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Abstract

The problem of reservation in a large distributed system is analyzed via a new mathe-
matical model. The target application is car-sharing systems. This model is motivated
by the large station-based car-sharing system in France called Autolib’. This system can
be described as a closed stochastic network where the nodes are the stations and the
customers are the cars. The user can reserve a car and a parking space. We study the
evolution of the system when the reservation of parking spaces and cars is effective for
all users. The asymptotic behavior of the underlying stochastic network is given when
the number N of stations and the fleet size M increase at the same rate. The analy-
sis involves a Markov process on a state space with dimension of order N2. It is quite
remarkable that the state process describing the evolution of the stations, whose dimen-
sion is of order N, converges in distribution, although not Markov, to a non-homogeneous
Markov process. We prove this mean-field convergence. We also prove, using combina-
torial arguments, that the mean-field limit has a unique equilibrium measure when the
time between reserving and picking up the car is sufficiently small. This result extends
the case where only the parking space can be reserved.
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1. Introduction

This paper deals with a problem of reservation in a large distributed system. Our motivation
is a car-sharing system in which a fleet of cars move around and are parked at a set of stations,
mainly for electric issues. A crucial problem is the presence of empty and full stations. In an
empty station users cannot pick up a car, while in a full station, also called saturated, users can-
not park the car. Reservation could help the user to find both a car at the departure station and
a parking space at the destination. We focus on a reservation policy called double reservation
which is to reserve both the car and the parking space at the same time, a moment before pick-
ing up the car. Car and parking space reservations were proposed by Autolib’, the car-sharing
system that existed in Paris from 2011 to 2018. Its fleet was composed, in July 2016, of 3980
electric vehicles, called Bluecars, distributed in 1084 stations in the Paris metropolitan area

Received 14 November 2023; accepted 23 October 2024.
∗ Postal address: 48 rue Barrault, 75013 Paris, France. Email: christine.fricker@inria.fr
∗∗ Postal address: 200 avenue de la République, 92000 Nanterre, France. Email: hanene.mohamed@parisnanterre.fr

© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust.

1

https://doi.org/10.1017/jpr.2024.103 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.103
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2024.103&domain=pdf
https://doi.org/10.1017/jpr.2024.103


2 C. FRICKER AND H. MOHAMED

with 5935 charging points. More than 126 900 subscribers registered for the service. See [23]
for more details about Autolib’.

Note that if the time between the reservation and the pick-up is zero, the policy is to reserve
only the parking space when the car is picked up. This policy is called simple reservation. In
free-floating systems, users cannot reserve parking spaces as the cars are parked in a public
space. These systems are outside the scope of the paper.

1.1. Simple reservation model

The simple reservation model can be described as follows. It consists of N stations of finite
capacity K and MN cars. Users arrive at rate λ in each station. A user reserves a parking space
at a randomly chosen destination station when he or she picks up a car. If this is not possible,
the unhappy user leaves the system. Otherwise, after a trip with exponential distribution of
parameter μ, the car is parked at its reserved parking space in the destination station.

The system is said to be large when N and MN tend to infinity at the same order. Only the
fleet size MN is of the order of N. The other variables such as the arrival rate per station λ or
the mean trip duration 1/μ are bounded, so of the order of 1. Indeed, an increase in the number
N of stations can be considered as a densification of the service area, and not as an extension.
There is no reason for the mean trip time to increase. The aim of studying the model when N
tends to infinity is to obtain an approximation of a car-sharing system with a large fleet and a
large number of stations. The aim is not to study the physical extension of the service area or
the number of stations.

Let us denote by sN the ratio MN/N, tending to a constant s which is the average number of
cars per station. This sizing parameter s is a key parameter of the system. In [7], this policy is
studied in a homogeneous framework with a mean-field approach, using a large-scale analysis
similar to that of bike-sharing systems in [10].

Due to the the parking space reservation, the state of each station is described in [7] by a
vector with two components: the number of cars and the number of reserved parking spaces,
which is the main difference from [10]. The state process is 2N-dimensional and Markovian.
With standard arguments, mean-field convergence is established. Beyond this, the analysis of
the equilibrium point is much more delicate with parking space reservation.

The aim of this paper is to prove these results extended to the double reservation model
introduced as follows. In particular, our paper gives a proof of [7, Theorem 2], omitted in [7],
on the simple reservation model.

1.2. Double reservation model

Station-based car-sharing systems such as Autolib’ offer the possibility of reserving a car
and a parking space in the desired station online, a moment before actually picking up the car.
In this paper, we consider a model that meets this user demand. In our model, the user reserves
a car at a given departure station and, at the same time, a parking space at a destination station.
If there is no car or no parking space available, the user leaves the system. Otherwise, it takes
a time called the reservation time between car reservation and car pick-up. The reservation
time has an exponential distribution with mean 1/ν. Then follows the trip, whose duration is
assumed to have an exponential distribution with mean 1/μ. Eventually the user parks the car
at the reserved space in the destination station and leaves the system.
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1.3. Discussion of the model

1.3.1. Approximation of a large system. In practice the numbers of stations and cars are finite
but large. For example, on 3 July 2016, Autolib’ offered 1084 stations for 3980 electric cars;
see [23]. Asymptotic analysis provides an approximation of the behavior of this finite-size
system. Therefore, the dimensioning problem of finding the optimal number of cars per station
for N large is approximated by its limit value when N tends to infinity.

1.3.2. Double vs simple reservation. To get the order of magnitude of the variables of our
model, note that Autolib’ offered 30 minutes as the maximum reservation duration for the
car and 1 hour 30 minutes for the maximum reservation duration of the parking space at the
destination (see [22, p. 20]). Moreover, the mean trip duration was around 38 minutes (see [2]
for 2013). Thus, the mean trip time 1/μ and the mean reservation time 1/ν are comparable.
This fully justifies the motivation of studying the double reservation policy.

1.3.3. Extension to a heterogeneous model. For sake of simplicity, our choice of a homoge-
neous network is motivated by the mean-field approach used in our study. A homogeneous
framework is generally presented as the simplest, allowing the difficulties of the model to be
highlighted and simple explicit results to be obtained. It is still possible to extend this study
to a heterogeneous model using clusters by grouping stations with similar parameters in the
real system. Since the trip times are random with an exponential distribution of parameter μ,
the heterogeneity of the trips is carried by the randomness. Finally, network heterogeneity is
carried by the arrival rate depending on the cluster and the probability of reserving a parking
space in a station of a given cluster (for the homogeneous model, this probability is 1/N). See
[11] for details. For models with the state process having a product-form invariant measure, the
heterogeneous framework is quite natural. In the context of bike- and car-sharing systems, see
[12, 13]. However, our model does not fit into this framework. For such models, the mean-field
approach remains effective, hence our choice of a homogeneous model.

1.3.4. Extension to heterogeneous users. To take account of different reservation behaviors of
users, two classes of users can be considered: users who reserve early and users who reserve at
the last minute. This means introducing two different parameters ν1 and ν2 for the exponential
distribution of the reservation time. This extension remains within a Markovian framework.

Furthermore, the real-world trip time distribution can be fitted by an Erlang distribution.
Replacing the exponential distribution of the trip time by an Erlang distribution, i.e. the dis-
tribution of the sum of independent and identically distributed (i.i.d.) random variables with
exponential distribution, a state process capturing the phases of the Erlang distribution is still
Markovian.

1.4. Main results and contribution

1.4.1. Mean-field approach. A three-dimensional state space (reserved cars, reserved spaces,
and available cars) for each station does not allow this process to be fully described as a Markov
process, because the parking space reservation time is the sum of two exponentially distributed
variables (car pick-up time and trip time). This leads to the introduction of a fourth variable to
distinguish between parking spaces reserved by users not yet travelling and users travelling.
But even the associated state process is not Markov. As we will see on the transitions described
in Section 2, the Markov process associated with this model, denoted by (XN(t)), is more
complicated, and in particular of dimension (N + 1)2, where N is the total number of stations.
Therefore, for a given station, the state space is of dimension N, which is not suitable for an
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asymptotic analysis when N tends to infinity. To solve this problem, we introduce the process,
denoted by (ZN(t)), which describes the state of each station i, 1 ≤ i ≤ N, as a function of the
Markov process (XN(t)). Indeed, ZN

i (t) has four components:

• Rr,N
i (t), the number of parking places reserved by non-driving users at station i at time t;

• RN
i (t), the number of parking places reserved by users driving at station i at time t;

• VN
i (t), the number of cars available at station i at time t;

• Vr,N
i (t), the number of reserved cars at station i at time t.

