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We consider a queueing loss system with heterogeneous skill based servers with arbitrary
distributions. We assume Poisson arrivals, with each arrival having a vector indicating
which of the servers are eligible to serve it. Arrivals can only be assigned to a server that
is both idle and eligible. We assume arrivals are assigned to the idle eligible server that has
been idle the longest and derive, up to a multiplicative constant, the limiting distribution
for this system. We show that the limiting probabilities of the ordered list of idle servers
depend on the service time distributions only through their means. Moreover, conditional
on the ordered list of idle servers, the remaining service times of the busy servers are
independent and have their respective equilibrium service distributions. We also provide
an algorithm using Gibbs sampler Markov Chain Monte Carlo method for estimating the
limiting probabilities and other desired quantities of this system.

1. INTRODUCTION

In [2], Adan and Weiss introduced a queueing loss model with n servers having arbitrary
service distributions, Gi, i = 1, . . . , n. In their model, customers arrive according to a Poisson
process and arrivals are discriminating, in the sense that each has an eligibility vector
(X1, . . . , Xn) with Xi = 1 if server i is eligible to serve that customer and Xi = 0 if ineligible,
i = 1, . . . , n. The vectors of successive arrivals are independent and identically distributed.
An arrival finding all its eligible servers busy is lost, otherwise the arrival is assigned to
idle eligible server that has been idle the longest. Using a supplementary variable approach
to make their model Markovian, Adan and Weiss derived the limiting distribution for this
model, and in doing so showed that the limiting distribution of the ordered list of idle
servers depend on the service distributions only through their means. In this paper, we
obtain results of [2] using the method of stages. This method considers the service time at
each server as a weighted average of different gamma distributions with the same rate. Our
approach will be to conjecture the reverse chain, and then show the conjecture is correct by
finding, up to a multiplicative constant, the limiting probabilities of the ordered list of idle
servers. We also show that given the set of busy servers, the remaining service times are
independent with their respective equilibrium distributions (This result is only implicitly
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noted in Adan and Weiss [2].) In practice, when n is large finding the limiting probabilities
or any other quantity of interest becomes computationally intractable. Therefore, we will
provide an algorithm for simulating this model using the Gibbs Sampler method to estimate
these desired quantities.

Recently, Haji and Ross [4] studied a similar model with the additional assumption that
a random eligibility vector (X1, . . . , Xn) is exchangeable, but allowed for a general class of
operating policies which they refer to as “idle time ordering policies”. They showed that all
idle time-ordering policies resulted in the same limiting probabilities for the ordered list of
idle servers which depend on the service distributions only through their means. In addition,
given the set of idle servers, I = {i1, . . . , ik}, all k! possible orderings are equally likely and
the remaining service times of the busy servers are independent and have their respective
equilibrium service distributions.

Servers that can only serve certain arrivals are refereed to as “skill-based servers”. Other
papers concerned with skill-based servers are Whitt [9], Adan, Hurkens and Weiss [1], Ross
[5], Talreja et al. [6], and Visschers, Adan, and Weiss [7].

2. MODEL ANALYSIS

Define the “idle server vector” as 0 if there are currently no idle servers, or as i1, . . . , ik if
there are currently k servers idle, where i1 has been idle the longest, i2 the second longest,
and so on. Let Pj:i1,...,ik

be the probability that an arrival will be assigned to server ij given
that the idle server vector is i1, . . . , ik. That is,

Pj:i1,...,ik
= P

(
j−1∑
m=1

Xim
= 0, Xij

= 1

)
.

Let β0 = 0, and for k > 0 let βi1,...,ik
= P (

∑k
m=1 Xim

> 0); hence, βi1,...,ik
is the prob-

ability that an arrival finding the idle server vector i1, . . . , ik will be served. Note that∑k
j=1 Pj:i1,...,ik

= βi1,...,ik
and

Pj:i1,...,ik
= βi1,...,ij

− βi1,...,ij−1 .

