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Abstract

Trypanosoma musculi is a, globally distributed, mouse-specific haemoflagellate, of the family
Trypanosomatidae, which shares similar characteristics in morphology with Trypanosoma
lewisi. The kinetoplast (mitochondrial) DNA of Trypanosomatidae flagellates is comprised
of catenated maxicircles and minicircles. However, genetic information on the T. musculi
kinetoplast remains largely unknown. In this study, the T. musculi maxicircle genome was
completely assembled, with PacBio and Illumina sequencing, and the size was confirmed at
34606 bp. It consisted of 2 distinct parts: the coding region and the divergent regions
(DRs, DRI and II). In comparison with other trypanosome maxicircles (Trypanosoma brucei,
Trypanosoma cruzi and T. lewisi), the T. musculi maxicircle has a syntenic distribution of
genes and shares 73.9, 78.0 and 92.7% sequence identity, respectively, over the whole coding
region. Moreover, novel insertions in MURF2 (630 bp) and in ND5 (1278 bp) were found,
respectively, which are homologous to minicircles. These findings support an evolutionary
scenario similar to the one proposed for insertions in Trypanosoma cruzi, the pathogen of
American trypanosomiasis. These novel insertions, together with a deletion (281 bp) in
ND4, question the role of Complex I in T. musculi. A detailed analysis of DRII indicated
that it contains numerous repeat motifs and palindromes, the latter of which are highly con-
servative and contain As;C elements. The comprehensively annotated kinetoplast maxicircle
of T. musculi reveals a high degree of similarity between this parasite and the maxicircle
of T. lewisi and suggests that the DRII could be a valuable marker for distinguishing these
evolutionarily related species.

Introduction

Trypanosomes are protozoan parasites that are distributed globally which infect humans, ver-
tebrate animals and intermediate invertebrate hosts. Among them, members of the subgenus
Herpetosoma, such as Trypanosoma lewisi and Trypanosoma musculi, are commonly found in
rodents (Hoare, 1972; Kostygov et al., 2021). These 2 trypanosomes cannot be easily distin-
guished due to their high degree of similarity in morphological characteristics and genetic
markers such as the SSU rDNA sequences (Hong et al., 2017). However, they do significantly
differ in many aspects. In particular, T. lewisi infects only rats and sometimes humans
(Sarataphan et al., 2007; Verma et al., 2011), while T. musculi infects only mice and is unlikely
to be pathogenic to humans (Zhang et al., 2018). A few research studies have indicated that
both T. musculi and T. lewisi can modulate the host immune response in coinfections with
various other infectious agents, to potentially cause more harm to the hosts, by altering the
infection kinetics and increasing the duration of colonization in the host (Lowry et al,
2014; Vaux et al., 2016; Nzoumbou-Boko et al., 2017; Gao et al., 2021). To gain a better under-
standing of the biological characteristics, the kinetoplast DNA (kDNA) of T. lewisi has been
comprehensively analysed (Lin et al., 2015; Li et al., 2020). However, little is known of the
details of the KDNA in T. musculi.

Trypanosomes are members of the kinetoplastea group of protozoa, named due to the pres-
ence of the kDNA. Trypanosome kDNA is a specific network structure of interlocking mito-
chondrial DNA circles, which consists of thousands of minicircles with dozens of maxicircles
(Lukes et al., 2002). Earlier research on Trypanosoma brucei has shown that kDNA comprises
at least 5% of the total cellular DNA, while most other eukaryotic mitochondrial DNA
accounts for no more than 1% (Lukes et al., 2018). In general, KDNA maxicircles encode func-
tional homologues of mitochondrial genes which are flanked by non-coding regions that
diverge significantly in sequence and size amongst trypanosome species (Simpson et al,
1987; Sloof et al., 1992; Westenberger et al., 2006). One of the unusual features of the kineto-
plast is that most of the maxicircle gene transcripts are not mature and do not encode func-
tional open reading frames. These encrypted transcripts become translatable only after
post-transcriptional processing, namely RNA editing, that inserts and deletes uridine residues

https://doi.org/10.1017/S0031182022001019 Published online by Cambridge University Press


https://www.cambridge.org/par
https://doi.org/10.1017/S0031182022001019
https://doi.org/10.1017/S0031182022001019
mailto:lsslzr@mail.sysu.edu.cn
mailto:laidehua@mail.sysu.edu.cn
https://orcid.org/0000-0001-9954-7230
https://orcid.org/0000-0002-3608-0175
https://orcid.org/0000-0002-4709-1507
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0031182022001019&domain=pdf
https://doi.org/10.1017/S0031182022001019

Parasitology

(Stuart et al, 1997, 2005). RNA editing was first discovered in
cytochrome oxidase subunit 2 (COII) gene of Trypanosoma brucei
and Crithidia fasciculata, whose mRNA transcripts have 4 uridine
insertions (Benne et al., 1986). The minicircles, recognized by a
conserved motif of 12 nucleotides (GGGGTTGGTGTA) (Ray,
1989), encode guide RNA (gRNA) molecules that accurately pos-
ition the editing machinery to ensure correct maxicircle tran-
scripts are produced (Blum and Simpson, 1990).

