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We report laboratory experiments and numerical simulations of the Zakharov equation,
designed to have sufficient resolution in space and time to measure the dispersion
relation for random surface gravity waves. The experiments and simulations are
carried out for a JONSWAP spectrum and Gaussian spectra of various bandwidths on
deep water. It is found that the measured dispersion relation deviates from the linear
dispersion relation above the spectral peak when the bandwidth is sufficiently narrow.
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1. Introduction
Linear wave theory is widely used to model, for instance, the response of ocean

structures and ships to water surface gravity waves (Goda 2000; Tucker & Pitt 2001)
and assumes that the water surface can be modelled as a linear superposition of
regular waves satisfying the linear dispersion relation. For waves on deep water the
linear dispersion relation is

ω2
= gk (1.1)

where ω is the angular frequency, k is the wavenumber and g is the acceleration due
to gravity.

While the energy contribution of linear waves is located in the linear dispersion
relation, nonlinearity can cause energy contributions away from this region. We
distinguish two types of nonlinearity (Krogstad & Trulsen 2010), namely static
nonlinearity due to bound harmonics and dynamic nonlinearity due to resonant and
quasi-resonant wave–wave interactions (Tick 1959; Phillips 1960, 1961). For weakly
nonlinear waves, the Zakharov integral equation (Zakharov 1968) or the nonlinear
Schrödinger (NLS) equation can be used to account for dynamic nonlinearity.

The typical evolution scale for the dynamic nonlinearity is the Benjamin–Feir (BF)
timescale,

τ = (ε2ωp)
−1. (1.2)
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Here the wave steepness is ε = ac kp. The characteristic amplitude is ac =
√

2〈η2〉

where η is the surface elevation and 〈·〉 denotes statistical averaging. The characteristic
wavenumber kp and frequency ωp are related by the linear dispersion relation (1.1) and
will be further specified below.

Wave dispersion has been well described in experiments (Ramamonjiarisoa &
Coantic 1976; Lake & Yuen 1978; Masuda, Kuo & Mitsuyasu 1979; Mitsuyasu, Kuo
& Masuda 1979; Donelan, Hamilton & Hui 1985) and in field observations (Hara &
Karachintsev 2003; Wang & Hwang 2004). Based on the correlation between pairs of
wave staffs, Ramamonjiarisoa & Coantic (1976) and Lake & Yuen (1978) found that
spectral components above the spectral peak had phase speeds close to that of the
spectral peak and that the energy was essentially propagating with the group velocity
of the spectral peak. The correlation estimates from these observations were later
explained partly by Phillips (1981) as a consequence of dispersion of short waves in
the presence of long waves, and partly by Barrick (1986) as a consequence of bound
harmonic components. Nevertheless, a common feature of the measurements above is
that none of them provided a simultaneous coverage of the BF scale.

Krogstad & Trulsen (2010) carried out unidirectional simulations with the NLS
equation and the modified nonlinear Schrödinger (MNLS) equation of Dysthe (1979).
The simulations provided a simultaneous coverage of the BF scale in time and space.
From wavenumber–frequency spectra obtained from the simulated surfaces they found
that dynamic nonlinear evolution causes deviation from the linear dispersion relation
(1.1). Krogstad & Trulsen (2010) found that contributions above the spectral peak
had larger phase speeds and group velocities than anticipated from linear theory.

The primary goal of the present paper is to confirm the numerical predictions by
Krogstad & Trulsen (2010) with laboratory experiments. The secondary goal is to
check the predictions by Krogstad & Trulsen (2010) with a more accurate model,
the Zakharov integral equation, which does not have a constraint on bandwidth. In
addition to the relatively narrow-banded Gaussian spectra employed by Krogstad &
Trulsen (2010), the present experiments and simulations also employ Gaussian spectra
of broader bandwidth and a JONSWAP spectrum.

In the present experiments dispersion relations are deduced from high-resolution
spatiotemporal measurements of wave fields on deep water in a long and narrow
wavetank. The measurements are obtained from a synthetic array which provides
simultaneous coverage of the BF scale. A presentation of the experimental setup
and the measurement technique is given in § 2, the numerical Zakharov model is
presented in § 3, and the results are presented in § 4.