Example 1: If we assume that X1, . . . , Xn are independent and Xi = 1 with probability pi,
i = 1, . . . , n, then βi1,...,ik

= 1 −∏k
m=1(1 − pim

) and Pj:i1,...,ik
= pij

∏j−1
m=1(1 − pim

).
A random variable X is called general Erlang, GE(N,μ), if

X =
N∑

i=1

Wi

where Wi, i = 1, 2, 3, . . ., are iid exponential random variables with rate μ and N is a positive
integer valued random variable that is independent of the Wi’s. Let Ge be the equilibrium
distribution of X.

Lemma 1: Ge is the distribution function of a GE(Ne, μ) random variable, where

P (Ne = j) = P (N ≥ j)/E(N). (1)

Proof: See Haji and Ross [4]. �
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In our model, we suppose that the service distribution of server i is general Erlang
GE(Ni, μi), i = 1, . . . , n, and we analyze our model as a continuous time Markov chain.
To do so, we define the “state vector” as (0, r) with r = (r1, . . . , rn), if there are currently
no idle servers and server i has ri remaining exponential stages with rate μi in order to
complete its service; or as (i1, . . . , ik, r), if i1, . . . , ik is the current idle server vector and
each server i has ri exponential stages to complete, where ri = 0 for all i ∈ {i1, . . . , ik}.

Proposition 1: For general Erlang service times, GE(Ni, μi) i = 1, . . . , n, where Ni is
a random variable with pi(j) = P (Ni = j), the stationary probability of the state vector
(i1, . . . , ik, r) has the following form:

P (i1, . . . , ik, r) =
μik

· · ·μi1

λkβi1 · · ·βi1,...,ik

P (0,1)
∏

m/∈{i1,...,ik}
P (Nm ≥ rm),

where P (0,1) is such that

P (0,1)(1 +
∑

(i1,...,ik,r)

μik
· · ·μi1

λkβi1 · · ·βi1,...,ik

∏
m/∈{i1,...,ik}

P (Nm ≥ rm)) = 1.

Proof: Using longest idle rule, Pj:i1,...,ik
is the probability that the idle time-ordering

policy assigns an arrival to server ij when the state is (i1, . . . , ik, r). For states

x = (i1, . . . , ik : r1, . . . , rn),

x∗ = (i1, . . . , ik : r1, . . . , rj − 1, . . . , rn),

x+ = (i1, . . . , ik, ik+1 : r1, . . . , rik+1−1, 0, rik+1+1, . . . , rn),

x− = (i1, . . . , ij−1, ij+1, . . . , ik : r1, . . . , rij−1, s, rij+1, . . . , rn),

the infinitesimal rates of the resultant continuous time Markov chain are

qx,x∗ = μj , for rj > 1,

qx,x+ = μik+1 , for rik+1 = 1,

qx,x− = λPj:i1,...,ik
pij

(s).

We now make the following conjecture about the reverse process.

(a) It is a queueing model with n servers all of whom are eligible to serve any arriving
customer.

(b) The state is x = (i1, . . . , ik : r1, . . . , rn) if (i1, . . . , ik) is the current idle server vector;
rj is the current stage of server j if that server is busy, and rj = 0 if j is idle.

(c) An arrival to server j begins in stage 1; and the time it takes server j to complete
a stage is exponential with rate μj , j = 1, . . . , n.

(d) Customer at server j leaves the system upon completion of stage m with probability
λj(m) = pj(m)∑

k≥m pj(k) ; otherwise it goes to stage m + 1 with probability λ̄j(m) =

1 − λj(m).
(e) The arrival rate of customers when the order list of idle servers is i1, . . . , ik is

λβi1,...,ik
, and the arriving customer is assigned to server ik.
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(f) If server r becomes idle when the idle server vector is i1, . . . , ik then the new idle
server vector becomes i1, . . . , ij−1, r, ij , . . . , ik with probability

Pj:i1,...,ij−1,r,ij ,...,ik
βi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,ij−1βi1,...,ij−1,rβi1,...,ij−1,r,ij+1 · · ·βi1,...,ij−1,r,ij+1,...,ik

.

