
geometric morphing of one geometric shape into another is also

shown. The use of CST analytic wings in design optimisation will

also be discussed.  

NOMENCLATURE

Ai ‘ith’ scaling co-efficient

b wing span

Bu, Bl upper and lower wing surface scaling factor

BPO, BPON Order of the Bernstein polynomial where N = 

some number

C, c chord length

CDW wave drag coefficient

CLOCAL local chord

class function value at y (defined by Eq. 6) 

Cd distribution class function

Cs cross section class function 

(defined by Equation (22))

CST class function shape function transformation

e width to height ratio

H body height

ABSTRACT

For aerodynamic design optimisation as well as for multidisciplinary

design optimisation studies, it is very desirable to limit the number

of the geometric design variables. In Ref. 1, a ‘fundamental’

parametric aerofoil geometry representation method was presented.

The method included the introduction of a geometric ‘class

function/shape function’ transformation technique, CST, such that

round nose/sharp aft end geometries as well as other classes of

geometries could be represented exactly by analytic well behaved

and simple mathematical functions having easily observed physical

features. The CST method was shown to describe an essentially

limitless design space composed entirely of analytically smooth

geometries. In Ref. 2, the CST methodology was extended to more

general three dimensional applications such as wing, body, ducts and

nacelles. It was shown that any general 3D geometry can be repre-

sented by a distribution of fundamental shapes, and that the ‘shape

function/class function’ methodology can be used to describe the

fundamental shapes as well as the distributions of the fundamental

shapes. A number of applications of the ‘CST’ method to nacelles,

ducts, wings and bodies were presented to illustrate the versatility of

this new methodology. In this paper, the CST method is extended to

include geometric warping such as variable camber, simple flap,

aeroelastic and flutter deflections. The use of the CST method for
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● mathematically efficient and numerically stable process that is
fast, accurate and consistent

● requires relatively few variables to represent a large enough
design space to contain optimum aerodynamic shapes for a
variety of design conditions and constraints 

● allows specification of design parameters such as leading-edge
radius, boat-tail angle, aerofoil closure.

● provides easy control for designing and editing the shape of a
curve  

● intuitive – geometry algorithm should have an intuitive and
geometric interpretation. 

The geometric definition of any aircraft consists of representing the
basic defining components of the configuration by utilising two
fundamental types of shapes(3) together with the distribution of the
shapes along each of the components. 

The two fundamental defining shapes include:

Class 1: Wing aerofoil type shapes for defining such components as:

● aerofoils/wings

● helicopter rotors, turbomachinery blades

● horizontal and vertical tails, canards, winglets, struts

● bodies or nacelles of revolution

Class 2: Body cross-section type shapes for defining such compo-
nents as:

● aircraft fuselages (cross sections)

● rotor hubs and shrouds

● channels, ducts and tubing

● lifting bodies

The mathematical description of Class 1 geometries having a
round nose and pointed aft-end is a continuous but non-analytic
function because of the infinite slope at the nose and the corre-
sponding large variations of curvature over the surface. Similarly, in
the conventional Cartesian coordinate system, the mathematical
definitions of the cross-sections of Class 2 type of geometries
generally are also continuous but non-analytic functions.

Consequently, a large number of co-ordinates are typically
required to describe either Class 1 or Class 2 types of geometries.
Numerous methods(4-10) have been devised to numerically represent
class 1 aerofoil type geometries for use in use in aerodynamic
design, optimisation and parametric studies. Commonly used
geometry representation methods typically fail to meet the complete
set of the previously defined desirable features(1).  

A previous paper(1) focused on the Class 1 type of 2D aerofoil
shapes that have a round nose and a pointed aft-end. A new and
powerful methodology for describing such geometries was
presented. In a subsequent paper(2), the methodology was extended to
represent class 2 geometries as well as to general 3D geometries. In
the current paper results of the extension of the CST method to more
general wing/body geometries will be presented along with initial
aerodynamic optimisation results using the CST methodology.

A brief description and review of the methodology presented in
the previous papers will be shown since knowledge of this infor-
mation is essential to the understanding of the extension of the
methodology that is presented in the present paper.

The concept of representing arbitrary 3D geometries as distrib-
ution of fundamental shapes is discussed. It is shown that the previ-
ously method developed for 2D aerofoils and axi-symmetric bodies
or nacelles, can be used to mathematically describe both the funda-
mental shapes as well as the distribution of the shapes for rather
arbitrary 3D geometries. Applications of the extended methodology
to a variety of 3D geometries including wings and nacelles are
shown.

i variable counter, variable exponent
Kr,n binomial coefficient (defined by Equation (9))
Kxi streamwise binomial coefficient (defined by Equation (30)
Kyi spanwise binomial coefficient (defined by Equation (34))
L overall length
L.E., LE leading edge
MHB cross-section maximum half breadth
N, n number of terms in a summation, order of the Bernstein 

polynomial
N1, N2 class function exponents
Nu, Nl upper and lower surface cross-section class function 

exponents
NC, Nc1, Nc2 cross-section class function exponents
Nd1, Nd2 districution class function exponents
r summation counter
RLE leading-edge radius
S(ψ) shape function value at ψ(defined by Equation (2)).
Sr,n(ψ) Bernstein polynomial term (defined by Equation (8)).
Su(ψ) upper surface shape function
Sl(ψ) lower surface shape function
Sxi(ψ) streamwise unit shape function (defined by Equation (29))
Syi(ψ) spanwise unit shape function (defined by Equation (33))
T.E., TE trailing edge
W body width
y spanwise co-ordinate
z vertical co-ordinate
zMAX Maximum value of z
2D two-dimensional
3D three-dimensional 

β trailing-edge boat-tail angle
δ flap deflection angle
ε cross section width to height ratio
ΔzTE aerofoil trailing-edge thickness
ψ non-dimensional chordwise co-ordinate, x/c
η non-dimensional spanwise co-ordinate, 2y/b
ζ non-dimensional vertical co-ordinate, z/c
ζT non-dimensional trailing edge thickness, ΔzTE/c
ζL non-dimensional lower surface co-ordinate, zL/c
ζU non-dimensional upper surface co-ordinate, zU/c
ζN non-dimensional local wing shear
ΔαT Local wing twist angle

1.0 INTRODUCTION

The choice of the mathematical representations of the geometry of
an aircraft or aircraft component, that is utilised in any particular
aerodynamic design or multidisciplinary design optimisation
process, along with the selection of the type of optimisation
algorithm have a profound effect on such things as the computa-
tional time and resources, the extent and general nature of the design
space which determines whether or not the geometries contained in
the design space are smooth or irregular, or even physically realistic
or acceptable. 

