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Abstract

We extend existing methods which treat the semilinear Calderón problem on a bounded domain to a class
of complex manifolds with Kähler metric. Given two semilinear Schrödinger operators with the same
Dirchlet-to-Neumann data, we show that the integral identities that appear naturally in the determination
of the analytic potentials are enough to deduce uniqueness on the boundary up to infinite order. By
exploiting the assumed complex structure, this information allows us to apply the method of stationary
phase and recover the potentials in the interior as well.
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1. Introduction

We study the semilinear elliptic equation∆gu + V(p, u) = 0 in M,

u = f on ∂M,
(NCP f ,V )

on a complex n-dimensional compact connected Kähler manifold (M, g) with smooth
boundary ∂M. Here V : M × C→ C is a C∞(M) function for every complex variable
such that

V(p, u) =
∑
k≥1

Vk(p)
k!

uk, where Vk(p) def
= ∂k

uV(p, 0), (1.1)

converges in the Cs(M) topology for noninteger s > 2. We assume zero is not an
eigenvalue for the operator ∆g + V1. Moreover,

∆gu def
= −

1√
det g

∂i
(
gi j

√
det g∂ ju

)
defined locally is the positive Laplace–Beltrami operator. We assume in addition that
M is holomorphic separable and has local charts given by holomorphic functions, in
the sense that:
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[2] Semilinear Calderón problem 133

∗ for any p, q ∈ M, with p , q, there exists f ∈ C∞(M) ∩ O(Int M) such that
f (p) , f (q);

∗ for any p ∈ M, there exist f1, . . . , fn ∈ C∞(M) ∩ O(Int M) which form a complex
coordinate system centred at p.

In particular, these assumptions cover the case of Stein manifolds.
It was shown in [5] that there exist δ, r,C > 0 depending on (M, g) such that if we

consider the sets

Uδ
def
=

{
h ∈ Cs(∂M) | ‖h‖Cs(∂M) ≤ δ

}
and Vr

def
=

{
w ∈ Cs(M) | ‖w‖Cs(M) ≤ r

}
,

then for any f ∈ Uδ there exists a unique u f ∈ Vr which solves (NCP f ,V ), with the
estimate

‖u‖Cs(M) ≤ C‖ f ‖Cs (M). (1.2)

In particular, u f is analytic with respect to a small complex perturbation of f . If
fε = ε1 f1 + · · · + εk fk, where ε = (ε1, . . . , εk) ∈ Ck is a complex parameter and f1, . . . , fk
are in Cs(M), then the solution u fε admits a power series representation with respect to
the parameter ε in the Ck topology. Thus for sufficiently small boundary data, we can
define the Dirchlet-to-Neumann map

N : Uδ → C
s−1(∂M), f 7−→ ∂νu f |∂M .

We will prove the following theorems.

Theorem 1.1. Let (M, g) be specified as above. Let NV and NW be the Dirchlet-to-
Neumann maps corresponding to V and W, where V and W are smooth and satisfy
condition (1.1). If NV = NW and V1 = W1 = 0, then V = W.

The case where only partial data are available is much harder. Let Γ be an arbitrarily
small open subset of ∂M and let Γc denote the complement of Γ in ∂M. We consider
the Dirchlet-to-Neumann map with partial data

NΓ :
{
h ∈ Uδ | Supp h ⊆ Γ

}
→ Cs−1(∂M), f −→ ∂νu f |Γ.

Using the tools developed in [10], we will extend Theorem 1.1 to solve the semilinear
Calderón problem on Riemann surfaces where only partial data are available.

Theorem 1.2. Let (Σ, g) be a Riemann surface. Let NΓ
V and NΓ

W be the Dirchlet-to-
Neumann map with partial data corresponding to V and W, where V and W are smooth
and satisfy condition (1.1). If NΓ

V = NΓ
W , then V = W.