Here, using PacBio and Illumina sequencing reads, the
complete maxicircle sequence of T. musculi was assembled and
annotated, including the repetitive non-coding variable region.
Comparative analyses indicate that the gene organization and
distribution in T. musculi maxicircles are highly conserved with
T. brucei, T. cruzi and T. lewisi. The maxicircle KDNA gene organ-
ization of T. musculi and comparison with its species relatives was
also presented. In addition, the genetic information on the diver-
gent region (DR) II reveals that it may provide a good marker for
molecular diagnosis and molecular epidemiological investigation
of trypanosomes.

Materials and methods

Parasites, ultrastructure, kDNA extraction and restriction
endonuclease digestion

Trypanosoma musculi Partinico II strain was gifted by Professor
Philippe Vincendeau of Université de Bordeaux, France, which
was originally obtained from the London School of Hygiene
and Tropical Medicine (Krampitz, 1969). T. musculi Particino 2,
Lincicome and CDC strains were purchased from American
Type Culture Collection (ATCC). Trypanosomes were harvested
from the blood of infected mice and cultured in RPMI-1640
medium at 37°C supplemented with 10% fetal bovine serum
(FBS) and a feeder layer of mouse macrophages as modified
from Behr (Behr et al, 1990). Protocols for the use of mice
were approved by the Institutional Review Board for Animal
Care at Sun Yat-Sen University under license 31672276. For
transmission electron microscopy, trypanosome specimens were
prepared according to the method of Bozzola (Bozzola, 2014),
and observed by using the JEM-100CX-II microscope system.
For T. musculi DNA preparations, total DNA was purified using
a phenol-chloroform method and kDNA was extracted by sucrose
gradient ultracentrifugation according to previously published
methods (Pérez-Morga and Englund, 1993). The isolated kDNA
network was visualized on a 1% agarose gel and analysed with
restriction enzymes HindIIl, EcoRI, BamHI, Rsal, Haelll and
Taql (New England Biolabs, USA). A computer-simulated restric-
tion enzyme digestion map of T. musculi maxicircle was generated
using the Dnaman 9.0 software (Lynnon Corporation, Quebec,
Canada) based on the sequence assembled in this study.

Immunofluorescence assay

Trypanosome cells (1 x 107 cells mL™") were centrifuged for 5 min
at 3000 x g and washed twice in phosphate-buffered saline (PBS).
The cells were then transferred onto clean slides, which were left
to air-dry in a fume hood, following fixation by methanol for
10 min. Dried slides were rehydrated and washed twice in PBS
for 5min at room temperature. The slides were then incubated
with primary mAb-anti-L8C4 (1:800) followed by incubation with
Cy3-Conjugated goat anti-mouse IgG (A10521, Thermo Fisher)
(1:400) followed by counterstaining consisting of 1x PBS with
3 ug mL™! 4,6-diamidino-2-phenylindole (DAPI) (Kohl et al,
1999). They were then photographed using a Leica fluorescence
microscope.
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Deep sequencing, sequence assembly and PCR verification

To generate a high-quality maxicircle assembly, a KDNA Illumina
library was constructed and sequenced using Illumina HiSeq2000
technology commercially (Novogene, China). Also, a PacBio
Sequel library was constructed using total DNA and sequenced
commercially (Annoroad, China). The Illumina reads were
checked for quality and trimmed using fastqc (http:/www.bio-
informatics.babraham.ac.uk/projects/fastqc/) and Trimmomatic
(Bolger et al., 2014). Canu 2.0 software was used in de novo assembly
of the T. musculi genome with parameter ‘genomeSize =30 m
minReadLength = 600 minOverlapLength = 300 corOutCoverage =
100 corMinCoverage =2 correctedErrorRate =0.035" using the
PacBio reads (Koren et al, 2017). Then, the genome contigs,
assembled from PacBio reads, were polished using the Illumina
reads by Pilon software to improve genome assembly (Walker et al.,
2014). Finally, the assembly sequences were aligned, with BLAST,
to a previously obtained T. lewisi maxicircle assembly (KR072974)
and redundant overlap deleted by MEGA 7.0 to yield the complete
maxicircle sequence (Camacho et al, 2009; Kumar ef al., 2016). To
obtain T. b. rhodesiense, Trypanosoma grayi and T. lewisi complete
maxicircle genomes, processed reads were assembled from WGS
data (SRX3199071, SRX620256 and SRR11918574, respectively)
freely available on NCBI using SPAdes 3.12.0 with parameter
‘--plasmid --careful -t 16 -m 200’ (Antipov et al., 2016). Then, align-
ment and trimming were also carried out as completed for T. musculi.
The sequences of the T. musculi maxicircle coding region were
also corrected by PCR verification using 12 pairs of primers.
Meanwhile, MURF2, ND4 and ND5 genes were also amplified in
3 additional T. musculi strains (T. musculi Particino 2, Lincicome
and CDC). Primers used are summarized in Table S1.

