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The flow around six in-line square cylinders has been studied numerically and
experimentally for 0.5 6 s/d 6 10.0 and 80 6 Re 6 320, where s is the surface-to-
surface distance between two cylinders, d is the size of the cylinder and Re is
the Reynolds number. The effect of spacing on the flow regimes is initially studied
numerically at Re = 100 for which a synchronous flow regime is observed for
0.5 6 s/d 6 1.1, while quasi-periodic-I, quasi-periodic-II and chaotic regimes occur
between 1.2 6 s/d 6 1.3, 1.4 6 s/d 6 5.0 and 6.0 6 s/d 6 10.0, respectively. These
regimes have been confirmed via particle-image-velocimetry-based experiments. A
flow regime map is proposed as a function of spacing and Reynolds number. The
flow is predominantly quasi-periodic-II or chaotic at higher Reynolds numbers. The
quasi-periodic and chaotic nature of the flow is due to the wake interference effect
of the upstream cylinders which becomes more severe at higher Reynolds numbers.
The appearance of flow regimes is opposite to that for a row of cylinders. The
Strouhal number for vortex shedding is the same for all the cylinders, especially for
synchronous and quasi-periodic-I flow regimes. The mean drag (CDmean) experienced
by the cylinders is less than that for an isolated cylinder, irrespective of the spacing.
The first cylinder is relatively insensitive to the presence of downstream cylinders and
the CDmean is almost constant at 1.2. The CDmean for the second and third cylinders
may be negative, with the value of CDmean increasing monotonically with spacing. The
changes in root mean square lift coefficient are consistent with changes in CDmean.
Interestingly, the instantaneous lift force can be larger than the instantaneous drag
force on the cylinders. These results should help improve understanding of flow
around multiple bluff bodies.

Key words: flow-structure interactions, interacting wakes, low-Reynolds-number flows

1. Introduction
Study of fluid flow and vorticity dynamics across bluff bodies serves as a model

for understanding flow around more complex structures. The flow across six identical
square cylinders placed one behind the other (in-line or tandem configuration) has
been studied in this work. Part of the motivation for exploring flow across a large
number of in-line cylinders comes from observations for two cylinders where the
drag on the downstream cylinder becomes negative; another interesting phenomenon
is lock-on in vortex shedding from two in-line cylinders. Whether these observations
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can be extended to a system of more than two cylinders in the flow is not clear and
needs to be explored. We have arbitrarily chosen six cylinders, which is representative
of a sufficiently large size. It is however expected that the flow around the last few
cylinders will become independent of the cylinder number when a large number of
cylinders are actually present.

The present study is undertaken with a view to: (i) documenting the flow patterns
that the flow can exhibit, (ii) comparing the results for multiple cylinders with
those for two tandem cylinders, (iii) comparing the results for square cylinders
with those for circular cylinders, and (iv) throwing light on flow phenomena when
cylinders are arranged in tandem versus a side-by-side configuration. The study is also
relevant to evaluation of the aerodynamic performance of trains and motor vehicles,
and structural design of buildings, bridges, heat exchangers, etc. The relevant non-
dimensional governing parameters for such flows are spacing (s/d) and Reynolds
number (Re = U0d/ν), where s is the surface-to-surface distance between cylinders, d
is size of the cylinder, U0 is the uniform inlet velocity, and ν is the kinematic viscosity
of the fluid.

Flow past two in-line square cylinders is one of the simpler cases of flow across an
array of cylinders and has been studied both experimentally and numerically. Among
the experimental works, Sakemoto, Haniu & Obata (1987) investigated forces acting
on two in-line square cylinders in a uniform flow at Re = 2.67 × 104 and 5.52 × 104;
they observed different flow patterns below and above a critical spacing of s/d = 3.
Two different values of the mean drag coefficient (CD) and Strouhal number (St)
have been reported due to the existence of the different flow patterns (Sakemoto
et al. 1987; Luo & Teng 1990; Liu & Chen 2002). For two square cylinders, Liu
& Chen (2002) further reported the occurrence of hysteresis accompanied by two
discontinuous jumps for all the Reynolds numbers studied (Re= 2.0 × 103–1.6 × 104),
as the spacing is either progressively increased or decreased. The hysteresis was
again associated with the existence of two different flow patterns. In the first flow
pattern at small spacings (Mode I), roll-up of the shear layer separated from the
upstream cylinder is suppressed. In the second flow pattern that appears at larger
spacings (Mode II), the shear layer separated from the upstream cylinder periodically
rolls up to form vortices, and the rolled-up vortices interact with the downstream
cylinder. The discontinuous jumps are attributed to a sudden change in the flow pattern
between Modes I and II. Yen, San & Chuang (2008) studied the effect of Reynolds
number, spacing and rotation angle of the downstream cylinder using particle image
velocimetry (PIV) and topological analysis for two in-line square cylinders. Based on
the Reynolds number, the flow was categorized into a vortex street of single mode,
reattached mode, or binary mode. The Strouhal number decreases as the Reynolds
number increases (for Re< 405), and subsequently increases asymptotically. Kim et al.
(2008) divided the flow around two in-line square cylinders into two different flow
patterns separated by the critical spacing of s/d = 2.5, for Re = 5300 and 16 000.
The Mode I pattern had large recirculation regions between the two cylinders caused
by the separated shear layer of the upstream cylinder that reattached on the lateral
surface of the downstream cylinder. The Mode II pattern had separated shear layers
at both the upstream and downstream cylinders. In terms of the vortex shedding
frequency Kim et al. (2008) noticed behaviour similar to that reported by Yen et al.
(2008). Sohankar & Etminan (2009) numerically studied the flow around two in-line
square cylinders for 1 6 Re 6 200. Their result suggests that the onset of vortex
shedding occurs in the range of Re = 35–40 for s/d = 5. They found that the flow
separates from the cylinder rear corners in the range of 1 < Re 6 2 for the upstream
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cylinder and 2 < Re 6 5 for the downstream cylinder. Further, the location of the
flow separation changes from the rear to the front corners of the upstream cylinder in
the range of 100 < Re 6 125. The level of the force fluctuations on the downstream
cylinder is larger than the corresponding values for the upstream one, due to the
flow interaction of the upstream cylinder with the downstream one. Lankadasu &
Vengadesan (2007) investigated interference effect of two equal-sized square cylinders
in tandem arrangement, immersed in a planar shear flow. They found that the root
mean square (r.m.s.) values for both lift and drag increase and then decrease for
upstream cylinder with increasing spacing; whereas these values increase continuously
for the downstream cylinder.

Many researchers have studied flow past two in-line circular cylinders. The typical
regimes reported are single bluff body, shear layer reattachment, and synchronization
of vortex shedding from the cylinders. Wang et al. (2010) revisited these regimes in
their experimental study to investigate the dependence of Strouhal number on spacing
and to explore the flow characteristics relevant to critical spacing and hysteretic mode
of transitions at critical spacing. Mittal, Kumar & Raghuvanshi (1997) reported that
when the flow becomes unsteady, the downstream cylinder, which lies in the wake
of the upstream cylinder, experiences relatively large unsteady forces that may lead
to wake-induced flutter. Carmo, Meneghini & Sherwin (2010a) proposed that if the
separation is less than the drag inversion spacing, the downstream cylinder has a
stabilizing effect on the flow. For such cases, the three-dimensional structures appeared
later in terms of Reynolds number than for the flow around an isolated cylinder. On
the other hand, if the separation is greater than the drag inversion spacing, the initial
stages of the transition in the wake occurred in a similar way to that of an isolated
cylinder. Their comprehensive study shows the different ways in which the stages
of the transition scenario respond to flow interference. A comprehensive and recent
review of literature on two cylinders is available in Sumner (2010).

