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The present article investigates the effects of a BZT (Bethe–Zel’dovich–Thompson)
dense gas (FC-70) on the development of turbulent compressible mixing layers at three
different convective Mach numbers Mc = 0.1, 1.1 and 2.2. This study extends a previous
analysis conducted at Mc = 1.1 (Vadrot et al., J. Fluid Mech., vol. 893, 2020) Several
three-dimensional direct numerical simulations (DNS) of compressible mixing layers
are performed with FC-70 using the fifth-order Martin–Hou thermodynamic equation of
state (EoS) and air using the perfect gas EoS. After having carefully defined self-similar
periods using the temporal evolution of the integrated streamwise production term, the
evolutions of the mixing layer growth rate as a function of the convective Mach number
are compared between perfect gas and dense gas flows. Results show major differences for
the momentum thickness growth rate at Mc = 2.2. The well-known compressibility-related
decrease of the momentum thickness growth rate is reduced in the dense gas. Fluctuating
thermodynamics quantities are strongly modified. In particular, temperature variations
are suppressed, leading to an almost isothermal evolution. The small scales dynamics
is also influenced by dense gas effects, which calls for a specific sub-grid-scale model
when computing dense gas flows using large eddy simulation. Additional dense gas DNS
are performed at three other initial thermodynamic operating points. DNS performed
outside and inside the BZT inversion region do not show major differences. BZT effects
themselves therefore only have a small impact on the mixing layer growth.
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1. Introduction

Dense gases (DGs) are single-phase vapours characterised by long chains of atoms and by
medium to large molecular weights. They have been widely used in the organic Rankine
cycles (ORCs) industry over the past 40 years. Their large heat capacity and their low
boiling point temperature make them suitable working fluids for low-temperature heat
sources (solar, geothermal, biomass, heat recovery). The coupling with a turbine enables
power generation. Recently, because of issues caused by carbon-based fossil fuels, there
has been a strong research effort in developing this technology by improving ORC turbine
efficiency.

Rotating elements are a main source of losses for turbines. Their use in transonic and
supersonic regimes are associated with shocks which generate entropy. However, for DGs,
entropy jumps through shocks are significantly reduced in specific thermodynamic regions
(Cinnella & Congedo 2007). This feature could enable to increase ORC turbines efficiency,
but the lack of knowledge about DGs in these particular thermodynamic regions close
to the vicinity of the critical point restrains ORC designers. This study seeks to widen
knowledge about turbulence characteristics of these gases by comparing their behaviour
with perfect gases on a classical configuration: the mixing layer.

A specific type of DG is used in these simulations: the Bethe–Zel’dovich–Thompson
(BZT) gases, whose name was given at first by Cramer (1991) to acknowledge the
pioneering works of Bethe (1942), Zel’dovich (1946) and Thompson (1971). Unlike other
DGs, they comprise an inversion thermodynamic region where the fundamental derivative
of gas dynamics Γ becomes negative, as shown in figure 1. Thompson (1971) defines Γ

as

Γ = v3

2c2
∂2p
∂v2

∣∣∣∣
s
= c4

2v3
∂2v

∂p2

∣∣∣∣
s
= 1 + ρ

c
∂c
∂ρ

∣∣∣∣
s
, (1.1)

where v is the specific volume, ρ the density, c = √
∂p/∂ρ|s the speed of sound, p the

pressure and s the entropy. For thermally and calorically perfect gases, the fundamental
derivative is equal to (γ + 1)/2, with γ the heat capacity ratio. In this case, its value
is always greater than one, unlike DG flows, where Γ can become lower than one and
even be negative for BZT DGs. In that case, rarefaction shock waves can occur, which is
forbidden by the second law of thermodynamics in usual gases, where only compression
shock waves are allowed.

Bethe (1942) expressed the entropy jump expression across shock waves as a function
of the fundamental derivative

�s = s2 − s1 = −
(

∂2p
∂v2

)
s

�v3

12T
+ O(�v4) = −c2Γ

v3
�v3

6T
+ O(�v4), (1.2)

with T the temperature. In the case of compression shock waves, the specific volume
variation is negative (�v < 0), so that the fundamental derivative must be positive
(Γ > 0) to ensure that the entropy jump remains positive (�s > 0), thus satisfying the
second law of thermodynamics. Only compression shock waves are physically admissible
for classical ideal gases since Γ > 1. For BZT gases, the fundamental derivative being
negative (Γ < 0), physically admissible shock waves in the inversion region are expansion
shock waves such that the specific volume variation is positive (�v > 0) to ensure the
entropy jump remains positive. Moreover, since entropy jumps are proportional to the
fundamental derivative Γ , which is of small amplitude in DG flows, the intensity of
shocks is significantly reduced (Cramer & Kluwick 1984). In addition to a peculiar
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Figure 1. The initial thermodynamic state is represented in the non-dimensional p–v diagram for BZT DG
FC-70 at Mc = 2.2. The DG zone (Γ < 1) and the inversion zone (Γ < 0) are plotted for the Martin–Hou
equation of state. Here, pc and vc are respectively the critical pressure and the critical specific volume. The
initial value of the fundamental derivative of gas dynamics is equal to Γinitial = −0.284. The normalised
distribution of the thermodynamic states is plotted at the beginning of the self-similar period (τ = 4000) along
the curve where the distribution of thermodynamic states is the largest.

thermodynamic behaviour, the sound speed is much lower in DGs when compared with
perfect gases, which makes compressibility regimes much more easily accessible.

Up to now, although thermodynamic features of DGs are very different from ones of
perfect gases, in the absence of a better option, perfect gas turbulence closure models
coupled with real-gas thermal and calorific equation of state (EoS) have been used for
Reynolds-averaged Navier–Stokes and large eddy simulation (LES) to simulate DG flows
(Cinnella & Congedo 2005; Wheeler & Ong 2014; Durá Galiana, Wheeler & Ong 2016).
This choice implicitly assumes that turbulent structures are not affected by DG effects.
This hypothesis is not yet verified and constitutes an open research field. There are
currently no experimental data to verify this hypothesis because maintaining the flow in the
vicinity of the critical point where physical quantities are experiencing strong variations is
a very complex task.

Direct numerical simulation (DNS) is the tool of choice used in this study to assess
this hypothesis. DNS enables to solve every turbulent scale down to the smallest one
corresponding to the Kolmogorov length scale without resorting to any turbulence closure
model. So far, few DNS of DG flows have been achieved. DNS of decaying homogeneous
isotropic turbulence (HIT) performed by Giauque, Corre & Menghetti (2017) shows
that the dynamic Smagorinsky sub-grid-scale model is not able to correctly capture the
temporal decay of the turbulent kinetic energy. They extended their analysis by performing
a forced HIT highlighting significant differences in the sub-grid scale baropycnal work and
the resolved pressure dilatation, which is reduced by a factor of 2 in a DG when compared
with a perfect gas (PG) (Giauque, Corre & Vadrot 2020).

Sciacovelli, Cinnella & Grasso (2017b) performed DNS of decaying HIT and notice
reduced levels of thermodynamic fluctuations in DG flows due to the decoupling of
thermal and dynamic phenomena caused by the large heat capacity. The Eckert number,
which quantifies the ratio between the kinetic energy and the internal energy, is indeed
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much smaller in DG flows. They also display a more symmetric probability density
function of the velocity divergence in BZT DG flows, explained by the presence of
expansion shocklets and by the attenuation of compression shocklets. They show that
turbulence structures are modified by expansion regions: the occurrence of non-focal
convergent structures in DG flows diminishes the vorticity and counterbalances enstrophy
destruction. Sciacovelli, Cinnella & Gloerfelt (2017a) analyse DG flow behaviour in
a turbulent channel flow. The initial thermodynamic state was this time chosen in a
non-BZT DG region. They observe significant differences with respect to PG flows in
thermodynamic variables. Temperature variations are small in DGs, which leads to an
almost isothermal evolution. The viscosity decreases from the wall towards the centreline
unlike in PG flows. They also notice significant differences in the shape and rates of
the fluctuating density and temperature distributions. It is also found that the structure
of turbulence is not deeply affected in DG flows. An extension of this study to the BZT
DG region and to a larger Mach number would help to conclude on BZT DG effect on
turbulence development. Gloerfelt et al. (2020) performed the DNS of a DG compressible
boundary layer at Mach numbers ranging from 0.5 to 6. They especially confirm the
decoupling between dynamical and thermal effects, which leads to a suppression of
friction heating. The most remarkable consequence is that the boundary layer thickness
remains equal to its value in the incompressible regime as the Mach number increases.

Recently, Vadrot, Aurélien & Alexis (2020) performed DNS of temporal compressible
mixing layers for BZT DG flow and PG flow at a convective Mach number Mc = 1.1,
which is defined as

Mc = (u1 − u2)/(c1 + c2), (1.3)

where ui and ci denote the flow speed and the sound speed of stream i (upper or lower) of
the mixing layer.

They show that the mixing layer is significantly affected by DG effects during the initial
unstable growth phase, revealing a much faster unstable growth in the DG flow. However,
only slight differences are observed during the self-similar period, which is the regime
of interest when studying mixing layers. Self-similarity is thoroughly described in § 3.1.
Results from this initial study at Mc = 1.1 also show that the turbulent Mach number (1.4)
is in the low limit to get shocklets

Mt =
√

u′
iu

′
i

c
. (1.4)

The authors expect that shocklets, which exhibit very different properties in DG flows
when compared with PG flows, would have an impact on the mixing layer growth. In order
to account for these additional effects, an extent of the study to larger convective Mach
numbers is hereby considered.