The method of geometry representation also affects the suitability
of the selected optimisation process. For example the use of discrete
co-ordinates as design variables may not be suitable for use with a
genetic optimisation process since the resulting design space could
be heavily populated with aerofoils having bumpy irregular surfaces,
thus making the possibility of locating an optimum smooth practi-
cally impossible. The geometry representation method may also
affect whether a meaningful ‘optimum’ is contained in the design
space and if an optimum design exists, whether or not it can be
found. 

Desirable characteristics for any geometric representation
technique include:

● well behaved and produces smooth and realistic shapes
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2.0 ROUND NOSE AEROFOIL 
REPRESENTATION

A typical subsonic wing aerofoil section is shown in Figure 1.
Round nose aerofoils such as shown in the figure, have an infinite
slope and an infinite 2nd derivative at the leading edge and large
variations in curvature over the aerofoil surface. The mathematical
description of an aerofoil must therefore deal with a rather complex
non-analytic function over the surface of the aerofoil. Consequently
a large number of ‘x,z’ co-ordinates are typically required along with
a careful choice of interpolation techniques in order to provide a
mathematical  or numerical description of  the surfaces of an
aerofoil. 

The choice of the mathematical representation of an aerofoil, that
is utilised in any particular aerodynamic design optimisation process,
along with the selection of the type of optimisation algorithm have a
profound effect on such things as:

● Computational time and resources

● The extent and general nature of the design space that deter-
mines whether or not the geometries contained in the design
space are smooth or irregular, or even physically realistic or
acceptable

● If a meaningful ‘optimum’ is even contained in the design
space

● If optimum designs exist, whether or not they can they be
found.

The method of geometry representation also affects the suitability of
the selected optimisation process. For example the use of discrete
coordinates as design variables may not be suitable for use with a
genetic optimisation process since the resulting design space could
be heavily populated with aerofoils having bumpy irregular surfaces,
thus making the possibility of locating an optimum smooth practi-
cally impossible.

Desirable design features for any geometric representation
technique include:

● Well behaved and produces smooth and realistic shapes

● Mathematically efficient and numerically stable process that is
fast, accurate and consistent

● Flexibility

– Requires relatively few variables to represent a large 
enough design space to contain optimum aerodynamic 
shapes for a variety of design conditions and constraints
– Allows specification of key design parameters such as 
leading edge radius, boat-tail angle, aerofoil closure. 
– Provide easy control for designing and editing the shape 
of a curve 

● Intuitive – geometry algorithm should have an intuitive and
geometric interpretation. 

● Systematic and consistent – the way of representing, creating
and editing different types of curves (e.g., lines, conic sections
and cubic curves) must be the same. 

● Robust – the represented curve will not change its geometry
under geometric transformations such as translation, rotation
and affine transformations. 

Commonly used geometry representation methods typically fail to
meet the complete set of desirable features(1).  
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3.0 MATHEMATICAL DESCRIPTION OF 
AEROFOIL GEOMETRY

In the case of the round nose aerofoil described in a fixed Cartesian co-
ordinate system, the slopes and 2nd derivatives of the surface geometry
are infinite at the nose and large changes in curvature occur over the
entire aerofoil surface. The mathematically characteristics of the aerofoil
surfaces are therefore non-analytic function with singularities in all deriv-
atives at the nose. The approach used in Ref. 1 to develop an improved
aerofoil geometry representation method is based on a technique that the
author has often used successfully in the past, to develop effective
computational methods to deal with numerically difficult functions. 

The technique included the following steps:

1. Develop a general mathematical equation necessary and suffi-
cient to describe the geometry of any round nose/sharp aft end
aerofoil;

2. Examine the general nature of this mathematical expression to
determine the elements of the mathematical expression that are
the source of the numerical singularity

3. Rearrange or transform the elements of the mathematical
expression to eliminate the numerical singularity.

4. This resulted in identifying and defining a ‘shape function’
transformation technique such that the ‘design space’ of an
aerofoil utilising this shape function becomes a simple well
behaved analytic function with easily controlled key physical
design features in addition to possessing an inherent strong
smoothing capability.

5. Subsequently a ‘Class Function’ was introduced to generalise
the methodology for applications to a wide variety of funda-
mental 2D aerofoils and axi-symmetric nacelle and body
geometries. 

A summary of this approach is discussed below. 
The general and necessary form of the mathematical expression

that represents the typical aerofoil geometry shown in Fig. 1 is:

. . . (1)

Where:        ψ = x/c ζ = z/c and    ζT = ΔζTE/c.

The term     is the only mathematical function that will provide a
round nose.

The term (1 – ψ) is required to insure a sharp trailing-edge.

The term (ψ ζΤ) provides control of the trailing edge thickness.  

The term         represents a general function that describes the unique
shape of the geometry between the round nose and the sharp aft end. This
term is shown for convenience as a power series but it can be represented
by any appropriate well behaved analytic mathematical function.

4.0 AEROFOIL SHAPE FUNCTION

The source of the non-analytic characteristic of the basic aerofoil
equation is associated with the square root term in Equation (1). 

Let us define the shape function ‘S(ψ)’ that is derived from the
basic geometry equation by first subtracting the base area term and
then dividing by the round nose and sharp end terms.

This gives:                                                           

. . . (2)

Figure 1. Typical wing aerofoil section.

ζ = z/C

ζT = ΔZTE/Cψ = x/c 2ΔZTE

c
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function provides easy control of the aerofoil critical design
parameters.

The term              will be called the ‘Class Function’ C(ψ) With
the general form 

. . . (6)

For a round nose aerofoil N1 = 0·5 and N2 = 1·0
In Reference 1, it was shown that different combinations of the
exponents in the class function define a variety of basic general
classes of geometric shapes: 

N1 = 0·5 and N2 = 1·0 define a
NACA type round nose and pointed
aft end aerofoil.

N1 = 0·5 and N2 = 0·5 define  an
elliptic aerofoil, or an ellipsoid

N1 = 1·0 and N2 = 1·0 define a
biconvex aerofoil, or an ogive body.

N1 = 0·75 and N2 = 0·75 define the
radius distribution of a Sears-Haack
body

N1 = 0·75 and N2 = 0·25 define a low
drag projectile

N1 = 1·0 and N2 = 0·001 define a
cone or wedge aerofoil. 