2. Experimental setup and measurement technique
2.1. Wavetank and synthetic array

The experiments were performed in a long and narrow wavetank at the Department of
Mathematics at the University of Oslo. Figure 1 shows a sketch of the wavetank seen
from above. It is 0.5 m wide and 24.6 m long. Waves were generated by a hydraulic
piston wave maker and propagated towards a damping beach.

We introduce a coordinate system such that x is along the tank, y is across the tank
and z is the vertical axis pointing up. The equilibrium position of the wave maker is
located at x = 0 and the damping beach starts at x = 21.6 m. The water depth h =
0.5 m was constant from the wave maker to the start of the damping beach.

The surface elevation η was measured with 16 ultrasonic probes. The probes were
non-intrusive, vertically looking down and were located at height H = 6.0, 12.0 or
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FIGURE 1. Top-view of the wavetank showing actual ratio between width and length.

15.0 cm above mean water level, z= 0, in experiments with different wave fields. The
beam angle was β = 6◦ and the footprints were respectively Lβ = 0.6, 1.3 or 1.6 cm,
computed from β and H. One characteristic wavelength λp covered approximately 46,
21 or 17 footprints, respectively.

The probes were combined to form a stationary equispaced array with spatial
resolution equal to 30 cm and length 4.8 m. On the top of the wavetank the stationary
array was mounted on rails so that it could be moved along the length of the wavetank
between the wave maker and the damping beach. The probes and the wave maker
were controlled by a computer and synchronized via a data acquisition card with 16
input channels. Dense spatiotemporal measurements were achieved by measuring the
surface elevations several times at different locations along the wavetank in different
runs of the same wave field. The resulting arrangement of equispaced measurement
positions along the wavetank is referred to as a synthetic array.

The synthetic array depends on the wave field being repeatable in the wavetank.
The repeatability of the wave fields was tested and the repetition error was estimated
from 112 measurement positions between x= 1.6 and 20.8 m from the wave maker.
The raw data from the probes contained noise and drop-out spikes due to the
measurement limitations of the probes. The noise and the drop-out spikes were
removed and replaced by cubic interpolations. The repetition error of the wave fields,
after interpolation, was on average about 1.3 %.

A synthetic array with M = 384 equispaced measurement positions and spatial
resolution 1x = 5 cm was used to measure all wave fields. The synthetic array is
shown in figure 1 and had length L = M1x = 19.2 m between x = 1.6 and 20.8 m
from the wave maker.

Whenever we refer to the experiments we let ωp be the frequency of the peak of the
input spectrum to the wave maker, and let the corresponding wavenumber kp = ω

2
p/g

be determined according to the linear dispersion relation (1.1). The synthetic array
covered 70 wavelengths, L= 70λp, for λp = 27.4 cm corresponding to ωp = 15.0 s−1,
Tp = 0.419 s and kp = 22.9 m−1. The non-dimensional water depth was kph = 11.5.
The peaks in the experimental wavenumber–frequency spectra in § 4 were not situated
exactly at (kp, ωp) but close to this point.

The wavenumber axis k ∈ [0, 5.46kp] in the experimental wavenumber–frequency
spectra in § 4 was discretized with a uniform grid of M = 384 discrete modes with
1k/kp = 2π/Lkp = 0.0143.

The sampling rate of the probes was 200 Hz and 1t = 0.005 s. With this choice
of sampling rate the probes were able to reconstruct frequencies up to the Nyquist
frequency of approximately 42ωp. The wave fields were measured for T = 400Tp and
33 736 time samples were taken from each measurement position. Startup effects were
removed and the last 170Tp (14 280 time samples) were used for spectral estimates.

The laboratory wave fields were initialized with wave steepness ε = ackp = 0.10
where the characteristic amplitude was determined at the first measurement position at
x= 1.6 m closest to the wave maker. For our choice of ε and ωp the BF timescale is
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τ ≈ 16Tp from (1.2) with typical propagation distance cgτ = 2.18 m; thus the synthetic
array covers the BF scale.