As previously mentioned, the process (ZN(t)) = (Rr,N(t), RN(t), VN(t), Vr,N(t)) is of dimen-
sion 4N but is not a Markov process. The loss of the Markov property is the price to pay for
this dimension reduction. Nevertheless, remarkably, we prove that, despite this non-Markovian
description, the state (ZN

i (t)) of a given station i (1 ≤ i ≤ N) converges in distribution, as N goes
to infinity, to a non-homogeneous Markov process (Z(t)) = (Rr(t), R(t), V(t), Vr(t)) satisfying
the Fokker–Planck equation

d

dt
E(f (Z(t))) = λP(V(t)> 0)E((f (Z(t) + e1) − f (Z(t)))1(S̄(t)<K))

+ νE((f (Z(t) + e2 − e1) − f (Z(t)))1(Rr(t)> 0))

+μE((f (Z(t) + e3 − e2) − f (Z(t)))1(R(t)> 0))

+ λP(S(t)<K)E((f (Z(t) + e4 − e3) − f (Z(t)))1(V(t)> 0))

+ νE((f (Z(t) − e4) − f (Z(t)))1(Vr(t)> 0)), (1)

with e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1), f a function with
finite support on N

4, and S(t) = Rr(t) + R(t) + V(t)) + Vr(t) the limiting number of unavailable
parking spaces at station i at time t. The asymptotic process (Z(t)) = ((Rr(t), R(t), V(t), Vr(t)) is
a jump process with time-dependent rates, the so-called McKean–Vlasov process. This mean-
field convergence theorem is not standard at all. Indeed, the mean-field limit is usually obtained
for a Markov state process.

1.4.2. The equilibrium. For non-homogeneous Markov processes, recall that there can be sev-
eral invariant measures. We prove that there is a unique invariant measure in a restricted
framework. The proof is based on three main arguments. First, by applying queueing the-
ory, the McKean–Vlasov process on the basic state space is identified with a tandem of four
queues with an invariant measure of explicit product form. This explicit product form allows
us to change the problem of existence and uniqueness of the invariant measure of the non-
homogeneous Markov process to the same problem for a fixed-point equation in dimension
4. Then, by straightforward simplifications, the last fixed-point equation is reduced to dimen-
sion 2. This simplification is straightforwardly proved by the queueing interpretation of the
limiting McKean–Vlasov process. Finally, the global inversion theorem and a monotonicity
property allow us to conclude. The last two arguments are based on combinatorial calcu-
lations. Monotonicity is just proved when the mean reservation time is sufficiently small.
We are convinced that this assumption is technical but the proof needs other tools. This mono-
tonicity property is first guessed on the tandem of queues. It is a main benefit of the queueing
interpretation of the limiting process.
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1.5. Related works

For sharing systems, despite the need for analysis of these stochastic systems, most of the
literature concerns operations research (OR) and data analysis. Probabilistic models have been
proposed and analyzed for bike-sharing systems [10, 13], where usage does not allow reser-
vation. As far as we know, there has been no stochastic analysis for car-sharing systems with
reservation before [7].

For car-sharing systems, the first part of the literature investigates the location problem. In
[8], OR optimization is used to plan an efficient car-sharing system in terms of the number,
location, and capacity of stations and fleet size, applied to the case of Nice, France.

Vehicle redistribution and staff rebalancing is a big issue in car-sharing systems (see, e.g.,
[19]). For simple reservation, called complete parking reservation (CPR), [16] showed by
simulation and [17] with OR techniques that CPR outperforms no reservation for a specific
user-oriented metric. This metric is the excess time users spend in the system due to lack of
cars or parking spaces, i.e. the difference between actual time and ideal trip time, including
walking times to stations. The reservation impact was not investigated in [9], but the charging
problem was: a queueing analysis for dimensioning the fleet size was proposed for a closed
network taking account car charging.

Despite the potential of car sharing, even data analysis remains largely unexplored. This is
also due to the lack of data provided by the operators. [5] exploited one month (April 2015)
of publicly available data from Autolib’, in Paris, France, with 960 stations and 2700 electric
cars at this time, giving an idea of the average car pickup rate and the availability of cars at a
station. Furthermore, a dichotomy between Paris and the suburbs was highlighted.

Mean field is an efficient tool for studying the behavior of large distributed systems or
interacting systems in many different application domains. These systems have large numbers
of both nodes and customers (particles, cars, etc.). To the best of our knowledge, our large-
scale stochastic analysis is the first for a stochastic model of car sharing systems with double
reservation. Our first main result is that the non-Markovian state process for a given station
converges to a non-homogeneous Markov process, which is not standard. Furthermore, we note
that this limiting Markov process can be described using a simple queueing system. This result
was first obtained by simulation in [6, Section 5]. Indeed, in [6], an artificial Markov model
on the state of the stations, called the approximate model process, is introduced for the double
reservation. Its mean-field limit at equilibrium fits with the real dynamics at equilibrium, which
allows the authors to guess such an outcome. The same phenomenon is proved in an entirely
different framework, for a model of a network with failures, in [1]. Note that the framework in
[1] induces simultaneous jumps, which make the proofs more technical. Our paper discusses a
simpler framework which focuses on the main arguments and provides the proof of the result
expected in [6]. Like our model, the celebrated Gibbens–Hunt–Kelly model exhibits strong
interactions [14]. In [15], it is proved that these interactions disappear for the mean-field limit.
Because of these three models, we believe that this methodology can be useful in many other
contexts. A main contribution of the paper relies on the result of uniqueness of the equilibrium
point in high dimensions (dimension 4), thanks to a nice interpretation in terms of queues. As
far as we know, there is no such result in the literature.

1.6. Outline of the paper

In Section 2, the Markov process (XN(t)) associated with our model is defined and the
stochastic evolution equations are given. In Section 3, the second process (ZN(t)) describ-
ing the state of the stations is introduced. A heuristic computation of its McKean–Vlasov
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asymptotic process is derived. Theorem 1, which establishes the existence and uniqueness
of this stochastic process, is proved. Section 4 is devoted to Theorem 2, giving the mean-field
convergence for (ZN(t)), and highlights the probabilistic interpretation of the Mckean–Vlasov
process. Section 5 analyses its invariant distribution.

2. The model

In this section, we describe the dynamics of our stochastic model. We recall that the system
has N stations of capacity K. The Markov process that gives the dynamics of the system is
X(t) = (

XN
i,j(t), 0 ≤ i, j ≤ N

)
, where, for 1 ≤ i, j ≤ N, at time t,

• XN
i,j(t) is the number of cars reserved at i with parking space reserved at j;

• XN
0,j(t) is the number of parking spaces reserved at j by users driving;

• XN
i,0(t) is the number of cars available at station i.

The total number of cars is MN and the fleet size parameter, defined as the mean number of
cars per station if they are all parked, is

s := lim
N→+∞

MN

N
.

2.1. Transitions of the Markov process

The transitions of the Markov process (XN(t)) are reservations, car pick-ups, and car returns.

• Reservations. At station i, at rate λ, an available car is replaced by a reserved car and an
available parking space is reserved at the same time at a random station, say j. If there
is either no available car at i or no available parking space at j, the reservation fails. If a
reservation is made at time t,{

XN
i,0(t) = XN

i,0(t−) − 1 for 1 ≤ i ≤ N,

XN
i,j(t) = XN

i,j(t
−) + 1 for 1 ≤ i, j ≤ N,

where the limit from the left of function f at t is denoted by f (t−).

• Car pick-ups. After a reservation, the user takes a time with an exponential distribution
with parameter ν to come and pick up the car. So, at rate ν, each car reserved at station
i disappears and the associated parking space reserved at station j moves to a parking
space reserved by a driving user. When taking such a car at time t,{

XN
i,j(t) = XN

i,j(t
−) − 1 for 1 ≤ i, j ≤ N,

XN
0,j(t) = XN

0,j(t
−) + 1 for 1 ≤ j ≤ N.

• Car returns. After a trip with exponential distribution with parameter μ, a driving user
returns his car. Thus, at rate μ, for each parking space at station j reserved by a driving
user, his car becomes an available car. When a car is returned at station j at time t,{

XN
0,j(t) = XN

0,j(t
−) − 1,

XN
j,0(t) = XN

j,0(t−) + 1.
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Note that (XN(t)) is an irreducible Markov process on the finite state space

{
x = (xi,j) ∈N

(N+1)2
,
∑N

j=0 xi,j +∑N
j=0 xj,i ≤ K,

∑N
0≤i,j≤N xi,j = MN

}
, (2)

where K is the finite capacity of each station, thus (XN(t)) is ergodic.

2.2. Stochastic evolution equations

The dynamics of (XN(t)) can be given in terms of stochastic integrals with respect to Poisson
processes. Let us introduce the following notation.

• A Poisson process on R+ with parameter ξ is denoted by Nξ . A sequence of such i.i.d.
processes is denoted by (Nξ,i, i ∈N).

• A Poisson process on R
2+ with intensity ξ dt dh is denoted by Nξ . A sequence of such

i.i.d. processes is denoted by (Nξ,i, i ∈N).

• A marked Poisson process (tn,Un), where (tn, n ∈N) is a Poisson process on R+ with
parameter ξ and (Un, n ∈N) is a sequence of i.i.d. random variables with uniform dis-
tribution on {1, . . . ,N}, is denoted by NU,N

ξ . Note that, for 1 ≤ i ≤ N, NU,N
ξ (·, {i}) is a

Poisson process on R+ with parameter ξ/N, and NU,N
ξ (·,N) is a Poisson process on R+

with parameter ξ .