There are relatively few studies with multiple (>2) in-line cylinders in the flow.
Harichandan & Roy (2010) obtained steady wake patterns at Re = 100 and sparse
von Kármán vortex street at Re = 200, with three in-line circular cylinders. The
unsteady forces experienced by the cylinders are also documented in their numerical
study; the forces become more severe at small spacings (s/d = 1.0). When the
longitudinal gap is increased (s/d = 4.0), there was no flow separation or reattachment
of the shear layer from the upstream cylinder to the immediate downstream cylinder;
instead, von Kármán vortex streets were observed between the cylinders. However,
the vortex shedding from the downstream cylinder was highly disturbed by the
impingement of the upstream vortex streets emerging from the uppermost and middle
cylinders. A gap vortex shedding mechanism was proposed by Hetz, Dhaubhadel
& Telionis (1991), who experimentally studied the flow around five in-line circular
cylinders (known as a pentad). For s/d = 0.1–0.8 with Re = 1 × 104–5 × 104, it was
conjectured that such a gap vortex shedding mechanism is present in the flow across
a bank of cylinders and could be excited if driven by structural vibrations. Liang,
Papadakis & Luo (2009) studied the flow around six in-line circular cylinders for
1.1 6 s/d 6 3.0 at Re = 100. They proposed that an increase in the spacing makes the
flow more asymmetric and induces vortex shedding starting from the last cylinder and
proceeding upstream. Further, the force statistics are maximized in the spacing region
of s/d = 2.0–2.6 and then drops drastically at s/d = 3 for the last three cylinders.
Some of these observations are tested further as part of the present work.

Thus, it is noticed from the literature survey that the flow behaviour for a large
number of in-line cylinders is not well studied. Our purpose here is to extend
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the works of Hetz et al. (1991) and Liang et al. (2009) by performing a detailed
numerical and a limited experimental study of flow around large in-line square
cylinders, which is a problem of significant fundamental interest besides being of
engineering importance. The number of cylinders is deemed to be large enough to
model a large number of bodies and also mimics the configuration studied earlier
by Hetz et al. (1991) and Liang et al. (2009). The flow regimes as a function of
spacing and Reynolds number are first identified from the numerical data and then
confirmed through experiments. The other important objectives of this work are to
document the variation of engineering parameters (Strouhal number, drag coefficient
and lift coefficient) as a function of spacing, along with uncovering the underlying
flow physics.

2. Physical description of the problem
The physical problem considered here is flow across six square cylinders arranged

in-line as shown in figure 1(a). All cylinders are of identical size with the same
distance between two consecutive cylinders. The leading cylinder with side d,
which is also the characteristic length scale, is exposed to a constant and uniform
velocity, U0. The streamwise length of the computational domain is given by
lx = Lu + Ld + d + (d + s)(n − 1), where Lu is the upstream length from the inlet
of the domain to the front surface of the first cylinder (denoted by C1 in figure 1a),
Ld is the downstream length from the rear of the last cylinder (denoted by C6 in
figure 1a), and n is the number of cylinders. The free-slip boundary on the lateral
side extends up to 10d on either side of the cylinders. Domain-independent results are
obtained for Lu = 7d, Ld = 32d and ly = 21d. The streamwise direction is denoted as x
and the cross-stream direction as y, with the origin of the coordinate system fixed at
the middle of the front surface of the first cylinder (see figure 1a).

2.1. Numerical details
The two-dimensional lattice Boltzmann method (LBM) is used in this study. The
assumption of two-dimensionality can be justified due to the small value of Reynolds
number employed here (Re 6 160 for the simulations). The basic principle of LBM
involves movement of particles on a lattice. The computational lattice unit is square,
with one at rest and eight moving particles. The particles collide at each time step, and
change in their velocity occurs; however, the net mass and momentum are conserved
during collisions. Therefore, propagation of particles and their collision form the two
basic steps of this method. The method has second-order spatial accuracy. Ease of
introducing the obstacle in the flow is the most important advantage of this method,
and hence LBM is ideally suited to the present study.

The discrete kinetic equation used in LBM for the particle distribution is

fi(x+ ei1t, t +1t)= fi(x, t)− 1t

τ
(fi(x, t)− f eqi (x, t)), i= 0, 1, . . . , 8, (2.1)

where fi is the instantaneous particle density at a link, f eqi is the corresponding
equilibrium density, ei is the particle velocity in the i-direction, τ is the relaxation
time, 1t is the time step (unity in the present case), and x, y, respectively, represent
coordinates along the streamwise and transverse directions. The equilibrium function is
calculated as

f eqi = ρwi(1+ 3(ei · u)+ 9
2 (ei · u)2− 3

2 u2), (2.2)
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Upstream boundary Downstream boundary

Top boundary

Bottom boundary

(a)

(b)
Laser
sheet

Square
cylinders

Closed circuit
water channel

(40 cm × 40 cm × 120 cm)

CCD

Pump

Computer

Synchronizer

Laser beamNd:YAG double
pulse laser

FIGURE 1. (a) The computational domain. Note that the origin of the coordinate axis is
located at the centre of the front surface of the first cylinder. The cylinders have been marked
as C1–C6 starting from the left. (b) Schematic of the experimental setup.

where ρ (=Σifi) is the fluid density, u (ρu = Σifiei) is the local fluid velocity, and wi

are the corresponding weights (4/9 for the rest particle, 1/9 for each of the four axial
particles, 1/36 for each of the diagonal particles). The relaxation time is related to the
kinematic viscosity (ν) of the fluid via the following equation:

ν = 2τ − 1
6

. (2.3)

Equation (2.1) is solved in two steps, namely collision and propagation.
Mathematically these steps can be expressed as (collision)

f newi (x, t)= fi(x, t)− 1t

τ
(fi(x, t)− f eq

i (x, t)), (2.4)
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Re s/d Method

Numerical 100 0, 0.5; LBM

1.0–1.5 in step of 0.1;
2.0–4.0 in step of 0.5;
5.0–10.0 in step of 1

40, 60, 80, 120, 140,
150 and 160

0.5–4 in step of 0.5;

5.0 and 6.0
Experimental 100 0.5, 1.0, 2.0 and 4.0 PIV and flow

visualization
150 and 320 0.5, 1.0, 2.0 and 4.0 PIV

TABLE 1. Governing parameters considered and the methods used in the numerical and
experimental study.

where f newi is an intermediate function, and (propagation)

fi(x+ ei1t, t +1t)= f newi (x, t). (2.5)

It is reported in the literature (Frisch, Hasslacher & Pomeau 1986; Chen & Doolen
1998; Succi 2001; Djenidi 2006) that solving the particle distribution equation
(equation (2.1)) is equivalent to solving the Navier–Stokes equation. The theoretical
basis of LBM can also be found in these references. The code employed for the
present study is essentially the same as used in our earlier works (Agrawal, Djenidi
& Antonia 2006; Kumar, Sharma & Agrawal 2008; Sewatkar, Sharma & Agrawal
2009, 2010, 2011, 2012).

A uniform and square grid is employed in the simulations. The cylinder is
appropriately resolved to obtain grid-independent results (a minimum of 24 points
on one side of the cylinder). A uniform velocity (U0) with negligible compressibility
effect is prescribed at the inlet boundary. Free-slip boundary conditions have been
applied on the lateral edges of the computational domain. A convective boundary
condition is used at the outlet to ensure unconstrained movement of fluid away from
the computational domain (Sewatkar et al. 2011). The bounceback condition is used
at the walls of the cylinders in order to simulate the no-slip condition; see Agrawal
& Agrawal (2006) for implementation details of the bounceback condition. Simulations
start with the flow initially at rest. Each simulation is run for at least 8 secondary
cycles. A secondary cycle encompasses 4–7 primary cycles; the time period for one
vortex shedding is about 6000 time steps. The initial transient variation of engineering
parameters such as drag coefficient are not included in the computed statistics. The
code has been validated for both single and multiple cylinders as presented earlier
(Agrawal et al. 2006; Kumar et al. 2008; Sewatkar et al. 2009, 2011). The range
of the governing parameters considered in the detailed numerical study is given in
table 1.