Since every Riemann surface is also Stein, Theorem 1.2 in particular covers the
situation of Theorem 1.1.

Our strategy will be as follows. In Section 2 we formulate our main theorems in
terms of a class of integral identities analogous to the linearised Calderón problem
[7, 8, 11, 23]. Starting from Section 3, our method will begin to differ from [11].
We prove directly a boundary determination result assuming nothing but the integral

https://doi.org/10.1017/S0004972720000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000428


134 Y. Ma and L. Tzou [3]

identity in Section 2. This will be done using special solutions to the Laplace equation
constructed in [22] via the WKB method. The standard techniques in proving such
results are usually based on the theory of pseudodifferential operators. Then in Section
4, assuming sufficient regularity on the potential, we can simplify the proofs in [10]
and recover the interior potential based on the boundary results obtained in Section 3.

A historical account of the semilinear Calderón problem is in order. The linear
Calderón problem on domains in Rn has been studied intensively (see [15] for a recent
survey). The setting has been extended to conformally transversally anisotropic (CTA)
manifolds by the authors of [6, 9, 16], but the authors of [1, 2] show that there are
Riemannian manifolds for which these methods fail to apply. Complex methods were
first employed in solving the Calderón problem in two dimensions [21]. For Riemann
surfaces, based on [4], the partial-data Calderón problem was solved completely by
the authors of [10].

For the semilinear Schrödinger equation ∆gu + V(p, u), the problem of recovering
the potential V was studied in two dimensions in [12, 13] and in higher-dimensional
settings in [14]. Our method of linearisation is based on [20], generalised in [18, 19]
and extended to CTA manifolds in [5]. In the very recent work [17], the problem
has been extended to more general gradient nonlinearities. On the other hand, the
linearised Calderón problem has been completely solved in the case of real bounded
domains as well as on CTA manifolds [7, 8]. In the complex case, the authors of [7, 10]
completely solved the partial-data linearised Calderón problem on Riemann surfaces
and the full-data problem on Stein manifolds.

Throughout this paper, dωg denotes the Riemannian volume element of (M, g) and
dσg the associated boundary element, Cs(M) denotes the space of Hölder continuous
functions of order s with the usual topology and, for a complex manifold M without
boundary, O(M) denotes the space of holomorphic functions on M.

2. Integral identities

In this section we reformulate Theorem 1.1 in terms of a collection of integral
identities. The procedure will be similar to that in [18] for the case of a real bounded
domain, but we prove the result in the form which will be convenient for our purpose.

Proposition 2.1. Let (M, g) be a compact, oriented manifold and Γ ⊆ ∂M be an
arbitrarily small open subset. Let V,W be smooth functions satisfying condition (1.1)
such that the corresponding Dirchlet-to-Neumann partial-data mapsNΓ

V =NΓ
W agree.

Assume V1 = W1 and that, for every f ∈ C∞(M),∫
M

f u1 · · · ukuk+1 dωg = 0, (2.1)

for all Cs solutions u1, . . . , uk to the linear Schrödinger equation with potential
V1 = W1 and harmonic functions uk+1, all with boundary data supported in Γ, implies
f = 0. Then V = W.

It is convenient to formulate the following lemmas.
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[4] Semilinear Calderón problem 135

Lemma 2.2. Assume the setting of Proposition 2.1. Let fε = ε1 f1 + · · · + εk fk where
ε1, . . . , εk are small complex parameters and f1, . . . , fk are in Cs(Γ). Let v fε and w fε
be solutions to the boundary value problems (NCP fε ,V ) and (NCP fε ,W), respectively. If
V j = W j for 1 ≤ j ≤ k − 1, then for all such j,

∂ε`1 · · · ∂ε` j |ε`1
= ···=ε` j

=0 v fε = ∂ε`1 · · · ∂ε` j |ε`1
= ···=ε` j

=0 w fε ,

where ε`1 , . . . , ε` j belong to {ε1, . . . , εk}.