Let us introduce the following independent point processes. A reservation of a car in station
i is a point of a Poisson process NU,N

λ,i on R
2+. For reservations of both a car at station i and

a parking space at station j, the times from the moment the user makes a reservation to the
moment the car is picked up form a Poisson process Nν,i,j on R+. We need a sequence of such
i.i.d. processes (Nν,i,j,l, l ∈N) as cars are picked up independently, and the same for the trip
times of cars returned at station j, associated with a sequence (Nμ,j,l, l ∈N) of independent
Poisson processes.

Using the previous notation, process (XN(t)) is given by the following stochastic differential
equations. For 1 ≤ i, j ≤ N and t ≥ 0,

dXN
i,j(t) = −

∞∑
l=1

1
(
l ≤ XN

i,j(t
−)
)Nν,i,j,l(dt)

+ 1
(
XN

i,0(t−)> 0,
N∑

k=0

(
XN

k,j(t
−) + XN

j,k(t−)
)
<K

)NU,N
λ,i (dt, {j}),

dXN
0,j(t) =

∞∑
l=1

N∑
i=1

1
(
l ≤ XN

i,j(t
−)
)Nν,i,j,l(dt) −

∞∑
l=1

1
(
l ≤ XN

0,j(t
−)
)Nμ,j,l(dt),

dXN
i,0(t) = −

N∑
j=1

1
(
XN

i,0(t−)> 0,
N∑

k=0

(
XN

k,j(t
−) + XN

j,k(t−)
)
<K

)NU,N
λ,i (dt, {j})

+
∞∑

l=1

1
(
l ≤ XN

0,i(t
−)
)Nμ,i,l(dt).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)
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3. The asymptotic process

3.1. Introduction to the asymptotic process

Some more notation is needed. The state of each station i is given by the quadruplet

ZN
i (t) = (

Rr,N
i (t), RN

i (t), VN
i (t), Vr,N

i (t)
)

where, at node i at time t:

• Rr,N
i (t) is the number of parking spaces reserved by non-driving users;

• RN
i (t) is the number of reserved parking spaces by users driving;

• VN
i (t) is the number of available cars;

• Vr,N
i (t) is the number of reserved cars.

The process (ZN(t)) takes values on

SN = {
(wi, xi, yi, zi)1≤i≤N, (wi, xi, yi, zi) ∈�K,

∑N
i=1 wi + xi + yi + zi = MN

}
,

where �K = {(w, x, y, z) ∈N
4,w + x + y + z ≤ K}. Moreover, let us denote by SN

i (t) =
Rr,N

i (t) + RN
i (t) + VN

i (t) + Vr,N
i (t) the number of unavailable parking spaces at station i at

time t. Note that SN
i (t) is a function of ZN

i (t). This process (ZN(t)) gives some refined state
of the stations and can be obtained as a function of the Markov process (XN(t)) by

Rr,N
i (t) =

N∑
j=1

XN
j,i(t), RN

i (t) = XN
0,i(t), VN

i (t) = XN
i,0(t), Vr,N

i (t) =
N∑

j=1

XN
i,j(t).

So, the evolution equations of (ZN(t)) can be obtained from (3) as follows

dRr,N
i (t) =

N∑
j=1

1
(
VN

j (t−)> 0, SN
i (t−)<K

)NU,N
λ,j (dt, {i})

−
N∑

j=1

( ∞∑
l=1

1
(
l ≤ XN

j,i(t
−)
)Nν,j,i,l(dt)

)
,

dRN
i (t) =

∞∑
l=1

N∑
j=1

1
(
l ≤ XN

j,i(t
−)
)Nν,j,i,l(dt) −

∞∑
l=1

1
(
l ≤ RN

i (t−)
)Nμ,i,l(dt),

dVN
i (t) =

∞∑
l=1

1
(
l ≤ RN

i (t−)
)Nμ,i,l(dt)

−
N∑

j=1

1
(
VN

i (t−)> 0, SN
j (t−)<K

)NU,N
λ,i (dt, {j}),

dVr,N
i (t) =

N∑
j=1

1
(
VN

i (t−)> 0, SN
j (t−)<K

)NU,N
λ,i (dt, {j})

−
N∑

j=1

( ∞∑
l=1

1
(
l ≤ XN

i,j(t
−)
)Nν,i,j,l(dt)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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This process (ZN(t)), in dimension 4N, is not a Markov process because the evolution equa-
tions for (ZN(t)) are not autonomous. They depend on the Markov process (XN(t)) which lives
in dimension (N + 1)2; see (2). We introduce process (ZN(t)) because it is sufficient to cap-
ture the performance of the system, such as the fact that a station is empty or full. The quite
remarkable property is that the limit as N gets large of (ZN(t)) is a non-linear Markov process.
We present this process in this section and prove the convergence result in the next section.

3.2. Heuristic computation of the asymptotic process

The proof of the convergence will be given in the next section. Here we show how we can
guess the asymptotic process. Suppose that, for 1 ≤ i ≤ N, (ZN

i (t)) converges in distribution to
some process (Z(t)) = (Rr(t), R(t), V(t), Vr(t)). Let PN

i be the random measure on R+ defined
by

PN
i ([0, t]) =

∫ t

0

N∑
j=1

( ∞∑
l=1

1
(
l ≤ XN

j,i(s
−)
)Nν,j,i,l(ds)

)
.

PN
i is a counting process (with jump size 1) on R+ and its compensator is

ν

∫ t

0

N∑
j=1

XN
j,i(s) ds = ν

∫ t

0
Rr,N

i (s) ds

(see [20, Proposition A.9], for example). Thus, due to the convergence in distribution of
(ZN

i (t)) and the standard results on convergence of point processes, PN
i converges to a

non-homogeneous Poisson process P∞ with intensity (νRr(t)). It can be written as

P∞(dt) =
∫
R+

1
(
0 ≤ h ≤ Rr(t−)

)Nν,1(dt, dh)

where, with our notation, Nν,1 is a Poisson process with intensity ν dh dt, using the character-
ization of a Poisson process by the martingale of its stochastic integral.

Along the same lines, P̃N
i , the random measure on R+ defined by

P̃N
i ([0, t]) =

∫ t

0

N∑
j=1

( ∞∑
l=1

1
(
l ≤ XN

i,j(s
−)
)Nν,i,j,l(ds)

)
,

is a counting process (with jump size 1) on R+ with compensator

ν

∫ t

0

N∑
j=1

XN
i,j(s) ds = ν

∫ t

0
Vr,N

i (s) ds.

It converges to a non-homogeneous Poisson process P̃∞
with intensity (νVr(t)), i.e.

P̃∞
(dt) =

∫
R+

1
(
0 ≤ h ≤ Vr(t−)

)Nν,2(dt, dh).

Remark 1. The point processes Nν,1 and Nν,2 are independent because PN
i (respectively P̃N

i )
is a function of (Nν,i,j,., j) (respectively (Nν,j,i,., j)), where (Nν,i,j,., j �= i) and (Nν,j,i,., j �= i)
are independent.
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Then let us consider the random measure QN
i on R+ defined by

QN
i ([0, t]) =

∫ t

0

N∑
j=1

1
(
VN

j (s−)> 0, SN
i (s−)<K

)NU,N
λ,j (ds, {i})

with compensator

λ

∫ t

0
1
(
SN

i (s)<K
) 1

N

N∑
j=1

1
(
VN

j (s)> 0
)

ds.

Heuristically, by the asymptotic independence of stations and the law of large numbers, as N
tends to infinity, (1/N)

∑N
j=1 1

(
VN

j (t)> 0
)→ P(V(t)> 0). Thus, formally, as N tends to +∞,

QN
i converges to a non-homogeneous Poisson process Q∞ with intensity λ1(S(t)<K)P(V(t)>

0). In other words,

Q∞(dt) =
∫
R+

1
(
0 ≤ h ≤ 1(S(t−)<K)P(V(t−)> 0)

)Nλ,1(dt, dh).

With exactly the same working, Q̃N
i on R+ defined by

Q̃N
i ([0, t]) =

∫ t

0

N∑
j=1

1
(
VN

i (s−)> 0, SN
j (s−)<K

)NU,N
λ,i (ds, {j})

formally converges in distribution when N tends to +∞ to the non-homogeneous Poisson
process Q̃∞

with intensity (λ1(V(t)> 0)P(S(t)<K)) also defined by

Q̃∞
(dt) =

∫
R+

1
(
0 ≤ h ≤ 1(V(t−)> 0)P(S(t−)<K)

)Nλ,2(dt, dh).

