∣∣∣
= Ln + a2

∣∣∣∣ sn+k sn+3k

sn+k+1 sn+3k+1

∣∣∣∣ ,
where sn = xn + xn+1, and the quantity Ln is a sum of homogeneous linear and quadratic
terms in ξj for certain j. A direct calculation then shows that

xn+2k+1xn+3k+1(δn+k − δn) = xn+2k+1Ln+k − xn+3k+1Ln + Δn,

where

Δn = a2(sn+2k+1ξn+2k + sn+2kξn+2k+1 − sn+3k+1ξn+k − sn+3kξn+k+1),

which clearly vanishes, along with Ln and Ln+k, if ξj = 0 for all j. Therefore δn+k =
(ϕ∗)kδn = δn for all n, as required. �

Remark 2.3. Working in the ambient field of rational functions, that is
C(x0, x1, . . . , x2k, a), and using explicit expressions for the first few iterates (see below)
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it can be verified directly that δ0 and all its shifts δ1, . . . , δk−1 are non-zero rational
functions (actually, Laurent polynomials), e.g.

δ0 = δ−2k =

∣∣∣∣∣∣
x−2k x0 x2k

x−2k+1 x1 x2k+1

x−2k+2 x2 x2k+2

∣∣∣∣∣∣
can be calculated from the formulae in Lemma 2.7, and by periodicity none of the shifts
(ϕ∗)nδ0 can be identically zero (as a rational function).

Corollary 2.4. The determinant of the 4 × 4 discrete Wronskian matrix

Ψ̂n :=

⎛
⎜⎜⎝

xn xn+2k xn+4k xn+6k

xn+1 xn+2k+1 xn+4k+1 xn+6k+1

xn+2 xn+2k+2 xn+4k+2 xn+6k+2

xn+3 xn+2k+3 xn+4k+3 xn+6k+3

⎞
⎟⎟⎠

is zero.

Proof of Corollary. Using Dodgson condensation once more to expand the 4 × 4
determinant in terms of its 3 × 3 connected minors, which are shifts of the determinant
of (2.3), gives

det ψ̂n

∣∣∣∣xn+2k+1 xn+4k+1

xn+2k+2 xn+4k+2

∣∣∣∣ =
∣∣∣∣ δn δn+2k

δn+1 δn+2k+1

∣∣∣∣ =
∣∣∣∣ δn δn
δn+1 δn+1

∣∣∣∣ = 0

by Proposition 2.2. �

The above results are almost, but not quite, sufficient to produce the linear relation in
Theorem 1.2.

Theorem 2.5. The iterates of the nonlinear recurrence (1.2) satisfy the linear
recurrence

xn+6k −K(1) xn+4k +K(2) xn+2k − xn = 0, (2.4)

where K(1),K(2) are conserved quantities with

K(2) = σ∗K(1), (2.5)

as well as the linear recurrence

xn+3 − γn xn+2 + βn xn+1 − αn xn = 0, (2.6)

where αn is a k-invariant and βn, γn are 2k-invariants.

Proof. An element of the kernel of Ψ̂n is given by a column vector vn =
(−K(3),K(2),−K(1), 1)T , where the last entry has been scaled to 1 (which is valid since
δn is non-vanishing by Remark 2.3), and a priori the other entries K(j) depend on n.
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The first three rows of the equation Ψ̂nvn = 0 give a linear system for the K(j), and by
Cramer’s rule the solution is

K(1) =
1
δn

∣∣∣∣∣∣
xn xn+2k xn+6k

xn+1 xn+2k+1 xn+6k+1

xn+2 xn+2k+2 xn+6k+2

∣∣∣∣∣∣ , K(2) =
1
δn

∣∣∣∣∣∣
xn xn+4k xn+6k

xn+1 xn+4k+1 xn+6k+1

xn+2 xn+4k+2 xn+6k+2

∣∣∣∣∣∣
and K(3) = δ−1

n δn+2k = 1. The last three rows of Ψ̂nvn = 0 give the same linear system
with all indices shifted by 1, implying that K(1) and K(2) are independent of n. Now
applying σ∗ to (2.4), replacing n→ −n− 4k and adding the result back to the original
relation produces