N1 = 0·001 and N2 = 0·001 define a
rectangle, or circular rod.

The ‘class function’ is used to define general classes of geome-
tries, whereas the ‘shape function’ is used to define specific shapes
within the geometry class.

Defining an aerofoil shape function and specifying it’s class
function is equivalent to defining the actual aerofoil coordinates
which are obtained from the shape function and class function as: 

. . . (7)

5.0 REPRESENTING THE SHAPE 
FUNCTION

A number of different techniques of representing the shape function
for describing various geometries will be described in this report.
The simplest approach is illustrated in Fig. 3. The figure shows the
fundamental baseline aerofoil geometry derived from the simplest of
all shape functions, the unit shape function: S(ψ) = 1. Simple varia-
tions of the baseline aerofoil are also shown with individual
parametric changes of the leading edge radius, and of the location of
maximum thickness.

The figure on the left shows changes in the leading edge radius
and the front portion of the aerofoil obtained by varying the value of
S(0) with a quadratic equation that is tangent to the Zmax curve at
x/c for Zmax. The maximum thickness, maximum thickness location
and boat-tail angle remained constant.

The equation that represents the ‘S’ function which is obtained from
Equations 1 and 2 becomes the rather simple expression: 

. . .(3)

The ‘shape function’ equation is a simple well behaved analytic
equation for which the ‘eye’ is well adopted to see the represented
detailed features of an aerofoil and to make critical comparisons
between various geometries. 

It was shown in Ref. 1, that the nose radius, the trailing edge
thickness and the boat-tail angle are directly related to the unique
bounding values of the ‘S(ψ)’ function. 

The value of the shape function at x/c = 0 is directly related to the
aerofoil leading-edge nose radius by the relation: 

. . . (4)

The value of the shape function at x/c = 1 is directly related to the
aerofoil boat-tail angle, β, and trailing edge thickness, ΔZte, by the
relation:

. . . (5)

Hence, in the transformed coordinate system, specifying the
endpoints of the ‘S’ function provide an easy way to define and to
control the leading edge radius, the closure boat-tail angle and
trailing edge thickness.

An example of the transformation of the actual aerofoil geometry
to the corresponding shape function is shown in Fig. 2. The transfor-
mation of the constant Zmax height line, and the constant boat-tail
angle line, are also shown in the transformed plane.

The shape function for this example aerofoil is seen to be approxi-
mately a straight line with the value at zero related to the leading
edge radius of curvature and the value at the aft end equal to tangent
of the boat-tail angle plus the ratio of trailing-edge thickness/chord
length. It is readily apparent that the shape function is indeed a very
simple analytic function.

The areas of the aerofoil that affects its drag and performance
characteristics of the aerofoil are readily visible on the shape
function curve as shown in the figure. Furthermore, the shape
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Figure 2. Example of an aerofoil geometric transformation.
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The figure on the right shows the effect varying the location of
maximum thickness while keeping the values of the maximum
thickness, the nose radius and the aft boattail angle of the aerofoil
unchanged. In each of these examples the aerofoil shape changes are
controlled by a single variable and in all cases the resulting aerofoil
is both smooth and continuous

Figure 4 shows a five variable definition of a symmetric         
aerofoil using the shape function. The corresponding aerofoil

geometry is also shown. The variables include:

1. Leading-edge radius

2. Maximum thickness

3. Location of maximum thickness

4. Boattail angle

5. Closure thickness

A cambered aerofoil can be defined by applying the same technique
to both the upper and the lower surfaces. In this instance the
magnitude of the value of the shape function at the nose, S(0), of the
upper surface is equal to that on the lower surface. This insures that
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the leading edge radius is continuous from the upper to the lower
surface of the aerofoil. The value of the half thickness at the trailing
edge is also equal for both surfaces. Consequently, as shown in Fig.
5, eight variables would be required to define the aforementioned set
of parameters for a cambered aerofoil. 

In the examples shown in Figs 4 and 5, the key defining
parameters for the aerofoils are all easily controllable with the shape
function. 

6.0 AEROFOIL DECOMPOSITION INTO 
COMPONENT SHAPES

The unit shape function can be decomposed into scalable component
aerofoils(1) by representing the shape function with a Bernstein
polynomial of order ‘N’ as shown in Fig. 6. 

The representation of the unit shape function in terms of
increasing orders of the Bernstein polynomials provides a systematic
decomposition of the unit shape function into scaleable components.
This is the direct result of the ‘partition of unity’ property which

Figure 3. Examples of one variable aerofoil variations.

Figure 4. Symmetric aerofoil five variables definition. Figure 5. Cambered aerofoil eight variables definition.
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In the above equation, the coefficients factors Kr,n are binominal
coefficients defined as:

. . . (9)

For any order of Bernstein polynomial selected to represent the
unit shape function, only the first term defines the leading-edge
radius and only the last term defines the boat-tail angle. The other in-
between terms are ‘shaping terms’ that neither affect the leading
edge radius nor the trailing-edge boat-tail angle.

Examples of decompositions of the unit shape function using
various orders of Bernstein polynomials are shown in Fig. 7 along
with the corresponding component aerofoils. 

states that the sum of the terms, which make up a Bernstein
polynomial of any order, over the interval of 0 to 1, is equal to one.
This means that every Bernstein polynomial represents the unit
shape function. Consequently, the individual terms in the polynomial
can be scaled to define an extensive variety of aerofoil geometries(1). 

The Bernstein polynomial of any order ‘n’ is composed of the
“n+1” terms of the form:

. . . (8)

r = 0 to n
n = order of the Bernstein polynomial
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Figure 6. Bernstein polynomial decomposition of the unit shape function.

Figure 7. Bernstein polynomial provides ‘natural shapes’.
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The locations of the peaks of the component ‘S’ functions are
equally spaced along the chord as defined by the equation:

. . . (10)

The corresponding locations of the peaks of the component aerofoils
are also equally spaced along the chord of the aerofoil and are
defined in terms of the class function exponents and the order of the
Bernstein polynomial by the equation:

. . . (11) 

The technique of using Bernstein polynomials to represent the shape
function of an aerofoil in reality defines a systematic set of
component aerofoil shapes that can be scaled to represent a variety
of aerofoil geometries as shown in Fig. 8.