Proof. Since, for sufficiently small parameters ε1, . . . , εk, a unique solution v fε to
(NCP fε ,V ) exists in the class Vr whenever fε ∈ Uδ, we can specify the conditions above.
Taking the first-order linearisation at zero of the equation∆gv fε + V(p, v fε ) = 0 in M,

v fε = fε on ∂M
(2.2)

with respect to the parameters ε1, . . . , εk and using condition (1.1),∆g∂ε j |ε j=0 v fε = −V1∂ε j |ε j=0 v fε in M,

∂ε j |ε j=0 v fε = f j on ∂M

for 1 ≤ j ≤ k. Thus, ∂ε j |ε j=0 v fε solves the linear Schrödinger equation with potential V1
and Dirichlet data f j. The same calculation works for the solution w fε of (NCP fε ,W).
In particular, since V1 = W1 by assumption, this proves the lemma for j = 1 via elliptic
regularity. Assume now that the claim holds for j ≤ k − 2. Then we write

∆g(v fε − w fε ) =
∑
j≤k−1

W j

j!
(w j

fε
− v j

fε
) +

Wk

k!
wk

fε −
Vk

k!
vk

fε +
∑
j>k

W j

j!
w j

fε
−

V j

j!
v j

fε
.

Since v fε |ε1= ···=εk=0 = 0 by estimate (1.2), taking a (k − 1)th-order linearisation and by
considering the terms in ∂ε`1 · · · ∂ε`k−1 |ε`1

= ···=ε`k−1
=0 v j

fε
for j ≥ k − 1 which do not contain

positive powers of v fε , we find

∂ε`1 · · · ∂ε`k−1 |ε`1
= ···=ε`k−1

=0 vk−1
fε = (k − 1)!(∂ε`1 |ε`1 =0 v fε ) · · · (∂ε`k−1 |ε`k−1

=0 v fε ),

∂ε`1 · · · ∂ε`k−1 |ε`1
= ···=ε`k−1

=0 v j
fε

= 0, for j > k + 1.

On the other hand, for j ≤ k − 2 the expression ∂ε`1 · · · ∂ε`k−1 |ε`1
= ···=ε`k−1

=0 v j
fε

contains
only lower-order derivatives of v fε . The same calculation works for w fε . Taking
these derivatives of ∆g(v fε − w fε ) and applying elliptic regularity and the induction
hypothesis concludes the proof of the lemma. �

Lemma 2.3. Assume the setting of Proposition 2.1 and Lemma 2.2. Then for all k ≥ 2,∑
j≤k−1

∫
M

W j

j!
uk+1∂ε1 · · · ∂εk |ε1= ···=εk=0 (v fε − w fε ) dωg +

∫
M

(Vk −Wk)u1u2 · · · uk+1 dωg = 0,

where u1, . . . , uk are Cs solutions to the linear Schrödinger operator with potential
V1 = W1, uk+1 is Cs harmonic, and the Dirichlet data of these solutions are supported
in Γ.
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136 Y. Ma and L. Tzou [5]

Proof. Let uk+1 be a harmonic function with Dirichlet data fk+1 supported in Γ. Then∫
∂M

fk+1∂ε1 · · · ∂εk |ε1= ···=εk=0 (NΓ
V − N

Γ
W) fε dσg

=

∫
∂M\Γ

fk+1∂ν∂ε1 · · · ∂εk |ε1= ···=εk=0 (v fε − w fε ) dσg = 0

since fk+1 is supported away from the set integrated. The last integral is also equal to

−

∫
M

uk+1∆g∂ε1 · · · ∂εk |ε1= ···=εk=0 (v fε − w fε ) dωg

+

∫
M
〈duk+1, d∂ε1 · · · ∂εk |ε1= ···=εk

(v fε − w fε )〉g dωg. (2.3)

The second integral in (2.3) is∫
M
∂ε1 · · · ∂εk |ε1= ···=εk=0 (v fε − w fε )∆guk+1 dωg +