Gene annotation

Annotation of T. musculi maxicircle coding regions was per-
formed by comparison with T. brucei (EATRO 427, M94286.1),
T. cruzi (CL, DQ343645.1) and T. lewisi (CPO02, KR072974.1)
manually using BLAST. Patterns of RNA editing of T. musculi
maxicircle genes were predicted according to GC% and RNA edit-
ing pattern of T. lewisi (Li et al., 2020).

Data analysis

Dotplot graphs of the T. musculi maxicircle sequence plotted
against itself and 3 other Trypanosomatidae species were gener-
ated by YASS software with default parameter (allow 10% indels,
25% mutations and e-value <1x107° in alignment) (Noé and
Kucherov, 2005). GC percentage, assembly coverage and hom-
ology search algorithms were drawn using Circos v0.69
(Krzywinski et al, 2009). Regions (>300bp) with sufficient
sequence identity were plotted as coloured ribbons, denoting
the percentage of sequence identity. BioEdit software was used
to create alignments and calculate nucleotide percentage identity
matrices among different Trypanosomatidae species (Hall, 1999).
Curation of the palindromes and inserted sequence homology
analysis was performed using BLAST. MEME software was used
to identify motifs and generate LOGO diagrams in the DR I
region (Bailey et al., 2015).

Phylogenetic analysis

The entire coding region of the kinetoplast maxicircles were
aligned using ClustalO 1.2.4 (Sievers et al, 2011) and the align-
ment was trimmed using Gblocks 0.91b with option ‘~t=d
-b4 =5 -b5 =h’ (Talavera and Castresana, 2007). Maximum like-
lihood trees were generated by RAXML 8.2.12 with 1000 bootstrap
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replicates (Stamatakis, 2014). Neighbour joining and Minimum
evolution trees were performed using MEGA 7.0 including 1000
bootstrap pseudo-replicates. Maxicircle genome sequences used
in this work are summarized in Table S2.

Results

Morphology, ultrastructure, kDNA isolation and restriction
enzyme digestion

In culture, T. musculi cells tend to attach to each other and form a
rosette-like pattern (Fig. 1A), via their flagella, as determined
using specific antibodies against the paraflagellar rod (Fig. 1C).
At this stage, T. musculi is at the epimastigote stage in which
the kinetoplast lies closely beside the nucleus. Ultrastructural ana-
lysis showed that the kinetoplast DNA disc was 660 + 99 nm in
length and 152 + 26 nm in width (n = 50) (Fig. 1B), which is simi-
lar to closely related species such as T. lewisi (Lin et al., 2015).
A total of 10" T. musculi were harvested and high-quality
kDNA was obtained with a 260/280 absorbance ratio of 1.80.
Kinetoplast DNA was found to be intact and free from contamin-
ation with nuclear or host DNAs as judged by agarose electro-
phoresis (Fig. S1A). Meanwhile, KkDNA was incubated with
endonucleases of HindIII, EcoRI, BamHI, Rsal, Haelll and Tagl
and a computer-simulated restriction enzyme digestion map
was generated based on the maxicircle assembly which is
described later (Figs S1B-C). Some bands smaller than 4.0 kb
did not correspond to the computed simulated patterns of T. mus-
culi maxicircle, which implies the presence of a high number of
possible heterogeneous minicircles in the KDNA of T. musculi.
The bands consistently observed in Fig. SIB at ~1.3kb suggest
the presence of minicircles of a similar size as reported in T. lewisi
(Li et al, 2020). Patterns that are free of KDNA in the wells were

Ju-Feng Wang et al.

achieved using Haelll and TaqI and indicated a high frequency of
cleavage of kDNA minicircles. Most likely, the bands with
molecular sizes of >4 kb correlated with the computer-simulated
patterns (Fig. S1C), are derived from kDNA maxicircles, except
a band (~5kb) in Rsal lane, a potential result of incomplete
digestion. Moreover, the presence of 4 large molecular weight
bands, in the EcoRI digestion, with sizes of >10, ~7, ~6 and
~4 kb, indicated that the full-size KDNA maxicircle is larger
than the sum of 27 kb.