Since it is known that there are major differences between BZT DG flow and PG flow
in shocklet generation, a study in a higher compressible regime would help to answer the
following question: Is the mixing layer growth rate modified in BZT DG flows?

Over the past 30 years, many DNS of mixing layers have been achieved. The first
ones were performed by Sandham & Reynolds (1990), Luo & Sandham (1994) and
Vreman, Sandham & Luo (1996). These DNS use the PG hypothesis. A common feature
of compressible mixing layers, shown by experiments at first and DNS afterwards, is the
reduction of the mixing layer growth rate with the increase of the convective Mach number.
However, detailed mechanisms responsible for this trend are still under investigations.
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At first, additional terms in the turbulent kinetic energy equation due to compressibility
effects: compressible dissipation εd and pressure dilatation Πii were suspected to be
responsible for the growth rate reduction. Zeman (1990) and Sarkar et al. (1991) especially
proposed models for the dilatation dissipation. However, it was shown by Sarkar (1995)
that the growth rate diminution is primarily due to the reduction of turbulent production
and not to dilatation terms. Vreman et al. (1996) confirmed that dilatation terms play
a minor role in mixing layer growth and extended a previous analysis, showing that
pressure-strain term Πij diminution is responsible for the turbulent production decrease.
They also noticed, thanks to DNS that this diminution is mainly due to the decrease of
pressure fluctuations normalised by the dynamic pressure (prms/(

1
2ρ0(�u)2)). Pantano

& Sarkar (2002) later demonstrated analytically the aforementioned observation. Hamba
(1999) performed the DNS of a homogeneous shear flow varying Mt from 0.1 to 0.3. The
author identifies a dissipative term, responsible for the normalised pressure fluctuations
diminution, in the transport equation for p′2 called pressure-variance dissipation and which
depends on the thermal conductivity. Several turbulence models were next proposed, based
on the normalised pressure fluctuations reduction (Fujiwara, Matsuo & Arakawa 2000;
Park & Park 2005; Huang & Fu 2008).

However, few experiments and DNS have been achieved at high Mc. Rossmann, Mungal
& Hanson (2001) have experimentally studied higher compressibility regimes up to Mc =
2.25 and Matsuno & Lele (2020) recently performed DNS of temporal mixing layers up
to Mc = 2.0, but none of them is performed for real gas, let alone for DG flows.

In the present article, several three-dimensional DNS of compressible DG mixing layers
are performed for the first time at Mc = 2.2. A comparison is made between PG and DG
flows. Evolution of the mixing layer growth rate as a function of the convective Mach
number is compared between PG and DG flows. This study extends previous analysis
conducted at Mc = 1.1 (Vadrot, Aurélien & Alexis 2020).

An unusual behaviour is noticed, as the decrease of the mixing layer growth rate with the
convective Mach number does not follow the same evolution between DG and PG flows.
The discrepancy is not significant at lower Mach number Mc = 1.1 (Vadrot, Aurélien &
Alexis 2020) but when the convective Mach number increases, DG mixing layer growth
is influenced by modified thermodynamic behaviour. Differences are first analysed in the
context of the peculiar shocklets properties in BZT DG flows. Finally, thermodynamic
behaviour of DG flows is also investigated.

The first section is devoted to the problem description exposing the main physical and
numerical parameters. Results are validated for the PG flow in the second section with a
comparison to available results in the literature. Comparison is made between DG and PG
in § 4. Finally, a physical analysis of discrepancies between DG and PG flows is conducted
thanks to additional DNS performed at different thermodynamic operating points (§ 5).
The aim of this analysis is to highlight and explain differences between BZT DG and PG
flows at large convective Mach number.

2. Problem formulation

2.1. Initialisation
The problem consists in extending the analysis conducted at Mc = 1.1 in Vadrot, Aurélien
& Alexis (2020) by performing a DNS of a three-dimensional mixing layer at a
convective Mach number Mc = 2.2 for air considered as a PG and for a BZT DG: the
perfluorotripentylamine (FC-70, C15F33N). Physical parameters associated with FC-70
and used in these DNS are given in table 1.
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Tc (K) pc (atm) Zc Tb (K) m (= cv(Tc)/R) n

FC-70 608.2 10.2 0.270 488.2 118.7 0.493

Table 1. Physical parameters of FC-70 (Cramer 1989). The critical pressure pc, the critical temperature Tc, the
boiling temperature Tb and the compressibility factor Zc = pcvc/(RTc) are the input data for the Martin–Hou
equation. The critical specific volume vc is deduced from the aforementioned parameters. The exponent n and
the cv(Tc)/R ratio are used to compute the heat capacity cv(T) (R = R/M being the specific gas constant
computed from the universal gas constant R and M, the gas molar mass).

The initial thermodynamic state is chosen inside the inversion region in order to favour
the occurrence of expansion shocklets, physically allowed in BZT DGs. Figure 1 shows the
initial state in the p–v diagram and its distribution during the beginning of the self-similar
regime at τ = 4000 for DG flow. The initial value of the fundamental derivative is
Γinitial = −0.284 which makes possible the appearance of expansion shocklets. The
distribution spreads inside and slightly outside the inversion region. One can also note
that the distribution does not perfectly follow the initial adiabatic curve. Mechanical
dissipation and shocklets entropy losses are responsible for this discrepancy because their
effect cannot be neglected at Mc = 2.2.

For air, the same values of reduced specific volume and reduced pressure are selected
for the initial thermodynamic state. Critical values used for air are the critical pressure
pc = 3.7663 × 106 Pa and the specific volume vc = 3.13 × 10−3 m3 kg−1 (Stephan &
Laesecke 1985).

Key non-dimensional parameters are the convective Mach number (1.3) and the
Reynolds number based on the initial momentum thickness δθ,0

Reδθ,0 = �uδθ,0/ν, (2.1)

where ν denotes the kinematic viscosity and the momentum thickness at time t is defined
as

δθ (t) = 1
ρ0(�u)2

∫ +∞

−∞
ρ̄

(
(�u)2

4
− ũ2

x

)
dy, (2.2)

with ρ0 = (ρ1 + ρ2)/2 the averaged density and ũx the Favre-averaged streamwise
velocity defined in (2.9).

The initial momentum thickness Reynolds number is set equal to 160 for all the DNS
following Pantano & Sarkar (2002). Table 2 summarises the computational parameters
of simulations performed for different Mc (domain size, number of grid elements,
dimensional values of velocity, initial momentum thickness and initial turbulent structures
sizes). Additional DG simulations given in Appendix A have been performed for other
domain sizes and resolutions to validate the current DNS. The impact on the selection of
the self-similar period is also analysed in Appendix A.

The temporal mixing layer consists of two streams flowing in opposite directions. The
velocity in the upper part of the domain U1 is set equal to −�u/2, whereas U2 is set to
�u/2. A representation of the computational domain is provided in figure 2. A snapshot
of the velocity magnitude is also plotted for the DG DNS at Mc = 2.2. A further analysis
of the flow field visualisation is given in Appendix B. Periodic boundary conditions are
imposed in the x and z directions and non-reflective conditions are set in the y directions
using the Navier–Stokes characteristic boundary conditions model proposed by Poinsot &
Lele (1992).
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Mc ρ1/ρ2 Reδθ,0 Lx × Ly × Lz Nx × Ny × Nz �u (m s−1) δθ,0 (nm) L0

Air 0.1 1.0 160 344 × 344 × 86 1024 × 1024 × 256 34.11 135.8 Lx/48
Air 1.1 1.0 160 344 × 172 × 86 1024 × 512 × 256 375.2 12.35 Lx/48
Air 2.2 1.0 160 688 × 688 × 172 1024 × 1024 × 256 753.0 6.153 Lx/8
FC-70 0.1 1.0 160 344 × 344 × 86 1024 × 1024 × 256 5.665 2070 Lx/48
FC-70 1.1 1.0 160 344 × 172 × 86 1024 × 512 × 256 62.32 188.2 Lx/48
FC-70 2.2 1.0 160 688 × 344 × 172 1024 × 512 × 256 125.1 93.77 Lx/8

Table 2. Simulation parameters. Lx, Ly and Lz denote computational domain lengths measured in terms of
initial momentum thickness; Nx, Ny and Nz denote the number of grid points; L0 denotes the size of initial
turbulent structures (k0 = 2π/L0) measured in terms of initial momentum thickness. All grids are uniform.

Lx

Ly

Lz

U1 = –�u/2

U2 = �u/2 y

x
z

Figure 2. Configuration of the temporal mixing layer. The velocity magnitude is plotted for the DG DNS at
Mc = 2.2 at τ = 4000.