∫
∂M
∂ε1 · · · ∂εk |ε1= ···=εk=0 (v fε − w fε )∂νuk+1 dσg

which vanishes. Applying the calculation of Lemma 2.2 to the first integral in (2.3)
gives∫

M
uk+1(Wk − Vk)u1 · · · uk dωg +

∑
j≤k−1

∫
M

W j

j!
uk+1∂ε1 · · · ∂εk |ε1= ···=εk=0 (v fε − w fε ) dωg = 0

as desired. �

Proof of Proposition 2.1. By virtue of Lemma 2.2 we will prove the claim via
induction on k. For k = 2, the assumption V1 = W1 allows us to invoke Lemma 2.3
to conclude that ∫

M
(V2 −W2)u1u2u3 dωg = 0,

so our assumption ensures that V2 = W2. Now assume that V j = W j holds for j ≤ k − 1.
Combining the statements of Lemmas 2.2 and 2.3 again yields∫

M
(Vk −Wk)u1u2 · · · uk+1 dωg = 0.

Applying our assumption once more shows that Vk = Wk and concludes the proof of
the claim. �

Therefore, in order to solve the semilinear Calderón problem it suffices to prove
the assumption in Proposition 2.1. In the next section we first recover some useful
information on the boundary, which will be our key step towards interior identification.
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[6] Semilinear Calderón problem 137

3. Boundary determination

To recover uniqueness in the interior, the first step is often to do so on the boundary.
In this section we will show that the integral identity assumed in Proposition 2.1
is valid up to infinite order on the boundary. If (Σ, g) is a Riemann surface, then,
using conformal coordinates, the zeroth-order result will follow from the proof in the
appendix of [10], which will turn out to be enough for our purpose. For the general
case it suffices to consider a complex manifold (M, g) with real dimension dim M > 2.
For our problem, this is equivalent to assuming that V1 = W1 = 0. This means that the
following proposition is sufficient.

Proposition 3.1. Let (M, g) be a compact, connected Riemannian manifold with
smooth boundary. Suppose that f ∈ C∞(M) satisfies∫

M
f uv dωg = 0 (3.1)

for all Cs harmonic functions u, v with Dirichlet data supported in an arbitrarily small
open subset Γ ⊆ ∂M. Then ∂k

ν f |Γ = 0 for all k ∈ N.

We will follow the idea developed in [3] by exploiting harmonic functions with
prescribed boundary data which concentrate at an arbitrary boundary point p ∈ Γ to
very fine orders. For this purpose, let (χ, ρ) ∈ C∞c (Rn−1) × C∞c (R) be such that

Supp χ × Supp ρ ⊆ B and ‖χ‖L2(Rn−1) = ‖ρ‖L2(R) = 1,

where B def
= (|x′| < 1) × (0 ≤ xn < 1) is a relatively open half ball in Rn

+, such that
χ = ρ = 1 near the origin and χ, ρ vanish near ∂B. For h > 0, we also define

χh(x′) def
= χ(x′/

√
h), ρh(xn) def

= ρ(xn/h) and Bh
def
= (|x′| <

√
h) × (0 ≤ xn <

√
h),

where x′ = (x1, . . . , xn−1) denotes the local boundary coordinates. Without loss of
generality, for h > 0 small, we can assume that Bh is contained in a boundary normal
coordinate chart of (M, g) centred at p ∈ Γ. Thus locally, the metric satisfies

gαn = 0 for α ≤ n − 1, and gnn = 1.

In particular, we may assume that gi j(0) = δi j. We will now proceed to the proof of
Proposition 3.1.