Assembly and annotation of the kDNA maxicircle

Genomic DNA from the T. musculi Partinico II strain was
sequenced on PacBio Sequel and Illumina platforms and contigs
were assembled with the long-read assembler Canu 2.0 and cor-
rected with the Illumina reads in Pilon. Then, a contig in length
of 38 603 bp was identified in a BLAST search against the T. lewisi
maxicircle (KR072974). This had 2 overlapping regions of 4002
bp (covering positions from —3341 or 31266 to 661 bp) at each
end (Fig. S2) confirming completion of the circle. Meanwhile,
the maxicircle sequence has also been confirmed using 5 overlap-
ping raw reads from the PacBio library (Fig. S2) and the maxicir-
cle coding region sequences were also further refined using 12
pairs of primers and Sanger sequencing validation (Fig. S3).
Finally, a 34 606 bp-long complete T. musculi maxicircle sequence
was obtained, with an average coverage of 13.2X from Illumina
reads and 268X from PacBio reads, including the coding regions
(16 975 bp) and the DRs (17 631 bp). The overall GC content of
the maxicircle was 23.7%, with 27.5% in coding regions and
20.1% in DRs (Fig. 2).

Twenty genes were annotated in the T. musculi maxicircle by
comparison with known Trypanosomatidae species (T. brucei,

Fig. 1. Morphology and ultrastructure of T. musculi. (A) Giemsa staining of the epimastigote form of T. musculi from in vitro culture (scale bar 5um). Flagellum (F),
nucleus (N) and kinetoplast (K) are indicated. (B) Electron micrograph of the T. musculi trypomastigote form (scale bar 200 nm). Basal body (BB), flagellum (F),
flagellar pocket (FP) and kinetoplast (K) are indicated. (C) Immunofluorescence analysis (IFA) shows epimastigote-like forms of T. musculi from in vitro cultivation
with antibody L8C4 detecting paraflagellar rods (green) and DAPI detecting kinetoplast DNA and nuclear DNA (blue) (scale bars 5um).
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Fig. 2. Circos plot of the T. musculi maxicircle. The outer track indicates the gene arrangements and gene distribution; the middle track represents the GC content
(orange for above-average and green for below-average) and the inner track is a histogram of assembly coverage.

T. cruzi and T. lewisi), as listed in Table 1. All genes were found
to be syntenic with the maxicircles of the comparator
Trypanosomatidae species T. brucei, T. cruzi and T. lewisi
(Fig. 2, Fig. S4). A sequence homology analysis (Fig. S5), showed
that the T. musculi maxicircle has 92.7% identity to T. lewisi (blue
ribbons). The ribbons change to yellow when compared with
T. cruzi (78.0% identity) and T. brucei (73.9% identity), largely
due to the low similarity in extensively edited genes (Table 2).
Moreover, 3 breaks shown as discontinuations of lines or
ribbons (Figs S4 and S5) appear in T. musculi genes
MURF2, ND5 and ND4, with 2 sections (630 and 1278 bp)
inserted and 1 section deleted (281bp), respectively (Fig. 3A
and Table 1).

The confirmation of mutations in MURF2, ND5 and ND4 was
performed with 3 other strains (T. musculi Particino 2, Lincicome
and CDC). PCR results showed that the insertion in MURF2 is
specific to T. musculi Partinico II strain and not present in
other 3 strains, while the insertion in ND5 and the deletion in
ND4 exist in all tested strains (Fig. 3B). Furthermore, these inser-
tions and the deletion have also been confirmed by inspecting
alignments of the raw reads mapped back to the maxicircle assem-
bly. Alignment analysis of insertions showed that a fragment (150
bp) at the 5" end region of MURF2 insertion sequence is homolo-
gous to both the 5 end and middle regions of ND5 insertion
sequence (Fig. 3C). Moreover, those sequences in MURF2 and
ND5, respectively, share 95.3, 96 and 95.3% identity with con-
served regions of T. lewisi minicircles (MN447336.1,
MN447339.1 and MN447386.1), and these 150 bp homologous
regions cover 3 conserved sequence blocks (CSBs) of minicircles,
indicating a minicircle origin of both insertions in MURF2 and
ND5. Together with the data shown in Fig. S1 and Fig. 3C, it
seems that, unsurprisingly, T. musculi has a similar size and struc-
ture to minicircles reported for T. lewisi (Li et al., 2020), ie.
~1.3-kb category I minicircles that have 2 conserved regions
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with CSB1-3 motifs (and perhaps also ~1.5kb category II mini-
circles with only 1 conserved region; such a band is also apparent
in Fig. S1B). It therefore appears that the ~1.3 kb ND5 insertion
corresponds to a (degenerated) category I minicircle and the
630bp MURF2 insertion corresponds to half a category I
minicircle.