(σ∗K(2) −K(1))xn+4k + (K(2) − σ∗K(1))xn+2k = 0

for all n, hence (2.5) must hold. The same argument applied to the kernel of the transpose
matrix Ψ̂T

n yields the relation (2.6) where

βn =
1
δn

∣∣∣∣∣∣
xn xn+2 xn+3

xn+2k xn+2k+2 xn+2k+3

xn+4k xn+4k+2 xn+4k+3

∣∣∣∣∣∣ , γn =
1
δn

∣∣∣∣∣∣
xn xn+1 xn+3

xn+2k xn+2k+1 xn+2k+3

xn+4k xn+4k+1 xn+4k+3

∣∣∣∣∣∣
are 2k-invariants and αn = δ−1

n δn+1 is a k-invariant. �

By considering the monodromy of the linear equation (2.6) with periodic coefficients, the
coefficients in (2.4) for can be written in terms of αj , βj , γj .

Proposition 2.6. The conserved quantities K(1) and K(2) can be written as
polynomials in αj , βj , γj , given by

K(1) = trLn+2k−1Ln+2k−2 · · ·Ln, K(2) = trL−1
n L−1

n+1 · · ·L−1
n+2k−1.

Proof. In terms of the matrix Ψn, the system (2.6) implies that

Ψn+1 = LnΨn, Ln =

⎛
⎝ 0 1 0

0 0 1
αn −βn γn

⎞
⎠ , L−1

n =
1
αn

⎛
⎝βn −γn 1
αn 0 0
0 αn 0

⎞
⎠ ,

so that

Ψn+2k = MnΨn, Mn = Ln+2k−1Ln+2k−2 · · ·Ln,

while on the other hand

Ψn+2k = ΨnL̃, L̃ =

⎛
⎝0 0 1

1 0 −K(2)

0 1 K(1)

⎞
⎠ , L̃−1 =

⎛
⎝ K(2) 1 0
−K(1) 0 1

1 0 0

⎞
⎠ .

Then noting that tr L̃ = trMn and tr L̃−1 = trM−1
n , together with the observation that∏k

j=1 αj = 1, we have the required result. �
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According to the result we are aiming for, Theorem 1.2, we expect to findK(1) = K(2) =
K, a Laurent polynomial in x0, x1, . . . , x2k, which by (2.5) must be invariant under the
reversal symmetry. However, none of the formulae for K(1),K(2) obtained so far makes
this coincidence manifest, and none of them immediately yields a Laurent polynomial.
Indeed, the preceding result is somewhat mysterious, since direct calculations for small
values of k reveal that αj , βj , γj are not Laurent polynomials themselves. In order to
prove the main result, we calculate explicit formulae for 2k iterates on either side of the
initial data, which allows us to obtain K as a quadratic polynomial in a, by using (1.9)
with suitably shifted indices.

Lemma 2.7. The first 2k terms obtained by iterating (1.2) forwards from the initial
values x0, x1, . . . , x2k are given by

x2k+j = x−1
0 xjx2k + aF

(1)
2k+j ,

x3k+j = x−1
0 xk+jx2k + aF

(1)
3k+j + a2F

(2)
3k+j , 1 ≤ j ≤ k,

where the coefficients of the linear and quadratic terms in a are specified by

F
(1)
2k+j = xj

j∑
�=1

(x�−1x�)−1(xk+�−1 + xk+�),

F
(1)
3k+j = x−1

0 xk+jx2k

j∑
�=1

(xk+�−1xk+�)−1(x�−1 + x�) + x−1
k xk+jF

(1)
3k ,

F
(2)
3k+j = xk+j

j∑
�=1

(xk+�−1xk+�)−1(F (1)
2k+�−1 + F

(1)
2k+�),

for the same range of the index j, with F
(1)
2k = 0. The first 2k terms obtained by

iterating (1.2) backwards from the same initial values are

x−j = x−1
2k x2k−jx0 + aF

(1)
−j ,

x−k−j = x−1
2k xk−jx0 + aF

(1)
−k−j + a2F

(2)
−k−j , 1 ≤ j ≤ k,

where, for the same range of j values,

F
(1)
−j = σ∗F (1)

2k+j , F
(1)
−k−j = σ∗F (1)

3k+j , F
(2)
−k−j = σ∗F (2)

3k+j .