The streamwise velocity field is initialised using an hyperbolic tangent profile

ūx( y) = �u
2

tanh
(

− y
2δθ,0

)
. (2.3)

The complete streamwise velocity field is obtained by adding fluctuations to the average
velocity. For the y and z components, the average velocity is set equal to zero. A
Passot–Pouquet spectrum is imposed for initial velocity fluctuations

E(k) = (k/k0)
4 exp(−2(k/k0)

2), (2.4)

where k denotes the wavenumber. The peak wavenumber k0 controls the size of the
initial turbulent structures. Its influence on the mixing layer growth is investigated in
Appendix A. Its value only influences the initial unstable growth regime. It has been noted
that a larger value of k0 accelerates the transition to the unstable growth. Its value for each
DNS is given in table 2. The velocity field is then filtered to initialise turbulence only
inside the initial momentum thickness.
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2.2. Governing equations
In order to describe the temporally evolving mixing layer, the unsteady, three-dimensional,
compressible Navier–Stokes equations are solved:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.5)

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
, (2.6)

∂(ρE)

∂t
+ ∂[(ρE + p)uj]

∂xj
= ∂(τijui − qj)

∂xj
, (2.7)

where τij = μ(∂ui/∂xj + ∂uj/∂xi − 2
3 (∂uk/∂xk)δij) denotes the viscous stress tensor

(μ the dynamic viscosity), E = e + 1
2 uiui, the specific total energy (e, the specific

internal energy), qj = −λ(∂T/∂xj), the heat flux given by Fourier’s law (λ, the thermal
conductivity).

Part of this study is conducted thanks to the analysis of the turbulent kinetic energy
(TKE) equation terms. It requires to decompose density, pressure and velocity into mean
and fluctuating components as follows:⎧⎨

⎩
ρ = ρ̄ + ρ′,
p = p̄ + p′,
ui = ũi + u′′

i ,
(2.8)

where φ̄ denotes the Reynolds average for a flow variable φ while the Favre average φ̃ is
defined as

φ̃ = ρφ

ρ̄
. (2.9)

Reynolds fluctuations are noted φ′ while Favre fluctuations are noted φ′′. Reynolds
averaging is equivalent to plane averaging along the x and z directions because of the use
of periodic boundary conditions. The TKE equation is obtained from the Navier–Stokes
equation by applying the averaging process

∂ρ̄k̃
∂t

+ ∂ρ̄k̃ũj

∂xj
= −ρu′′

i u′′
j
∂ ũi

∂xj︸ ︷︷ ︸
Production

− τ ′
ij
∂u′′

i
∂xj︸ ︷︷ ︸

Dissipation

− 1
2

∂ρu′′
i u′′

i u′′
j

∂xj︸ ︷︷ ︸
Turbulent transport

− ∂p′u′′
i

∂xi︸ ︷︷ ︸
Pressure transport

+
∂u′′

i τ
′
ij

∂xj︸ ︷︷ ︸
Viscous transport

+ p′ ∂u′′
i

∂xi︸ ︷︷ ︸
Pressure dilatation

− u′′
i

(
∂ p̄
∂xi

− ∂τ̄ij

∂xj

)
︸ ︷︷ ︸

Mass-flux term

, (2.10)

where k̃ = 1
2 ũ′′

i u′′
i denotes the specific TKE. The main terms of (2.10) are production,

dissipation and transport terms. Pressure dilatation and mass-flux terms (the later
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comprises the baropycnal work) are equal to zero in the incompressible case. The
dissipation term can be decomposed into a solenoidal, a low Reynolds number and
a dilatational component. The latter is associated with losses occurring in eddy
shocklets. Lee, Lele & Moin (1991) expressed the dilatational dissipation also called the
compressible dissipation as

εd = −4
3
ν

(
∂u′′

k
∂xk

)2

− 2u′′
k
∂ν′

∂xk

∂u′′
k

∂xk
. (2.11)

This expression comprises the effect of viscosity variations, unlike Sarkar &
Lakshmanan (1991) and Zeman (1990), who expressed it as εd = −4

3 ν̄(∂u′′
k/∂xk)2,

neglecting viscosity variations. For decaying compressible turbulence, Lee et al. (1991)
found that the Sarkar & Lakshmanan (1991) and Zeman (1990) expression overestimates
by approximately 15 % the compressible dissipation.

In addition to (2.5), (2.6) and (2.7), the thermal PG and the following calorific EoSs are
used for air: ⎧⎨

⎩
p = ρRT,

e = eref +
∫ T

Tref

cv(T ′) dT ′, (2.12)

where R is the specific gas constant, cv the specific heat capacity, p the pressure, T the
temperature, ρ the density.

For FC-70, the Martin–Hou EoS (referred to as MH) will be retained to provide an
accurate representation of BZT DG thermodynamic behaviour (Guardone, Vigevano &
Argrow 2004)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
p = RT

v − b
+

5∑
i=2

Ai + BiT + Ci e−kT/Tc

(v − b)i ,

e = eref +
∫ T

Tref

cv(T ′) dT ′ +
5∑

i=2

Ai + Ci(1 + kT/Tc) e−kT/Tc

(i − 1)(v − b)i−1 ,

(2.13)

where (·)ref denotes a reference state, b = vc(1 − (−31 883Zc + 20.533)/15), k = 5.475
and the coefficients Ai, Bi and Ci are numerical constants determined by Martin & Hou
(1955) and Martin, Kapoor & De Nevers (1959) from physical parameters summarised in
table 1.

To complete the thermodynamic description of the BZT DG, Chung’s model is used
to compute dynamic viscosity and thermal conductivity (Chung et al. 1988). FC-70 is
assumed to behave as a non-polar gas, its dipole moment is therefore neglected (Shuely
1996). For PG transport coefficients, Sutherland’s model is used associated with a constant
Prandtl number set equal to 0.71. Values of the initial Prandtl number are given in
Appendix C for DG flows. The selected constants for Sutherland’s law are the ones given
by White (1998).

2.3. Numerical set-up
DNS are performed using the explicit and unstructured numerical solver AVBP. It solves
the three-dimensional unsteady compressible Navier–Stokes equations coupled with the
PG EoS (2.12) for air and the MH EoS for FC-70 (2.13) using a two-step time-explicit
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Figure 3. Temporal evolution of the mixing layer momentum thickness for Mc = 0.1/1.1/2.2 using air with
PG EoS. Slopes are non-dimensional and standard deviations computed over the self-similar period are
indicated on the plot.

Taylor Galerkin scheme for the hyperbolic terms based on a cell vertex formulation (Colin
& Rudgyard 2000). The scheme provides high spectral resolution and low numerical
dissipation ensuring a third-order accuracy in space and in time. AVBP is designed
for massively parallel computation and can be used to perform LES as well as DNS
simulations (Desoutter et al. 2009; Cadieux et al. 2012). The scheme is completed with a
shock capturing method. In regions where strong gradients exist, an additional dissipation
term is added following the approach of Cook & Cabot (2004). Its impact on the resolution
of the smallest scales has been analysed in a previous article (Giauque et al. 2020).

3. DNS of PG mixing layer: verification and validation

This section is devoted to the selection of self-similar periods and the assessment of the
quality of PG DNS performed for air at three different convective Mach numbers (Mc =
0.1/1.1/2.2).

3.1. Temporal evolution and self-similarity
Figure 3 shows the temporal evolution of the momentum thickness normalised by its
initial value. This key quantity characterises the development of mixing layers. Time is
non-dimensional (τ = t�u/δθ,0). The evolution is plotted for three different convective
Mach numbers (Mc = 0.1/1.1/2.2). Results at Mc = 1.1 are extracted from Vadrot,
Aurélien & Alexis (2020). The same Reynolds number (Reδθ,0 = 160) based on the initial
momentum thickness is used for the three different DNS. Simulation parameters are given
in table 2. At Mc = 2.2, the size of initial turbulent structures has been enlarged in order
to speed up the development of the mixing layer.

One can identify three main phases: an initial delay caused by a transition of modes
from the modes in which TKE is initially injected to the most unstable ones; an unstable
over-linear growth; and the self-similar period, during which the mixing layer evolves
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linearly with time. The procedure used to select the self-similar period is detailed in
subsequent paragraphs.

At Mc = 2.2, one can notice that the mixing layer takes a much longer time to develop.
This is consistent with observations of Pantano & Sarkar (2002) who noticed that the
time necessarily to reach self-similar regime increases with compressibility. Self-similarity
is reached around τ ≈ 11 500 after a long unstable growth phase. As a comparison,
at Mc = 0.1 and Mc = 1.1, self-similarity is reached respectively at τ = 700 and τ =
1700. Moreover, the self-similar period is also stretched as the convective Mach number
increases.

A long time delay is observed at the beginning of the simulation. That delay is associated
with the transition of modes. TKE is initially injected at a given integral length set
equal to Lx/8. Afterwards, energy is distributed over the whole spectrum and some
unstable modes are amplified, leading to the unstable growth phase. In order to reduce
this time delay, initial turbulent structures have been chosen to be larger in proportion to
the initial momentum thickness at Mc = 2.2 when compared to other convective Mach
numbers (table 2). This modification of initial turbulent structures size does not impact
the growth rate over the self-similar regime. This has been carefully verified for DG flows
in Appendix A.

In addition, domain lengths are doubled in the x and z directions and multiplied by four
in the y direction when compared with DNS at Mc = 1.1, relative to initial momentum
thicknesses. This enables the mixing layer to develop until larger values of δθ (t)/δθ,0 and
to obtain a long enough self-similar period without reaching the domain boundaries. Other
simulations performed with smaller domains did not allow the flow to reach self-similarity.