Proof of Proposition 3.1. Following [22], for every k ∈ N there exist polynomials Q j,h

in xn such that

vh =
∑

0≤ j≤2k+6

h j/2Q j,he(ix′·τ−xn)/h,

Q0,h = χh, Q j,h =
∑

0≤i≤ j

h−iqi j

( x′
√

h

)
xi

n for j ≥ 1,
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where τ ∈ Rn−1 is a vector locally tangential to ∂M, qi j are compactly supported in
(|x′| ≤ 1) and |∆gvh| = o(hk+1) uniformly on Bh as h→ 0.

Consider harmonic functions uh = ρhvh + Rh where ‖Rh‖L2 ≤ C‖∆g(ρhvh)‖L2 .
Substituting these functions into the integral identity (2.1) yields∫

M
f |uh|

2 dωg

=

∫
M

f |ρhvh|
2 dωg +

∫
M

fρhvhRh dωg +

∫
M

fρhvhRh dωg +

∫
M

f |Rh|
2 dωg.

Without loss of generality, we may assume that

∂ν f |Γ = · · · = ∂k−1
ν f |Γ = 0.

Therefore, by Taylor’s theorem, a careful calculation on the order of h yields∫
M

f |ρhvh|
2 dωg = (∂k

ν f )(0)
∫

Bh

xk
n|ρhvh|

2
√

det g dx + o(h(n+2k+1)/2)

=
h(n+2k)/2(∂k

ν f )(0)
(−2)k

∫
|x′ |≤1
| χ(x′)|2

∫ 1

0
|ρ(xn)|2e−2xn/h

√
det g dxn dx′ + o(h(n+2k+1)/2)

=
−h(n+2k+1)/2(∂k

ν f )(0)
(−2)k

∫
|x′ |≤1
| χ(x′)|2

√
det gh(x′, 0) dx′ + o(h(n+2k+1)/2)

as h→ 0. This follows by expanding vh in the integral, applying convexity and using

h j−2i
∫
|x′ |≤

√
h

∣∣∣∣∣qi j

( x′
√

h

)∣∣∣∣∣2 ∫ √
h

0
xk+2i

n |ρh|
2e−2xd/h

√
det g dxndx′ = o(h(n+2k+1)/2),

for j ≥ 1, i ≤ j. Indeed, it suffices to apply integration by parts with respect to the
normal direction and change of variables, as well as choosing ρ = 0 in a neighbourhood
of xn = 1, to obtain this asymptotic estimate. Next we look at the L2 estimate of
∆(ρhvh). By the Leibniz rule,

‖∆g(ρhvh)‖L2 ≤ ‖ρh∆gvh‖L2 + ‖[ρh,∆g]vh‖L2 ,

where [ρh, ∆g]vh = vh∆gρh + 〈dρh, dvh〉g is the commutator. By construction it is
obvious that ‖ρh∆gvh‖L2 = o(h(n+4k+4)/2). On the other hand, directly,∫

M
|vh∆gρh|

2 dωg ≤
∑

j≤2k+6

∑
i≤ j

Ch j−2i
∫
|x′ |≤

√
h

∣∣∣∣∣qi j

( x′
√

h

)∣∣∣∣∣2∫
√

h

0
x2ie−2xn |∆gρh|

2 dxn dx′,∫
M
|〈dρh, dvh〉|

2 dωg

≤
∑

j≤2k+6

∑
i≤ j

Ch j−2i
∫
|x′ |≤

√
h

∣∣∣∣∣qi j

( x′
√

h

)∣∣∣∣∣2∫
√

h

0
|∂nxi

n∂nρh|
2e−2xn/h dxn dx′

+
∑

j≤2k+6

∑
i≤ j

Ch j−2i−2
∫
|x′ |≤

√
h

∣∣∣∣∣qi j

( x′
√

h

)∣∣∣∣∣2 ∫ √
h

0
|xi

n∂nρh|
2e−2xn/h dxn dx′.
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[8] Semilinear Calderón problem 139