2.2. Experimental details
The experiments are conducted using PIV in a closed-circuit water channel made of a
1.5 cm thick acrylic sheet of outer dimensions 120 cm×40 cm×40 cm; see figure 1(b)
for a schematic of the experimental setup. Water is pumped into the channel using a
6 l s−1 capacity pump which produced a flow velocity of 0.8–4 cm s−1. The entire
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water channel is seeded with spherical hollow-glass particles (from Potter Industries
Inc., Australia; mean particle size of 8–11 µm, density around 1.1 g cm−3, made of
fused borosilicate glass). A double pulsed light sheet is produced by dual Nd:YAG
lasers (Beamtech, China; energy 200 mJ pulse−1, repetition rate 15 Hz, wavelength
532 nm). An inter-line CCD camera is used to capture the images (PCO, Germany;
image size 1392 × 1024 pixels, frame rate 10 Hz). Square acrylic cylinders of size
10 mm × 10 mm are used in the experiments. The timing of laser firing and CCD
capture is controlled by a synchronizer (from Beamtech). The time separation between
the two laser pulses is typically 100 ms.

The PIV frames are captured at 1 Hz. The data set for a given case comprises 138
pairs of statistically independent images. The images obtained from the camera are
processed using a commercial code to obtain velocity vectors and vorticity contours.
Standard multi-pass cross-correlation analysis is used to convert the raw data into a
velocity field. The spacing between two vectors is about 2 mm. The typical error in
velocity measurement is estimated as 2 %.

The experimental setup was validated by comparing results for flow over a single
square cylinder with the available literature. Subsequently, experiments were conducted
with six in-line square cylinders for the range of parameters given in table 1. A limited
flow visualization study was also undertaken in the same water channel. Potassium
permanganate was used as the dye for this study, while a digital camera was used for
recording the images. Flow visualization is restricted to Re = 100 with s/d = 0.5, 1.0,
2.0 and 4.0.

2.3. Sensitivity to number of cylinders
As mentioned above, our aim is to simulate the flow around a large number of in-line
cylinders. In this section, we examine the minimum number of cylinders required to
simulate such a flow. Preliminary simulations are carried out by varying the number
of cylinders from four to ten, at s/d = 1.2 and Re = 100. As explained later in
§ 3.2, the flow exhibits quasi-periodic-I behaviour for six cylinders (the n = 6 case) at
these parameter values. This regime is sufficiently interesting and complicated, and is
therefore selected to explore the effect of the number of cylinders on flow behaviour.

The r.m.s. of the lift coefficient versus cylinder number for the various cases is
shown in figure 2(a). Notice that CL,rms for the n= 4 case is substantially smaller than
the other cases. CL,rms for the n= 5 case approaches the value obtained with the n> 5
cases, with a marked deviation in the value for the last cylinder. CL,rms for the n = 6
case approaches even more closely the value obtained with n > 6 cases; a marked
deviation in the value for the last cylinder is again observed (this latter observation
applies to the n > 6 cases too). The mean of the drag coefficient versus cylinder
number for the various cases is shown in figure 2(b). Notice that CD,mean for n = 6
case compares well with 4 6 n 6 8 cases (which are lower than n= 9, 10 cases) for all
the cylinders. The above results bring out the complicated behaviour of the flow with
number of cylinders.

The number of cylinders is arbitrarily chosen and is fixed at six for further
computations. This number appears sufficient to simulate a large number of in-line
cylinders.

3. Numerical study of flow regimes
The purpose of this section is to examine the various flow regimes with six in-line

cylinders. The various flow regimes reported for multiple cylinders are synchronous,
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FIGURE 2. Variation of (a) r.m.s. lift coefficient, and (b) mean drag coefficient as a function
of cylinder number for different numbers of cylinders actually present in the domain.

quasi-periodic-I, quasi-periodic-II and chaotic. Note that these regimes were reported
for a row of square cylinders, using a numerical method (Kumar et al. 2008; Sewatkar
et al. 2009). Here, we numerically verify the existence of these flow regimes for
in-line cylinders and document their occurrence with respect to cylinder spacing. The
flow regimes are confirmed through experiments in § 4. The effect of spacing on flow
pattern, wake interaction, lift and drag coefficients, and vortex shedding was initially
studied at Re= 100. This is an interesting case, as the Reynolds number is sufficiently
large to capture the essential flow dynamics. Subsequently, in § 5, the effects of
Reynolds number are discussed, with the purpose of verifying the findings at other
Reynolds number values.

3.1. Synchronous flow (s/d 6 1.1)

The instantaneous vorticity contours and streamlines for s/d = 0.5 and 1.0 are
presented in figure 3. It is noticed that a single wake is formed behind the cylinders at
these spacings, as if the flow is occurring over a single cylinder. Although formation
of shear layer begins at the first cylinder itself, the vortex shedding occurs essentially
behind the last cylinder. Notice that the waviness of the shear layer increases with
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FIGURE 3. (a,d) Instantaneous vorticity contours, (b,e) streamlines, and (c,f ) enlarged view
of streamlines for (a–c) s/d = 0.5 and (d–f ) s/d = 1.0 at Re= 100. The dashed lines in (a,d)
indicate negative vorticity.

spacing (compare figure 3a with figure 3d). The streamline patterns in figures 3(b)
and 3(e) indicate some crossing over of the fluid from top to bottom of the cylinders
(or vice versa); this crossing over of fluid changes with spacing and leads to the
formation of different flow regimes. The vortex shedding occurs essentially behind the
last cylinder. The streamlines in figure 3(c,f ) further indicate that vortices are formed
in the gap near the top/bottom of the cylinders. This is in contrast to the circular
cylinder results of Liang et al. (2009), where a pair of standing vortices is noticed in
the gap regions at comparable values of spacing and Reynolds number (s/d = 1.1 and
1.3, Re= 100).

At s/d = 0.5, the time signals of the lift coefficient (CL) and drag coefficient
(CD) for the six cylinders are shown in figures 4 and 5. The lift signal is almost
sinusoidal in nature for all the cylinders (except cylinder 4) indicating the presence
of a single frequency corresponding to the vortex shedding frequency. It is however
important to reiterate that the vortex shedding takes place behind the last cylinder only
(figure 3a), which leads to CL6 having the largest amplitude. The variation in lift for
the first two cylinders is due to alternate formation of vortices in the gap region. These
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FIGURE 4. Time series of lift coefficient experienced by the cylinders at s/d = 0.5 and
Re= 100.

vortices are however weak and small in size, and diffuse away quickly. The larger
value of lift coefficient for cylinders 1, 2 and 6 (see figure 4a,b,f respectively) as
compared to cylinder 4 (figure 4d) is due to the formation of vortices behind these
cylinders. The pressure varies for these cylinders owing to change in the position
of vortex behind these cylinders. The vortex location changes as the small vortices
are diffused away. This explains the trend of maximum lift coefficient experienced
by the cylinders, as plotted in figure 4. Figure 5 reveals that the signal for the drag
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FIGURE 5. Time series of drag coefficient experienced by (a) cylinder 1 and (b) cylinders
2–6, at s/d = 0.5 and Re = 100. The dashed line in (a) represents the time series of drag
coefficient on a single square cylinder at the same Reynolds number.

coefficient is also sinusoidal for all the cylinders. Further, the signals from consecutive
cylinders are almost in anti-phase with respect to each other. This is due to the fact
that vortices are formed in the gaps alternately from the top and bottom of the rear
surface of consecutive cylinders. Notice that the upstream side of the first cylinder
is subjected to the highest pressure in the domain while the downstream side of the
sixth (last) cylinder is subjected to lowest pressure (figure 34a, explained later). The
pressure gradient experienced in either direction by the other cylinders is however
comparatively low, because all the cylinders are enveloped inside the same wake.