7.0 AEROFOILS DEFINED USING BERNSTEIN
POLYNOMIALS REPRESENTATION OF 
THE UNIT SHAPE FUNCTION

The upper and lower surfaces of a cambered aerofoil, can each be
defined using Bernstein polynomials of any selected order n, to
describe a set of  component shape functions that are scaled by ‘to be
determined’ coefficients as shown in the following equations.

The component shape functions are defined as:

. . . (12)

Where the term Ki is the binomial co-efficient which is defined as:                 

. . . (13) 

Let the trailing-edge thickness ratios for the upper and lower surface
of an aerofoil be defined as:

. . . (14)
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Figure 8. Example component aerofoils.

The class function for the aerofoil is:     

. . . (15)

The overall shape function equation for the upper surface is:   

. . . (16)

The upper surface defining equation is:      

. . . (17)

The lower surface is similarly defined by the equations:          

. . . (18)

and                                                                

. . . (19)

The coefficients Aui and Ali can be determined by a variety of
techniques depending on the objective of the particular study. Some
examples include:

● Variables in a numerical design optimisation application 

● Least squares fit to match a specified geometry 

● Parametric shape variations.

The method of utilising Bernstein polynomials to represent an
aerofoil has the following unique and very powerful properties(1):

● This aerofoil representation technique, captures the entire
design space of smooth aerofoils

● Every aerofoil in the entire design space can be derived from
the unit shape function aerofoil 

● Every aerofoil in the design space is therefore derivable from
every other aerofoil

8.0 AEROFOIL REPRESENTATION � KEY 
CONVERGENCE QUESTION

A key convergence question relative to the class function/shape
function geometry method for defining aerofoils, nacelles or bodies
of revolution is the following. What orders of Bernstein polyno-
mials, BPO, are required to capture enough of a meaningful design
space to contain a true optimum design?

A two step approach was defined in order to obtain the answer for
this question:
1) Compare actual aerofoil and represented aerofoil geometries for a
wide variety of aerofoils

● Use various orders of Bernstein polynomials for the shape
function to approximate the actual aerofoils shape functions
computed from the defined aerofoil co-ordinates. The coeffi-
cients for the component Bernstein polynomial shape functions
were to be determined by least squares fits to the selected
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The defining aerofoil co-ordinates are shown by the circles. The
approximating geometries are shown as the lines through the points.
Bands corresponding to typical wind-tunnel tolerances are shown in
the co-ordinate residual curves. Bars corresponding to ½ of the
height of the circular symbols representing the actual aerofoil
geometry, are indicated on the figures.

The results of the previously reported extensive(1) assessments of
the adequacy of the shape function methodology utilising Bernstein
polynomials to represent a wide variety of aerofoils, showed that a
relatively low order Bernstein polynomial, (typically BPO6 to
BPO9), matched the aerofoils geometries, slopes and 2nd derivatives
as well as the pressure distributions and aerodynamic forces(1). The
results also indicated that lower order Bernstein polynomials, corre-
sponding to fewer design variables, (perhaps BPO4 to BPO6),
should be adequate for developing optimum designs. 

The CST methodology offers the option for a systematic approach
for design optimisation. The optimisation process can initially be
conducted with a family of component aerofoil shapes corre-
sponding to a low order BP representation for the shape function to
obtain an optimum design. The order of the BP can then be increased
to conduct another optimisation to determine if a better optimum
design is achieved. Increasing the order of the BP is a systematic
way to increase the number of design variables and thereby explore
the convergence to an optimum solution.

9.0 GEOMETRY WARPING AND

MORPHING

The CST methodology can be readily adapted to describe both
warping and morphing of geometric components. We will define
‘warping’ to mean a continuous family of transformations of a
graphical object. Warping retains the fundamental characteristics of
the initial object. Examples of warping include:

aerofoil upper and lower surface shape functions. For all study
aerofoils, approximate aerofoils were determined for Bernstein
polynomial representation of the shape functions of orders 2 to
15/

● Investigate a wide variety of optimum and non-optimum,
symmetric and cambered aerofoil geometries.

● Compute the statistical measures such as ‘residual differences’,
‘standard deviations’ and ‘correlation functions’ to quantify the
‘mathematical goodness’ of the representations for each of the
study aerofoils. 

● Compare surface slopes, 2nd derivatives and curvature between
actual and approximate aerofoil shapes

2) Conduct TRANAIR(11,12) with boundary layer CFD analyses of the
actual and the corresponding shape function defined aerofoils for a
range of Mach numbers and angle of attacks. 

● Compare upper and lower surface pressure distributions
between those obtained with the actual and approximate
geometries.

● Compare lift, drag and pitching moment characteristics between
the actual and approximate aerofoils

More than 30 aerofoils have been analysed applying this process.
These include symmetric NACA aerofoils, cambered NACA
aerofoils, high lift aerofoils, natural laminar flow aerofoils, shock-
free aerofoils, supercritical aerofoils and transonic multipoint
optimised aerofoils. For each of the study aerofoils, approximate
aerofoil geometries were defined using Bernstein polynomial surface
representations of the upper and lower surfaces shape functions, of
orders 2 to 15, to critically evaluate the geometry convergence
characteristics. Results of these extensive investigations were
reported in Ref. 1. 

Typical examples of shape function representation of a variety of
aerofoils are shown in Fig 9.  
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Figure 9. Typical CST aerofoil representations.
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● Wing twist

● Simple flap deflection: transformation with fixed topology

● Aeroelastic static deflections

● Flutter dynamic  deflections

We define ‘morphing’ (metamorphosis) to mean transformations
between graphical objects. Morphing involves variation of the
fundamental characteristics of the initial object to those of the target
object. Examples of morphing include:

● Parametric leading-edge radius variation (Fig 3)

● Parametric change in the location of maximum thickness of an
aerofoil (Fig. 3)

● A fuselage can be considered a morphing of cross section
shapes along the length of the body

It will be shown further in this report that geometric morphing can
be easily obtained by variations of class function/shape function
variables. Warping involves geometric variations external to the
class function/shape function variables.

Figure 10 shows examples of geometric warping. These were
obtained by defining the forward and aft pivot points. The chord
lines forward of the front pivot point and aft of the back pivot point
are deflected according to a prescribed deflection shape. The simple
flap has a discontinuous linear rotation. The variable camber is
obtained with a cubic equation. Both type of deflections have two
variables that include the pivot point location and the shape
exponent of the deflection curve. The physical length of the
deflected chord is retained. The original upper and lower surface
local heights normal to the chord length are retained along the
deflected chords.