With x,x∗,x+ and x− as defined in the preceding, the infinitesimal rates of the reversed
chain under our conjecture are

q∗x∗,x = λ̄j(rj − 1)μj ,

q∗x+,x = λβi1,...,ik+1 ,

q∗x−,x = μij
λij

(s)
Pj:i1,...,ik

βi1 · · ·βi1,...,ij−1βi1,...,ij−1,ij+1 · · ·βi1,...,ij−1,ij+1,...,ik

βi1 · · ·βi1,...,ik

.

In order to verify our conjecture we first need to show that when in state (i1, . . . , ik, r)
the rates at which the forward and the reverse process leave that state are equal.

Lemma 2: The rates at which the forward and the reverse process leave the state
(i1, . . . , ik, r) are equal; i.e. ∑

xk �=x

qx,xk =
∑
xk �=x

q∗x,xk .

Proof: Using the infinitesimal rates of the forward and the reverse process the preceding
equality can be written as

k∑
j=1

λPj:i1,...,ik
+

∑
ij /∈{i1,...,ik}

μij

= λβi1,...,ik
+

∑
ij /∈{i1,...,ik}

k+1∑
m=1

Pm:xmβi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,im−1βi1,...,im−1,ij
· · ·βi1,...,im−1,ij ,im,...,ik

μij
,

where xm = (i1, . . . , im−1, ij , im, . . . ik) and Pm:xm = Pm:i1,...,im−1,ij ,im,...ik
. Since

∑k
j=1

Pj:i1,...,ik
= βi1,...,ik

, to show that the preceding equality holds it suffices to show that

k+1∑
m=1

Pm,xmβi1 · · ·βi1,...,ik

βi1 , · · ·βi1,...,im−1βi1,...,im−1,ij
· · ·βi1,...,im−1,ij ,im,...,ik

= 1. (2)

This will be proven by first showing that for 1 ≤ n ≤ k,

n∑
m=1

Pm,xmβi1 , . . . βi1,...,ik

βi1 · · ·βi1,...,im−1βi1,...,im−1,ij
· · ·βi1,...,im−1,ij ,im,...,ik

=
βi1,...,in

· · ·βi1,...,ik

βij ,i1,...,in
· · ·βij ,i1,...,ik

. (3)
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We will prove (3) by induction. It is clear that for n = 1 this is true. Now assuming that
(3) is true for n we will show that it is also true for n + 1. Namely,

n+1∑
m=1

Pm,xmβi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,im−1βi1,...,im−1,ij
· · ·βi1,...,im−1,ij ,im,...,ik

=
n∑

m=1

Pm,xmβi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,im−1βi1,...,im−1,ij
· · ·βi1,...,im−1,ij ,im,...,ik

+
Pn+1,xn+1βi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,in
βi1,...,in,ij

· · ·βi1,...,in,ij ,in+1,...,ik

=
βi1,...,in

· · ·βi1,...,ik

βij ,i1,...,in
· · ·βij ,i1,...,ik

+
Pn+1,xn+1βi1,...,in+1 · · ·βi1,...,ik

βi1,...,in,ij
· · ·βi1,...,in,ij ,in+1,...,ik

=
βi1,...,in+1 · · ·βi1,...,ik

βij ,i1,...,in+1 · · ·βij ,i1,...,ik

,

the last equality holds because Pn+1,xn+1 + βi1,...,in
= βij ,i1,...,in

. Using (3) it is easy to show
that (2) holds. That is,

k+1∑
m=1

Pm,xmβi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,im−1βi1,...,im−1,ij
· · ·βi1,...,im−1,ij ,im,...,ik

=
k∑

m=1

Pm,xmβi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,im−1βi1,...,im−1,ij
· · ·βi1,...,im−1,ij ,im,...,ik

+
Pk+1,xk+1βi1 · · ·βi1,...,ik

βi1 · · ·βi1,...,ik
βi1,...,ik,ij

=
βi1,...,ik

βij ,i1,...,ik

+
Pk+1,xk+1

βi1,...,ik,ij

= 1.