Similar signals of lift and drag coefficients are also noticed for s/d = 1.0 and 1.1.
The Strouhal numbers based on the lift signal are calculated for all the cylinders using
power spectral analysis. The power spectrum for s/d = 0.5 shown in figure 6 indicates
a single frequency, which confirms the sinusoidal nature of the lift signal. The value
of Strouhal number in this case is the same for all the cylinders, as shown in figure 6
for selected cylinders (cylinders 2–4). Thus, at small spacings (s/d 6 1.1), using the
terminology of Kumar et al. (2008), the flow can be termed as synchronous in nature.
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FIGURE 6. Power spectra at s/d = 0.5 and Re= 100 for selected cylinders.
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FIGURE 7. (a) Instantaneous vorticity contours, (b) streamlines, and (c) enlarged view of
streamlines for s/d = 1.2 and Re= 100. The dashed lines in (a) indicate negative vorticity.

3.2. Quasi-periodic-I flow (1.2 6 s/d 6 1.3)

As discussed above, the flow is synchronous for s/d 6 1.1, and as explained later
in § 3.3, the flow becomes quasi-periodic-II for s/d > 1.4. Between s/d = 1.0 and
1.5, simulations in a finer step of 0.1 were undertaken in order to resolve the flow
transition from synchronous to quasi-periodic-II. The instantaneous vorticity contours
and streamlines for s/d = 1.2 are shown in figure 7. It is noticed that the vortex
shedding occurs essentially behind the last cylinder. The streamline pattern shows
that the vortices are formed in the gap from near the top and bottom of the vertical
surfaces of the cylinders, alternately with time.

The signals of lift and drag coefficients for s/d = 1.2 are shown in figures 8
and 9, respectively. These signals do not show the sinusoidal variation of CL or
CD signals of an isolated cylinder, or of figures 4 and 5; rather, these signals are
modulated. These modulations indicate the presence of a secondary frequency in the
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FIGURE 8. Time series of lift coefficient experienced by the cylinders at s/d = 1.2 and
Re= 100.

signal which spans over seven vortex shedding (primary) cycles. It is noticed that the
cycle-to-cycle variation in the time period of the primary (vortex shedding) frequency
is less than 5 %, whereas it is constant for the secondary frequency in this regime.
This has been rigorously verified for a large number of secondary cycles. The power
spectrum of the lift coefficient (figure 10) indeed shows the presence of two peaks,
each corresponding to the primary (vortex shedding) and secondary frequencies. The
peak at Stp = 0.079 corresponds to the primary (or vortex shedding frequency) while a
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FIGURE 9. Time series of drag coefficient experienced by selected cylinders at s/d = 1.2 and
Re= 100.
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FIGURE 10. Power spectra at s/d = 1.2 and Re= 100 for selected cylinders.

small peak at St s = 0.011 corresponds to the secondary frequency (St = fd/U0, where
St and f are Strouhal number and frequency, and subscripts ‘p’ and ‘s’ refer to primary
and secondary, respectively).

Similar flow behaviour is also noticed for s/d = 1.3. Kumar et al. (2008) termed
this as quasi-periodic-I flow for a row of square cylinders, and the same terminology
is retained here. Thus, quasi-periodic-I flow is obtained for 1.2 6 s/d 6 1.3 and
Re= 100, for in-line cylinders.

3.3. Quasi-periodic-II flow (1.4 6 s/d 6 5)
The instantaneous vorticity contours and streamlines for s/d = 1.5 and 4.0 are shown
in figure 11. From figure 11(a) it is noticed that the vortex formed behind the first
cylinder grows in the first gap. The presence of the second cylinder however interferes
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FIGURE 11. (a,d) Instantaneous vorticity contours, (b,e) streamlines, and (c,f ) enlarged view
of streamlines for (a–c) s/d = 1.5 and (d–f ) s/d = 4.0 at Re= 100. The dashed lines in (a,d)
indicate negative vorticity.

with this growing vortex thereby altering the nature of the forces experienced by both
these cylinders. Similar interference phenomenon applies to other cylinders. This type
of behaviour is noticed for 1.4 6 s/d 6 5 at Re= 100 (see for example figure 11d).

The lift coefficient signal for all the cylinders at s/d = 1.5 is shown in figure 12,
which indicates the presence of both primary and secondary frequencies. The time
periods corresponding to both primary and secondary frequencies are variable in this
regime; the variation is however less than 10 % of the mean value. This differentiates
the present regime from the quasi-periodic-I flow of § 3.2. The CL signal therefore
suggests that the flow regime for s/d = 1.5 is quasi-periodic-II (Kumar et al.
2008), which is further confirmed from the CD signals in figure 13. Notice that
the modulations in the CD signals have become more severe for larger spacings, which
indicates that the contribution of the secondary frequency is more significant in the
quasi-periodic-II flow. The power spectrum in figure 14 confirms that there exists a
secondary cycle which spans over about four vortex shedding cycles. For s/d = 1.5
(figure 14a), the peak at Stp = 0.082 is the Strouhal number corresponding to the
primary frequency and the peak shown in the inset (at St s = 0.02) corresponds to
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FIGURE 12. Time series of lift coefficient experienced by the cylinders at s/d = 1.5 and
Re= 100.

the secondary frequency. The side peaks in figure 14 are due to variation in the
time period of primary cycles. The flow is able to cross over to the other side
of the cylinder more freely in this regime, as is apparent from the streamlines in
figure 11(b,c), which leads to this secondary cycle. The presence of a secondary
frequency is further strengthened from the power spectrum, where its magnitude
is very small for s/d = 1.5 (figure 14a) but becomes comparable to the primary
frequency at s/d = 4.0 (figure 14b). It is also noticed that the primary as well as
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FIGURE 13. Time series of drag coefficient experienced by selected cylinders at
(a) s/d = 1.5 and (b) s/d = 4 for Re= 100.

the secondary frequencies increase with an increase in the spacing, as shown later in
figure 30. Thus, for spacing 1.4 6 s/d 6 5, the flow is quasi-periodic-II in nature.

3.4. Chaotic flow (6.0 6 s/d 6 10.0)
The instantaneous vorticity contours at s/d = 6.0 and 10.0 are shown in figure 15.
Notice that the computational domain has become very large along the streamwise
direction, making the computations expensive. The vortices are shed in the gap
between the cylinders and hit the downstream cylinder (figure 15a,d). The vortices
from different downstream cylinders coalesce together. The location of vortices does
not show any relationship among themselves as they move downstream, and the flow
appears chaotic. The streamlines (figure 15b,e) indicate that flow can cross over to the
other side of the cylinder. The signals of lift and drag coefficient for s/d = 6.0 are
presented in figures 16 and 17, respectively. These signals confirm the chaotic nature
of the flow. The power spectrum of CL for s/d = 6.0 and 10.0 in figure 18 indicates
the existence of a comparatively broad and continuous spectrum near St s, characteristic
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FIGURE 14. Power spectra of lift coefficients of selected cylinders at (a) s/d = 1.5 and (b)
s/d = 4.0 for Re= 100. The inset in (a) is provided to show the secondary frequency clearly.
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FIGURE 15. (a,d) Instantaneous vorticity contours, (b,e) streamlines, and (c,f ) enlarged view
of streamlines for (a–c) s/d = 6.0 and (d–f ) s/d = 10.0 at Re= 100. The dashed lines in (a,d)
indicate negative vorticity.
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FIGURE 16. Time series of lift coefficient experienced by the cylinders at s/d = 6.0 and
Re= 100.

of chaotic flows. Furthermore, the magnitude of the secondary frequency (St s = 0.08
for s/d = 6.0 and St s = 0.1 for s/d = 10.0) is comparatively large and it appears more
prominently in the power spectra as compared to the aforementioned flow regimes.