Slopes and standard deviations mentioned in figure 3 are computed over the self-similar
period. One can observe that the growth rate is divided by a factor of approximately two
between DNS at Mc = 2.2 and at Mc = 1.1. Indeed, compressibility effects tend to reduce
mixing layer development as the convective Mach number increases.

DNS performed at Mc = 0.1 constitutes our reference incompressible case used to plot
δ̇θ /δ̇θ,inc = f (Mc). The computed growth rate is approximately 0.0131 which is relatively
close to the empirical value of 0.016 given by Pantano & Sarkar (2002). One can notice
a very short unstable growth phase when compared with larger convective Mach number
cases.

Self-similarity is a major characteristic of mixing layers: during the self-similar period,
flow development can be described using single length and velocity scales. The momentum
thickness linearly evolves with time. This particular state in the development of mixing
layers is widely used to extract key features of mixing layers. The well-known chart giving
the evolution of the mixing layer growth rate as a function of the convective Mach number
(Papamoschou & Roshko 1988) is plotted during the self-similar regime. This period is
also used to investigate the balance of the TKE equation, because temporal solutions can
be averaged during self-similarity since the flow is in a statistically stable state.

The selection of the self-similar period is thus a key point in the study of turbulent
mixing layers, but this choice is difficult, especially at high compressible regimes which
require lengthy simulations. One can note that, in our case, the time required to achieve
self-similarity is multiplied by a factor of approximately five when the convective Mach
number increases from Mc = 1.1 to Mc = 2.2.

Lots of authors evoke difficulties in reaching self-similarity (Pantano & Sarkar 2002;
Pirozzoli et al. 2015) particularly because of computational domain lengths. Moreover,
criteria to define self-similarity are not standardised. Superposition of the mean velocity
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Figure 4. Temporal evolution of the non-dimensional streamwise turbulent production term integrated over
the whole domain P∗

int = (1/(ρ0(�u)3))
∫

Ly
ρ̄Pxx dy (with ρ̄Pxx( y) = −ρu′′

x u′′
y (∂ ũx/∂y)) at Mc = 0.1 (a),

Mc = 1.1 (b) and Mc = 2.2 (c). Results are shown for the air using PG EoS. Selections of self-similar period
are indicated on each plot.

profiles, linear evolution of the momentum thickness, collapse of the Reynolds stress
profiles are three different ways to define the self-similar period.

The same methodology used in Vadrot, Aurélien & Alexis (2020) is applied here to
select the self-similar period: it relies on the stabilisation of the streamwise production
term integrated over the whole domain. The underlying reason for using this criterion
comes from Vreman et al. (1996), who demonstrated the following relation between the
mixing layer growth rate and the production power (ρ̄Pxx = −ρu′′

x u′′
y (∂ ũx/∂y)):

δ′
θ = dδθ

dt
= 2

ρ0(�u)2

∫
ρ̄Pxx dy. (3.1)

Figure 4 shows the temporal evolution of the non-dimensional streamwise production
integrated over the whole domain for the three DNS at Mc ranging from 0.1 to 2.2
performed for air using the PG EoS. A constant integrated production is directly related to
a self-similar regime according to (3.1). Selected self-similar periods are indicated on each
plot. As the convective Mach number increases, the maximum peak of integrated turbulent
production decreases, which is consistent with the decrease of the momentum thickness
growth rate. Time required to achieve self-similarity lengthens but self-similar periods last
longer.

Difficulties can be encountered in obtaining a fully stable plateau with an almost
constant integrated turbulent production. Domain lengths have a major influence on
self-similarity. The evolution of the turbulent production follows a piecewise decrease,
reaching several plateaus. It is observed that these piecewise plateaus are directly related
to integral lengths scales. When some turbulent structures grow and become too large
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Figure 5. Evolution of the mixing layer growth rate with respect to the convective Mach number for air using
PG EoS. Comparison is made with available DNS results in literature and experimental results by Rossmann
et al. (2001). Standard deviations are indicated on the plot.

for the computational domain, the integrated turbulent production decreases and reaches
another plateau lower than the previous one. The mixing layer therefore adapts its growth
to domain lengths when the computational box is not large enough. Since the integrated
turbulent production is related to the mixing layer growth rate, a lower plateau leads to a
smaller mixing layer growth rate. Great care therefore needs to be taken when selecting
the size of the computational domain, and a good stabilization of the integrated turbulent
production must be reached in order to precisely select the self-similar period. Influence of
the domain size on self-similarity is thoroughly investigated in Appendix A for DG flows
and correlations with integral length scales are analysed.

3.2. Validation over the self-similar period
Since self-similar periods are now well defined for each DNS, it is possible to plot
the evolution of the mixing layer growth rate with respect to the convective Mach
number. Figure 5 shows a comparison between current PG results and available numerical
(Freund, Lele & Moin 2000; Kourta & Sauvage 2002; Pantano & Sarkar 2002; Fu &
Li 2006; Zhou, He & Shen 2012; Martínez Ferrer, Lehnasch & Mura 2017; Matsuno
& Lele 2020) and experimental results (Rossmann et al. 2001) from the literature.
Current DNS follow the tendency observed and described in the literature: the well-known
compressibility-related reduction of the momentum thickness growth rate as Mc increases.
From the incompressible case to Mc = 2.2, the mixing layer growth rate is divided by a
factor of approximately five. Standard deviations have also been computed and are reported
on the plot. It represents approximately 5 % of the computed growth rates. It is rather
difficult to reduce this uncertainty because of difficulties encountered in reaching perfect
self-similarity. This is also illustrated by the scattering of literature results, which might
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Mc Reδθ Reλx r = Lη/�x lx/Lx lz/Lz

Air (τ = 700) 0.1 1879 209 0.63 0.10 0.04
Air (τ = 1450) 0.1 3444 194 0.81 0.11 0.13
FC-70 (τ = 550) 0.1 1448 135 0.58 0.04 0.05
FC-70 (τ = 900) 0.1 2176 201 0.7 0.07 0.06
Air (τ = 1700) 1.1 1874 143 0.97 0.07 0.06
Air (τ = 2550) 1.1 2413 156 1.09 0.12 0.08
FC-70 (τ = 1700) 1.1 2469 176 0.80 0.09 0.05
FC-70 (τ = 2550) 1.1 3304 241 0.87 0.20 0.05
Air (τ = 11 500) 2.2 3487 146 1.44 0.12 0.07
Air (τ = 14 100) 2.2 3700 191 1.64 0.11 0.10
FC-70 (τ = 4000) 2.2 4663 263 0.52 0.10 0.06
FC-70 (τ = 6000) 2.2 6259 390 0.57 0.16 0.05

Table 3. Non-dimensional parameters computed at the beginning and at the end of the self-similar period
for Mc = 2.2 simulations; Reλx denotes the Reynolds number based on the longitudinal Taylor microscale

λx =
√

2u′2
x/(∂u′

x/∂x)2 computed at the centreline; Lη denotes the Kolmogorov length scale computed at the
centreline.

be a consequence of this phenomenon. Moreover, the lack of numerical results at highly
compressible regimes makes the validation process more complex.

Yet, numerical parameters given in table 3 confirm the validation of the current DNS.
The integral lengths lx and lz are computed using the streamwise velocity field:

lx = 1

2u′
x

2

∫ Lx/2

−Lx/2
u′

x(x)u′
x(x + rex) dr, (3.2)

lz = 1

2u′
x

2

∫ Lz/2

−Lz/2
u′

x(x)u′
x(x + rez) dr. (3.3)

Integral length scales show that the domain is chosen sufficiently large. The largest
value 0.20 is obtained at the end of the self-similar period for DG flow at Mc = 1.1.
Otherwise, values do not exceed 0.16 in the streamwise direction and 0.13 in the z
direction. As a comparison, the Pantano & Sarkar (2002) integral length scale reaches
0.178 in the streamwise direction for a configuration with Mc = 0.7 and a density ratio
of 4. Appendix A also confirms that domain lengths have been properly chosen for DG
mixing layer at Mc = 2.2.

The ratio r = Lη/�x characterises the resolution of simulations. The larger the ratio, the
better the resolution. Minimum value is approximately 0.52 computed for DNS at Mc =
2.2. For other simulations, values are larger than 0.6 and the maximum value is 1.64 for PG
at Mc = 2.2 because of small dissipation in high compressible regimes. As a comparison,
the Pantano & Sarkar (2002) ratio is approximately 0.38 for the most resolved simulation
and recently Matsuno & Lele (2020) performed a DNS at Mc = 2.0 with a Lη/dx ratio
equal to 0.41. One can thus consider that turbulent scales are adequately resolved for all
simulations presented in this paper since in addition the TKE is very low close to the
Kolmogorov scale (Moin & Mahesh 1998).
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Figure 6. Temporal evolution of the mixing layer momentum thickness for DGs at Mc = 0.1, −1.1, −2.2.