We observed significant attenuation of the wave fields along the wavetank in the
experiments. This can have three causes: the first is the development of transverse
modes which have a node at the centreline where we took measurements, see Trulsen,
Stansberg & Velarde (1999); the second is viscous dissipation; and the third is wave
breaking. Sporadic wave breaking was observed in the experiments. We carried out
an analysis of the viscous dissipation in the wavetank. The spatial decay rates of the
wave fields compared well with established models (Lamb 1932; Hunt 1952; Van Dorn
1966). For this reason we anticipate that spreading due to transverse modes (Trulsen
et al. 1999) and wave breaking is not important in our experiments.

2.2. Input spectrum for experiments
Random wave fields were mechanically generated at the wave maker. The random
phases were uniformly distributed on the interval [0, 2π) and the amplitudes were
determined from a Gaussian spectrum,

S(ω)=
H2

s

16σtωp

√
2π

exp
[
−

1
2

(
ω−ωp

σtωp

)2]
, (2.1)

or a JONSWAP spectrum,

S(ω)=
αg2

ω5
exp
[
−

5
4

(
ωp

ω

)4]
γ exp[(−(ω−ωp)

2/2σ 2ω2
p)]. (2.2)

For the Gaussian input spectrum σt is the width and Hs is the significant wave height.
For the JONSWAP spectrum the peak enhancement factor is γ = 3.3, α is the Phillips
factor and

σ =

{
0.07, ω6ωp

0.09, ω > ωp.
(2.3)

The experimental wave fields are summarized in table 1: six Gaussian spectra
denoted Gaussian 1–6, with σt and ε as indicated, and one JONSWAP spectrum. The
meaning of the third column in table 1 is explained in § 3.

Figures 2 and 3 show the feedback spectra of the actual wave maker motion and the
frequency spectra measured at the probe closest to the wave maker with logarithmic
vertical axis for the Gaussian wave fields and the JONSWAP wave field, respectively.
The measured spectra were obtained from the last 170Tp of the time series measured
at the probe closest to the wave maker. The measured spectra were smoothed by
Welch’s method. The time series of 170Tp were divided into nine sections and the
sections were windowed with Hamming windows and overlapped by 50 %. Each
section covered approximately 19Tp. Both the feedback spectra and the measured
spectra are denoted S and are normalized relative to their respective peak values Sp.
The feedback and measured spectra agree well around the spectral peak.

3. Numerical simulations
3.1. Zakharov integral equation

Our simulations were performed using a numerical implementation of the Zakharov
(1968) equation. The Zakharov equation describes the weakly nonlinear evolution of
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FIGURE 2. Feedback spectra of the actual wave maker motion (——). Frequency spectra
measured at the probe closest to the wave maker (– – –): (a–f ) Gaussian 1–6.

0 1 2

10–3

100

FIGURE 3. JONSWAP feedback spectrum of the actual wave maker motion (——).
JONSWAP frequency spectrum measured at the probe closest to the wave maker (- - - -).

the generalized complex amplitude b(k, t) and has the form

i
∂b(k)
∂t
=ω(k)b(k)+

∫
T(k, k1, k2, k3)b∗(k1)b(k2)b(k3)δ(k+ k1 − k2 − k3)dk1dk2dk3.

(3.1)
Here t is time, k is the wavenumber vector and ω(k)=

√
g|k| tanh (|k|h) is the angular

frequency, where g is the acceleration due to gravity and h is the water depth, and
the asterisk denotes complex conjugation. The kernel function T(k, k1, k2, k3) is
a complicated function describing all the nonlinear interactions between the wave
components. Details about T(k, k1, k2, k3) can be found in e.g. Krasitskii (1994).
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Wave field σt ε σx

Gaussian 1 0.03 0.10 0.05
Gaussian 2 0.06 0.10 0.11
Gaussian 3 0.08 0.10 0.17
Gaussian 4 0.11 0.10 0.22
Gaussian 5 0.14 0.10 0.28
Gaussian 6 0.17 0.10 0.33
JONSWAP — 0.10 —

TABLE 1. Dimensionless parameters used for the experiments and simulations with the
Gaussian spectra and the JONSWAP spectrum: σt, width of input frequency spectrum
to the wave maker in the experiments; ε, wave steepness at the probe closest to the
wave maker in the experiments; and σx, width of initial wavenumber spectrum for the
simulations.