The aeroelastic deflections were obtained in a similiar manner.
The discussions so far have been focused in 2D round nose/sharp

aft-end aerofoils. However, as shown in Fig. 11, different combina-
tions of the exponents in the class function defines a variety of basic
general classes of geometric shapes of aerofoils, bodies of revolution
and axi-symmetric nacelles. The use of the class function therefore,
allows the previously discussed shape function methodology as well
as the studies conclusions to apply equally well to a wide variety of
2D and axi-symmetric geometries. 

10.0 EXTENSION TO ARBITRARY 3D 
GEOMETRIES 

The shape functions/class function methodology can be used to
describe both the upper and the lower lobes of a body cross-section
similar to the upper and lower surface of an aerofoil. Let us initially
assume that a body cross-section is laterally symmetric and has the
shape of an ellipse as shown in the Fig 12. We will then subse-
quently generalise the results using the class function. 

The equation for the ellipse with the axes of the ellipse at the left
edge can be expressed as:
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Figure 10. Examples of geometric warping.

Figure 11. Geometries derivable from a unit shape function.

Figure 12. Representation of a body upper or lower lobe shape.

. . . (20)

Where: η = y/w and ζ = z/h

The shape function for this upper lobe elliptic geometry is therefore:

. . . (21)

In the above equation we have generalised the expression by using
the arbitrary exponents NC1  and NC2

. . . (22)

Cs(η) will be called the cross-section class function.

In this case the upper lobe defining equation is:                                                

. . . (23)

For an elliptic upper lobe shape, the shape function is a constant and
equal to 2·0, and the class function exponents are: NC1 = NC2 = 0·5.
Figure 13 shows examples of variety of cross-section shapes that can
be obtained by independently varying the class function coefficients
for the upper and lower lobes of the body cross-section. In these
examples, the shape function is a constant value. Any of the geome-
tries can be morphed from the circle by continuously varying the
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function exponent slightly greater than zero results in a solid

geometry while a distribution class function exactly equal to zero

results in a similar but flow through geometry.

Figure 18 shows an example of using the shape function/class

function methodology to make an apparently significant geometry

change with very few design variables, by morphing a cube into an

equal volume Sears-Haack body.

The circular cross-section of the Sears-Haack body has unit shape

function and class functions exponents equal to                . The longi-

tudinal radius distribution of a Sears-Haack body has a unit shape

class function co-efficients from those of the circle to those of the
desired geometric shape. The condition of constant cross-sectional
area during the geometric morphing can be easily imposed.

By using the previously described Bernstein polynomial technique
to represent the unit shape function together with the body cross-
section aspect ratio of the body cross-section (ratio of body cross-
section width to body cross-section height), a limitless variety of
smooth cross-sectional geometries can be generated with just a few
variables.

The example cross-sections shown in Fig. 13 were obtained using
simple unit shape functions but different class functions. Very
general cross-sectional shapes can be generated by varying the shape
function formulations in addition to the class functions.  As shown in
Fig. 14, changing the shape function for the upper body lobe can
create upper surface bumps or fairings. In the examples shown, the
geometries are representative of a cross-section of a fuselage through
the cockpit area.

Three dimensional bodies in general can be represented as a cross-
sectional shape together with a distribution or morphing of the cross-
section shape along the length of the body. This is shown in Fig. 15
by the examples of a duct, a high-aspect ratio wing, and a supersonic
type integrated wing-body.

The concept of using the shape function/class function method-
ology to describe both the fundamental cross-sectional shapes and
the distribution of the shapes along the body axis is shown for the
simple case of a cube in Fig. 16. 

The square cross-section can be described by a class function with
‘zero exponents’,             , and a unit shape function. The longitu-
dinal area distribution controls the distribution of the cross section
shapes. The longitudinal area distribution for a cube can be repre-
sented by a similar class function,                  . 

Figure 17 shows a number of relatively simple 3D bodies that can
be obtained by various combinations of the cross section and distrib-
ution class function exponents. Comparing the third and fourth
geometries in the figure, it can be seen that a distribution class
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Figure 13. Example upper lobe/lower lobe body cross sections.

Figure 14. Fuselage ‘bump’ representation.

Figure15. Examples of 3D geometries as distribution of shapes.

Figure 16. Definitions of cross-section shape and distribution.

Figure 17. Simple 3D bodies obtained by various 
cross section and distribution class function exponents.
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function and a class function equal to               .
Consequently the morphing of the cube into a Sears-Haack body

is easily obtained by simultaneous:

● Increasing the cross-section class function exponents from
0·005 to 0·5

● Increasing the longitudinal radius distribution  class function
exponents from 0·005 to  0·75

● Increasing the length to keep the volume constant.

An example of morphing a constant area circular duct into a duct
with geometry that varies from a circular inlet to a square shaped
nozzle 1s shown in Fig. 19. This seemingly complicated geometric
transformation was easily defined using as a single variable the class
function exponents.

The initial geometry shape at the inlet is a circular duct defined
with a cross-section class function with exponents equal to ‘0·5’.
The duct geometry, in this example, retains a constant cross section
from 0 to 20% of the length. The last 5% length of the duct has a
square cross-section which has class function exponents equal to
‘0·005’. The width/depth of the square were sized to match the
circular inlet area.

In between 20% and 95% of the length, the class function
exponents were decreased from 0·5 at 20% to 0·005 at 95% by a
cubic variation with zero slopes at both ends. Along the transition
region the width and depth were scaled proportionally to keep the
cross section area constant. The entire geometry is in reality driven
by a single variable, the aft end constant class function exponent

This is an example of a ‘scalar’ or ‘analytic’ loft in which the
geometry is generated by the analytic variation of the shape defining
parameters along the length of the duct.
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By adding as an additional variable, the body cross section aspect
ratio, the circular duct can be morphed into a duct having a circular
inlet and transitions into a wide rectangular nozzle as shown in Fig
20. The body cross-section aspect ratio is defined as the ratio of
body width-to-body height. 

In Fig. 21, using a similar technique to that used to define the duct
in Figs 19 and 20, a flow through circular duct is transformed to a
solid geometric shape that appears very similar to a supersonic
aircraft configuration.