Proof. The first 2k + 1 iterations of (1.2), either forwards or backwards, only require
multiplication and addition of previous terms, as well as division by one of x0, x1, . . . , x2k,
so for the division there is no need to consider any cancellations between numerator
and denominator (which are required for the Laurent property to hold at subsequent
steps). The first k terms produced by iterating are linear in a, while the next k terms
are quadratic. By expanding x2k+j in a and substituting into (1.2) with n = j − 1, the
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leading order term is obtained recursively, while the coefficient of the linear term satisfies
the recursion

x−1
j F

(1)
2k+j − x−1

j−1F
(1)
2k+j−1 = (xj−1xj)−1(xk+j−1 + xk+j), 1 ≤ j ≤ k,

which can be summed telescopically (with F
(1)
2k = 0) to obtain the above formula for

F
(1)
2k+j . Similarly, expanding in a for the next k iterations, the leading order term is found

directly, while for the term linear in a the recursion is

x−1
k+jF

(1)
3k+j − x−1

k+j−1F
(1)
3k+j−1 = (xk+j−1xk+jx0)−1x2k(xj−1 + xj), 1 ≤ j ≤ k.

which immediately yields the above expression for F (1)
3k+j ; and for the quadratic term the

formula for the coefficient is found by solving the recursion

x−1
k+jF

(2)
3k+j − x−1

k+j−1F
(2)
3k+j−1 = (xk+j−1xk+j)−1

(
F

(1)
2k+j−1 + F

(1)
2k+j

)
, 1 ≤ j ≤ k.

Similarly, iterating 2k steps backwards produces the images of the forward iterates under
the action of the reversing map, so the formulae for x−j and x−k−j follow by direct
application of σ∗. �

Proposition 2.8. If K is defined by

K =
x4k − x−2k

x2k − x0
, (2.7)

where x4k and x−2k are given as Laurent polynomials in x0, x1, . . . , x2k and a according
to Lemma 2.7, then it is given explicitly by (1.7).

Proof. The formula (1.7) is readily checked at each order in a. At leading order this
is trivial, while at order a and a2 the identities

(x2k − x0)P (j) = F
(j)
4k − F

(j)
−2k

are seen to hold for j = 1, 2. �

Theorem 2.9. The quantity K in (1.7) is a first integral for the map ϕ.

Proof. To verify that K is a conserved quantity, observe that

ϕ∗K =
x4k+1 − x−2k+1

x2k+1 − x1

from (2.7), and this is equal to K if and only if Lx−2k+1 = 0, where L is the operator in
Lemma 1.3. Now Lx−2k vanishes by (2.7), so from the identity

x2kLx−2k+1 − x2k+1Lx−2k − ξ2k +Kξ0 = a(x3k + x3k+1)

−Ka(xk + xk+1) + x2k+1x−2k − x2kx−2k+1

we see that it is sufficient to check that the right-hand above is zero. Substitution of
the explicit expressions from Lemma 2.7 yields a cubic polynomial in a; the order zero
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term clearly vanishes, while at order one, two and three it is straightforward to verify
the identities

(xk + xk+1)(x−1
0 x2k − P (0)) + x−1

0 x1x2kF
(1)
−2k + x−1

2k x
2
0F

(1)
2k+1 − x2kF

(1)
−2k+1 = 0,

F
(1)
3k + F

(1)
3k+1 + x−1

0 x1x2kF
(2)
−2k + F

(1)
2k+1F

(1)
−2k − x2kF

(2)
−2k+1 − (xk + xk+1)P (1) = 0,

F
(2)
3k+1 + (xk + xk+1)(x−1

0 F
(2)
−2k − P (2)) = 0.

This shows that ϕ∗K = K, and completes the proof of Theorem 1.2. �

3. General solution and other corollaries

The result of Theorem 1.2 has many implications for the recurrence (1.2). Theorem 1.1 is
just a special case: one finds the value K = 2k2 + 8k + 4 by substituting a = x0 = x1 =
· · · = x2k = 1 into (1.7). Also, note that we have not made use of the Laurent property
in the proof, yet by the formulae in Lemma 2.7 we see that x−2k, x−2k+1, . . . , x4k provide
6k initial data for the linear recurrence Lxn = 0, and these are all Laurent polynomials
in x0, x1, . . . , x2k with coefficients in Z[a], as is K given by (1.7), so we arrive at the
following.

Corollary 3.1. The nonlinear recurrence (1.2) has the Laurent property, i.e. xn ∈
Z
[
x±1

0 , x±1
1 , . . . , x±1

2k , a
] ∀n ∈ Z.

In addition to the homogeneous linear recurrences in Theorem 2.5, various inhomoge-
neous linear recurrences now follow.