The complex amplitude b(k, t) only contains the free-wave components of the wave
field. That is, bound-wave components, arising as a result of non-resonant nonlinear
interactions, are not contained in b(k, t), but can be reconstructed from b(k, t) as an
integral power series in the form

a(k) = b(k)+
∫

A(1)(k, k1, k2)b(k1)b(k2)δ(k− k1 − k2)dk1dk2

+

∫
A(2)(k, k1, k2)b∗(k1)b(k2)δ(k+ k1 − k2)dk1dk2

+

∫
A(3)(k, k1, k2)b∗(k1)b∗(k2)δ(k+ k1 + k2)dk1dk2

+ third-order terms. (3.2)

The kernel functions appearing in (3.2) can be found in Krasitskii (1994). From
a(k), the surface elevation η(x, t), including both free and bound harmonics, can be
found as

η(x, t)=
1

2π

∫ (
ω(k)
2g

)1/2

a(k)eik·xdk+∗. (3.3)

In order to solve the Zakharov equation numerically we have employed a discrete
representation of the wavenumber plane, i.e.

b(k, t)=
∑

n

bn(t)δ(k− kn). (3.4)

For the discrete spectrum (3.4), the Zakharov equation is replaced by the system of
ordinary differential equations

dbn

dt
=−iωnbn − i

∑
m,q,r

Tnmqrb∗mbqbrδn+m−q−r, (3.5)

where Tnmqr = T(kn, km, kq, kr), ωn =ω(kn) and δn+m−q−r is the Kronecker delta

δn+m−q−r =

{
1, when kn + km = kq + kr,

0, otherwise.
(3.6)
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FIGURE 4. Wavenumber–frequency spectra from experiment (a) and simulation (b) with
the JONSWAP wave field. Colour scale in dB relative to the peak. Lower dashed curve,
linear dispersion relation; upper dashed curve, second-harmonic dispersion shell.

3.2. Initial spectrum for simulations
Corresponding to the seven experiments, Gaussian 1–6 and JONSWAP, we carried out
numerical simulations using a Gaussian wavenumber spectrum,

S(k)=
ε2

σx

√
2π

exp
[
−
(k/kp − 1)2

2σ 2
x

]
, (3.7)

and a standard JONSWAP wavenumber spectrum, see equation (4.8a) in Gramstad &
Stiassnie (2013). The widths σx chosen for the numerical simulations are listed in the
third column in table 1.

Whenever we refer to the simulations we let kp be the wavenumber of the spectral
peak of the initial spectrum for the simulations and let ωp =

√
gkp according to

the linear dispersion relation (1.1). In all simulations the wave steepness was set
to ε = 0.10, which was the same as the measured steepness at the measurement
position closest to the wave maker in the experiments. However, due to dissipation
in the wavetank, the steepness in the numerical simulations was larger than in the
experiments after some propagation distance.

Wavenumbers in the interval k ∈ [0, 5.5kp] were discretized by a regular grid
with 256 discrete modes. The simulations were run up to T = 152Tp, where the
first 12Tp of the evolution was not used when calculating the spectra. Considering
the group velocity of the waves, the choice of simulation time was inspired by
the experiments, where a total evolution distance L = 70λp was captured and
where the first measurement position was located at approximately 6λp. From the
numerical solution for bn(t), the bound harmonics were found up to third order
according to (3.2), and then the surface elevation η(x, t) was found from the discrete
version of (3.3).

4. Experimental and numerical results
Wavenumber–frequency spectra were obtained from two-dimensional discrete

Fourier transform in space and time of measured or simulated surface elevation.
The colours in the subsequent contour plots show the spectral energy density in
decibels (dB) relative to the peak. In figures 4–6 the lower dashed curve is the
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FIGURE 5. Wavenumber–frequency spectra of Gaussian 1–6, (a–f ), from experiments.
Colour scale as in figure 4. Lower dashed curve, linear dispersion relation; upper dashed
curve, second-harmonic dispersion shell.

linear dispersion relation (k, ω) and the upper dashed curve is the second-harmonic
dispersion shell (2k, 2ω), with ω=

√
gk.