Therefore, Lemma 2 is proven. �

Now that we showed the rates which the forward and the reverse process leave state
(i1, . . . , ik, r) are equal our conjecture will be verified if we can find probabilities P (x),∑

x P (x) = 1, such that

P (x)qx,x∗ = P (x∗)q∗x∗,x for rj > 1,

P (x)qx,x+ = P (x+)q∗x+,x for rik+1 = 1,

P (x)qx,x− = P (x−)q∗x−,x.

Thus, we must find probabilities that satisfy

P (x)μj = P (x∗)λ̄j(rj − 1)μj for rj > 1, (4)

P (x)μik+1 = P (x+)λβi1,...,ik+1 for rik+1 = 1, (5)

P (x)λPj,kpij
(s) = P (x−)μij

λij
(s)

× Pj:i1,...,ik
βi1 · · ·βi1,...,ij−1βi1,...,ij−1,ij+1 · · ·βi1,...,ij−1,ij+1,...,ik

βi1 · · ·βi1,...,ik

. (6)
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Rewriting the first and the second equations we have,

P (x∗) =
1

λ̄j(rj − 1)
P (x), for rj > 1, (7)

P (x+) =
μik+1

λβi1,...,ik+1

P (x). (8)

By first iterating over (8) and then (7) we have,

P (x) =
μik

· · ·μi1

λkβi1 · · ·βi1,...,ik

P (0,1)
∏

m/∈{i1,...,ik}

rm−1∏
i=1

λ̄m(i).

Using that
∏n−1

i=1 λ̄m(i) = P (Nm ≥ n), the preceding gives

P (x) =
μik

· · ·μi1

λkβi1 · · ·βi1,...,ik

P (0,1)
∏

m/∈{i1,...,ik}
P (Nm ≥ rm).

As it is straightforward to verify that the preceding, with P (0,1) chosen to make the
probabilities sum to 1, satisfy the reversibility Eqs. (4)–(6), the proposition is proven. �

Theorem 1: Suppose service distributions are G1, . . . , Gn, and let E[Sj ] be the mean of the
distribution Gj. If i1, . . . , ik is the idle server vector in steady state, then

P (i1, . . . , ik) =
1

λkβi1 · · ·βi1,...,ik
E(Si1) · · ·E(Sik

)
P (0),

where P (0) is the probability that all the servers are busy. Furthermore, given that idle
server vector is i1, . . . , ik,

(a) The limiting probabilities of the idle server vector i1, . . . , ik depend on the service
distributions only trough their means;

(b) The remaining service times of the busy servers are independent and are distributed
according to their respective equilibrium service distributions;

(c) The amount of service time already provided on their current customers by the busy
servers are independent and are distributed according to their respective equilibrium
service distributions.

Proof: To begin, suppose that the service distribution of server i is general Erlang
GE(Ni, μi), i = 1, . . . , n. Let P (i1, . . . , ik) be the steady-state probability that i1, . . . , ik
is the idle server vector. Using Proposition 1 and summing P (i1, . . . , ik, r) over all the
consistent vectors r (that is all r such that rj = 0, j ∈ {i1, . . . , ik}) yields

P (i1, . . . , ik) =
∑
r

μik
· · ·μi1

λkβi1 · · ·βi1,...,ik

P (0,1)
∏

m/∈{i1,...,ik}
P (Nm ≥ rm)

=
μik

· · ·μi1

λkβi1 · · ·βi1,...,ik

P (0,1)
∑
r

∏
m/∈{i1,...,ik}

P (Nm ≥ rm).
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Now if we let the set of the busy servers be b1, . . . , bn−k which is the compliment of the set
of idle servers i1, . . . , ik we can write

P (i1, . . . , ik) =
μik

· · ·μi1

λkβi1 · · ·βi1,...,ik

P (0,1)
∑
rb1

. . .
∑

rbn−k

P (Nb1 ≥ rb1) . . . P (Nbn−k
≥ rbn−k

)

=
μik

· · ·μi1

λkβi1 · · ·βi1,...,ik

P (0,1)
∏

m/∈{i1,...,ik}
E(Nm). (9)

Let P (0) be the probability that all the servers are busy. Clearly,

P (0) =
∑
r

P (0, r) =
∑
r

P (0,1)
n∏

i=1

P (Ni ≥ ri) = P (0,1)
n∏

i=1

E(Ni).