RNA editing patterns of the maxicircle have been well studied
in T. brucei and T. lewisi (Gerasimov et al., 2018; Li et al., 2020)
and they are well correlated with GC%. The GC% pattern in T.
musculi is fairly similar to T. brucei and T. lewisi. However, unex-
pectedly high GC contents were noticed in MURF2 and ND5
(Fig. S6), and they are precisely attributed to the insertions in
both genes. In another region, COII and its cis-acting gRNA
were identified (Table 1).

The whole coding region of the maxicircle is considered as a
valuable  marker for  phylogenetic  relationships  of
Trypanosomatidae species (Kaufer et al., 2019). To further con-
firm the evolutionary relationship of T. musculi and other
Trypanosomatidae species, sequences corresponding to whole
coding region of T. musculi were aligned with the sequences
from other Trypanosomatidae species to infer phylogenetic rela-
tionships. In the tree, T. musculi and T. lewisi are identified as
belonging to the same subgenus Herpetosoma, clustered with
the sister groups of Schizotrypanum and Aneza (Fig. 4).

Sequence analysis of the maxicircle DRs

A common theme of the maxicircle DR is the presence of various
repeat arrays, which is also the case for T. musculi. The full map of
DR of T. musculi was built by the YASS and Circos packages to
identify homologous regions and to show global patterns of DR
organization (Fig. 5A and B). Dot-plot analyses of the DR showed
2 typical sections (I, II), flanking either the 12S rRNA or ND5. DR
I is in a length of about 1.6 kb, which is composed of short and
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Table 1. Gene positions and lengths in the maxicircle of T. musculi

Ju-Feng Wang et al.

Gene RNA editing T. musculi position T. musculi length T. lewisi length T. cruzi length T. brucei length
12S rRNA = 1-1164 1164 1168 1161 1149
9S rRNA - 1210-1818 609 608 608 611
ND8 Extensive 1859-2130 272 285 279 266
ND9? Extensive 2195-2536 342 350 338 321
us3m?® None 2575-2823 249 241 264 234
ND7 Extensive 2874-3647 74 771 755 702
coil Extensive 3721-4135 415 414 424 439
Cyb Minor 4222-5301 1080 1080 1080 1080
ATPase6 Extensive 5342-5644 303 304 336 369
ND2 None 5687-7038 1352 1341 1341 1237
CR3® Extensive 6979-7111 ~133 ~123 ~119 /
NDI ® None 7129-8112 984 942 942 957
coil Minor 8111-8739 629 629 629 626
COIl gRNA - 8746-8758 - - - -
MURF2 Minor 8767-10439 1673 1053 1056 1041
(Insertion) - 8897-9526 630 - - -
coil? None 10429-12 081 1653 1650 1650 1734
CR#® Extensive 12102-12 319 218 212 207 185
ND4 © None 12 428-13 464 1037 1314 1314 1311
ND3 *® Extensive 13453-13 636 184 187 193 256
RPS12 Extensive 13711-13908 198 190 191 172
ND5 None 13929-16 975 3047 1773 1770 1770
(Insertion) - 14 923-16 200 1278 - - -

Gene positions are shown relative to the start of the 125 rRNA.

“These genes are encoded on the reverse strand.
PCR3 2 end positions from T. musculi, T. lewisi, T. cruzi and T. brucei are uncertain.
A fragment deletion is found in the T. musculi ND4 gene.

highly repetitive units of about 107 bp, with 2 motifs being found
(Fig. 5C). While DRII is in a length of about 14 kb, it consists of a
series of tandem elements, namely «, f3, ¥, o, and short version
B,y (Fig. S7).