Since the derivatives of ρ vanish at the end points of [0,
√

h], in all cases the interior
integrals in xn decay to order o(h∞) as h→ 0 and therefore so do ‖vh∆gρh‖L2 and
‖〈dρh, dvh〉‖L2 . From the Cauchy–Schwartz inequality,∣∣∣∣∣ ∫

M
fρhvhRh dωg +

∫
M

fρhvhRh dωg

∣∣∣∣∣ ≤ 2‖ f ‖L∞‖vh‖L2‖∆g(ρhvh)‖L2

≤ 2‖ f ‖L∞‖vh‖L2‖ρh∆gvh‖L2 + 2‖ f ‖L∞‖vh‖L2‖[ρ,∆g]vh‖L2 = o(h(n+2k+1)/2),∣∣∣∣∣ ∫
M

f |Rh|
2 dωg

∣∣∣∣∣ ≤ ‖ f ‖L∞‖Rh‖
2
L2 ≤ ‖ f ‖L∞‖∆g(ρhvh)‖2L2 = o(h(n+2k+1)/2).

Putting everything together, we arrive at∫
M

f |uh|
2 dωg =

−h(n+2k+1)/2

(−2)k (∂k
ν f )(0)

∫
|x′ |≤1
| χ(x′)|2

√
det gh(x′, 0) dx′ + o(h(n+2k+1)/2),

that is,

0 = (∂k
ν f )(0)

∫
|x′ |≤1
| χ(x′)|2

√
det gh(x′, 0) dx′ + o(1).

Taking the limit as h→ 0. we conclude that (∂k
ν f )(0) = 0. Since this holds for every

p ∈ Γ, the claim follows. �

4. Interior determination

We recall key results from [10, 11] on the existence of special holomorphic
functions with prescribed critical points and real boundary conditions.

Proposition 4.1. Let M be a compact complex manifold with smooth boundary.
Assume that M has local charts given by global holomorphic functions. For k ≥ 2,
we can find a dense subset S of M such that for any p ∈ S , there exists Φ in
Ck(M) ∩ O(Int M) having a critical point at p such that both the real and imaginary
parts of Φ are Morse functions in M.

In the case of a Riemann surface Σ, the same is true and Φ is real on Γc, where Γc

is the complement of an arbitrarily small open subset Γ ⊆ ∂Σ. Moreover, for every set
of discrete points {p, p1, . . . , pN} we can find a holomorphic function a on Σ such that
a(p) = 0 and a(p1) = · · · = a(pN) = 0 up to large orders, with the boundary condition
that a|Γc is purely imaginary.

4.1. The case n > 1. Full data. Using Proposition 2.1 and the boundary uniqueness
result of Proposition 3.1, the proof of Theorem 1.1 is now a straightforward application
of the result in [11].

Proof of Theorem 1.1. By Proposition 2.1, it suffices to show that if f ∈ C∞(M)
satisfies condition (2.1) for all Cs harmonic functions u, v, then f = 0. Since we only
consider the full-data case, by taking identity functions it suffices to replace (2.1) by
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(3.1). By Proposition 3.1, in this case f vanishes on ∂M up to infinite orders, therefore
we follow the idea in [11] and apply the stationary-phase argument.

Assume that (3.1) holds. By the results of Proposition 4.1, there exists a dense
subset S ⊆ M such that for every p ∈ S , there exists a holomorphic function Φ ∈

Ck(M) ∩ O(Int M) for some large k such that p is a critical point of Φ and Im Φ is
a Morse function. Choose

uh = eΦ/ha and vh = e−Φ̄/hā for all h > 0, (4.1)

where a ∈ O(Int M) satisfies a(p) = 1 and a(p1) = · · · = a(pN) = 0 and {p, p2, . . . , pN} is
the set of critical points of Im Φ in Int M. Such an amplitude can be constructed by the
assumption that M is holomorphic separable. In particular, uh and vh are respectively
holomorphic and anti-holomorphic and so harmonic for all h > 0. It follows that∫

M
f e2i Im Φ/h|a|2 dωg = 0 for all h > 0.