Hence, using the fact that the mean service time at server i is E(Si) = E(Ni)
µi

, i = 1, . . . , n,
we can rewrite the limiting probabilities of the ordered list of idle servers (9) as follows:

P (i1, . . . , ik) =
1

λkβi1 · · ·βi1,...,ik
E(Si1) · · ·E(Sik

)
P (0),

which shows that, conditional on the idle server vector i1, . . . , ik, the limiting probabilities
depend on the service distributions only through their means.

Moreover, it follows from Proposition 1 and (9) that

P (i1, . . . , ik, r)
P (i1, . . . , ik)

=
∏

m/∈{i1,...,ik}

P (Nm ≥ rm)
E(nm)

,

which, using Lemma 1, proves that conditional on the set of busy servers, their remaining
service times are independent and are distributed according to their respective equilibrium
service distributions. In addition, because the reverse chain has the same stationary proba-
bilities as does the forward chain and as the interpretation of ri for the reverse chain is that
server i is currently at stage ri, part (c) also follows. Hence, the theorem is proven when
all service distributions are general Erlang type. Because any service distribution is the
limit of a sequence of general Erlang distributions, see for instance Whitt [8], the approach
of Barbour [3] can be used to establish necessary continuity arguments for extending the
results for general Erlang service distributions to any arbitrary service distributions. Thus,
the theorem is proven for arbitrary service distributions. �

3. FINDING THE LIMITING PROBABILITIES USING MARKOV CHAIN MONTE
CARLO METHODS

In practice, when the number of servers is large, the determination of the constant P (0) is
computationally intractable. Indeed, even if it were known, the derivation of other quantities
of interest, such as average waiting time in the system, rate at which customers are lost,
etc., remain computationally intractable. However, these quantities can be determined by
using the Gibbs sampler Markov chain Monte Carlo method to generate a Markov chain
whose limiting distribution is the stationary distribution of the ordered list of the set of
idle servers. That is, by letting Yi to be equal to m if server i is the mth server on the
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idle server vector and 0 if it is busy, we want to generate a Markov chain whose stationary
distribution is

p(x1, . . . , xn) = P (Yi = xi, i = 1, . . . , n)

=

⎧⎪⎨
⎪⎩

C
1

λkβi1 · · ·βi1,...,ik

∏k
j=1 E(Sij

)
, xim

= m,m ≤ k and xim
= 0,m > k,

0, otherwise.

When the current state of the Markov chain is x = (x1, . . . , xn), the Gibbs sampler
method chooses a coordinate that is equally likely to be any of 1, . . . , n. If coordinate j is
chosen then with r = maxi�=j{xi} if 0 < xj < r the next state is x, otherwise the next state
is (x1, . . . , xj−1, 0, xj+1, . . . , xn) with probability

α =
p(x1, . . . , xj−1, 0, xj+1, . . . , xn)

p(x1, . . . , xj−1, 0, xj+1, . . . , xn) + p(x1, . . . , xj−1, r + 1, xj+1, . . . , xn)

=
λβi1,...,ir,jE(Sj)

1 + λβi1,...,ir,jE(Sj)
;

or it will be (x1, . . . , xj−1, r + 1, xj+1, . . . , xn) with probability 1 − α.
The stationary distribution of the successive values of a Markov chain generated by the

preceding is the limiting distribution of the ordered list of the set of idle servers. Thus, for
instance, we can approximate the steady-state probability there are exactly k idle servers,
call it P (k), by the proportion of states (x1, . . . , xn) such that

∑n
i=1 xi = k(k + 1)/2. We

can also approximate the steady-state probability that the ordered list of the set of idle
servers is i1, . . . , ik, call it P (i1, . . . , ik), by the proportion of states (x1, . . . , xn) such that∑k

j=1 xij
= k(k + 1)/2 and maxi(xi) = k. We can then use our estimates of P (i1, . . . , ik),

k = 0, . . . , n, to estimate
∑n

k=1

∑
(i1,...,ik) P (i1, . . . , ik)βi1,...,ik

, equal to the proportion of
arrivals that enter the system.
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