This geometric transformation was obtained with a total of four
design variables. The four design variables included:

● Longitudinal class function exponents: Nd1, Nd2

● Aft end cross-section class function exponent, NC, 

● the width-to-height ratio at the aft end: e2

11.0 NACELLE DESIGN – 2 OPTIONS 

There are two options for using class functions and shape functions
for defining a nacelle. These include:

1. Define longitudinal profile shapes for crown line, maximum
half-breadth, and keel line and then distributing these profiles
circumferentially around the longitudinal axis to define the
nacelle geometry.

2. Define cross section shapes and distribute the shapes along the
longitudinal axis as controlled by an area distribution.

In the discussions that follow, we will focus on the first option,

Figure 18. Three variable morphing of a cube into a Sears-Haack body.

Figure 19. One variable definition of a circular duct with a square nozzle.

Figure 20. Two variable transformation of a circular duct to a thin
rectangular nozzle.

Figure 21. Transformation of a circular 
cylinder in a ‘supersonic transport’.
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The lower lobe aft of defining Station 2, which occurs at 80% of the
nacelle length, is circular with a class function exponent equal to 0·5.
Consequently this results in an axi-symmetric nozzle geometry.

In between Station 1 and Station 2, the lower lobe shape joining
the maximum half-breath geometry and the keel geometry, varies
smoothly from a squashed section at station 1 to a circular section at
Station 2. The cross-sectional shape distribution is therefore defined
entirely by the following four design variables:

● Upper lobe class function exponents, NU
● Lower lobe class functions, NL
● End of squashed lower lobe station, Station 1

● Start of circular lower lobe station, Station 2

The inlet definition is shown in Fig. 24. The internal inlet cross-
section shape and leading edge radii distribution were defined to
match the external cowl cross-section shape and streamwise leading
edge radius distribution at the nose of the nacelle.

The internal inlet shape morphed smoothly from the ‘squashed’
shape at inlet lip to a circular cross-section at the throat station.  The
internal shape was defined as circular aft of the throat station to the
end of the inlet length.

The entire internal inlet geometry required only four more
defining variables. These include:

● Throat Station

● Throat Area

● End of Inlet Station

● End of Inlet Area

The complete nacelle geometry as defined by the aforementioned 15
total nacelle design variables is shown in Fig. 25. The geometry is
seen to be everywhere smooth and continuous.

since this will provide a demonstration of the combined use of many
of the concepts that have been discussed in this report and in the
previous studies(1,2). The objective is to develop a detailed nacelle
definition with the use of very few design variables.

Figure 22 shows the common approach to defining a nacelle using
aerofoil type sections for the crown line, keel line and maximum half
breadth shapes. In the example, the basic aerofoil geometry is repre-
sented by a BP5 shape function definition for a supercritical type
aerofoil which therefore has six defining variables.

The keel line aerofoil and the max half breadth aerofoils in this
example are both parametrically modified forward of the maximum
thickness station to increase the leading-edge radius in the former
case and decrease the leading edge in the latter case. This results in
the addition of two more defining variables corresponding to the
desired leading edge radii.

The external cross-sectional shape of the nacelle between the
crown, max half breadth and keel is defined by an upper lobe class
function with the exponent NU. The lower lobe of the nacelle is
similarly defined by lower lobe class function with the exponent NL.
This approach to distribute the longitudinal aerofoil shapes circum-
ferentially around the nacelle is shown in Fig. 23. This is achieved
by the use of cross-section class functions in which the class
function exponents are varied along the length of the nacelle as
shown in the figure. 

The upper lobe for the entire nacelle is defined using a constant
class function exponents of 0·5. This results in an elliptic/circular
cross sectional shape distribution between the crown line and the
maximum half-breadth aerofoils.

The lower lobe cross-section class function exponents equal 0·25
out to defining station 1 which is located at 40% of the nacelle
length. This results in a ‘squashed’ shape distribution from the
maximum half-breadth aerofoil to the keel line aerofoil over the
front portion of the nacelle.
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Figure 22. Nacelle crown line, keel line and max half-breadth definitions ~ eight variables.
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Figure 23. Nacelle shape distribution circumferentially around the nacelle centerline � four variables.

Figure 24.  Nacelle inlet geometry definition � 4 variables.
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Where:

Fraction of local chord: 

Non-dimensional semi-span station: 

Local leading edge co-ordinates: 

Local chord length: 

Non-dimensional upper surface 
co-ordinate:

Non-dimensional local wing shear: 

Local wing twist angle: 

Equation (24) is the equation for the wing upper surface, the similar
equation for the lower surface is: 

. . . (25)

The physical z co-ordinate is transformed in the shape function using
an extension of the aerofoil shape function procedure to derive
Equation (2). The corresponding shape for an aerofoil section on a
wing with vertical shear and local section twist is given by the
equation: 

. . . (26)

The corresponding shape function equation for the lower surface of a
wing is:

. . . (27)

For a given wing definition, the wing upper and lower shape
functions can be calculated using above equations.  

Based on this example, it would appear that for aerodynamic
design optimisation of the external shape of a nacelle, relatively few
variables would be required to capture a very large design space of
realistic smooth continuous geometries.

12.0 3D WING DEFINITION USING THE CST 
METHOD  

A 3D wing can be considered to be a distribution of aerofoils across
the wing span. Consequently we can use the previously discussed
class functions and shape functions to obtain analytical definitions of
the wing aerofoil sections and then simply distribute the analytical
formulations across the wing span to completely define a wing.  In
this section the general analytical definition for any arbitrary wing
will be developed. We will illustrate the use the methodology
initially with a number of simple applications. This will be followed
by an examination of application of the methodology to detailed
subsonic and supersonic wings definitions.

A typical wing aerofoil section is shown in Fig. 26.  The defin-
ition of a wing aerofoil section has two additional parameters
relative to the previously shown aerofoil definition (Fig. 1)

The analytical definition of a local wing aerofoil section is similar
to the aerofoil definition, (Equation (1)), with two additional
parameters that include the local wing shear and wing twist.

. . . (24)
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Figure 25. Total nacelle external shape and inlet 
geometry definition � 15 variables.