Figure 4 shows the wavenumber–frequency spectra from the experiment and
simulation with the JONSWAP wave field. The measured dispersion relation suggests
the validity of the linear dispersion relation. In the spectrum from this experiment we
observe the zeroth harmonic at the bottom left and higher harmonics up to the fifth
harmonic at the top right.

Energy is also seen extending up to the left from the lower right corner of the
spectrum from the experiment. This distribution corresponds to reflected waves from
the damping beach appearing here at high wavenumbers due to aliasing; it belongs to
the negative wavenumber axis adjacent to the origin. We also performed experiments
where the damping beach was substituted with a vertical wall, showing a significant
increase of reflected wave energy. In order to show the higher-harmonic dispersion
shells we present the JONSWAP spectrum with only positive wavenumbers.
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FIGURE 6. Wavenumber–frequency spectra of Gaussian 1–6, (a–f ), from simulations.
Colour scale as in figure 4. Lower dashed curve, linear dispersion relation; upper dashed
curve, second-harmonic dispersion shell.

In the spectrum from the experiments diagonal distributions parallel and similar to
the peak distribution are observed. The peak distribution is centred at kp while
adjacent diagonal distributions are centred at approximately 0.1kp, 1.9kp, 2.8kp,
3.7kp and 4.6kp. The distance between neighbouring distributions is 0.9kp, which
corresponds to 2π/0.9kp ≈ 30.5 cm. This agrees well with the distance between the
probes in the stationary array, which is 30 cm; thus these distributions may be an
artifact of our measuring technique.

Figure 5 shows the wavenumber–frequency spectra of Gaussian 1–6 from the
experiments. In order to focus on the deviation from the linear dispersion relation
we observe the spectra closer to the peak than in figure 4. The measured dispersion
relation suggests that the linear dispersion relation is not fully satisfied when the
bandwidth is sufficiently narrow. For the wave fields with the narrowest bandwiths,
Gaussian 1 and 2, the leading-order wave energy is distributed tangentially to
the linear dispersion relation at the peak. The observation suggests that spectral
components above peak can have larger phase speeds than those anticipated by linear
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theory and that spectral components above peak tend to have group velocities similar
to that of the peak. The experiments of Gaussian 1 and 2 confirm the numerical
predictions of the (M)NLS equations by Krogstad & Trulsen (2010).

For the broad-banded wave fields, Gaussian 5 and 6, the measured dispersion
relation agrees well with the linear dispersion relation. For Gaussian 3 and 4 the
deviation is less than for Gaussian 1 and 2, which indicates that the deviation varies
with bandwidth for a fixed steepness. In all Gaussian wavenumber–frequency spectra
from the experiments bound harmonics were identified up to fifth order and the zeroth
harmonic can be seen below peak in all spectra.

Horizontal distributions at angular frequencies of ω/ωp = 0.2 and 0.7 are also seen
in the spectra from the experiments. We have no explanation for these; they do not
have the same frequencies as seiche modes in the wavetank. The longest longitudinal
seiche mode in the wavetank has angular frequency ω/ωp= 0.02 and the ninth mode
has angular frequency ω/ωp = 0.30.

Figure 6 shows the wavenumber–frequency spectra of Gaussian 1–6 from the
simulations of the Zakharov integral equation. For the narrow-banded wave fields the
simulations validate the results from the (M)NLS equations by Krogstad & Trulsen
(2010). As for the experiments the broad-banded wave fields agree well with linear
theory. The variation in the deviation for various bandwidths and fixed steepness is
also observed from the simulations of the Zakharov equation.

5. Conclusion

We have performed laboratory experiments designed to have sufficient resolution in
space and time to measure the dispersion relation for random surface gravity waves
and confirmed the numerical predictions of the (M)NLS equations by Krogstad &
Trulsen (2010). A more accurate model than the (M)NLS equations, the Zakharov
integral equation, validates the simulations by Krogstad & Trulsen (2010). For a
JONSWAP spectrum and Gaussian spectra of various bandwidths we find that the
measured dispersion relation deviates from the linear dispersion relation above the
spectral peak when the bandwidth is sufficiently narrow. For the broad-banded spectra
the measured dispersion relation agrees well with linear wave theory.