Corollary 3.2. The iterates of (1.2) satisfy the linear recurrences

xn+4k − (K − 1)xn+2k + xn = νn, (3.1)

where νn is a 2k-invariant,

2k−1∑
j=0

xn+4k+j − (K − 1)xn+2k+j + xn+j = K ′, (3.2)

where

K ′ = ν0 + ν1 + · · · + ν2k−1 (3.3)

is a conserved quantity, and

xn+2 + ηn xn+1 + ζn xn = εn, (3.4)

where εn, ζn and ηn are all 2k-invariants.
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Proof of Corollary. The operator L can be factorized as

L = (S2k − 1)(S4k − (K − 1)S2k + 1) = (S − 1)
( 2k−1∑

j=0

Sj

)
(S4k − (K − 1)S2k + 1),

which means that (1.6) can be ‘integrated’ in two different ways to yield (3.1) and (3.2).
By shifting and summing 2k copies of (3.1), the conserved quantity K ′ is given as a
symmetric function of the 2k independent shifts of νn according to (3.3).

The equation (1.6) also implies that, for all n, the vector (1,−K,K,−1)T belongs to
the kernel of the matrix⎛

⎜⎜⎝
1 1 1 1
xn xn+2k xn+4k xn+6k

xn+1 xn+2k+1 xn+4k+1 xn+6k+1

xn+2 xn+2k+2 xn+4k+2 xn+6k+2

⎞
⎟⎟⎠

so by writing a vector in the kernel of its transpose as the row vector (εn,−ζn, ηn,−1),
the relation (3.4) follows, and the same argument as in the proof of Theorem 2.5 shows
that εn, ζn, ηn are invariant under shifting n→ n+ 2k. �

The fact that the iterates of (1.2) satisfy a linear relation with constant coefficients
means that they can be written explicitly in terms of the roots of the associated charac-
teristic polynomial. Due to the particular form of (1.6), the general solution can also be
written using either trigonometric functions or Chebyshev polynomials (with the latter
form of the solution for k = 1 being included in the results of [14]). In order to do this,
we introduce quantities θ and t such that

t =
K − 1

2
= cos Θ, Θ = 2kθ,

and recall that the Chebyshev polynomials of the first and second kinds are defined by

Tn(t) = cos(nΘ), Un−1(t) =
sin(nΘ)
sin Θ

respectively, so that T0 = U0 = 1, T1 = T−1 = t, U1 = 2t, U−1 = 0.

Corollary 3.3. The general solution of (1.2) can be written in the form

xn = an + bn cos(nθ + φn),

where an, bn, φn are all periodic in n with periodic 2k, or as

xn = qj + rjTm(t) + sjUm(t), m =
⌊ n
2k

⌋
,

where j = n mod 2k and for j = 0, 1, . . . , 2k − 1 the coefficients are⎛
⎝qjrj
sj

⎞
⎠ =

1
2t(1 − t)

⎛
⎝ t −2t2 t

−1 2t 1 − 2t
1 − t 0 t− 1

⎞
⎠
⎛
⎝ x2k+j

xj

x−2k+j

⎞
⎠ .
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4. Conclusions

We have proved that all sequences generated by the nonlinear recurrence (1.2) satisfy a
linear relation, which was left as an open problem in [12]. A key feature in the proof was
to use the reversibility property in Lemma 2.1. In fact, all the cluster maps obtained from
period 1 quivers in [9], and many of the recurrences considered in [1], are also reversible
with the same sort of reversing symmetry, which means that the above approach can be
applied in those cases too, and may prove useful for finding explicit formulae for conserved
quantities (when they exist).

One question that remains open is whether there is any natural Poisson structure which
is preserved by the map (2.1), since Poisson structures (or presymplectic structures) arise
naturally in the context of cluster algebras, but whether there is something similar for LP
algebras in general is an open question. In fact we expect that there is a Poisson bracket
(albeit a rather degenerate one, of rank two) for a combination of two reasons: first, the
map should have many conserved quantities in addition to K and K ′ given by (3.3), since
any symmetric function of the shifts of a 2k-invariant is conserved; and second, ϕ has the
logarithmic volume form

ω =
1

x0x1 · · ·x2k
dx0 ∧ dx1 ∧ · · · ∧ dx2k

which is anti-invariant, in the sense that ϕ∗ω = −ω; so if there are at least 2k − 2 inde-
pendent conserved quantities, then the corresponding co-volume can be contracted with
their differentials to construct a Poisson bracket, by one of the results in [3].
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