Figure 26. Wing aerofoil section.
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● Taper ratio ( 1)

● LE sweep ( 1)

13.0 MATHEMATICAL DESCRIPTION OF A 
WING IN DESIGN SPACE 

Similar to the shape function for an aerofoil, the shape function
surface for wings such as shown in Fig. 28, is a smooth continuous
analytic surface. Consequently the shape function surface can be
described by a Taylor series expansion in x and y. It was shown in
Ref. 2 that a Taylor series in x and y is equivalent to a Taylor series
expansion first in the x direction, and then expanding each coeffi-
cient of the ‘x series’ as a Taylor expansion in the y direction. In a
similar manner, it can be shown that a power series in x and y is
equivalent to an expansion in x followed by power series expansions
in the y direction of each of the x series co-efficients. Consequently,
the shape function surface for a complete wing surface can be
obtained by first representing the root aerofoil shape function by a
Bernstein polynomial  of a specified order. 

The complete wing shape function surface can then be defined by
expanding the co-efficients of the Bernstein in the spanwise
direction using any appropriate numerical technique. The surface
definition of the wing is then obtained by multiplying the shape
function surface by the wing class function. This in essence provides
a numeric scalar definition of the wing surface.
An example of the mathematical formulation of this process is

shown below, using Bernstein polynomials to represent the stream
wise aerofoil shapes as well as for the spanwise variation of the
streamwise co-efficients.

The unit streamwise shape functions for Bernstein polynomial of
order Nx are defined as:

. . . (29)

Where the  streamwise binomial co-efficient is defined as 

. . . (30)

The streamwise upper surface shape function at the reference
spanwise station, ηREF is:

Given a wing definition as a shape function surface in the design
space, the wing upper, and lower surfaces in physical space can be
determined from the shape function surfaces, the local values of
twist,  shear  and chord length as: 

. . . (28)

A typical subsonic wing and the corresponding definition of the
wing in the shape function design space is shown in Fig 27. The unit
design space is defined by ψ = 0·0 to 1·0, and η = 0·0 to 1·0 and
therefore represents any wing planform. As shown in the figure, the
leading edges of the shape function surfaces define the leading-edge
radius distributions for the physical wing. The trailing edges of the
shape function surfaces define the boat-tail angle distributions. The
wing shape function surface shares the same desirable features as the
shape function for an aerofoil such as smooth, analytic, easily
definable key geometric features. 

The concept of the wing shape function surface can be used for
many purposes including:

● Parametric wing definition

● Smoothing and/or enrichment of the wing geometry

● Local parametric changes of the wing geometry.

● Design optimisation with local design point variables

● Regional design optimisation such as the wing leading-edge
region.

● Global design optimisation 

Figure 28 illustrates the general process of transforming a simple
parametric definition of shape function surfaces for a wing in design
space into the physical definition of the wing. 

The complete parametric cambered wing definition with spanwise
variations of maximum thickness and wing twist, and specified wing
area, sweep, aspect ratio and taper ratio required only a total of 19
design variables:

● Supercritical aerofoil section  (11)

● Spanwise thickness variation ( 2)

● Spanwise twist variation ( 2)

● Wing area ( 1)

● Aspect ratio ( 1)
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Figure 27. Definition of a wing in design space.

Figure 28. Complete wing analytic definition.
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Bernstein polynomial of order 3 for defining the basic aerofoil shape

and Bernstein polynomial of order 2 for describing the spanwise

variations for each of the basic aerofoil components. This results in a

total of 12 component wing shapes used to define the complete wing

geometry. Figure 30 shows three of the component wing shapes. 

For a design optimisation application, the 12 scaleable coefficients

Bij would be the optimisation variables.

Figure 31 shows an example of a scalar loft of a highly swept

wind tunnel configuration that was used to obtain surface pressure

and wings loads data for CFD validation studies(13, 14). The wind-

tunnel model was built using the conventional vector loft approach.  

The analytic scalar loft of the wing was defined by a total of 15

parameters. These include:

● BPO8 representation of the basic aerofoil section � nine

parameters

● Wing area

● Aspect ratio

● Taper ratio

● Leading-edge sweep

● Trailing-edge thickness = constant

. . . (31)

Let us represent the spanwise variation of each of the co-efficients,
Aui(η) by Bernstein polynomials as:

. . . (32)

Where       

. . . (33)

And              

. . . (34)

The wing upper surface is then defined by:

. . . (35)
The similar equation for the lower surface is:

. . . (36)

In Equations (35) and (36) the coefficients Bui,j and Bli,j define the
unique geometry of the wing upper and lower surfaces. Continuity of
curvature from the upper surface around the leading edge to the
lower surface is easily obtained by the requirement: Bu0,j and Bl0,j

The actual wing surface co-ordinates can then be obtained from
the equations:

. . . (37)

This process of defining a wing geometry using Equations (35) to
(37), may be considered a scalar loft of a wing where every point on
the wing surface is defined as accurately as desired and the points
are all ‘connected’ by the analytic equations. This is in contrast to
the usual wing definition of a vector loft of a wing which is defined
as ordered sets of x,y,z co-ordinates plus ‘rules’ that describe how to
connect adjoining points. The common approach used to connect
adjacent points is along constant span stations and along constant
percent chord lines.

In Equations (35) and (36), each term     
defines a composite wing geometry formed by the ‘ith’ component
aerofoil shape                        with the ‘jth’ spanwise variation Syj(η).
Figure 29 shows analytic wing components for an arrow wing with a
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Figure 29. Arrow wing composite wing elements construction.

Figure 30. Example composite wing elements.
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leading edge the wing has a supersonic leading edge with sharp nose
aerofoils. The shape functions for this wing are also seen to be
piecewise smooth and continuous.

The results shown in Figs 32 and 33 imply indicate that analytic
wing definitions for planforms with leading-edge and/or trailing-
edge breaks, can be developed using streamwise aerofoil compo-
nents for a fixed order of Bernstein polynomials with piecewise
variations of the polynomial coefficients in the spanwise direction.

15.0 ANALYTIC WING GLOBAL DESIGN 

OPTIMISATION

In Ref. 15, a new supersonic linear theory wave drag optimisation
methodology utilising far field wave drag methodology was intro-
duced. The optimisation process was used to explore wing design
optimisation with the class function/shape function transformation,
CST, concept of an analytic scalar wing definitions. 

Results of a simple application of the methodology for optimi-
sation of the spanwise thickness distribution of a supersonic delta
wing at Mach 3.0 to minimise cruise volume wave drag, are shown
in Figs 34 to 36.

The objective of the study was to explore the effect of the order of
the spanwise Bernstein polynomial representation of the wing shape
function surface with a constant aerofoil shape on wave drag with a
constant wing volume. The basic wing/body geometry character-
istics of the base configuration are shown in Fig 34.