Palindromes are a typical structure already found in T. cruzi,
T. lewisi and T. rangeli. Based on identifying homologues using
BLAST, 4 AT-rich conserved palindromes showed up in the
DRII (Fig. 5B and D). Palindromes I and IV have the same perfect
palindrome structure, 34 bp long, and are located at 19 898 and
28 055 bp. While palindromes II and III have 1 T-to-A substitu-
tion, they are located at 23 648 and 26 061 bp. A further BLAST
analysis with the maxicircles of T. b. brucei (Lister 427,
MN904526.1), T. b. equiperdum (STIB 818, EU185799.1),
Trypanosoma congolense (IL3000, GCA_003013265.1) and

Trypanosoma vivax (Y486, MT090068.1) enabled the identification
of similar palindromes in these species (Fig. 5D), only 1 of each spe-
cies is shown for illustrative purposes. These palindromes are highly
conserved and contain an A;C element.

Unlike highly conserved coding regions, DRs show species
specificity among trypanosomes (Fig. S5). It displays about 70%
sequence identity in DRI between the T. musculi and T. lewisi
maxicircle, while there are only some similar sequences
(~400 bp) in DRII. Moreover, there are no other homologous
sequences between T. musculi and the other 2 species (T. cruzi
and T. brucei) in the DRs (Fig. S5). Therefore, these results sug-
gest that DRII is highly divergent among trypanosomes, which
may have the potential to be a good molecular marker for distin-
guishing T. musculi from related species.

Table 2. Comparison of the average percentage identities of T. musculi kDNA maxicircle with those from the other 3 Trypanosomatidae species

Comparison of T. musculi Whole coding region 5'-edited genes Extensively edited genes rRNAs Non-edited genes
vs T. lewisi 92.7% 95.8% 92.4% 95.4% 92.2%
vs T. cruzi 78.0% 84.5% 73.7% 84.0% 78.4%
vs T. brucei 73.9% 84.4% 60.2% 80.5% 74.8%

Entire coding region: starting from 5'end of 125 rRNA to 3’ end of ND5.

5'-edited genes: Cyb, COIl.

Extensively edited genes: ND8, ND9, ND7, COIll, ATPase6, CR3, CR4, ND3, RPS12.
Non-edited genes: uS3m, ND2, ND1, COI.

MURF2, ND4 and ND5 genes are not calculated in T. musculi (5'-edited genes or non-edited genes) due to insertions/deletion.
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ND4
M1234N

MURF2
M1 234N

ND5
M 123 4N

1 CSB-1 50
T. lewisi ATTTTAGTCGCAAAGTTCGATTTTGGGAGGGGCGTTCAACTTTTTGGGCG
MURF2 ATTTTAGTCGCAAAGTTTAATTTTGGGAGGGGCGTTCAACTTTTTGGGCG
ND5-1  ATTTTAGTCGCAAAGTTTGATTTTGGGAGGGGCGTTCAACTTTTTGGGCG

. ND5-2 ATTTTAGTCGCAAAGATTGATTTTGGGAGGTGCGTTCAACTTTTTGGGCG

51 _CSB-II_ 100
T. lewisi GAAATTCATGCATGTCECCCGTATGTTTTTTGGCCAAAAATGGTGATTTT
MURF2 GAAATTCATGCATGTCECCCEGTGEGTTTTTTGGCCATTTTTGGTGATTTT
ND5-1 GAAATTCATGCATGTCCCCTGTATGTTTTTTGGTCATTTTTGACGATTTT
ND5-2  AAAATTTATGCATGTCECCCEGTATGTTTTTTCTCGATTTTTGACATTTTT

101 __CSB-III__ 150
T. lewisi TCACGAGGTGGGACATCAATGGGGGTTGGTGTAATATAGTCAGGGTGGGA
MURF2 TCACGAGGTGGGACATCAATGGGGGT--ATGTAATATAGTCAGGGTGGGG
ND5-1  -CACGAGGTGGGACATCAAAGGGGGTTAATGTAATATAGTCAGGGTGGAA
ND5-2  TCACGAGGTGGGACATCAATGGGGGTTGGIGTAATATAGTCTGGGTGGGA

Fig. 3. Analysis of insertions or deletions in the T. musculi maxicircle genes MURF2, ND5 and ND4. (A) A diagram of insertions or deletions in the T. musculi maxicircle
genes MURF2 (630 bp insertion), ND5 (1278 bp insertion) and ND4 (281 bp deletion). Insertion regions are labelled as grey boxes. (B) PCR amplification of the
T. musculi MURF2, ND5 and ND4 genes from T. musculi Partinico Il (1), T. musculi Particino 2 (2), T. musculi Lincicome (3), T. musculi CDC (4), and fragments are analysed
on a 1.0% agarose gel. M, DL2000 marker (Takara, China). N, negative control. The positions of primers are shown in (A) and Table S1. (C) Alignment of the conserved
regions from the T. lewisi minicircle (MN447335.1) and insertion sequences of MURF2 and ND5. Conserved sequence blocks (CSB-I, Il, Il) are highlighted in grey.