4. DG effect on mixing layer growth

4.1. Temporal evolution
As previously done for the PG mixing layer, it is required to precisely define the
self-similar range for the DG flow. This is done through both figures 6 and 7. Figure 6
enables the comparison of normalised DG momentum thickness over time at three
different convective Mach numbers: Mc = 0.1 − 1.1 − 2.2. The three DNS are performed
at the same initial Reynolds number Reδθ,0 = 160. Additional simulation parameters are
given in table 2. At Mc = 0.1, similarly to the PG mixing layer, the domain length
is doubled in the y direction to get a long enough self-similar period. At Mc = 2.2,
the domain length is divided by two in the y direction when compared with PG flow.
The domain is therefore large enough to reach a self-similar period which lasts 4000τ .
Initial turbulent structures are to be chosen six times larger at Mc = 2.2 when compared
with other Mc to be consistent with the PG simulation. It is nevertheless shown in
Appendix A that the size of initial turbulent structures does not influence the growth rate
during self-similarity. This choice was motivated by the will to shorten the simulation.
Enlarging the size of initial turbulent structures accelerates the unstable growth phase. As
a consequence, in figure 6, Mc = 1.1 and Mc = 2.2 curves overlap after τ ≈ 2500.

Slopes and standard deviations computed over the self-similar range are given in
figure 6. At Mc = 0.1, because of the suppression of compressibility effects, the growth
rate is very close to that of PG flow: the difference is approximately 1.5 % and is below the
standard deviation range. As for PG, the DNS at Mc = 0.1 is considered as the reference
incompressible case and is used to plot the dependence of the normalised momentum
thickness growth rate with respect to Mc. At Mc = 1.1, comparison between DG and
PG flows is detailed in Vadrot, Aurélien & Alexis (2020) during unstable growth and
self-similar phases.
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Figure 7. Temporal evolution of the non-dimensional streamwise turbulent production term integrated over
the whole domain P∗

int = (1/(ρ0(�u)3))
∫

Ly
ρ̄Pxx dV (with ρ̄Pxx( y) = −ρu′′

x u′′
y (∂ ũx/∂y)) at Mc = 0.1 (a),

Mc = 1.1 (b) and Mc = 2.2 (c). Results are shown for the FC-70. Self-similar periods are indicated on each
plot.

Figure 6 shows that the momentum thickness growth rates are very close between
Mc = 2.2 and Mc = 1.1 unlike the PG case. The well-known decrease of the growth
rate with the convective Mach number is modified by DG effects. Despite being a highly
compressible fluid, compressibility effects decrease in FC-70. Explanations for this effect
are given in § 5.

Slopes provided in figure 6 are determined using the same methodology used for the
PG in § 3.1. For each convective Mach number, the non-dimensional integrated turbulent
production term P∗

int is plotted over time. The three main phases described for the PG
flow can also be identified for DGs. One can notice that, at Mc = 2.2, the initial phase
corresponding to an energy transfer to the most unstable modes is much shorter for DG
flow, likely because unstable modes are different between the two types of gas. After this
phase, turbulent production reaches a maximum which decreases as Mc increases. Finally,
self-similar periods are defined selecting the range during which turbulent production
is almost constant. As observed for PG flow, the self-similar period is extended as Mc
increases. One can also notice that integrated production terms in DG flows are consistent
with momentum thickness growth rates: the values of P∗

int are very close between Mc = 2.2
and Mc = 1.1 and the value of P∗

int at Mc = 0.1 is twice larger than the one at Mc = 1.1.
This observation confirms the relevance of the Vreman et al. (1996) relationship given
in (3.1). Beginning and ending times for each DNS self-similar periods are provided in
table 3.

4.2. Comparison with PG over the self-similar period
Self-similar periods have been selected for both types of gas. It is thus possible to plot
the evolution of self-similar growth rates as a function of the convective Mach number.
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Figure 8. Evolution of the mixing layer growth rate over the convective Mach number for air and for FC-70.
Comparison is made with available DNS results in the literature and the experimental results in Rossmann
et al. (2001).

Slopes are usually normalised using an incompressible reference case at very low
convective Mach number for which compressibility effects can be neglected. DNS at
Mc = 0.1 is considered here as the reference incompressible case. For example, Pantano
& Sarkar (2002) use a simulation at Mc = 0.3 as a reference case. There is no consensus
on this choice, which can partly explain the spread of PG results observed in figure 8 –
where the same literature results used in figure 5 are reported. DG mixing layer results
are plotted with error bars coloured in black. They represent the standard deviation of the
normalised growth rate over the self-similar range. Unlike the PG mixing layer, which
shows a fairly abrupt decrease of its growth rate as Mc increases, the DG mixing layer
seems to be much less influenced by compressibility effects as Mc becomes larger than
1.1. Differences between DG and PG mixing layers are large enough when compared
with standard deviations to reveal that turbulence development is actually modified by DG
effects in mixing layer flows.

In order to analyse the impact of compressibility effects, Pantano & Sarkar (2002)
study the TKE equation and particularly the importance of the turbulent production term.
They find that this term is decreasing in consistent proportion with the growth rate as the
convective Mach number increases. The computation of TKE equation terms requires us
to statistically average the terms. This can only be done during the self-similar period
during which both mixing layers are in a statistically stable state. Figure 9 shows the
comparison between DG and PG mixing layers of the normalised main terms of the TKE
equation over the non-dimensional cross-stream direction y/δθ (t). Production, dissipation
and transport terms are averaged during corresponding self-similar ranges. The production
term (denoted P) is always positive and is responsible for the growth of the mixing layer.
Viscous dissipation (denoted D) is always negative and counterbalances the production
term. The transport term (denoted T) enables the propagation of TKE from the centre
to the edges of the mixing layer. It is thus negative at the centre and positive close to
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Figure 9. Distribution of the volumetric normalised powers over the non-dimensional cross-stream direction
y/δθ (t) at Mc = 2.2. P: production, D: dissipation and T: transport are normalised by ρ0(�u)3/δθ (t).
Distributions have been averaged between the upper and the lower streams to obtain perfectly symmetrical
distributions.

the edges. Consistently with the comparison of slopes between DG and PG flows, all main
terms and particularly the production term are two to three times larger for DGs.

Another noticeable feature which was highlighted in the previous analysis at Mc = 1.1
(Vadrot, Aurélien & Alexis 2020) is confirmed here: curves are wider for the PG mixing
layer, when compared with the DG mixing layer. For the DG mixing layer, TKE is more
localised at the centre. This is directly linked to the thermodynamic profiles, which are
wider for PG mixing layer (see figure 19 in § 5.3).

Other terms of the TKE equation, namely the compressible dissipation, the mass-flux
coupling term, the convective derivative of the TKE and even the pressure dilatation are
negligible for both types of gas. The pressure dilatation term which is directly linked to
shocklet effects is carefully analysed in § 5.1 to quantify shocklet effects on the mixing
layer growth.

As mentioned in the introduction, Pantano & Sarkar (2002) demonstrate that the
compressibility-related reduction of the momentum thickness growth rate is induced by the
reduction of pressure-strain terms Πij, which causes a reduction of turbulent production.
In the TKE equation, which is obtained from the sum Rii, the pressure-strain terms do
not appear. Their sum Πii, which constitutes the pressure-dilatation term, appears in the
TKE equation but is negligible. In order to study pressure-strain terms, one needs to
plot turbulent stress tensor equations terms. Figure 10 shows the main terms of the x-
and y-components of the turbulent stress tensor equations. In the streamwise direction,
the pressure-strain term counterbalances the streamwise production, whereas, in the
cross-stream directions, the pressure-strain term is positive and is balanced by viscous
dissipation. In the cross-stream direction, the turbulent production term can be neglected
unlike in the streamwise direction for which it is maximal.
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Figure 10. Distribution of the main non-dimensional volumetric power terms of the x- (top) and y- (bottom)
turbulent stress tensor (Rxx and Ryy) equations over the non-dimensional cross-stream direction y/δθ (t); Pxx
and Pyy: streamwise and cross-stream production, Πxx and Πyy: streamwise and cross-stream pressure-strain
and Dxx and Dyy: streamwise and cross-stream dissipation terms are normalised by ρ0(�u)3/δθ (t). Results are
computed at Mc = 2.2. Distributions have been averaged between the upper and the lower streams to obtain
perfectly symmetrical distributions.

One can notice that pressure-strain terms are significantly reduced for PG flows when
compared with DG flows at Mc = 2.2: streamwise pressure-strain term is twice larger
for DGs when compared with PG. This is consistent with the comparison of momentum
thickness growth rates. For both types of gas, growth rates are identically linked to their
pressure-strain terms. Compressibility effects impact the same terms for both DGs and
PG.
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Figure 11. Distributions of the root mean square value of pressure averaged over the self-similar period, plotted
along the y direction and compared between FC-70 and air at Mc = 1.1 and Mc = 2.2. Distributions have been
averaged between the upper and the lower streams to obtain perfectly symmetrical distributions.

It remains to verify the last step in the Pantano & Sarkar (2002) explanation, which is
that the reduction of pressure-strain terms is caused by a reduction of normalised pressure
fluctuations. Figure 11 shows the cross-stream distribution of the root mean squared value
of pressure normalised by the dynamical pressure 1

2ρ0(�u)2. Comparison is made between
DG and PG flows at Mc = 1.1 and Mc = 2.2.