Take a partition of unity (χ j) of M such that p is contained in Supp χ but not Supp χ j

for any j , 0 and χ1(p) = 1. Since f vanishes up to infinite order on ∂M by Proposition
3.1, the method of stationary phase yields∣∣∣∣∣(2π)n f (p)

√
det g(p) exp

( iπ
4

sgn∇2
g Im Φ(p)

)
(det ∇2

g Im Φ(p))−1/2
∣∣∣∣∣ = o(1)

as h→ 0. Taking this limit, we see that f = 0 on S . Because S is dense in M and f is
continuous, f = 0 on M as well. �

4.2. The case n = 1. Partial data. We now move on to the consideration of
Riemann surfaces. Now the special structure has only one complex dimension and
adapting the techniques in [10] allows us to prove Theorem 1.2 with partial data.

Proof of Theorem 1.2. The Dirchlet-to-Neumann map of (NCP f ,V ) determines the
Dirchlet-to-Neumann map of the linear Calderón problem for V1. Indeed, for ε > 0
small enough and f̃ ∈ Cs(Γ),

∂ε |ε=0 uε f̃ + V1∂ε |ε=0 uε f̃ = 0 in M and ∂ε |ε=0 uε f̃ = f̃ on Γ.

Thus, if the Dirchlet-to-Neumann maps of (NCP f ,V ) and (NCP f ,W) are the same,
then V1 = W1 = U by the result in [10]. This reduces the claim to the assumption
in Proposition 2.1. Now, appealing to Proposition 4.1 once more, we can find a
dense subset S ⊆ Σ such that for every p ∈ S , we can choose a holomorphic function
Φ ∈ Ck(Σ) ∩ O(Int Σ) for some large k such that p is a critical point of Φ and ϕ, ψ are
Morse functions up to the boundary. Moreover, Φ|Γc is purely real and we can choose
a ∈ O(Int Σ) such that a|Γc is purely imaginary, a(p) = 1 and a(p′) = 0 up to arbitrarily
large orders for any other critical points p′ of Im Φ. Therefore, choosing

ũh = eΦ/ha + eΦ/ha and ṽh = e−Φ/ha + e−Φ/ha, for all h > 0,
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ensures that ũh and ṽh are harmonic and

ũh = eϕ/h(Im a − Im a) = 0 and ṽh = e−ϕ/h(Im a − Im a) = 0 on Γc,

so that Supp ũh and Supp ṽh ⊆ Γ as well. This is not quite enough because we need
to extend these solutions to become solutions to the linear Schrödinger equation with
potential U. For that we will assume the technical results proved in [10, Chapter 5]. We
can extend the construction by means of a Carleman estimate to obtain H2 solutions
to the Schrödinger equation with potential U, of the form

uh = eΦ/h(a + ha0 + r1) + eΦ/h(a + ha0 + r1) + eϕ/hr2,

vh = e−Φ/h(a + hb0 + s1) + e−Φ/h(a + hb0 + s1) + e−ϕ/hs2,

where a0, b0 are holomorphic and independent of h and the remainders satisfy

e−Φ/h(∆g + V1)eΦ/h(a + ha0 + r1) = OL2 (h|log h|), ‖r1‖L2 = O(h),(
eΦ/h(a + r1 + ha0) + eΦ/h(a + r1 + ha0)

)
|Γc = 0, ‖r2‖L2 ≤ Ch3/2|log h|,

and likewise for b0, s1 and s2. The Dirichlet boundary data of uh and vh can be
constructed to have support on Γ.