Discussion

other Trypanosomatidae species were also undertaken. The size of

In this study, a sequence of the 34 606 bp kDNA maxicircle gen-
ome from T. musculi was reported and an in-depth investigation
of T. musculi maxicircle sequences and comparative analysis with

the total coding region of the T. musculi KDNA maxicircle is
16 975bp with 2 pronounced insertions in T. musculi MURF2
(630bp), ND5 (1278bp) and 1 deleted fragment of ND4

100/100/100 T cruzi CL
100/100/100 T. cruzi TCC
10071007100 T. cruzi Dm28c Schizotrypanum
160:100/100 T. cruzi Esmeraldo
100/100/100 T. cruzi marinkellei
00/100/58 T. conorhini 025E A
. neza
100/100/100 T. rangeli SC58
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Fig. 4. Phylogenetic analysis of the Trypanosomatidae species using the maxicircle coding regions. Phylogenetic tree is performed based on Maximum likelihood
/Neighbour joining/Minimum evolution methods with 1000 bootstrap replicates with the respective bootstrap confidences indicated at branch points. Branch
lengths are indicated by the black line and the scale bar represents the number of nucleotide substitutions per site.
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Fig. 5. Sequence analyses of the DR of the T. musculi maxicircle. (A) Dot-plot analysis of the T. musculi maxicircle, the main diagonal line represents the sequence’s
alignment with itself and the lines about the main diagonal represent repetitive patterns within the maxicircle sequence. (B) Circos plot of the DR of T. musculi
maxicircle, the outer track indicates gene arrangement and gene distribution. Ribbons inside the circle connect homologous regions, colour represents per cent of
sequence identity in the range (70%; 100%) in the order yellow, green and blue. Four palindromes are shown with red arrows. (C) The repetitive sequences from DR
| are aligned and 2 motifs predicted by MEME are indicated with a black line. LOGO diagrams show nucleotides at a given position of each motif and relative
frequency represented by height. (D) The palindromes from the DR of the Trypanosomatidae species are shown with the palindromic bases highlighted.

(281 bp) (Fig. 3A). It is different from T. brucei, T. cruzi and
T. lewisi, in which their sizes are around 15000 bp length. The
2 insertions in T. musculi maxicircle genes correspond either to
a partial minicircle (630 bp) containing one of the CSBs or to a
complete minicircle (1278 bp) containing 2 CSBs. Such insertions
have not been observed in other Trypanosomatidae species except
Leishmania donovani (1S LdBob strain) and T. cruzi (TcV strain)
where the insertions were considered to be derived from minicir-
cles due to CSBs. Therefore, the insertions were also thought to be
a consequence of gene translocation, from minicircles to maxicir-
cles (Nebohdcova et al., 2009; Berna et al., 2021). Mostly gRNA
genes are encoded in minicircles, but some gRNA genes, such
as gMurf2 (30-79) and gNd7 (216-252) (Koslowsky et al,
2014; Li et al., 2020), were reported to be encoded in maxicircles
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in T. brucei and T. lewisi, respectively. Moreover, 7 maxicircle-
encoded gRNAs were identical in L. tarentolae LEM125 and
UC strains, which mediate the editing of Cyb, MURF2, A6 and
ND7 transcripts (Simpson et al, 2015). It can be assumed that
the insertions deriving from minicircles may also possibly encode
gRNA genes for RNA editing, therefore these may be an inter-
mediate stage indicating that maxicircle encoding gRNA genes
have originated from minicircles.