The vortices shed by the cylinders at larger spacing are relatively strong as these
are fully grown vortices. Therefore, when these vortices interfere with the downstream
cylinders, variation in forces occurs due to a combination of vortex shedding from
the cylinder and interference by vortices shed from the upstream cylinder, leading to
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FIGURE 17. Time series of drag coefficient experienced by selected cylinders at s/d = 6.0
for Re= 100.
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FIGURE 18. Power spectra of lift coefficients of selected cylinders at (a) s/d = 6.0 and (b)
s/d = 10.0 for Re= 100.

chaotic flow behaviour. Similar behaviour is also noticed for other spacings in the
range of 6.0 6 s/d 6 10. Thus, the flow is chaotic for s/d > 6.0 at Re= 100.

4. Comparison of the flow regimes with experimental results
The objective of this section is to experimentally confirm the numerically obtained

flow patterns. Flow visualization and the PIV technique are used for this purpose.
The flow patterns for different spacings at Re = 100 obtained by these techniques are
presented in figures 19 and 20. The vorticity field is obtained from the velocity field
measured using PIV. In each figure, the flow direction is from left to right and the
contour lines are for instantaneous vorticity.

Similar to numerical investigation, experimental data also indicate a single wake
behind all the cylinders at s/d = 0.5 and 1.0 (compare figures 19a,b and 20a,b
with figure 3a,d, respectively). This confirms the synchronous nature of the flow
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(a)

(d)

(b)

(c)

FIGURE 19. (Colour online) Flow visualization for (a) s/d = 0.5, (b) s/d = 1.0, (c)
s/d = 2.0 and (d) s/d = 4.0 at Re= 100.

at small spacings. The formation of a shear layer starting at the first cylinder and
the shedding of a vortex from the last cylinder are evident from figures 19(a,b)
and 20(a,b). Figure 20(c) shows (for s/d = 2.0 at Re = 100) the growth of vortices
between the gaps and their subsequent interference with the downstream cylinders.
The interference by the cylinders alters the pressure distribution around the cylinders,
which leads to quasi-periodic-II type of flow behaviour. Similar flow behaviour is also
noticed for s/d = 4.0 as shown in figure 20(d); this latter figure can be compared with
figure 11(d). Similar comparison with experimental results was done at s/d = 0.5, 1.0
2.0 and 4.0 with Re= 150 (not shown).

The normalized time-averaged streamwise velocity along two lateral locations is
presented in figure 21 (between the second and third cylinders and at a distance of
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(a)

(b)

(c)

(d)

FIGURE 20. Experimentally obtained vorticity contours for (a) s/d = 0.5, (b) s/d = 1.0, (c)
s/d = 2.0 and (d) s/d = 4.0 at Re= 100.

3d from the last cylinder) and figure 22 (between the third and fourth cylinders and
at a distance of 3d from the last cylinder), for s/d = 2.0 and 4.0 and Re = 100
and 150. Good quantitative agreement between experimental and numerical results
is demonstrated by these figures. Such comparison helps establish confidence in the
proposition of the various flow regimes outlined in § 3.

5. Effect of Reynolds number on the flow regimes
To understand the effect of Reynolds number on the flow regimes and flow

parameters, simulations are further carried out for Re = 40, 60, 80 120, 140, 150
and 160 (table 1). The lower limit of Re is set at 40, which is above the critical
Reynolds number for vortex shedding. The upper limit (of Re = 160) is decided in
view of the constraint of two-dimensionality (Saha, Biswas & Muralidhar 2003; those
results are however for a single square cylinder). During PIV experiments it was
noticed that PIV particles remain in the illumination plane (which was greater than 20
times the cylinder diameter in the streamwise direction); this preliminary observation
suggests that the flow is indeed two-dimensional for Re 6 150. Besides Re = 100, the
experiments at Re = 150 provide confirmation of the results mentioned earlier. The
experiments have been further extended to Re = 320 to explore the flow behaviour
at still higher Reynolds numbers (table 1). The combined results of numerical and
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FIGURE 21. Comparison of numerical and experimental data for normalized time-averaged
streamwise velocity profiles at two locations: (a,c) between the second and third cylinders,
and (b,d) at 3d downstream of the last cylinder. Note that these are for Re = 100 and two
spacings: (a,b) s/d = 2 and (c,d) s/d = 4.0.
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FIGURE 22. Comparison of numerical and experimental data for normalized time-averaged
streamwise velocity profiles at two locations: (a,c) between the third and fourth cylinders, and
(b,d) at 3d downstream of the last cylinder. Note that these are for Re= 150 and two spacings:
(a,b) s/d = 2 and (c,d) s/d = 4.0.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.359


218 C. M. Sewatkar, R. Patel, A. Sharma and A. Agrawal

–2

2

0 10 15 20 25 30 35 40 455
–6

6(c)

–2

2

–6

6(b)

–2

2

–6

6(a)

FIGURE 23. Instantaneous vorticity contours for (a) Re= 60, (b) Re= 120 and (c) Re= 160
at s/d = 1.5. The dashed lines indicate negative vorticity.

experimental investigations are used to propose a flow regime map in terms of non-
dimensional spacing and Reynolds number, as described in the next section.

Instantaneous vorticity contours for Re = 60, 120 and 160 at s/d = 1.5 are shown
in figure 23 and the corresponding signals for the lift coefficient are presented in
figures 24–26. The effect of increasing Reynolds number is clearly visible from these
figures. It is noticed that with an increase in the Reynolds number for a given spacing
the flow transits from synchronous (figure 24) to quasi-periodic-I (figure 25) and
further to quasi-periodic-II (figure 26).

Figure 27 shows instantaneous vorticity contours for Re = 80, 120 and 160 at
s/d = 3.0. The vortices shed from the upstream cylinders travel in the gap between
the cylinders and subsequently interfere with the downstream cylinders. It is noticed
from the time series and power spectra (not shown) that the flow is quasi-periodic-I
in nature for Re = 80 and quasi-periodic-II for other Reynolds numbers. With further
increase in the spacing beyond s/d = 6.0, it has been noticed that the flow changes to
chaotic irrespective of the Reynolds number.

The instantaneous vorticity contours for s/d = 0.5, 1.0 and 2.0 at Re = 320,
obtained experimentally, are shown in figure 28. It is expected that three-dimensional
effects will occur at such a high Reynolds number. Interestingly, the essential flow
phenomenon observed at lower Reynolds number is also visible at this Reynolds
number; the transitions from synchronous to chaotic through quasi-periodic-I or quasi-
periodic-II, however, cannot be clearly spelled out from the data. For low spacing
(s/d = 0.5), the vortices do not flow between the gaps; they rather interfere with the
bottom or top side of the corresponding downstream cylinder. At larger spacings, the
vortices are affected by the top, bottom and front sides of the cylinders. This leads
to either quasi-periodic-II or chaotic flow behaviour depending upon the frequency of
interference of the vortices. Thus, the results obtained at low Reynolds number may
form the basis for prediction of flow phenomenon at higher Reynolds numbers.
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FIGURE 24. Time series of lift coefficient experienced by the cylinders at s/d = 1.5 and
Re= 60.