Note that, for the same reason as previously, Nλ,2 is independent of Nλ,1. Formally taking the
limit in (4) leads to

dRr(t) =
∫
R+

1
(
0 ≤ h ≤ 1(S(t−)<K)P(V(t−)> 0)

)Nλ,1(dt, dh)

−
∫
R+

1(0 ≤ h ≤ Rr(t−)) Nν,1(dt, dh),

dR(t) =
∫
R+

1(0 ≤ h ≤ Rr(t−)) Nν,1(dt, dh) −
+∞∑
l=1

1(l ≤ R(t−)) Nμ,l(dt),

dV(t) =
+∞∑
l=1

1(l ≤ R(t−)) Nμ,l(dt)

−
∫
R+

1
(
0 ≤ h ≤ 1(V(t−)> 0)P(S(t−)<K)

)Nλ,2(dt, dh),

dVr(t) =
∫
R+

1
(
0 ≤ h ≤ 1(V(t−)> 0)P(S(t−)<K)

)Nλ,2(dt, dh)

−
∫
R+

1(0 ≤ h ≤ Vr(t−)) Nν,2(dt, dh).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)
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3.3. A first result

Then the first result gives the existence and uniqueness of a stochastic process solution of
the system of stochastic differential equations (SDEs) in (5). Let T > 0 be fixed. Let DT =
D([0, T],P(�K)) be the set of càdlàg functions from [0,T] to P(�K).

Theorem 1. (McKean–Vlasov process.) For every (w, x, y, z) ∈�K, the system of equations

Rr(t) = w +
∫∫

[0,t]×R+
1
(
0 ≤ h ≤ 1(S(s−)<K)P(V(s−)> 0)

)Nλ,1(ds, dh)

−
∫∫

[0,t]×R+
1(0 ≤ h ≤ Rr(s−)) Nν,1(ds, dh),

R(t) = x +
∫∫

[0,t]×R+
1(0 ≤ h ≤ Rr(s−)) Nν,1(ds, dh)

−
∫ t

0

+∞∑
l=1

1(l ≤ R(s−)) Nμ,l(ds),

V(t) = y +
∫ t

0

+∞∑
l=1

1(l ≤ R(s−)) Nμ,l(ds)

−
∫∫

[0,t]×R+
1
(
0 ≤ h ≤ 1(V(s−)> 0)P(S(s−)<K)

)Nλ,2(ds, dh)

Vr(t) = z +
∫∫

[0,t]×R+
1
(
0 ≤ h ≤ 1(V(s−)> 0)P(S(s−)<K)

)Nλ,2(ds, dh)

−
∫∫

[0,t]×R+
1(0 ≤ h ≤ Vr(s−)) Nν,2(ds, dh)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

has a unique solution (Rr(t), R(t), V(t), Vr(t)) in DT .

Note that the solution of (6) satisfies the Fokker–Planck equation (1) in the introduction.

Proof. The proof is standard and quite technical. Let us introduce the Wasserstein distances
on P(DT ). For π1, π2 ∈P(DT ),

WT (π1, π2) = inf
π∈CT (π1,π2)

∫
ω=(ω1,ω2)∈D2

T

(dT (ω1, ω2) ∧ 1) dπ (ω),

ρT (π1, π2) = inf
π∈CT (π1,π2)

∫
ω=(ω1,ω2)∈D2

T

(‖ω1 −ω2‖∞,T ∧ 1) dπ (ω),

where, for f ∈DT , ‖f ‖∞,T = sup{‖f ‖, 0 ≤ t ≤ T} = sup
{∑4

i=1 |fi(t)|, 0 ≤ t ≤ T
}
, CT (π1, π2)

is the set of couplings of π1 and π2, i.e. the subset of P(D2
T ) with first marginal π1 and second

π2, and (DT , dT ), with dT the distance associated with the Skorohod topology, is complete and
separable and thus (P(DT ),WT ) is complete and separable, and WT (π1, π2) ≤ ρT (π1, π2).
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Let us define	 : (P(DT ),WT ) → (P(DT ),WT ), π �→	(π ), where	(π ) is the distribution
of (Zπ (t)) = (Rr

π (t), Rπ (t), Vπ (t), Vr
π (t)), the unique solution of the SDEs

Rr
π (t) = w +

∫∫
[0,t]×R+

1
(
0 ≤ h ≤ 1(‖Zπ (s−)‖<K)π (v(s−)> 0)

)Nλ,1(ds, dh)

−
∫∫

[0,t]×R+
1
(
0 ≤ h ≤ Rr

π (s−)
)Nν,1(ds, dh),

Rπ (t) = x +
∫∫

[0,t]×R+
1
(
0 ≤ h ≤ Rr

π (s−)
)Nν,1(ds, dh)

−
∫ t

0

+∞∑
l=1

1(l ≤ Rπ (s−)) Nμ,l(ds),

Vπ (t) = y +
∫ t

0

+∞∑
l=1

1(l ≤ Rπ (s−)) Nμ,l(ds)

−
∫∫

[0,t]×R+
1
(
0 ≤ h ≤ 1(Vπ (s−)> 0)π (‖z(s−)‖<K)

)Nλ,2(ds, dh)

Vr
π (t) = z +

∫∫
[0,t]×R+

1
(
0 ≤ h ≤ 1(Vπ (s−)> 0)π (‖z(s−)‖<K)

)Nλ,2(ds, dh)

−
∫∫

[0,t]×R+
1
(
0 ≤ h ≤ Vr

π (s−)
)Nν,2(ds, dh).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Note that π (v(t)> 0) = ∫
z=(rr,r,v,vr)∈DT

1(v(t)> 0) dπ (z). The existence and uniqueness of a
solution to (6) is equivalent to the existence and uniqueness of a fixed point π =	(π ).

Let us prove that π =	(π ) has a unique fixed point. For π1, π2 ∈P(DT ), let Zπ1 and
Zπ2 be solutions of (7). Thus, (Zπ1 , Zπ2 ) is a coupling of 	(π1) and 	(π2) and, for t ≤ T ,
ρt(	(π1), 	(π2)) ≤E(‖Zπ1 − Zπ2‖∞,t).

For t ≤ T , using the definition in (7) of Zπ1 and Zπ2 ,

‖Zπ1 − Zπ2‖∞,t

= sup0≤s≤t

(|Rr
π1

(s) − Rr
π2

(s)| + |Rπ1 (s) − Rπ2 (s)| + |Vπ1 (s) − Vπ2 (s)| + |Vr
π1

(s) − Vr
π2

(s)|)
≤
∫∫

[0,t]×R+
1
(
Aπ1 (s−) ∧ Aπ2 (s−) ≤ h ≤ Aπ1 (s−) ∨ Aπ2 (s−)

)Nλ,1(ds, dh)

+ 2
∫ t

0

+∞∑
l=1

|1(l ≤ Rπ1 (s−)) − 1(l ≤ Rπ2 (s−))|Nμ,l(ds)

+ 2
∫∫

[0,t]×R+
1
(
Rr
π1

(s−) ∧ Rr
π2

(s−) ≤ h ≤ Rr
π1

(s−) ∨ Rr
π2

(s−)
)Nν,1(ds, dh)
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+ 2
∫∫

[0,t]×R+
1
(
Bπ1 (s−) ∧ Bπ2 (s−) ≤ h ≤ Bπ1 (s−) ∨ Bπ2 (s−)

)Nλ,2(ds, dh)

+
∫∫

[0,t]×R+
1
(
Vr
π1

(s−) ∧ Vr
π2

(s−) ≤ h ≤ Vr
π1

(s−) ∨ Vr
π2

(s−)
)Nν,2(ds, dh), (8)

where Aπ (t) = 1(‖Zπ (t)‖<K) π (v(t)> 0) and Bπ (t) = 1(Vπ (t)> 0) π (‖z(t)‖<K). The mean
of each term on the right-hand side of (8) is bounded as follows. For the first term,

E

( ∫∫
[0,t]×R+

1
(
Aπ1 (s−) ∧ Aπ2 (s−) ≤ h ≤ Aπ1 (s−) ∨ Aπ2 (s−)

)Nλ,1(ds, dh)

)

≤ λ
∫ t

0
|π1(v(s)> 0) − π2(v(s)> 0)| ds

= λ

∫ t

0
|π (z, v1(s)> 0) − π (z, v2(s)> 0)| ds

= λ

∫ t

0

∫
ω=(z1,z2)∈D2

T

|1(v1(s)> 0) − 1(v2(s)> 0)| π (dω) ds

≤ λ
∫ t

0

∫
ω=(z1,z2)∈D2

T

|v1(s) − v2(s)| ∧ 1 π (dω) ds ≤ λ
∫ t

0
ρs(π1, π2) ds.