Maxicircle gene deletions are only rarely found in
Trypanosomatidae species, such as similar deletions seen in
ND4 of the T. cruzi Esmeraldo strain (Westenberger et al.,
2006), and ND7 gene from asymptomatic T. cruzi isolates
(Baptista et al., 2006). The effect of these insertions and deletions
on the parasite life cycle is still unclear. ND5 and ND4 are known
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as non-edited genes in other known Trypanosomatidae species
and it is inconceivable that these large insertions/deletions
could be corrected by U-insertion/deletion editing of the
mRNAs. Nevertheless, all of the above insertions/deletions are
found in ND4, ND5 as well as ND7 genes, and these genes all
encode subunits of the mitochondrial respiratory chain
NADH-dehydrogenase (Complex I). Since the presence of a func-
tional Complex I in Trypanosomatidae species has long been
debated (Opperdoes and Michels, 2008; Duarte and Tomas,
2014). Deletions in KDNA encoding Complex I subunits were
identified in some strains of T. cruzi that seem no impact in mito-
chondrial bioenergetics, ROS production or redox state in this
parasite (César Carranza et al., 2009). Although the presence of
Complex I and its involvement in respiration has been clearly
demonstrated in T. brucei, it appears to be non-essential for pro-
cyclic forms (Beattie and Howton, 1996; Verner et al., 2011; Surve
et al., 2012). The lack of editing in several Complex I subunits in
L. tarentolae UC strain also suggests that it may not be essential
(Simpson et al., 2015). Therefore, the possibility that the role of
Complex I subunits is less important in T. musculi was favoured
with the presence of insertions/deletions in ND5 and ND4. In
addition, another insertion occurs in MURF2, whose function
remains uncertain but hypothesis could be risen. MURF2 might
be a new component in Complex I. The insertion in MURF2
may be a recent event as it is only found in Partinico II strain,
but not other 3 strains of T. musculi. The loss of conservation
in MURF2 could probably be attributed to the loss of function
of Complex I components and consequently on selection pres-
sures on the gene. To verify this hypothesis, a highly sensitive
and accurate identification of the functioning of Complex I in
Trypanosomatidae species would be interesting to investigate.

The DR of the kinetoplast maxicircle was initially described as
a variable and non-coding region and the DR structure seemed to
be drastically different in various species (Borst et al., 1980, 1982;
Stuart and Gelvin, 1982; Muhich et al., 1983; Maslov et al., 1984).
Therefore, the function of the DRs remains as an enigma. Studies
on T. brucei, Crithidia oncopelti, Leptomonas collosoma and
Leishmania seymouri revealed some CSBs-like sequences in
their maxicircle DRs. As CSBs are essential for minicircle replica-
tion (Ryan et al., 1988), CSBs-like sequences may play a similar
role in maxicircle replication (Gorbat et al., 1990; Sloof et al.,
1992; Myler et al., 1993; Flegontov et al., 2006). However, CSB-I
or I1I-like regions were not identified in T. musculi DRs, instead,
only a CSB-II-like region (CCCGTGT) is located at 19 817 bp.
CSB-I or III-like regions were also not found in DRs of the closely
related T. lewisi, suggesting a CSB-independent maxicircle replica-
tion mechanism exists in these species. Therefore, although
CSB-like sequences were present in the insertions of T. musculi
MURF2 and ND5, it is not clear whether they are also involved
in maxicircle replication.

It has been demonstrated that hairpins or cruciform structures
(palindromes) are frequently associated with promoters and may
also act as protein-binding sites (Wadkins, 2000). Palindromes
with an AsC-element in DRs are suggested as recognition sites
for binding of transcription factors or transcription initiation
(Vasil’eva et al., 2004; Flegontov et al., 2006). Some palindromes
also have been identified in T. musculi as well as in a variety of
other Trypanosomatidae species, where each consists of 1
AsC-element. It may be speculated that these palindromes play
a significant role in Trypanosomatidae species maxicircles, judged
by their high degree of sequence conservation in the evolution of
Kinetoplastida species.

The trypanosome maxicircle presents itself as a complex evo-
lutionary system, and it may be an excellent taxonomic marker in
phylogenetic analysis. The coding region of the maxicircle in
phylogenetic analyses provides a robust evolutionary insight
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into the relationships within Trypanosomatidae species
(Lin et al., 2015; Kaufer et al., 2019; Kay et al., 2020). A close
affinity between T. musculi and T. lewisi in Herpetosoma was
also supported, which clustered with the sister groups of
Schizotrypanum and Aneza. Unlike the highly conserved coding
region, the DRs of maxicircle, especially DRII sequence,
was found to be significantly divergent and species-specific
(Kay et al., 2020). The homologies in DRII between closely related
species, e.g., T. musculi and T. lewisi, phylogenetic clades of T.
cruzi, are limited (Figs S5 and S8). Such a characteristic of DRII
provides an opportunity for developing a valuable molecular
marker for distinguishing closely related species and subspecies.
Actually, a preliminary test on 3 T. musculi strains and 6 T. lewisi
strains revealed a consistent amplification of DRII fragments,
which could enable them to be distinguished from each other
and 13 strains of other trypanosomes (Hong et al., 2017).

In general, this study reports the first detailed description and
analysis of the KkDNA maxicircle genome of T. musculi and reveals
a relatively high overall conservation of gene content and synteny
with other trypanosome species. Furthermore, the divergence of
DRII suggests its potential as a valuable marker for distinguishing
these evolutionarily related species.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/50031182022001019
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