For in-line cylinders the effect of Reynolds number is opposite to that of the case
of flow across a row of side-by-side cylinders. In the latter case, for a given spacing
with an increase in the Reynolds number, the flow transits from chaotic to synchronous
through quasi-periodic-II and quasi-periodic-I regimes (Sewatkar et al. 2009). The
other difference of the Reynolds number is that in the case of a row of cylinders
the transitions are more prominently noticed at larger spacings (s/d = 3.0 and 4.0),
while in the case of in-line cylinders the transitions are predominant at lower spacings
(s/d 6 1.5).

6. Flow regime map
The flow regimes have been approximately demarcated based on the vorticity

contours, time series of drag and lift coefficients, and power spectra, at different
spacings and Reynolds numbers. As seen from figure 29, there exists synchronous,
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FIGURE 25. Time series of lift coefficient experienced by the cylinders at s/d = 1.5 and
Re= 120.

quasi-periodic-I, quasi-periodic-II, and chaotic flow regimes for 0 6 s/d 6 6.0 and
40 6 Re 6 160. The limiting case of s/d = 0 (single bluff body of large aspect
ratio placed parallel to the flow) is also considered. The flow is synchronous for
all Reynolds numbers at s/d = 0 because the cylinders behave like a single bluff body.

The figure depicts synchronous flow at smaller Re and lower s/d. This is opposite
to the case of flow across a row of cylinders, where synchronous flow is noticed
at higher Re and larger s/d (Sewatkar et al. 2009). A quasi-periodic-I flow regime
with a variable time period of primary cycles but constant time period for secondary
cycles occurs over a small range of spacings and Reynolds number. The transition
from synchronous to quasi-periodic-II via quasi-periodic-I is noticed for Re 6 100
only (except Re = 80), beyond which the synchronous flow transits directly to quasi-
periodic-II. Alternatively, the spacing range is so small that the quasi-periodic-I regime
has not been resolved in those simulations. The secondary frequency overwhelms the
primary frequency giving rise to the chaotic behaviour. The flow is chaotic at larger
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FIGURE 26. Time series of lift coefficient experienced by the cylinders at s/d = 1.5 and
Re= 160.

spacings and higher Reynolds number, as is evident from the figure. The flow with a
broader spectrum near the secondary frequency confirms the chaotic nature of the flow
for 6.0 6 s/d 6 10.0. It is evident that the flow around multiple in-line cylinders tends
to have a quasi-periodic-II nature.

For comparison, Liang et al. (2009) for six circular cylinders at Re = 100 noticed
that the instantaneous flow patterns for s/d = 2.6 reveal an antisymmetric vortex
shedding activity, i.e. there is a 180◦ phase difference from one cylinder to the next,
and during one period the vortices travel a distance twice the cylinder spacing. For
s/d = 3.0, the vortices become much weaker, the strong antisymmetry disappears, and
the vortex motion is no longer synchronized with the spacing, leading to reduced
r.m.s. forces. Our results are consistent with these observations. Further, in accordance
with the earlier observation of Liang et al. (2009), it was noticed that the vortex
shedding starts from the last cylinder and proceeds upstream.
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FIGURE 27. Instantaneous vorticity contours for (a) Re= 80, (b) Re= 120 and (c) Re= 160
at s/d = 3.0. The dashed lines indicate negative vorticity.

7. Flow parameters
Variation of flow parameters such as Strouhal number, lift and drag coefficients for

different cylinders at various spacings is presented in this section.

7.1. Strouhal number
Referring back to figure 6, which shows the power spectra of different cylinders for
s/d = 0.5 and Re = 100, it is noticed that the dominant frequency is identical for
all the cylinders. A similar observation applies to all other spacings and Reynolds
numbers investigated herein. It is therefore argued that the vortex shedding of the
upstream cylinders locks with the vortex shedding frequency of the downstream
cylinders. A careful observation of the signal shows that the shedding from one
cylinder has a definite relationship with shedding from any other cylinder, although
the shedding between two adjacent cylinders is out of phase, except for the last two
cylinders for which it is in phase. Sakemoto et al. (1987) reported that the vortex
shedding frequencies of two in-line square cylinders are the same for s/d < 14, but
two distinct frequencies of two cylinders are noticed for s/d > 14. Xu & Zhou (2004)
in their experimental work with two in-line circular cylinders argued that the near
wake generated by the upstream cylinder (which could be considered as an oscillating
flow) interferes and influences the vortex shedding from the downstream cylinder. The
two vortex shedding processes therefore influence each other, resulting in the lock-on
phenomenon. The present result, while being in qualitative agreement with results for
two in-line cylinders, further demonstrates that this lock-on phenomenon extends to
a larger number of in-line cylinders. The vortex shedding frequency in all the cases

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.359


Flow around six in-line square cylinders 223

(c)

(a)

(b)

FIGURE 28. Experimentally obtained instantaneous vorticity contours for Re= 320 at (a)
s/d = 0.5, (b) s/d = 1.0 and (c) s/d = 2.0.

is however much smaller than that of an isolated cylinder (St = 0.148 at Re = 100;
Sharma & Eswaran 2004), shown in figure 30(a).

For s/d = 0.5, the shear layer passes over the downstream cylinders without rolling
(figure 3a). The cylinders therefore act as a single body with a large aspect ratio,
which leads to a smaller Stp as compared to an isolated cylinder. As the spacing
is increased to s/d = 1, Stp suddenly drops to 0.07, which is almost half that for
an isolated cylinder. In this case, the shear layer moves into the gaps between the
cylinders without rolling, which renders additional stability to the flow (figure 3d).
This causes the Stp to reduce drastically as the flow is retarded. The physical
description offered by Xu & Zhou (2004) for flow retardation in the context of
two in-line circular cylinders is recalled here. They argued that the shear layers
separating from the upstream cylinder reattach on the upstream side of the downstream
cylinder and then separate, perhaps joining the shear layers around the downstream
cylinder, to form vortices behind the downstream cylinder. Nevertheless, the shear
layer impingement upon the downstream cylinder and interactions between the shear
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Synchronous flow
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FIGURE 29. Flow regime map at various Reynolds numbers and spacings. Note that the
position of the symbols indicates the discrete values of the spacing and Reynolds number
at which the simulations have been carried out. Notice that the range of spacing for the
synchronous regime increases with a decrease in Re.

layers originating from different cylinders may have an influence on the vortex
shedding frequency, contributing to the decrease in the corresponding Strouhal number.
Beyond s/d > 1.0, Stp increases rapidly and reaches a value of 0.122 at s/d = 4.0
and Re= 100 (figure 30a). This is due to the commencement of vortex shedding from
upstream cylinders. With a further increase in the spacing (s/d > 5), Stp increases
rather slowly. Similar variation is noticed for all Reynolds numbers considered in the
present work (figure 30b); however, the Strouhal number is in general higher for larger
Reynolds number. In particular, the large dip in the Stp at s/d = 1.0 is noted for all
Reynolds numbers.

The secondary frequency appears for the first time at s/d = 1.2 with Re = 100,
beyond which it increases with an increase in the spacing (figure 30a). The secondary
frequency appears in the signal due to the wake interference. For 1.5 6 s/d 6 4.0,
the vortices grow in the gap between the cylinders and interfere with the downstream
cylinder before shedding. For s/d > 4.0, the vortices interfere with the downstream
cylinders after shedding. This causes changes in the pressure distribution of the wake,
which leads to the dominant appearance of the secondary frequency.