For the second term,

E

( ∫ t

0

+∞∑
l=1

|1(l ≤ Rπ1 (s−)) − 1(l ≤ Rπ2 (s−))|Nμ,l(ds)

)

≤μ
∫ t

0
E

( +∞∑
l=1

|1(l ≤ Rπ1 (s)) − 1(l ≤ Rπ2 (s))|
)

ds

≤μ
∫ t

0
E(|Rπ1 (s) − Rπ2 (s)|) ds ≤μ

∫ t

0
E(‖Zπ1 − Zπ2‖∞,s) ds.

For the third term,

E

( ∫∫
[0,t]×R+

1
(
Rr
π1

(s−) ∧ Rr
π2

(s−) ≤ h ≤ Rr
π1

(s−) ∨ Rr
π2

(s−)
)Nν,1(ds, dh)

)

≤ ν
∫ t

0
E
(∣∣Rr

π1
(s) − Rr

π2
(s)
∣∣) ds ≤ ν

∫ t

0
E(‖Zπ1 − Zπ2‖∞,s) ds.

For the fourth term,∫∫
[0,t]×R+

1
(
Bπ1 (s−) ∧ Bπ2 (s−) ≤ h ≤ Bπ1 (s−) ∨ Bπ2 (s−)

)Nλ,2(ds, dh)

≤ λ
∫ t

0
E
(|1(Vπ1 (s)> 0)π1(‖z(s)‖<K) − 1(Vπ2 (s)> 0)π2(‖z(s)‖<K)|) ds
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≤ λ
∫ t

0
E
(|1(Vπ1 (s)> 0) − 1(Vπ2 (s)> 0)|) ds

≤ λ
∫ t

0
E
(∣∣Vπ1 (s) − Vπ2 (s)

∣∣) ds ≤ λ
∫ t

0
E
(‖Zπ1 − Vπ2‖∞,s

)
ds.

For the fifth term, as for the third term,

E

( ∫∫
[0,t]×R+

1
(
Vr
π1

(s−) ∧ Vr
π2

(s−) ≤ h ≤ Vr
π1

(s−) ∨ Vr
π2

(s−)
)Nν,2(ds, dh)

)

≤ ν
∫ t

0
E
(‖Zπ1 − Zπ2‖∞,s

)
ds.

Thus,

E(‖Zπ1 − Zπ2‖∞,t) ≤ (2μ+ 3ν + 2λ)
∫ t

0
E(‖Zπ1 − Zπ2‖∞,s) ds + λ

∫ t

0
ρs(π1, π2) ds.

By Grönwall’s inequality, E(‖Zπ1 − Zπ2‖∞,t) ≤ Ct
∫ t

0 ρs(π1, π2) ds with Ct = λ exp ((2μ+
3ν + 2λ)t). For t ≤ T ,

ρt(	(π1), 	(π2)) ≤ CT

∫ t

0
ρs(π1, π2) ds. (9)

This leads to the uniqueness of the solution of 	(π ) = π . Indeed, if π1 and π2 are fixed
points of	, then (9) is rewritten as ρt(π1, π2) ≤ CT

∫ t
0 ρs(π1, π2) ds. By Grönwall’s inequality

again, for each t ≤ T , ρt(π1, π2) = 0 and thus π1 = π2. The existence is proved by an iteration
argument. Let π0 ∈P(DT ) and πn+1 =	(πn). By (9),

WT (πn+1, πn) ≤ ρT (πn+1, πn)

≤ Cn
TρT (π1, π0)

∫
0≤s1≤s2···≤sn≤T

ds1 · · · dsn ≤ (CTT)n

n! ρT (π1, π0).

Thus (πn) converges since (P(DT ),WT ) is complete. Because of (9), 	 is continuous for the
Skorohod topology and its limit is a fixed point of 	. �

4. Mean-field limit

Recall that, by Theorem 1, the so-called McKean–Vlasov process (Z(t)) is the unique solu-
tion of the system of equations (6). The empirical distribution 
N(t) of (ZN

i (t), 1 ≤ i ≤ N) is
defined, for f on �K , by


N(t)(f ) = 1

N

N∑
i=1

f (ZN
i (t)) = 1

N

N∑
i=1

f (Rr,N
i (t), RN

i (t), VN
i (t), Vr,N

i (t)).

Process (
N(t)) takes values in

YN =
{

 ∈P(�K), 
(w,x,y,z) ∈ N

N
,

(w, x, y, z) ∈�K,
∑

(w,x,y,z)∈�K

(x + y + z)
(w,x,y,z)N = MN

}
. (10)
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As process ZN is not Markov, process (
N(t)) is not Markov. The aim of this section is to prove
mean-field convergence for (ZN(t)), i.e. that the sequence of processes (
N(t)) converges in
distribution to (Z(t)). This means that, for any function f with finite support, the sequence of
processes (
N(t)(f )) converges in distribution to (E(f (Z(t))).

Theorem 2. (Mean-field convergence.) The sequence of empirical distribution processes
(
N(t)) converges in distribution to a process (
(t)) ∈D([0, T],P(�K)) defined, for f with
finite support on �K, by 
(t)(f ) =E(f (Z(t))) with (Z(t)) the unique solution of (6). Moreover,
for any k ≥ 1 and for 1 ≤ i1 < · · ·< ik ≤ N, the sequence of finite marginals (ZN

i1
(t), . . . , ZN

ik
(t))

converges in distribution to (Zi1 (t), . . . , Zik (t)), where (Zi1 (t)), . . . , (Zik (t)) are independent
random variables with the same distribution as (Z(t)).

The last property is the propagation of chaos. The proof is presented in Section 4.3.

4.1. Evolution equations of the empirical measure

Let us introduce the following notation. For z ∈�K , f : �K →R+, and (ei, 1 ≤ i ≤ 4) the
canonical basis of R4, i.e. e1 = (1, 0, 0, 0), . . . , e4 = (0, 0, 0, 1),

�i,i+1(f )(z) = f (z − ei + ei+1) − f (z), 1 ≤ i ≤ 3,

�+
1 (f )(z) = f (z + e1) − f (z),

�−
4 (f )(z) = f (z − e4) − f (z).

Let �K = {(w, x, y, z) ∈N
4,w + x + y + z ≤ K}. For f : �K →R+, straightforwardly by (4),

df (ZN
i (t)) =�+

1 (f )(ZN
i (t))

N∑
j=1

1
(
VN

j (t−)> 0, SN
i (t−)<K

)NU,N
λ,j (dt, {i})

+�1,2(f )(ZN
i (t))

N∑
j=1

( ∞∑
l=1

1
(
l ≤ XN

j,i(t
−)
)Nν,j,i,l(dt)

)

+�2,3(f )(ZN
i (t))

∞∑
l=1

1
(
l ≤ RN

i (t−)
)Nμ,i,l(dt)

+�3,4(f )(ZN
i (t))

N∑
j=1

1
(
VN

i (t−)> 0, SN
j (t−)<K

)NU,N
λ,i (dt, {j})

+�−
4 (f )(ZN

i (t))
N∑

j=1

( ∞∑
l=1

1
(
l ≤ XN

i,j(t
−)
)Nν,i,j,l(dt)

)
.

Thus, using the martingale decomposition for Poisson processes,

df (ZN
i (t)) =�+

1 (f )(ZN
i (t))1

(
SN

i (t)<K
) N∑

j=1

1
(
VN

j (t)> 0
) λ

N
dt

+�1,2(f )(ZN
i (t))Rr,N

i (t)ν dt +�2,3(f )(ZN
i (t))RN

i (t)μ dt
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+�3,4(f )(ZN
i (t))1

(
VN

i (t)> 0
) N∑

j=1

1
(
SN

j (t)<K
) λ

N
dt

+�−
4 (f )(ZN

i (t))Vr,N
i (t)ν dt + dMN

f ,i(t),

where (MN
f ,i(t)) is a martingale which will be detailed in Section 4.2. By summing this equation

for i from 1 to N and dividing by N,


N(t)(f ) =
N(0)(f ) +MN
f (t)

+ λ

∫ t

0

N(s)(�K ∩ {y> 0})
N(s)(�+

1 (f )1(�<K)) ds

+ ν

∫ t

0

N(s)(�1,2(f )p1) ds +μ

∫ t

0

N(s)(�2,3(f )p2) ds

+ λ

∫ t

0

N(s)(�<K)
N(s)(�3,4(f )1(y> 0)) ds + ν

∫ t

0

N(s)(�−

4 (f )p4) ds, (11)

where

MN
f (t) = 1

N

(MN
f ,1(t) +MN

f ,2(t) + · · · +MN
f ,N(t)

)
, (12)

�<K = {(w, x, y, z) ∈N
4,w + x + y + z<K}, (13)

pi : N4 →N is the ith projection (for example p1(w, x, y, z) = w). (14)

4.2. The martingale term

The martingale term is MN
f (t) given by (12) where, for 1 ≤ i ≤ N,

dMN
f ,i(t) =�+

1 (f )(ZN
i (t))

N∑
j=1

1
(
VN

j (t−)> 0, SN
i (t−)<K

)(NU,N
λ,j (dt, {i}) − λ

N
dt

)

+�1,2(f )(ZN
i (t))

N∑
j=1

∞∑
l=1

1
(
l ≤ XN

j,i(t
−)
)(Nν,j,i,l(dt) − ν dt

)

+�2,3(f )(ZN
i (t))

∞∑
l=1

1
(
l ≤ RN

i (t−)
)(Nμ,i,l(dt) −μ dt

)

+�3,4(f )(ZN
i (t))

N∑
j=1

1
(
VN

i (t−)> 0, SN
j (t−)<K

)(NU,N
λ,i (dt, {j}) − λ

N
dt

)

+�−
4 (f )(ZN

i (t))
N∑

j=1

∞∑
l=1

1
(
l ≤ XN

i,j(t
−)
)(Nν,i,j,l(dt) − ν dt

)
,
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whose increasing process is expressed as
〈MN

f

〉
(t) = (1/N2)

(
λIN

1 (t) +μIN
2 (t) + νIN

3 (t)
)

where,
by careful calculation,

IN
1 (t) =

N∑
i=1

∫ t

0

(
(�+

1 (f )(ZN
i (s)))21

(
SN

i (s)<K
)

N(s)(�K ∩ {y> 0})

+ (
�3,4(f )(ZN

i (s))
)21
(
VN

i (s)> 0
)

N(s)(�<K)

+ 2

N
�+

1 (f )(ZN
i (s))�3,4(f )(ZN

i (s))1
(
VN

i (s)> 0, SN
i (s)<K

))
ds,

IN
2 (t) =

N∑
i=1

∫ t

0

(
�2,3(f )(ZN

i (s))
)2

RN
i (s) ds,

IN
3 (t) =

N∑
i=1

∫ t

0

((
�1,2(f )(ZN

i (s))
)2

Rr,N
i (s) + (

�−
4 (f )(ZN

i (s))
)2

Vr,N
i (s)

+ 2

N
�1,2(f )(ZN

i (s))�−
4 (f )(ZN

i (s))Xi,i(s)

)
ds.