As stated, the regularities of uh and vh are insufficient for an application of
(2.1). For this we consider a sequence of smooth approximations ( fh, j) j defined
on the boundary such that Supp fh, j ⊆ Γ and lim j→∞ fh, j = uh|∂M in H1(∂Σ). Let
(φh, j) j be the corresponding smooth solutions to (∆g + U)u = 0, u|∂Σ = fh, j. Elliptic
boundary regularity estimates ensure that lim j→∞ φh, j = uh in H1. By making a similar
calculation for vh, we conclude that there exist smooth approximations (ψh, j) j and
remainders Ruh , Rvh depending on j such that

φh, j = uh + Ruh , ψh, j = vh + Rvh and lim
j→∞

Ruh = lim
j→∞

Rvh = 0 in H1.

Assume first that ∫
Σ

f uv dωg = 0

for all Cs solutions to the Schrödinger equation with Dirichlet data supported on Γ as
in (2.1). Then

0 =

∫
Σ

fφh, jϕh, j dωg

=

∫
Σ

f uhvh dωg +

∫
Σ

f uhRvh dωg +

∫
Σ

f vhRuh dωg +

∫
Σ

Ruh Rvh dωg.

The last three integrals converge to zero as j→∞. By taking this limit we arrive at∫
Σ

f uhvh dωg = 0.
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Next we get an expansion

0 = I1 + I2 + o(h),

where

I1
def
=

∫
Σ

f (a2 + a2) dωg + 2Re
∫

Σ

e2iψ/h f |a|2 dωg,

I2
def
= 2hRe

∫
Σ

a f
(
e2iψ/h

( s1

h
+ b0

)
+ e−2iψ/h

(
a0 +

r1

h

)
+ b0 + a0 +

s1 + r1

h

)
dωg.

Applying the theorem of stationary phase as in [10],

0 = 2C f (p)|a(p)|2 + o(1), C , 0,

as h→ 0. Hence f = 0.
To prove the general case, we assume that∫

M
f uvw dωg = 0

for all Cs solutions u, v to the Schrödinger equation and harmonic functions w with
Dirichlet data supported on Γ. If w is smooth, then by what was proved above, we
deduce f w = 0, thus ∫

Σ

f uv dωg = 0

for all smooth harmonic functions u and v with Dirichlet data supported in Γ. By virtue
of the smooth approximation argument above, f = 0. Now suppose inductively that∫

Σ

f u1 · · · uk−1w dωg = 0

for all Cs solutions u1, . . . , uk−1 to the Schrödinger equation and harmonic functions w
implies f = 0, and assume ∫

Σ

f u1 · · · uk−1ukw dωg = 0

for an additional C∞ solution to the Schrödinger equation as above. Choosing uk

smooth again implies f uk−1 = 0, and another smooth approximation argument yields
f = 0. This concludes the proof of the claim. �
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[23] J. Sjöstrand and G. Uhlmann, ‘Local analytic regularity in the linearized Calderón problem’, Anal.
PDE 9(3) (2016), 515–544.

YILIN MA, School of Mathematics and Statistics,
The University of Sydney, Camperdown,
New South Wales 2006, Australia
e-mail: K.Ma@maths.usyd.edu.au

https://doi.org/10.1017/S0004972720000428 Published online by Cambridge University Press

http://www.arxiv.org/abs/1904.00608
http://www.arxiv.org/abs/1909.08122
http://www.arxiv.org/abs/1905.02764
http://www.arxiv.org/abs/1903.12562
https://orcid.org/0000-0001-8049-9371
mailto:K.Ma@maths.usyd.edu.au
https://doi.org/10.1017/S0004972720000428


144 Y. Ma and L. Tzou [13]

LEO TZOU, School of Mathematics and Statistics,
The University of Sydney, Camperdown,
New South Wales 2006, Australia
e-mail: leo.tzou@sydney.edu.au

https://doi.org/10.1017/S0004972720000428 Published online by Cambridge University Press

https://orcid.org/0000-0002-7741-440X
mailto:leo.tzou@sydney.edu.au
https://doi.org/10.1017/S0004972720000428

	Introduction
	Integral identities
	Boundary determination
	Interior determination
	The case n > 1. Full data
	The case n=1. Partial data

	References