7.2. Drag and lift coefficients
The drag and lift coefficients were the major concern of the researchers in the
case of two in-line cylinders because these quantities showed abrupt changes in the
magnitude near s/d = 2.5 (Mizushima & Suehiro 2005). The variation of mean drag
and r.m.s. lift coefficients with spacing for all the six cylinders is shown in figures 31
and 32, respectively. These results were calculated at Re = 100; approximately similar
behaviour is noticed at other Reynolds numbers. The mean drag experienced by any of
the cylinders and at any spacing is smaller than the mean drag for an isolated cylinder
(Sharma & Eswaran 2004), indicated by a dashed line in figure 31.

The mean drag on the first cylinder at about CDmean = 1.2 is almost unaffected by
the spacing (figure 31a). The drag on the second cylinder attains a negative value
for s/d 6 2 and increases monotonically with spacing (figure 31b). Negative drag
has been reported in the literature for the two-cylinder case for the same range of
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FIGURE 30. Variation of Strouhal number with spacing, corresponding to (a) primary and
secondary frequencies for Re= 100 and (b) the primary frequency at other Reynolds numbers.
Note that the Strouhal numbers for all the cylinders at a particular spacing are equal. The
dashed line in (a) indicates the Strouhal number for an isolated cylinder at Re= 100 (Sharma
& Eswaran 2004).

parameters (Zdravkovich 1987; Meneghini et al. 2001). The fact that the second
cylinder is completely submerged within the wake of the first cylinder causes the
mean drag to be negative at smaller spacings. The third to sixth cylinders show
non-monotonic behaviour of the mean drag coefficient with spacing. Each of these
cylinders experiences a sharp drop in mean drag at a certain spacing: for the third
cylinder the mean drag suddenly drops beyond s/d = 3 (figure 31c), for the fourth
it drops beyond s/d = 2.5 (figure 31d) and for the fifth and sixth cylinders it drops
beyond s/d = 2 (figure 31e,f ). Beyond each of the above-mentioned spacings the flow
pattern around the cylinders changes, although the quasi-periodic nature of the overall
flow is retained. For example at s/d = 4, the third cylinder actually starts shedding
vortices (figure 11d), which causes a drop in the drag coefficient. Similar behaviour is
also noticed for the other cylinders beyond the respective spacings mentioned above.
As the spacing increases beyond these values, the drag increases and attains a value of
CDmean ≈ 0.8 for all cylinders except the first. These results are qualitatively consistent
with the earlier experimental results for two in-line cylinders. In order to obtain
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FIGURE 31. (a–f ) Mean drag coefficient experienced by the cylinders and (g) average mean
drag coefficient per cylinder as a function of spacing for Re = 100. The dashed line indicates
the drag coefficient for an isolated cylinder at Re= 100 (from Sharma & Eswaran 2004).
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FIGURE 32. Root mean square lift coefficient experienced by the cylinders as a function
of spacing for Re = 100. The dashed line indicates the r.m.s. lift coefficient for an isolated
cylinder at Re= 100 (from Sharma & Eswaran 2004).

information on the overall flow behaviour, the average value of mean drag coefficient
per cylinder (CDmean, avg) was computed and plotted in figure 31(g). The average drag
more or less increases monotonically (other than a small dip at s/d = 3.0) from 0.20
to 0.92.

The lift coefficient experienced by the cylinders varies periodically with time for the
Reynolds number considered in the present work. However, its value averaged over a
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large number of cycles is zero. Therefore, the variation of root mean square value of
lift coefficient (CLrms) with spacing is plotted at Re = 100, as shown in figure 32. The
value of CLrms on the first cylinder remains close to the value for an isolated cylinder
(CLrms = 0.19), as is evident from figure 32(a). For the second cylinder, figure 32(b)
shows that the r.m.s. lift exhibits a single maximum at around s/d = 3–4. However,
CLrms for the third to sixth cylinders in figure 32(c–f ) shows an abrupt drop at about
s/d = 3.0–4.0. The location of the dip correlates with the dip observed in the mean
drag coefficient discussed above. A much larger value (CLrms = 1.0) for the second
and third cylinders is noted at around s/d = 3.5 (figure 32b,c), which suggests that
r.m.s. lift can be larger than mean drag on the cylinders. Also, notice that CLrms is
particularly small at small spacing (s/d = 0.5) for all the cylinders.

8. Wake interference and its effect on flow parameters
The aim of this section is to elucidate the wake interference mechanism and its

effect on the flow parameters such as drag and lift coefficients. It is argued that the
distance at which the wake is affected by the downstream cylinder would govern
the transition between the flow regimes. Figure 33 presents the instantaneous wakes
behind the cylinders with s/d = 1.0, 1.2, 4.0 and 6.0 at Re = 100. Here the wake
is defined as the region behind the cylinder where the instantaneous streamwise
velocity is less than the free-stream velocity. For s/d = 1.0, figure 33(a) shows that the
cylinders are enveloped in a single wake and the wake is structured in the downstream
region. Owing to the small gap between the cylinders (figure 3) the convection in the
gap is negligible as compared to diffusion. This is also attributed to the fact that the
local Reynolds number is small due to the small local length scale for low spacing.
Thus, the vorticity generated in the gap is diffused away without vortex shedding.
When the downstream cylinder is placed very close to the upstream cylinder, the wake
structure of the upstream cylinder is not altered substantially, because immediately
behind the upstream cylinder the streamwise velocity is either close to zero or negative.
This is similar to the single-cylinder case, where obviously there is no interference.
Thus, the wake formed by closely spaced cylinders is similar to that of a single
cylinder, which leads to the sinusoidal nature of the lift coefficient signal and a
synchronous flow.

At s/d = 1.2 the flow is quasi-periodic-I (characterized by the presence of a
secondary frequency) and its wake is structured (figure 33b). At this spacing, the
vortices grow behind the cylinders alternately from the top and bottom sides, and are
periodically affected by the downstream cylinder before shedding; the spacing is not
large enough to allow the vortex to grow completely and then shed (figure 7). This
interference does not allow the pressure to build up or reduce to a level which would
have caused the lift signal to be synchronous. Instead, the maximum lift developed
on the cylinder in due course either reduces or increases depending on the side (top
or bottom) at which the vortex is growing. This phenomenon occurs periodically and
leads to the development of a secondary frequency in the signal of the lift coefficient.
The pressure contours behind the cylinders indicate variation with a period which
indeed corresponds to its secondary time period (not shown), thereby confirming this
proposition. (Note that in figure 8 the variation in pressure corresponds to a primary
cycle, whereas modulation in the pressure time series corresponds to a secondary
cycle.)

At larger spacing, the vortex is shed in the gap between the cylinders. The
downstream cylinder interferes with the wake, which again leads to a secondary
frequency. However, now the vortex is almost on the verge of shedding and the
pressure variations are relatively more severe. This leads to dominance of the
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FIGURE 33. Instantaneous wakes for (a) s/d = 1.0, (b) s/d = 1.2, (c) s/d = 4.0 and (d)
s/d = 6.0 at Re = 100. Note that the wake is the region in which the streamwise velocity is
less than the free-stream velocity (Zdravkovich 1997).

secondary frequency over the primary frequency. The nature of the wake does not
remain structured, owing to the increased lateral movement of the fluid in and out of
the gap (figures 11 and 15). This lateral movement increases with an increase in the
spacing, leading to either a quasi-periodic-II or chaotic regime. The transition of flow
regimes should indeed cause the nature of forces on the cylinders to change, as already
noted in the earlier sections.