The term with XN
i,i(s) comes from the fact that only sequences (Nν,i,j,., j �= i) and (Nν,j,i,., j �= i)

are independent; see Remark 1. This then yields straightforwardly that there exist C0,C1 > 0
such that, for 1 ≤ i ≤ 3, ‖IN

i ‖∞,T ≤ (C0N + C1)T‖f ‖2∞. Thus,

∥∥〈MN
f

〉∥∥∞,T ≤ (λ+μ+ ν)

(
C0

N
+ C1

N2

)
T‖f ‖2∞. (15)

Thus, applying Cauchy–Schwarz, then Doob’s inequalities,

(
E
(

sup0≤s≤T

∣∣MN
f (s)

∣∣))2 ≤E
(

sup
0≤s≤T

∣∣MN
f (s)

∣∣2)≤ 4E
((MN

f

)2(T)
)= 4E

(〈MN
f

〉
(T)
)
,

and the martingale
(MN

f (t)
)

converges in distribution to 0 when N tends to ∞.

4.3. Convergence of the empirical measure process

This section is devoted to the proof of the mean-field convergence theorem (Theorem 2).
The proof is based on standard tightness and uniqueness arguments using stochastic calcu-
lus and martingale theory. To be self-contained, the paper presents the detailed proof via
Propositions 1 and 2.

Proposition 1. (Tightness of the empirical measure process.) The sequence (
N(t)) is tight
with respect to the convergence in distribution in D(R+,YN), with YN defined by (10). Any
limiting point (
(t)) is a continuous process with values in

Y=
{

 ∈P(�K),

∑
(w,x,y,z)∈�K

(x + y + z)
(w,x,y,z) = s

}
, (16)
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18 C. FRICKER AND H. MOHAMED

a solution of


(t)(f ) =
(0)(f ) + λ

∫ t

0

(s)(�K ∩ {y> 0})
(s)(�+

1 (f )1(�<K)) ds

+ ν

∫ t

0

(s)(�1,2(f )p1) ds +μ

∫ t

0

(s)(�2,3(f )p2) ds

+ λ

∫ t

0

(s)(�<K)
(s)(�3,4(f )1(y> 0)) ds + ν

∫ t

0

(s)(�−

4 (f )p4) ds (17)

for any function f on �K = {(w, x, y, z) ∈N
4,w + x + y + z ≤ K} and with �<K and the pi

defined by (13) and (14).

Proof. This amounts to proving that, for any function f on �K , the sequence of processes
(
N(t)(f )) is tight with respect to the topology of the uniform norm on compact sets. For this,
using the modulus of continuity criterion (see [4]), it suffices to prove that, for T, ε, η > 0,
there exist δ0 > 0 and N0 ∈N such that, for all δ < δ0 and all N ≥ N0,

P
(

sup0≤s≤t≤T, |s−t|<δ |
N(t)(f ) −
N(s)(f )|>η)< ε. (18)

Let T > 0, ε > 0, η > 0, δ > 0, and s, t ∈ [0, T] such that |s − t|< δ be fixed. For the third term
on the right-hand side of (11), there exists C2 > 0 such that

∣∣∣∣
∫ t

s

N(u)(�K ∩ {y> 0})
N(u)(�+

1 (f )1(�<K)) du

∣∣∣∣≤ δC2‖f ‖∞,

and the same holds for the other terms. Thus, there exists C3 > 0 such that

|
N(t)(f )) −
N(s)(f ))| ≤ δC3‖f ‖∞ + ∣∣MN
f (t) −MN

f (s)
∣∣.

Using (15) for the martingale term, there exists C4 > 0 such that

E
(

sup0≤s≤t≤T, |s−t|<δ |
N(t)(f ) −
N(s)(f )|)≤ δC4‖f ‖∞ + 2E
(

sup0≤t≤T

∣∣MN
f (t)

∣∣).
Thus, as the martingale term converges in distribution to 0, there exist δ0 > 0 and N0 ∈N such
that, for all δ < δ0 and all N ≥ N0, the left-hand side of the previous equation is less than ε.
Then, using Markov’s inequality, the sequence of processes (
N(t)(f )) satisfies (18) and thus
is tight. Therefore, if 
 is a limiting point of 
N , again using (11), as

(MN
f (t)

)
converges in

distribution to 0, (17) holds. As the function f has finite support, all the terms on the right-hand
side are straightforwardly continuous on t.

The following proposition gives the uniqueness of a limiting point of (
N(t)).

Proposition 2. (Uniqueness.) For every probability 
0 on �K, (17) has at most one solution
(
(t)) in D(R+,P(�K)) with initial condition 
0.
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Proof. Let (
1(t)) and (
2(t)) in D(R+,P(�K)) be two solutions of (17) with initial
condition 
0. For f a function on �K and t ≥ 0,


1(t)(f ) −
2(t)(f ) = λ

∫ t

0
(
1(s) −
2(s))(�K ∩ {y> 0})
1(s)(�+

1 (f )1(�<K)) ds

+ λ

∫ t

0

2(s)(�K ∩ {y> 0})(
1(s) −
2(s))(�+

1 (f )1(�<K)) ds

+ ν

∫ t

0
(
1(s) −
2(s))(�1,2(f )p1 +�−

4 (f )p4) ds

+μ

∫ t

0
(
1(s) −
2(s))(�2,3(f )p2) ds

+ λ

∫ t

0
(
1(s) −
2(s))(�<K)
1(s)(�3,4(f )1(y> 0)) ds

+ λ

∫ t

0

2(s)(�<K)(
1(s) −
2(s))(�3,4(f )1(y> 0)) ds.

Recall that, for a signed measure π on �K , ‖π‖TV = sup{|π (f )|, f : �K →R, ‖f ‖∞ ≤ 1}.
From the previous equation,

‖
1(t) −
2(t)‖TV ≤ (8λ+ 4ν + 2μ)
∫ t

0
‖
1(s) −
2(s)‖TV ds.

Applying Grönwall’s lemma, ‖
1(t) −
2(t)‖TV = 0, which completes the proof. �

Proof of Theorem 2. Let (w, x, y, z) ∈�K and 
0 = δ(w,x,y,z). If (Z(t)) is the unique solution
of (6) and the measure-valued process (
(t)) is defined, for f a function on �K , by 
(t)(f ) =
E(f (Z(t))), then it is easy to check that (
(t)) is a solution of (17). The convergence of (
N(t))
follows from Propositions 1 and 2. See [21, Proposition 2.2] for the propagation of chaos
property. �

4.4. Probabilistic interpretation of the asymptotic process

Note that the Fokker–Planck equation (1) is the functional form of the stochastic equation
(17). Recall that, in (1), equalities in distribution hold, as

∫∫
[0,t]×R+

1
(
0 ≤ h ≤ Rr(s−)

)Nν(ds, dh) =
∫ t

0

∞∑
l=0

1
(
l ≤ Rr(s−)

)Nν,l(ds).

Thus, the non-homogeneous Markov process (Z(t)) can be seen as the state process of four
queues in tandem, with overall capacity K. This means that Rr(t), R(t), V(t), and Vr(t) are the
numbers of customers in, respectively,

• the first queue, an infinite-server queue with service rate ν,

• the second one, an infinite-server queue with service rate μ,

• the third one, a one-server queue with variable service rate λP(S(t)<K) at time t, and

• the last one, an infinite-server queue with service rate ν,
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20 C. FRICKER AND H. MOHAMED

FIGURE 1. Dynamics of (Z(t)) as a tandem of four queues. The vertical queues are M/M/∞ queues,
while the horizontal one is an M/M/1 queue. The overall capacity is K.

while the arrival process is a non-homogeneous Poisson process with intensity
λP(V(t)> 0) dt.