Acknowledgements

This research has been supported by the University of Oslo and the Research
Council of Norway through grant 214556/F20. We thank S. Vesterby for assistance
with the setup of the laboratory array and J. C. Nieto Borge for valuable discussions.

REFERENCES

BARRICK, E. 1986 The role of the gravity-wave dispersion relation in HF radar measurements of
the sea surface. IEEE J. Ocean. Engng 11, 286–292.

DONELAN, M. A., HAMILTON, J. & HUI, W. H. 1985 Directional spectra of wind-generated waves.
Phil. Trans. R. Soc. Lond. A 315, 509–562.

DYSTHE, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application
to deep water waves. Phil. Trans. R. Soc. Lond. A 369, 105–114.

GODA, Y. 2000 Random Seas and Design of Maritime Structures. World Scientific.
GRAMSTAD, O. & STIASSNIE, M. 2013 Phase-averaged equation for water waves. J. Fluid Mech.

718, 280–303.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

25
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.25


336 T. M. A. Taklo, K. Trulsen, O. Gramstad, H. E. Krogstad, A. Jensen

HARA, T. & KARACHINTSEV, A. V. 2003 Observation of nonlinear effects in ocean surface wave
frequency spectra. J. Phys. Oceanogr. 33, 422–430.

HUNT, J. N. 1952 Viscous damping waves over an inclined bed in a channel of finite width.
La Houille Blanche 6, 836–841.

KRASITSKII, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear
surface-waves. J. Fluid Mech. 272, 1–20.

KROGSTAD, H. E. & TRULSEN, K. 2010 Interpretations and observations of ocean wave spectra.
Ocean Dyn. 60, 973–991.

LAKE, B. M. & YUEN, H. C. 1978 A new model for nonlinear wind waves. Part 1. Physical model
and experimental evidence. J. Fluid Mech. 88, 33–62.

LAMB, H. 1932 Hydrodynamics, 6th edn. Dover.
MASUDA, A., KUO, Y. Y. & MITSUYASU, H. 1979 On the dispersion relation of random gravity

waves. Part 1. Theoretical framework. J. Fluid Mech. 92, 717–730.
MITSUYASU, H., KUO, Y. Y. & MASUDA, A. 1979 On the dispersion relation of random gravity

waves. Part 2. An experiment. J. Fluid Mech. 92, 731–749.
PHILLIPS, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1.

J. Fluid Mech. 9, 193–217.
PHILLIPS, O. M. 1961 On the dynamics of unsteady gravity waves of finite amplitude. Part 2.

J. Fluid Mech. 11, 143–155.
PHILLIPS, O. M. 1981 The dispersion of short wavelets in the presence of a dominant long wave.

J. Fluid Mech. 107, 456–485.
RAMAMONJIARISOA, A. & COANTIC, M. 1976 Loi expérimental de dispersion des vagues produites

par le vent sur une faible longueur d’action. C. R. Acad. Sci. Paris B 282, 111–113.
TICK, L. J. 1959 A nonlinear random model of gravity waves. Part 1. J. Math. Mech. 8, 643–651.
TRULSEN, K., STANSBERG, C. T. & VELARDE, M. G. 1999 Laboratory evidence of three-dimensional

frequency downshift of waves in a long tank. Phys. Fluids 11, 235–237.
TUCKER, M. J. & PITT, E. G. 2001 Waves in Ocean Engineering. Elsevier Science & Technology.
VAN DORN, W. G. 1966 Boundary dissipation of oscillatory waves. J. Fluid Mech. 24, 769–779.
WANG, D. W. & HWANG, P. A. 2004 The dispersion relation of short wind waves from space–time

wave measurement. J. Atmos. Ocean. Technol. 21, 1936–1945.
ZAKHAROV, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep

fluid. J. Appl. Mech. Tech. Phys. 9, 190–194.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

25
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.25

	Measurement of the dispersion relation for random surface gravity waves
	Introduction
	Experimental setup and measurement technique
	Wavetank and synthetic array
	Input spectrum for experiments

	Numerical simulations
	Zakharov integral equation
	Initial spectrum for simulations

	Experimental and numerical results
	Conclusion
	Acknowledgements
	References