The negative mean drag coefficient acting on the downstream cylinder in the case
of two in-line cylinders is reported by many researchers. In the present study, at
small spacing (s/d < 2.0 and Re = 100), as the flow occurs over the first cylinder the
pressure behind the first cylinder does not reduce to the level it would have been in the
single-cylinder case. For a single cylinder, the pressure is lowest at the back surface

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.359


230 C. M. Sewatkar, R. Patel, A. Sharma and A. Agrawal

2

1

0

–1

–2

3

–3
0 4 8 12

6.01
5.84
5.68
5.51
5.35
5.18
5.01

4.68
4.85

4.51
4.35
4.18
4.02

3.68
3.52
3.35
3.19
3.02

3.85

2.69
2.52
2.36
2.19

2.85

5.96
5.50

3.50

2.50
2.37

–2.07

2.35
2.33
2.29
2.00

–2.00

1.00

–1.00

1.50

–1.50

0
0.50

–0.50

5.00

4.00

3.00

4.50

5.37
5.00
4.50

4.50
4.10
3.70
3.49
3.38
3.33
3.30
2.90
2.75
2.64
2.50
2.10
1.70
1.30
0.90
0.50

4.00
3.50
3.00
2.50
2.00
1.50
1.48
1.48
1.44
1.00
1.00
0.99
0.88
0.50

–0.50
–1.00
–1.50
–2.00
–2.50
–2.56

(a)

4

0

–4

8

–8

0 4 8 12 16 20 24 28 32 36 40

(d)

4

0

–4

–8
0 4 8 12 16 20 24 28 32

(c) 8

3

1

–1

–3

–5
0 5 10 15 20

(b) 5

FIGURE 34. Instantaneous pressure contours for (a) s/d = 0.5, (b) s/d = 1.2, (c) s/d = 4.0
and (d) s/d = 6.0 at Re= 100.

of the cylinder. Figure 34 indicates that the pressure between the first and second
cylinders is comparatively higher. If the shear layer from the first cylinder goes into
the gap between the second and third cylinders (as in figure 11a), the pressure in this
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gap is comparatively large and therefore the second cylinder experiences negative drag.
The streamlines shown in figures 3(b,e), 7(b) and 11(b,e) indicate the flow of the fluid
from bottom (top) to top (bottom). If the spacing is smaller the fluid is forced with
higher pressure between the cylinders compared with the case of larger spacing. This
causes the drag on the second cylinder to be more negative at smaller spacing. The
value of negative drag reduces with successive downstream cylinders and increase in
spacing, and becomes positive at larger spacing (figure 31).

The instantaneous lift force on all the cylinders (except the first) at spacings
between 2.0–3.5 is larger than the instantaneous drag force experienced by these
cylinders (figures 31 and 32). This is an important observation, which does not seem
to have been reported before. A related observation is that the frequency of unsteady
flow (represented by Strouhal number in figure 30) for all the cylinders in the case of
in-line cylinders is less than for a single cylinder, whereas the amplitude of unsteady
flow (represented by CLrms in figure 32) for all the cylinders is larger than for a single
cylinder (except for the first cylinder). This may be due to the strong time-varying
lateral forces in the in-line configuration noted above.

The mean drag and r.m.s. lift coefficients show peculiar variation in the range of
s/d = 2.0–4.0 for the third to sixth cylinders in that they exhibit a sudden drop in this
range (figures 31 and 32). The mean drag and r.m.s. lift coefficients on the second
cylinder continue to increase with spacing as the vortices grow in strength in the
gap and vortices shed by the first cylinder hit the second cylinder on the front face
(figure 11d). However, for the third cylinder, because the vortex which is shed by
the second cylinder reaches the rear surface of the third cylinder (figure 11d), these
parameters show a sudden drop beyond s/d = 3.5. With a further increase in spacing
(s/d > 5.0), the vortex shed by the second cylinder again hits the third cylinder at
its front surface leading to an increase in the mean drag and r.m.s. lift coefficients.
Similar observations apply to the fourth, fifth and sixth cylinders. This phenomenon
of wake interference is consistent with that of drag inversion range and possible states
reported by Carmo, Meneghini & Sherwin (2010b) for two circular cylinders.

It is therefore observed that wake interference is the phenomenon which governs the
type of flow regime and the flow parameters experienced by in-line cylinders.

9. Concluding remarks
Numerical and experimental results for flow across six in-line square cylinders are

presented in this paper. The flow regimes and the variation of flow parameters such
as Strouhal number, mean drag and r.m.s. lift coefficients with spacing and Reynolds
number have been obtained. Four basic flow regimes are initially proposed as a
function of spacing for Re = 100; these are synchronous (s/d 6 1.1), quasi-periodic-I
(1.2 6 s/d 6 1.3), quasi-periodic-II (1.4 6 s/d 6 5.0), and chaotic (s/d > 6.0). These
regimes are defined by studying the power spectra and the contribution of the
secondary frequency to the lift coefficient signal. The existence of these basic flow
regimes have been further checked to understand the effect of Reynolds number. The
formation of a single wake behind all the cylinders (single body behaviour) makes the
flow synchronous, while growth and shedding in the gap region leads the flow to move
to the quasi-periodic-I, quasi-periodic-II or chaotic regimes. Whereas the synchronous
regime can be characterized by a single frequency, two distinct frequencies are present
in the other regimes. The numerical results are subsequently confirmed by using
the experimental data at Re = 100; good agreement between the two is observed.
For comparison, the flow for a row of square cylinders is synchronous for large
spacings and becomes progressively chaotic with a reduction in spacing. The four
basic flow regimes are therefore present both for in-line cylinders (here) and for a
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row of cylinders (Kumar et al. 2008), but with a change in order with respect to
the spacing and Reynolds number. The different flow regimes are further confirmed
through vorticity contours for row and in-line configurations. It would be interesting to
verify that the same regimes exist for other configurations of cylinders, irrespective of
their number, location and geometrical parameters.

The Strouhal number corresponding to vortex shedding experienced by the cylinders
is the same for all the cylinders, especially in the synchronous and quasi-periodic-I
flow regime. The Strouhal number reaches a minimum at s/d = 1.0 for all Reynolds
numbers; it increases rapidly between 1.0< s/d < 4.0 and slowly beyond it. Although
the value of Strouhal number for a single cylinder is not recovered at the highest
spacing investigated here (s/d = 10), it is expected to be achieved for a very large
spacing free of wake interference effects. The mean drag experienced by all the
cylinders (and therefore the average drag per cylinder) for an in-line arrangement
is less than the mean drag on an isolated cylinder, irrespective of the spacing and
Reynolds number. The drag on the first cylinder is almost constant; however, it is
negative for the second cylinder. The value of negative drag reduces with an increase
in the spacing and becomes positive for s/d > 2.0. The third cylinder also experiences
negative drag at small spacings. The fourth cylinder is drag-free at s/d = 0.5; the
drag on the fifth and sixth cylinders is always positive. The r.m.s. lift for the first
three cylinders increases with spacing, reaches a maximum at around s/d = 3 to 4
and decreases further with increase in the spacing. With change in the spacing, the
value of CLrms of the first cylinder remains close to the value for a single cylinder
(CLrms = 0.19), but it reaches a much larger value of ∼1.0 for the second and third
cylinders at s/d = 3.5. The variation of CLrms with spacing for the fourth, fifth and
sixth cylinders shows abrupt changes in values at about s/d = 2.5–6.0. These changes
are consistent with the corresponding abrupt changes in mean drag coefficient.

It is therefore noticed that the scale of wake interference is influenced by the
spacing between the cylinders and the Reynolds number, which also alters the nature
and magnitude of the forces acting on the cylinders. The results for such a large
number of square cylinders actually present in the domain are not readily available.
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