At Mc = 1.1, DG and PG distributions are very close as are their corresponding
momentum thickness growth rates. As the convective Mach number increases, DG
non-dimensional pressure fluctuations experience a 20 % decrease, also consistent with
the observed decrease in the growth rate. This decrease is yet much smaller than that
of the PG mixing layer, in which normalised pressure fluctuations are approximately
divided by a factor of two. To sum up, although the same mechanism is responsible
for the growth rate decrease in both types of gas (i.e. the reduction of non-dimensional
pressure fluctuations), its effect is significantly different between the two types of
gas. For DG flows, the well-known compressibility-related reduction of the momentum
thickness growth rate is almost suppressed by DG effects at convective Mach numbers
above Mc = 1.1.

Figure 12 shows the comparison between PG and DG streamwise specific TKE spectra
computed over the centreline. Spectra are normalised by (�u)2δθ (t) in the same way as
Pirozzoli et al. (2015) and averaged over the self-similar period. The longitudinal Taylor
microscale λx is also indicated for each gas in figure 12. Its value is much larger for
DG flow consistently with Reynolds numbers computed from Taylor microscales given
in table 3. The inertial phase is thus significantly reduced for the PG flow. Dissipation
occurs at much larger scales, making the comparison between the two inertial phase
slopes difficult. Spectra confirm previous results observed at Mc = 1.1 (Vadrot, Aurélien
& Alexis 2020): DG effects tend to increase small-scale energy. The dissipation term,
which is the main term at these scales, is significantly reduced. These results suggest a
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Figure 12. Streamwise specific TKE spectra computed at the centreline.

need for a specific sub-grid-scale model of DG flows the small-scale dynamics of which
is significantly modified with respect to PG flows.

5. Analysis of discrepancies between DG and PG

5.1. First hypothesis: effect of shocklets
The previous analysis conducted at Mc = 1.1 shows that the growth rate is not influenced
by the DG effect during the self-similar period (Vadrot, Aurélien & Alexis 2020). However,
significant differences are observed during the unstable growth phase. At Mc = 1.1, the
evolution of the turbulent Mach number shows that shocklets might be detected during the
unstable growth phase but not during the self-similar range, during which Mt decreases
well below the range of values for which shocklets are expected. It is known that the
generation of shocklets is different between BZT DG flow and PG flow (Giauque et al.
2020), yet can shocklets alone explain discrepancies between DG and PG flows?

In the current analysis, we increase the convective Mach number in order to reach larger
turbulent Mach numbers during the self-similar period and to analyse the influence of
shocklets. Figure 13 shows the temporal evolution of the turbulent Mach number Mt
(see (1.4)). Turbulent Mach numbers increase during the initial phase up to 1.1 and 0.9
respectively for DG and PG flows. Then Mt decreases and reaches a rather stable plateau
corresponding to the self-similar period. During this phase, average values of turbulent
Mach numbers are respectively equal to 0.67 and 0.49 for DG and PG flows. Shocklets
can thus be observed during both DG and PG self-similar periods.

In order to study their effect on the growth rate, one can analyse the compressible
component of the dissipation given in (2.11). Zeman (1990) and Sarkar et al. (1991) show
that the dilatational part of the dissipation increases with the turbulent Mach number
because of the occurrence of eddy shocklets in the compressible regime. Wang et al.
(2020) perform compressible isotropic turbulence simulations and observe that shocklets
act as kinetic energy sinks which absorb large-scale kinetic energy. Shocklets are thus
an additional source of dissipation. The dilatational dissipation is computed over the
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Figure 13. Temporal evolution of the turbulent Mach number Mt.

self-similar period. Figure 14 shows the ratio between the compressible and the total
dissipation rate over the cross-stream direction. Around y/δθ (t) ≈ 3.5, one can note an
increase of the ratio. It corresponds to the borders of the mixing layer, outside of which
the dissipation ε drops to zero (see figure 9). Except for these regions, at Mc = 1.1, the
compressible dissipation represents less than 0.5 % of the total dissipation for both DG and
PG flows. At Mc = 2.2, the ratio increases consistently with the increase of turbulent Mach
numbers. The ratio is thus larger for DG flow compared with PG flow. However, the rate of
dilatational dissipation with respect to the total dissipation remains below 4 % for DG and
below 1 % for PG. Compressible dissipation can therefore be neglected with respect to the
total dissipation. Shocklets have a limited influence on the TKE equation. Since the TKE
equation governs the mixing layer dynamics, one cannot explain discrepancies observed
between DG and PG flows with shocklets effect.

5.2. Additional simulations varying the initial thermodynamic operating point
In order to explain discrepancies observed between DG and PG flows, we perform
additional DNS varying the initial thermodynamic operating point. Figure 15 shows the
four selected operating points. DGA corresponds to the reference simulation analysed in
§ 4. DGA’s initial operating point is located inside the inversion zone also called BZT
region. The operating point of the second simulation DGB is chosen outside the inversion
region and inside the DG zone. This enables us to investigate the impact of BZT effects on
the mixing layer growth. Finally, for DGC and DGD, initial operating points are chosen
on the same adiabatic curves as, respectively, DGB and DGA but outside the DG zone.
The diversity of targeted thermodynamic regions aims at providing a proper insight into
the effects of DG on the shear layer growth.

At first, one needs to validate the DNS named DGB, DGC and DGD. Table 4 gives
simulations parameters including r, lx and lz for the four different simulations. Achieved
values are very close to DGA and since DGA has been validated previously (see § 4 and

922 A5-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.511


DNS of compressible mixing layers in BZT DG: influence of Mc

0 1–1–2–3–4–5
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

2 3 4 5

y/δθ(t)

ε d/
ε

Mc = 1.1: FC-70 MH

Mc = 2.2: FC-70 MH

Mc = 1.1: Air PG

Mc = 2.2: Air PG

Figure 14. Distributions of the ratio between the compressible dissipation (εd) and the total dissipation (ε)
(see details in (2.10) and (2.11)). Results are averaged over the self-similar period. Comparison is made between
FC-70 and air at Mc = 1.1 and Mc = 2.2. Distributions have been averaged between the upper and the lower
streams to obtain perfectly symmetrical distributions.
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Figure 15. Four different initial thermodynamic states used to perform additional DNS are represented in the
non-dimensional p–v diagram for BZT DG FC-70 at Mc = 2.2. The DG zone (Γ < 1) and the inversion zone
(Γ < 0) are plotted for the MH EoS; pc and vc are, respectively, the critical pressure and the critical specific
volume.
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Γ0 Lx × Ly × Lz Nx × Ny × Nz L0 r = Lη/�x lx/Lx lz/Lz

DGA −0.28 688 × 344 × 172 1024 × 512 × 256 Lx/8 0.52–0.57 0.10–0.16 0.06–0.05
DGB 0.10 688 × 344 × 172 1024 × 512 × 256 Lx/8 0.51–0.55 0.11–0.12 0.06–0.04
DGC 2.10 688 × 688 × 172 1024 × 1024 × 256 Lx/8 0.50–0.55 0.11–0.166 0.06–0.04
DGD 2.21 688 × 688 × 172 1024 × 1024 × 256 Lx/8 0.50–0.54 0.09–0.14 0.07–0.07

Table 4. Simulation parameters for additional FC-70 simulations at Mc = 2.2 varying the initial operating
point; r, lx/Lx and lz/Lz are given at beginning and ending times of self-similar periods.
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DGB

DGA

DGC

DGD

(×10–3)
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Figure 16. Temporal evolution of the non-dimensional streamwise turbulent production terms integrated over
the whole domain P∗

int = (1/(ρ0(�u)3))
∫

Ly
ρ̄Pxx dV (with ρ̄Pxx( y) = −ρu′′

x u′′
y (∂ ũx/∂y)) at Mc = 2.2. Results

are shown for the FC-70 for four different DNS: DGA, DGB, DGC and DGD. Self-similar periods are indicated
on each plot: DGA (τ ∈ [4000/6000]); DGB (τ ∈ [4000/6400]); DGC (τ ∈ [3800/6000]) and DGD (τ ∈
[3800/6000]).

Appendix A), one can consider that DGB, DGC and DGD are adequately resolved. The
sizes of computational domains have been enlarged for DGC and DGD in the y direction
in order to provide the mixing layer with more space in order to reach self-similarity.

Self-similar periods are defined for each DNS using the same methodology previously
presented in § 3.1. Plateaus showing constant integrated turbulent production correspond
to self-similar periods. They are identified with vertical lines in figure 16. In addition,
beginning and ending times are given in the caption for each case. Although all the
DNS are performed at the same convective Mach number Mc = 2.2, results are quite
different. The initial evolution is similar, but after τ ≈ 1100, discrepancies appear,
especially for DGD. Maximum values and self-similar regimes are influenced by the initial
thermodynamic operating point.

The comparison of mixing layer momentum thickness evolutions is given in figure 17.
Slopes with standard deviations computed during self-similar regimes are indicated on the
plot. From these results, one can deduce that BZT region does not have a major influence
on the mixing layer growth. DGC’s growth rate is indeed very close to DGA’s, although
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Figure 17. Temporal evolution of the mixing layer momentum thickness for DG at Mc = 2.2. Results are
shown for the FC-70 for four different DNS: DGA, DGB, DGC and DGD.

initial thermodynamic operating points are located respectively outside and inside DG and
BZT regions. The relation between the mixing layer growth and the initial thermodynamic
operating point is not obvious: operating points located on the same adiabatic curve
(respectively DGA, DGD and DGB, DGC) are far away in terms of growth rate. Looking at
the growth rate, simulations can be classified by pairs: DGA goes with DGC and DGB goes
with DGD. One can observe that slopes are all below the Mc = 1.1 growth rate. It means
that the well-known compressibility-related reduction of the momentum thickness growth
rate is still verified. Yet there is an additional effect due to the initial thermodynamic
operating point.