Let η1, ρ1, ρ2, and η2 be the arrival-to-service-rate ratios for the four queues from left to
right in Figure 1. By definition,

η1(t) = λ

ν
P(V(t)> 0), ρ1(t) = λ

μ
P(V(t)> 0),

ρ2(t) = P(V(t)> 0)

P(S(t)<K)
, η2(t) = λ

ν
P(V(t)> 0).

(19)

5. Equilibrium of the asymptotic process

The quadruplet of the numbers of customers in four such queues in tandem with fixed
arrival-to-service-rate ratios η1, ρ1, ρ2, and η2 and finite overall capacity K is an ergodic
Markov process as an irreducible Markov process on a finite state space. Moreover, the unique
invariant probability measure has a well-known product form given by

πj,k,l,m(ρ) = 1

Z(ρ)

η
j
1ρ

k
1

j!k! ρ
l
2
ηm

2

m! (20)

where, to shorten the notation, (η1, ρ1, ρ2, η2) is denoted by ρ and the normalizing constant is

Z(ρ) =
∑

j+k+l+m≤K

η
j
1ρ

k
1

j!k! ρ
l
2
ηm

2

m! .

If the process (Z(t)) of the number of customers in the four queues in tandem is at equilibrium
then, denoting its generator by Lρ(t), 0 = π (ρ(t))Lρ(t), where ρ(t) = (η1, ρ1, ρ2, η2)(t) is given
by (19). This means that the equilibrium point is the probability measure π (ρ) on Y defined by
(16), where ρ = (η1, ρ1, ρ2, η2) satisfies

η1 = λ

ν
(1 − π0V (ρ)), (21)

ρ1 = λ

μ
(1 − π0V (ρ)), (22)
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ρ2 = 1 − π0V (ρ)

1 − πS(ρ)
, (23)

η2 = λ

ν
(1 − π0V (ρ)), (24)

with π0V (ρ) =∑
j+l+m≤K πj,0,l,m(ρ) and πS(ρ) =∑

j+k+l+m=K πj,k,l,m(ρ). Viewing the tan-
dem of four queues as a station, π0V (ρ) is the probability that there is no car available and
πS(ρ) the probability that the station is saturated.

Because π (ρ) has support on Y,

s =
∑

j+k+l+m≤K

(k + l + m)πj,k,l,m(ρ). (25)

Theorem 3. (Uniqueness and characterization of the equilibrium point.) If ν is large enough
then there exists a unique equilibrium point for the Fokker–Planck equation (17) which is π (ρ)
defined by (20), where ρ = ((μ/ν)ρ1, ρ1, ρ2, (μ/ν)ρ1) and (ρ1, ρ2) is the unique solution of
ρ1 = (λ/μ)(1 − π0V (ρ)), s =∑

j+k+l+m≤K (k + l + m)πj,k,l,m(ρ).

Remark 2. The uniqueness of the equilibrium point is the main issue. Moreover, its charac-
terization given by Theorem 3 is a major contribution which allows us to derive quantitative
results. Proving the uniqueness of the equilibrium point in dimension 2 is quite rare in the lit-
erature: we can cite two papers. For the celebrated model in [14], simulations highlight a range
of parameters with two stable equilibrium points, called metastability phenomena. This fact
was proved some 30 years later in [18]. In [3], the same question is solved for a migration–
contagion model using a convexity argument. The arguments used in our paper are totally
different.

Remark 3. The assumption that ν is large enough is a technical assumption for the proof. It
seems that the result is true for all ν > 0 but the proof is, for the moment, out of reach.

Let us prove Theorem 3 in five steps. Steps 2, 3, and 4 are devoted to the special case where
ν tends to infinity. This case is called the simple reservation case. Indeed, when ν gets large, it
turns out that the model corresponds to the case where the car is not reserved in advance, and
the parking space is just reserved when the user takes the car. This model is studied in [7]. Step
1 is here to present the framework for the simple reservation case. Steps 2, 3, and 4 exhibit the
proof of [7, Theorem 2] omitted in [7] for the simple reservation model.

Proof of Theorem 3.
Step 1: The simple reservation case. For the model with simple reservation, the problem of
existence and uniqueness of an equilibrium point amounts to finding (ρ1, ρ2) such that

ρ1 = λ

μ
(1 − π.,0(ρ1, ρ2)), (26)

ρ2 = 1 − π.,0(ρ1, ρ2)

1 − πS(ρ1, ρ2)
, (27)

s =
∑

i+j≤K

(i + j)πi,j(ρ1, ρ2), (28)
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where the invariant probability measure is now

πi,j(ρ1, ρ2) = 1

Z(ρ1, ρ2)

ρi
1

i! ρ
j
2,

with Z(ρ1, ρ2) =∑
i+j≤K πi,j(ρ1, ρ2), π.,0 =∑K

i=0 πi,0, and πS =∑
i+j=K πi,j.

Step 2: (26)–(28) amount to (26) and (28). Note that any ρ solution of (26) and (27) lies in
� = [0, λ/μ[ ×R

+. For any ρ ∈ �, ρ is a solution of (27) because

ρ2(1 − πS(ρ1, ρ2)) = ρ2
1

Z(ρ1, ρ2)

∑
i+j<K

ρi
1

i! ρ
j
2 = 1

Z(ρ1, ρ2)

∑
j>0,i+j≤K

ρi
1

i! ρ
j
2 = 1 − π.,0(ρ1, ρ2).

Step 3: Diffeomorphism from (26).

Lemma 1. (Diffeomorphism.) There exists a strictly increasing diffeomorphism φ : ]0,
λ/μ[ → ]0,∞[ and ψ = φ−1 such that (ρ1, ρ2) is a solution of (26) if and only if ρ2 = φ(ρ1).

Proof. First, (ρ1, ρ2) ∈ � is a solution of (26) if and only if f (ρ1, ρ2) = 0 where f is the C∞
function defined by

f (ρ1, ρ2) =
(
λ

μ
− ρ1

)
Z(ρ1, ρ2) − λ

μ

K∑
i=0

ρi
1

i! . (29)

To prove the existence of a strictly increasing diffeomorphism φ which maps ρ1 to
ρ2, we apply the global inverse function theorem to an auxiliary function h defined on �
by h(ρ1, ρ2) = (ρ1, f (ρ1, ρ2)). Indeed, h is injective if and only if, for any ρ1 ∈ ]0, λ/μ[
and ρ2, ρ

′
2 ∈ ]0,+∞[, f (ρ1, ρ2) = f (ρ1, ρ

′
2) implies that ρ2 = ρ′

2. As f is C1 on ]0, λ/μ[ ×
]0,+∞[, it is sufficient to prove that ∂f /∂ρ2 �= 0 on ]0, λ/μ[ × ]0,+∞[ to obtain that
ρ2 �→ f (ρ1, ρ2) is strictly monotone, and thus injective.

Note that it is easy to see that ∂f /∂ρ2 is positive on ]0, λ/μ[ × ]0,+∞[. Indeed, since
ρ1 <λ/μ and ρ2 �→ Z(ρ1, ρ2) is non-decreasing,

∂f

∂ρ2
(ρ1, ρ2) =

(
λ

μ
− ρ1

)
∂Z

∂ρ2
(ρ1, ρ2)> 0.

As a consequence, h is injective and C1 on ]0, λ/μ[ × ]0,+∞[. By the global inversion func-
tion theorem, h−1 is C1 on h

(
]0, λ/μ[ × ]0,+∞[

)
and a C1 φ exists defined on ]0, λ/μ[ by

h−1(ρ1, 0) = (ρ1, φ(ρ1)). Thus, to prove that the diffeomorphism φ is strictly increasing on
]0, λ/μ[ amounts to showing that, for all ρ1 ∈ ]0, λ/μ[,

∂f

∂ρ1
(ρ1, φ(ρ1))< 0,

or, equivalently, that, for all (ρ1, ρ2) ∈ ]0, λ/μ[ × ]0,+∞[ such that f (ρ1, ρ2) = 0,

∂f

∂ρ1
(ρ1, ρ2)< 0.

First, from (29), we obtain the first partial derivative of the function f ,

∂f

∂ρ1
(ρ1, ρ2) = −Z(ρ1, ρ2) +

(
λ

μ
− ρ1

) ∑
i+j≤K−1

ρi
1

i! ρ
j
2 − λ

μ

K−1∑
i=0

ρi
1

i! ;
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thus, subtracting this from (29) yields

f (ρ1, ρ2) − ∂f

∂ρ1
(ρ1, ρ2) = Z(ρ1, ρ2) +

(
λ

μ
− ρ1

) K∑
j=0

ρ
j
2ρ

K−j
1

(K − j)! − λ

μ

ρK
1

K! . (30)

By (29), f (ρ1, ρ2) = 0 can be rewritten as

λ

μ
− ρ1 = λ

μZ(ρ1, ρ2)

K∑
i=0

ρi
1

i! .

Thus, the second term on the right-hand side of (30) is

(
λ

μ
− ρ1

) K∑
j=0

ρ
j
2ρ

K−j
1

(K − j)! = λ

μ

1

Z(ρ1, ρ2)

K∑
i=0

ρi
1

i!
K∑

j=0

ρ
j
2ρ

K−j
1

(K − j)!