Similar to the arrow wing analytic representation shown in Fig.
29, the study wing geometry was decomposed into scaleable
component wing shapes formed by the different spanwise variations
of the basic wing aerofoil shape. The component wing shapes, corre-
sponding to a 3rd order Bernstein polynomial describing the
spanwise thickness variation, are shown in Fig 35.

● Constant wing shear ( to fit the wing on the body as a low wing
installation)

The wind tunnel model fuselage included an ogive
nose/cylindrical body. The ogive nose shape has distribution class
function with exponents equal to 1 and a constant shape function
equal to four times the maximum body radius. The total body
geometry was specified by two variables that included the nose
length and the maximum radius.

Body and wing surface coordinates were calculated using the
aforementioned analytic definition. The differences between the
analytic model surface definition and the ‘as built’ wing surface
coordinates were far less than wind-tunnel model tolerances over the
entire surface of the model. 

14.0 MATHEMATICAL DESCRIPTION OF A 

WING WITH LEADING-EDGE AND/OR 

TRAILING-EDGE BREAKS

Subsonic and supersonic aircraft wings typically have planform
breaks in the leading-edge (commonly called a strake) and/or the
trailing-edge (commonly called a yehudi) with discontinuous
changes in sweep. Consequently, the wing surface is non-analytic in
the local region of the edge breaks. However, the approach of
defining a complete wing geometry as previously described should
be piecewise applicable. 

In order explore this concept; the geometry of a typical subsonic
aircraft wing was analysed in depth. Aerofoil sections at a large
number of spanwise stations were approximated by equal order of
Bernstein polynomial representation of the corresponding shape
functions. The adequacy of the composite representation was deter-
mined by computing the residual differences between the actual
aerofoil sections and those defined by the approximating Bernstein
polynomials. The wing upper and lower surface residual differences
were well within the wind-tunnel model construction tolerances. 

The shape function surfaces corresponding to wing upper and
lower surfaces are shown in Fig. 32. The piecewise continuous
nature of the surfaces associated with the planform breaks is very
evident.  The corresponding spanwise variations of the composite
aerofoil scaling coefficients (Buj and Blj) are also shown.

These results show that the spanwise variations of the Bernstein
coefficients across the wing span are very regular, piecewise
continuous and well behaved.

The shape function surface for a High Speed Civil Transport, Ref.
H, wing is shown in Fig. 33. This planform has a number of leading
edge and trailing-edge breaks. This wing has an inboard subsonic
leading edge wing with round nose aerofoils. Outboard of the
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Figure 31. Scalar loft of a highly swept 
aero-elastic loads wind tunnel model.

Figure 32. Spanwise variation of the 
‘BP’ composite aerofoil scaling co-efficients.

Figure 33. Shape function for a HSCT supersonic wing – Ref H.
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The number of design optimisation variables corresponding to
scaling coefficients of the component wing shapes equals the BPO
plus 1. The BPO = 0 result corresponds to the drag of the constant
TMAX/C = 2·4% baseline wing. It is seen that the wave drag rapidly
converges to the minimum drag level when the BPO representation
equals or exceeds 2. For this example the wing wave drag was
reduced by 23%. Additional results of design optimisation studies
that demonstrate the effectiveness of the analytic optimisation
methodology using composite wings representing both aerofoil
shape and spanwise thickness variations over the wing surface are
shown in Reference 15.

16.0 SUMMARY AND CONCLUSIONS

Figure 37 summaries the evolution of the CST method as presented
in this report. 

● The concept of the ‘SHAPE FUNCTION’ was developed by a
transformation process that eliminated the numerical leading
edge singularities in slopes, 2nd derivatives and the large varia-
tions in curvature over the entire surface of an aerofoil. In
addition, the shape function provides direct control of key
design parameters such as leading-edge radius, continuous
curvature around a leading edge, boat-tail angle and closure to a
specified thickness. 

● The transformation process was generalised with the intro-
duction of the ‘CLASS FUNCTION’. 

● The class function defines fundamental classes of aerofoils, axi-
symmetric bodies, and axi-symmetric nacelles geometries. The
shape function defines unique geometric shapes within each
fundamental class. 

● The unit shape function was decomposed into component
aerofoils using Bernstein Polynomials. This is an attractive and
systematic technique to decompose the basic unit shape into
scalable elements corresponding to discrete component
aerofoils. 

● By virtue of the Weirstrass theorem it was shown that this
technique: 

● Captures the entire design space of smooth aerofoils, axi-
symmetric bodies and nacelles 

● Within this design space, all smooth aerofoils, axi-symmetric
bodies and nacelles are derivable from the unit shape function
and therefore from each other.

● Very detailed geometric and aerodynamic evaluations were
made of approximate aerofoil geometries derived from
various orders of Bernstein polynomials representations of the
shape functions for a wide variety of aerofoil geometries. The
results indicated that relatively few variables were required to
accurately represent most any aerofoil geometry.

● The CST methodology can be readily adapted to describe both
warping and morphing of geometric components. Geometric
morphing can be easily obtained by variations of class
function/shape function variables. Warping involves
geometric variations external to the class function/shape
function variables.

● The Class function/Shape function Transformation geometry
representation methodology, CST, can be used to describe
both the cross-sectional shapes of arbitrary bodies or nacelles
as well as the distribution of the cross-section shapes along
the primary body axis. This provides a powerful technique to
smoothly morph a three dimensional geometry into widely
differing configuration.

● The concept of ‘analytic scalar definitions using composite
wing surfaces’ was introduced and explored. With this
approach, the wing aerofoil shapes functions are represented

Wing optimisation studies were conducted with and with out

outboard wing inequality thickness constraints. The thickness

constraints limited the outboard thickness to no less than 1·1%. In all

cases the wing volume was held constant. Spanwise Bernstein

polynomials of order, BPO 0 to 6 were utilised to define the

composite wing shapes for the optimisation studies. The results of

the study are summarised in Fig. 36.
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Figure 34. Basic delta wing/body.

Figure 35. Example of BP03 spanwise analytic wing components.

Figure 36. Effect of Spanwise bernstein polynomial 
order ~ BPO, on optimized wing wave drag.

3281:Regular Journal Pgs.qxd  02/03/2010  16:51  Page 18

https://doi.org/10.1017/S0001924000003614 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000003614


approach to represent a wide variety of 2D and 3D geometries

encompassing a very large design space with a relatively few

scalar parameters.
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Figure 37. Evolution of the CST method.
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