At the end of § 4, the physical explanation provided by Pantano & Sarkar (2002) was
assessed on DGA: the reduction of the momentum thickness is due to a reduction of
normalised pressure fluctuations. It remains to check whether this reduction of normalised
pressure fluctuations is also observed for DGB, DGC and DGD. Figure 18 shows the
normalised growth rate as a function of the normalised pressure fluctuations computed at
the centre of the mixing layer. For PG flow, the reduction is significant. Between Mc = 1.1
and Mc = 2.2, growth rate and normalised pressure fluctuations are divided by a factor
of two. For DG, the decrease of the normalised growth rate is also correlated with a
decrease of pressure fluctuations. Among cases at Mc = 2.2, the ranking purely based on
the level of pressure fluctuations is not entirely satisfactory, but this could be explained by
standard deviations caused by variations of the plateaus of integrated turbulent production.
Moreover, other effects must also be taken into account for DG: this is the topic of the next
section.

5.3. Analysis of discrepancies between DG and PG flows
There is a significant effect of DG on the well-known compressibility-related reduction of
the momentum thickness growth rate. DG effects modify the decrease at convective Mach
numbers larger than Mc = 1.1. Between Mc = 1.1 and Mc = 2.2, the growth rate slope
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Figure 18. Evolution of the non-dimensional mixing layer growth rate over the centre root mean squared
value of pressure normalised by 1

2 ρ0(�u)2. Results are given for DG and PG at Mc = 1.1 and Mc = 2.2.

Mc Ec δ̇θ /δ̇θ,inc

DG 1.1 0.0040 0.484
DGA 2.2 0.0162 0.395
DGB 2.2 0.0226 0.352
DGC 2.2 0.0147 0.389
DGD 2.2 0.0203 0.342
PG 1.1 1.94 0.450
PG 2.2 7.74 0.188

Table 5. Eckert numbers and normalised momentum thickness growth rates are given for each simulation.

does not vary much for DG. Several factors can be identified, which contribute to explain
the observed discrepancies between DG and PG mixing layers. The first main difference
between DG and PG flows is the ratio between the enthalpy and the kinetic energy. It is
associated with the Eckert number, which is defined for the mixing layer as

Ec = (�u)2

cp0T0
, (5.1)

where cp0 denotes the initial specific heat capacity at constant pressure and T0, the initial
temperature. Initial Eckert numbers are computed for each DNS and results are gathered
in table 5. For DG flows, values are approximately two orders of magnitude lower than PG
flows. Two features of DG mixing layers are responsible for these significant differences:
the large heat capacity of FC-70 and the small differential speed �u. The differential
speed is defined in order to obtain the same initial convective Mach number between
DG and PG mixing layers. Since the sound speed is much lower in DG, a much lower
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Figure 19. The non-dimensional Reynolds-averaged temperature (a) and density (b); and root mean squared
value of the density (c) are averaged over the self-similar regime and plotted along the y direction. Comparison
is made between FC-70 and air at Mc = 1.1 and Mc = 2.2.

differential speed is obtained for a given value of the convective Mach number, which
mechanically reduces the Eckert number. With small Eckert numbers, kinetic energy
becomes negligible when compared with the enthalpy or to the internal energy. (At the
initial conditions γ is approximately 1.3 and internal energy and enthalpy are of the same
order of magnitude.) It is the case for all DG flows in this study even though the convective
Mach number is large. As shown by the present results, kinetic energy also decouples from
thermodynamics compressibility effects and the growth rate of the momentum thickness
is allowed to reach larger values. It can be observed that the close values of the momentum
thickness growth rates for DGA/DGC on one hand and DGB/DGD, on the other hand,
are well correlated with the values of the initial Eckert number reported in table 5. The
lower Eckert numbers for DGA/DGC correspond to higher growth rates for these shear
layer configurations, induced by an even stronger decoupling between internal and kinetic
energy for DGA/DGC with respect to DGB/DGD. However, the Eckert number cannot
be the only factor explaining DG effect on the growth rate since DGC displays a slightly
lower growth rate with respect to DGA, with a slightly lower value of the initial Eckert
number.

For DG flows, the amount of internal energy is much larger when compared with
kinetic energy. Internal and kinetic energies are decoupled in that case. In the equation of
energy conservation (2.7), all the terms can be neglected with respect to the temporal and
convective internal energy terms. Since the Eckert number quantifies the friction heating,
it is significantly reduced in DG flows as previously shown by Gloerfelt et al. (2020).
Figure 19 shows the distribution of the Reynolds-averaged temperature, density and the
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root mean square value of density fluctuations over the cross-stream direction of the shear
layer. Results are averaged over the self-similar period. It can be observed in figure 19 that
temperature variations are almost suppressed for DG. Sciacovelli et al. (2017a) confirm
this remark in supersonic turbulent channel flows and state that DG flow are less subject to
friction losses associated with Mach number effects. For the mixing layer, above Mc = 1.1,
compressibility effects associated with the increase of convective Mach number have less
influence on DG flows in part because of the reduction of friction heating.

The evolution of the average density confirms this reduction. The PG air density suffers
a 40 % decrease at the centre between Mc = 1.1 and Mc = 2.2. In the PG, friction heating
is important and leads to an increase of the temperature, which induces a decrease of the
density. The mechanism is significantly reduced in DG flows. For DG, the temperature is
almost constant and averaged density displays very limited variations. At Mc = 2.2, the
averaged density decrease at the centre of the mixing layer represents approximately 8 %
of the initial density compared with 45 % for air. Equation (3.1) shows that this effect
influences the mixing layer growth rate, which depends on the density. As the mixing
layer develops in PG, strong friction occurs at the centre, which decreases the density. The
momentum thickness growth rate is thus significantly reduced for PG when compared with
DG.

Figure 19(c) displays the root mean square value of density fluctuations. Between PG
and DG flows, the distribution across the mixing layer changes shape. For PG, it consists
of two symmetric peaks with respect to the centre of the mixing layer. Peaks are located
at the borders of the mixing layer, where the cross-stream gradient of averaged density is
maximal. In this region, the mixing layer flow experiences strong dynamic and thermal
variations with an important coupling between internal and kinetic energy. For DG, the
distribution is composed of a single peak located at the centre of the mixing layer. The
distribution is much less affected by the variation of the averaged density. For DG, thermal
quantities are less influenced by the flow dynamics because of the decoupling of internal
energy and kinetic energy. The root mean square value of density fluctuations diffuses
from the centre of the mixing layer.

The amplitudes of the distributions are also quite different between DG and PG flows.
For DG, the maximum root mean square value of density fluctuations is multiplied by a
factor of three from Mc = 1.1 to Mc = 2.2. In the PG case, it is multiplied by a factor
of approximately two. Compressible flows are more subject to root mean square density
fluctuations, which increase as the Mach number grows. An explanation can be found in
the definition of the isentropic compressibility coefficient, which is large for DG flows

χs = 1
ρ

∂ρ

∂p

∣∣∣∣
s
. (5.2)

For flows with large values of χs, small variations of pressure lead to large variations of
density. The sound speed is directly linked to the isothermal compressibility since

c = 1√
ρχs

. (5.3)

For DG flows, the large isentropic compressibility factor strongly diminishes the sound
speed. As a result, the initial sound speed in the computed DG flows is approximately
six times smaller when compared with its initial value for the PG shear layers. Figure 20
shows the normalised momentum growth rate at Mc = 2.2 as a function of the normalised
sound speed. A rather clear correlation appears between the momentum thickness growth
rate and the initial sound speed: the growth rate decreases with increasing sound speed.
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Figure 20. Evolution of the non-dimensional mixing layer growth rate as a function of the sound speed
normalised with

√
pc/ρc. Results are given for DG and PG at Mc = 2.2.

The main conclusion that can be drawn from these observations is that the smaller
Eckert number in DG flows causes a decoupling between internal and kinetic energy and
induces less friction heating. Both phenomena influence the mean and fluctuating thermal
physical quantities, which consequently limits the compressibility-related reduction of the
momentum thickness growth rate.

6. Concluding remarks

The present work extends the previous analysis of a temporal compressible shear layer
conducted at Mc = 1.1 (Vadrot, Aurélien & Alexis 2020) to a larger convective Mach
number Mc = 2.2 for air described as a PG and FC-70 (BZT gas) described using MH
EoS. A reference incompressible DNS is also performed at Mc = 0.1 to provide the
incompressible growth rate δ̇θ,inc used to normalise the growth rate δ̇θ . The computed
evolution of the mixing layer growth rate with respect to the convective Mach number is
compared to available results from the literature for PG. The PG results are found to be
consistent with the literature and establish the accuracy of the present simulations.

The choice of the domain size is paramount in this study. The domain is enlarged at
Mc = 2.2 for both DG and PG DNS when compared with DNS at Mc = 1.1 in order
to ensure mixing layers reach self-similarity. An analysis presented in Appendix A is
performed to thoroughly investigate the sensitivity of the DG mixing layer to domain
extent and to the size of initial turbulent structures. Results establish the relevance of the
choices of domain extent and initial structures size made in the present study.