= λ

μ
ρK

1
1

Z(ρ1, ρ2)

K∑
i,j=0

ρ
i−j
1 ρ

j
2

i!(K − j)!

≥ λ

μ
ρK

1
1

Z(ρ1, ρ2)

∑
0≤j≤i≤K

ρ
i−j
1 ρ

j
2

i!(K − j)! , (31)

using the fact that all the terms are positive. For the sum on the right-hand side of (31), we
have ∑

0≤j≤i≤K

ρ
i−j
1 ρ

j
2

i!(K − j)! = 1

K!
∑

j+k≤K

K!ρk
1ρ

j
2

(j + k)!(K − j)! ≥ Z(ρ1, ρ2)

K!
using that, for any j, k ∈N, j + k ≤ K,

K!
(j + k)!(K − j)! = 1

k!
K!

(K − j)!
k!

(j + k)! = 1

k!
j−1∏
i=0

K − i

j + k − i
≥ 1

k! .

In conclusion, (31) gives (
λ

μ
− ρ1

) K∑
k=0

ρK
2 ρ

K−k
1

(K − k)! ≥ λ

μ

ρK
1

K! .

Plugging this into (30) and using that Z(ρ1, ρ2)> 0, it turns out that

f (ρ1, ρ2) − ∂f

∂ρ1
(ρ1, ρ2)> 0.

Therefore, as f (ρ1, ρ2) = 0,
∂f

∂ρ1
(ρ1, ρ2)< 0

for all (ρ1, ρ2) ∈ ]0, λ/μ[ × ]0,+∞[ such that f (ρ1, ρ2) = 0. �

Lemma 1 means that the solutions of (26) can be expressed with only one parameter. Note
that this will be useful for the study of the equilibrium, especially in calculations to obtain
asymptotics. This concludes the third step of the proof.
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Step 4: A monotonicity argument to conclude the simple reservation case. After (26) and (27),
let us focus now on (28). The idea is to prove that the mean number in a tandem of two
queues with total capacity K is a strictly increasing function of both arrival-to-service rates.
This generalizes the monotonicity argument in the similar proof in [10, Section 3.1]. Then,
using Lemma 1, we get the existence and uniqueness of the equilibrium point.

Lemma 2. (Monotonicity.) The average number E(R + V) of vehicles and reserved spaces per
station, where (R,V) is a random variable with distribution π (ρ2, ρ1), is a strictly increasing
function of both ρ2 and ρ1.

Proof. Let (ρ1, ρ2) �→E(R + V) be denoted by gK . It is sufficient to prove that, for all
(ρ1, ρ2) ∈ �,

∂gK

∂ρ1
(ρ1, ρ2)> 0 and

∂gK

∂ρ2
(ρ1, ρ2)> 0

by induction on K.
By a change of indices, gK can be rewritten as

gK =
∑

i+j≤K (i + j)(ρi
1/i!)ρj

2∑
i+j≤K (ρi

1/i!)ρj
2

=
∑K

k=0 kpk∑K
k=0 pk

,

where, by definition,

pk =
k∑

j=0

ρ
j
2

ρ
k−j
1

(k − j)! .

Define also, for (k, l) ∈N
2, rl,k = pl/pk.

Let k> 0 be fixed. We first show that rk,k−1 is an increasing function of both ρ1 and ρ2.
Indeed,

rk,k−1 = pk

pk−1
= ρ2pk−1 + ρk

1/k!
pk−1

= ρ2 + ρk
1

k!
1

pk−1
,

and thus
∂rk,k−1

∂ρ2
= 1 − ρk

1

k!
∂pk−1

∂ρ2

1

p2
k−1

. (32)

But, by the definition of pk,

ρk
1
∂pk−1

∂ρ2
=

k−1∑
j=1

jρj−1
2

ρ
2k−j−1
1

(k − j − 1)! =
k−2∑
j=0

(j + 1)ρj
2

ρ
2k−j−2
1

(k − j − 2)! . (33)

And, using the fact that all the terms of the sum in the following equation are positive,

k!p2
k−1 = k!

∑
1≤u,v≤k

ρu+v−2
2

ρ2k−u−v
1

(k − u)!(k − v)! >
k−2∑
i=0

ρi
2ρ

2k−i−2
1

i+1∑
j=1

k!
(k − 2 − i + j)!(k − j)! .

(34)
For all j, 0 ≤ j ≤ i + 1, while k − 2 − i + j< k, we have

k!
(k − 2 − i + j)!(k − j)! >

1

(k − i − 2)! ,
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and then
i+1∑
j=1

k!
(k − 2 − i + j)!(k − j)! >

i + 1

(k − i − 2)! .

Plugging in (34) and comparing with (33) gives

k!p2
k−1 >ρ

k
1
∂pk−1

∂ρ2
.

Therefore, using (32) allows us to conclude that

∂rk,k−1

∂ρ2
> 0.

Moreover,
∂rk,k−1

∂ρ1
= ρk−1

1

(k − 1)!pk−1

(
1 − ρ1

kpk−1

∂pk−1

∂ρ1

)
> 0,

because it is easily checked that ∂pk−1/∂ρ1 = pk−2 and then kpk−1 >ρ1pk−2.
Therefore, if l> k, rl,k =∏l

i=k+1 ri,i−1 is an increasing function of ρ2 and ρ1. This gives us
that uK defined by

uK = pK∑K
k=0 pk

= 1∑K
k=0 rk,K

is non-decreasing in x ∈ {ρ1, ρ2}, because rk,K = 1/rK,k is non-increasing in x.
Note that g0 is constant with x and that gK = (1 − uK)gK−1 + KuK , which yields

∂gK

∂x
= (K − gK−1)

∂uK

∂x
+ (1 − uK)

∂gK−1

∂x
.

Since K − gK−1 > 0, uK < 1, and ∂uK/∂x> 0, by induction we can conclude that ∂gK/∂x> 0
for all K ≥ 1. This completes the proof. �

By Step 2, it remains to prove that, for any s> 0, there exists a unique (ρ1, ρ2) solution of
both (26) and (28). By Lemma 1, (26) can be rewritten as ρ1 =ψρ2 (ρ2) with ρ2 ≥ 0. Then, (28)
becomes

s = gK(ψρ2 (ρ2), ρ2). (35)

Let us denote the right-hand side of (35) by a function sK defined on [0,+∞[ which maps
ρ2 to gK(ψρ2 (ρ2), ρ2) =E(R + V). It is sufficient to prove that sK is strictly increasing. This is
true, using that

s′
K = ∂gK

∂ρ2
+ ∂gK

∂ρ1
ψ ′
ρ2

as (35) holds with ψρ2 at ρ2 but also in a neighborhood of ρ2, and using both Lemmas 1
and 2. To conclude the proof, we can easily check that sK covers the whole interval [0,+∞[.
Indeed, if ρ2 = 0, the only ρ1 solution of f (ρ1, ρ2) = 0 is 0 and E(R + V) = 0. Similarly, when
ρ2 tends to infinity, ρ1 has to tend to λ/μ to keep f (ρ1, ρ2) = 0 and E(R + V) tends to +∞.
This completes the proof for the single reservation case.

Step 5: The double reservation case. Straightforwardly, (21) and (24) lead to η1 = η2 = μ
ν
ρ1.

Then the main argument is that (22) and (23) can be rewritten as (26) and (27), where ρ1 is
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replaced by ρ̃1 = (1 + 2μ/ν)ρ1 and λ/μ by a = λ/μ(1 + 2μ/ν). Indeed, by straightforward
algebra, π0V (ρ) = π·,0(ρ̃1, ρ2) and πS(ρ) = πS(ρ̃1, ρ2).

Unfortunately, (25) is not rewritten as (28) with the previous change of variables ρ̃1 = (1 +
2μ/ν)ρ1, but, with careful calculations, as

s =
∑

i+j≤K

(
1 +μ/ν

1 + 2μ/ν
i + j

)
πi,j(ρ̃1, ρ2). (36)

To complete the proof for any ν > 0 amounts to proving that, for a> 0 and K ∈N,

S(x, y) = 1

Z(x, y)

∑
i+j≤K

(i + 2j)
xi

i! yj

is a strictly increasing function of x ∈ [0, a[ under f (x, y) = 0, where

f (x, y) = (a − x)Z(x, y) − a
K∑

i=0

xi

i! , Z(x, y) =
∑

i+j≤K

xi

i! yj.

Indeed, the ratio on the right-hand side of (36) is a non-increasing function from (0,+∞) to( 1
2 , 1

)
. By the linearity of differentiability and multiplication by a scalar, it suffices to prove

that the right-hand side of (36) is non-increasing as a function of ρ̃1 for ρ2 = φ(ρ1) defined in
Lemma 1 with the two values 1

2 and 1 of this ratio. For the value 1, it is exactly Lemma 2. It
remains to prove it for the value 1

2 , which was previously asserted.
Nevertheless, due to the simple reservation case (Steps 2 to 4), by continuity, the proof of

Theorem 3 is complete for ν large enough.
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