The selection of the self-similar period is a key point in the study of mixing layers: this
choice is complex and the diversity of criteria used for the selection process contributes
to the scatter of the δ̇θ /δ̇θ,inc = f (Mc) plots reported in the literature. In the present work,
self-similar periods are selected using the integrated streamwise production over time,
which is proportional to the momentum thickness growth rate under certain conditions
(Vreman et al. 1996).
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The comparison between PG and DG shows major differences for the momentum
thickness growth rates at Mc = 2.2. The DG flow limits the well-known compressibility-
related reduction of the momentum thickness growth rate. At Mc = 2.2, the growth rate
is twice as large for DG when compared with PG. Pantano & Sarkar (2002) demonstrate
that, for PG flows, the growth rate reduction is due to the reduction of pressure fluctuations
leading to the reduction of pressure-strain terms. We show that growth rate is also
correlated with pressure fluctuations in DG flows. Yet, the small-scale dynamics is very
different. A much larger dissipation is also observed for PG mixing layer. These results
call for a specific sub-grid scale model for DG flows when simulated using LES.

Additional DG DNS have been performed at three other initial thermodynamic
operating points. Results show that BZT effects have only a small impact on the mixing
layer growth. Shocklets indeed produce only a limited effect on mixing layer growth.
The compressible dissipation is negligible when compared with the total dissipation. For
DG mixing layers, several physical factors tend to reduce compressibility effects: the
decoupling of kinetic and internal energy reduces the effect of increasing Mc; reduced
friction losses in DG flows modify the distribution of the averaged density, which therefore
favours the momentum thickness growth rate. Finally, it is found that increasing the initial
isothermal compressibility also increases the momentum thickness growth rate in DG
flows. Initial sound speed could therefore be an appropriate indicator when forecasting
the mixing layer growth rate in real-gas flows. Note that the PG results are restricted to air,
with heat capacity ratio equal to γ = 1.4. Further exploration could investigate the effect
of γ close to unity over the PG results and provide a comparison with the DG results in
order to separate possible γ -effects from DG effects.
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Appendix A. DG mixing layer: influence of domain size, resolution and initial
turbulent structures size

Additional simulations have been performed for DG mixing layer with Reδθ,0 = 160 and
Mc = 2.2 in order to confirm proper resolution and domain size. The computational
parameters corresponding to these simulations are summarised in table 6 along with the
parameters used in the previous study at Mc = 1.1.

Figure 21 shows temporal evolutions of momentum thickness for the simulations listed
in table 6. DG1 is performed with the same domain lengths and size of initial turbulent
structures (relative to the initial momentum thickness) as in the previous Mc = 1.1 study
DG0. At τ = 4000, self-similarity is not yet achieved but flow field visualisations indicate
that the y boundaries of the domain are reached. DG2 is then conducted with a domain
size doubled in the y direction and with smaller initial turbulent structures corresponding
to Lx/4 = 86δθ,0, in order to speed up the mixing layer development. Simulations show
that the modification of initial structures size only modifies the time necessary to reach the
unstable growth phase but not the growth rate itself.
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Mc Lx × Ly × Lz Nx × Ny × Nz L0

DG0 1.1 344 × 172 × 86 1024 × 512 × 256 Lx/48
DG1 2.2 344 × 172 × 86 1024 × 512 × 256 Lx/48
DG2 2.2 344 × 344 × 86 1024 × 1024 × 256 Lx/4 = 86
DG3 2.2 648 × 344 × 172 1024 × 512 × 256 Lx/8 = 86
PG0 2.2 688 × 688 × 172 1024 × 1024 × 256 Lx/4

Table 6. Simulation parameters for temporal shear layer DNS (Reδθ,0 = 160) with varying domain extent,
resolution and size of initial structures; Lx, Ly and Lz denote computational domain lengths measured in terms
of initial momentum thickness; Nx, Ny and Nz denote the corresponding numbers of grid points; L0 denotes the
size of initial turbulent structures (k0 = 2π/L0) measured in terms of initial momentum thickness. All grids
are uniform.
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Figure 21. Temporal evolution of the mixing layer momentum thickness.

Yet, a large decrease of the growth rate is observed for DG2 around τ = 4000;
self-similarity cannot be reached. Figure 22 displays the time evolution of the integral
length scale in the z direction lz for DG2 and DG3 simulations. Around τ = 4000, the
integral length scale lz/Lz suddenly decreases for DG2 after having reached a value of 0.2.
The domain is thus not large enough to account for spanwise turbulent structures, which
causes a growth rate decrease and prevents the transition to self-similarity.

Because of the aforementioned observations, domain sizes have been doubled in the
x and z directions when compared with DG1. This corresponds to the DG3 simulation,
which is the reference DNS used in § 4 to compare results between DG and PG. For DG3,
the momentum thickness evolution reaches a perfectly linear stage and self-similarity is
well achieved as confirmed by figures 7(b) and 21.
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Figure 22. Temporal evolution of the integral length scale lz.
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Figure 23. The streamwise two-point correlations of the (a) x-, (b) y- and (c) z- velocity components at the
beginning of the self-similar period. Comparison is made between FC-70 and air at Mc = 1.1 and Mc = 2.2.

Appendix B. Analysis of spatial correlations

This section is devoted to the analysis of two-point spatial correlations of the velocity
components. Both the PG and DG flows are analysed and compared. In the streamwise
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Normalised velocity magnitude

100 0.12 0.25 0.38 5×10–1

(a) (b)

(c)

(d)

Figure 24. Snapshot of the velocity magnitude normalised with �u at the beginning of the self-similar
period. Comparison is made between air at (a) Mc = 1.1 and (c) Mc = 2.2 and FC-70 at (b) Mc = 1.1 and
(d) Mc = 2.2.

Mc Pr δ̇θ /δ̇θ,inc

DG 1.1 1.52 0.484
DGA 2.2 1.52 0.395
DGB 2.2 1.41 0.352
DGC 2.2 3.33 0.389
DGD 2.2 6.41 0.342
PG 1.1 0.71 0.450
PG 2.2 0.71 0.188

Table 7. Prandtl numbers and normalised momentum thickness growth rates are given for each DNS.

direction, this correlation factor writes

Rii(rx) = ui′(x)ui′(x + rxex)

ui′(x)ui′(x)
, (B1)

where i denotes the direction of the velocity.
Figure 23 shows the evolution of the two-point correlation over the streamwise direction

for the three velocity components. In the PG case, the correlation increases significantly
for the x- and y-velocity components as Mc increases. As noticed in Freund et al. (2000)

922 A5-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.511


A. Vadrot, A. Giauque and C. Corre

0–2–4–6
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2 4 6

y/δθ(t)

T rm
s/

T 0

(×10–3)

DGA

DGB

DGC

DGD

Figure 25. The root mean squared value of the temperature are averaged over the self-similar regime and
plotted along the y direction. Comparison is made between DG simulations at Mc = 2.2.

and Matsuno & Lele (2020), in highly compressible regimes, eddies are stretched in
the streamwise direction. In the DG case, the correlation stays approximately the same
between Mc = 1.1 and Mc = 2.2 for the three components, except for the x-component,
which is slightly larger for Mc = 2.2 when compared with Mc = 1.1. Consistently with
figure 8, which shows that the mixing layer growth rate is slightly affected by the
convective Mach number from Mc = 1.1 to Mc = 2.2, the structure of eddies stays
approximately the same in the streamwise direction unlike for PG flows. One can also
notice that, for all cases, the correlation drops to a low value at rx/Lx = 0.5 which confirms
that the streamwise domain length is sufficiently large.

Figure 24 shows some snapshots of the velocity magnitude. As noticed in figure 23,
the size of turbulent structures increases from Mc = 1.1 to Mc = 2.2 in PG flow unlike
in DG flow, where the size of turbulent structures remains stable between Mc = 1.1 to
Mc = 2.2. At Mc = 1.1, there is no difference between DG and PG flow field visualisation.
Consistently with the evolution of the normalised momentum thickness growth rate as a
function of the convective Mach number (figure 8), differences appear at Mc = 2.2 in the
highly compressible regime.

Appendix C. Effect of the Prandtl number on the temperature fluctuation profiles

The Prandtl number is defined as the ratio between the kinematic viscosity and the thermal
diffusivity (α)

Pr = ν

α
. (C1)

A large Prandtl number indicates that the viscous diffusivity is faster than the thermal
diffusivity. It would thus affect the temperature distribution. Table 7 gives the values of
Prandtl numbers and mixing layer growth rates for each DNS. The growth rate of the DGC
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DNS is approximately the same as the one of the DGA DNS whereas the Prandtl number
of the DGC DNS is twice larger than the one of the DGA DNS. Results show that there is
no correlation between the Prandtl number and the mixing layer growth rate. However, the
influence of the Prandtl number can be seen in figure 25. Although the rate of normalised
temperature fluctuations is very low in the DG DNS (below 6 × 10−3) compared with the
PG DNS (about 1.7), one can notice differences when varying the initial thermodynamic
operating point. The larger the Prandtl number, the larger the temperature fluctuations.
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