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A drop of radius R of a liquid of density ρ, viscosity µ and interfacial tension
coefficient σ impacting a superhydrophobic substrate at a velocity V keeps its
integrity and spreads over the solid for V < Vc or splashes, disintegrating into tiny
droplets violently ejected radially outwards for V >Vc, with Vc the critical velocity for
splashing. In contrast with the case of drop impact onto a partially wetting substrate,
Riboux & Gordillo (Phys. Rev. Lett., vol. 113, 2014, 024507), our experiments
reveal that the critical condition for the splashing of water droplets impacting a
superhydrophobic substrate at normal atmospheric conditions is characterized by
a value of the critical Weber number, Wec = ρ V2

c R/σ ∼ O(100), which hardly
depends on the Ohnesorge number Oh=µ/

√
ρ R σ and is noticeably smaller than the

corresponding value for the case of partially wetting substrates. Here we present a
self-consistent model, in very good agreement with experiments, capable of predicting
Wec as well as the full dynamics of the drop expansion and disintegration for We>Wec.
In particular, our model is able to accurately predict the time evolution of the position
of the rim bordering the expanding lamella for We& 20 as well as the diameters and
velocities of the small and fast droplets ejected when We > Wec.

Key words: drops, breakup/coalescence

1. Introduction
Superhydrophobic coatings prevent the sticking of drops on surfaces, a property

used in the design of self-cleaning materials (Blossey 2003) or of anti-icing aircraft
lifting surfaces (Mishchenko et al. 2010). Different types of leaves (lotus, eucalyptus,
tulipa, etc.) are covered by a non-wetting material with a hierarchical microstructure
that repels water (Quéré 2005), influencing the pathogen dispersal in agriculture by
rain drops (Gart et al. 2015; Gilet & Bourouiba 2015) and the delivery of sprayed
pesticides (Bergeron et al. 2000). Indeed, when the velocities of rain drops falling on
infected plant leaves exceed the threshold value for splashing, tiny droplets, which
could act as carriers of pathogens, are ejected at a velocity much larger than that of
impact. The disease propagates when the emitted micron-sized droplets, which can be
transported far away from the impact point thanks to their high speed, are deposited
onto non-contaminated leaves (Lejeune, Gilet & Bourouiba 2018).

† Email address for correspondence: jgordill@us.es
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It is known that the splash threshold velocity for millimetric water droplets
impacting a smooth dry substrate under normal atmospheric conditions is ∼4 m s−1

(Riboux & Gordillo 2014, 2017; de Goede et al. 2018). However, when the solid
substrate is covered with a superhydrophobic material, the transition to splashing
takes place at far smaller values of the impact velocity, ∼1.5 m s−1 (Kim et al.
2012; Lv et al. 2016). The reasons for the differences observed in the splashing
threshold velocity are still not well understood and the purpose of this contribution
is to provide a self-consistent physical model aimed at predicting the critical velocity
for splashing when the drop falls onto a superhydrophobic substrate.

The splash criterion in Riboux & Gordillo (2014, 2017), which was deduced for the
case of partially wetting smooth solid surfaces, expresses that a necessary condition
for splashing is that the edge of the expanding liquid sheet needs to be separated
from the wall first. Indeed, the edge of the lamella is displaced vertically because
it experiences an aerodynamic lift force per unit length which mainly results from
the gas lubrication overpressure in the wedge region located between the advancing
lamella and the solid. Hence, a necessary condition for the drop to disintegrate into
smaller parts under the circumstances studied in Riboux & Gordillo (2014, 2017) is
that the edge of the advancing lamella must dewet the substrate first. This condition,
however, is not sufficient for splashing because it might be that the edge separates
vertically from the wall at a distance smaller than the radial growth of the rim
caused by capillary retraction; if that were the case, the edge would rewet the solid
and splashing would be inhibited. The main difference between the physical situation
studied in Riboux & Gordillo (2014, 2017) and the one at hand is that, for the case
of superhydrophobic coatings, the edge of the lamella is always separated from the
substrate, as figure 1(a) shows. Hence, the criterion for splashing on superhydrophobic
surfaces will notably differ from the cases considered in Riboux & Gordillo (2014,
2017). Here, we will limit ourselves to considering the most usual case of water
droplets impacting a superhydrophobic solid under normal atmospheric conditions.

As will be shown below, our model can also be used to predict the diameters and
velocities of the droplets ejected when the impact velocity exceeds the critical velocity
for splashing. The analysis is limited to the study of the cases in which the drop
disintegrates while it is expanding radially outwards because it is only under these
conditions that the small droplets ejected are fast enough to travel large distances from
the impact point.

The paper is structured as follows: experiments are described and analysed in §§ 2
and 3 is dedicated to presenting the equations governing the flow and to comparing
the model predictions with experimental measurements while the main findings are
summarized in § 4.

2. Experiments

Drops of different radii R are generated quasi-statically at normal atmospheric
conditions using hypodermic needles of different diameters placed at controllable
height from the substrate; in this way, the droplets fall at different velocities V onto
a dry glass slide previously covered by Never Wet, a commercial superhydrophobic
coating. The deposition of this type of superhydrophobic material over the glass
slide forms a substrate with a hierarchical texture and random roughness which
entraps air pockets (Lv et al. 2016; Weisensee et al. 2016). Notice that the type of
superhydrophobic coating used here differs from the one used in similar contributions,
where micro- or nanostructured materials were used (Tsai et al. 2011). Both the
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FIGURE 1. (Colour online) (a) High speed visualization of the spatial region connecting
the lamella with the rim for several values of the Weber number (i) We= 60, (ii) We=
91, (iii) We = 140. These images show that, while the rim is never in contact with the
substrate, the bottom part of the drop does touch the solid. (b) The measured ejection
times corresponding to water droplets of different radii R impacting a superhydrophobic
surface closely follow the prediction in Riboux & Gordillo (2017), te= 1.05 We−2/3, since
for all experimental conditions investigated here, Re1/6 Oh2/3 < 0.25. The inset shows an
instant close to that for which the lamella is ejected for the case of a droplet of radius
R= 1.46 mm and We= 317.

chemical composition of the superhydrophobic material and the topology of the
roughness favour the edge of the expanding lamella not being in contact with the
substrate, as is visualized in figure 1(a), this being the reason behind the relatively
small values for the critical Weber number for splashing with respect to the case
of hydrophilic substrates (Riboux & Gordillo 2014, 2017), as will be shown below.
However, it is also depicted in figure 1(a) that the bottom part of the droplet touches
the substrate and, therefore, the liquid feeding the rim bordering the expanding liquid
sheet is decelerated by the viscous shear stresses exerted at the wall. The experimental
observation, to be shown below, that viscous shear contributes to decelerate the liquid
flowing into the rim, even in the case of superhydrophobic substrates, contrasts with
the ideas behind the model presented in Clanet et al. (2004).

Two high speed cameras with two different optical magnifications and acquisition
rates have been used in our experimental study. The analysis of the videos recorded
from the side at 340 000 frames per second (f.p.s.) with a spatial resolution of
10.5 µm pixel−1 have allowed us to determine the instant at which the lamella
is first ejected, see figure 1(b), whereas the experimental information needed to
determine the radial position of the edge of the expanding liquid sheet – the rim – as
well as the diameters and the velocities of the droplets ejected, are extracted from the
videos recorded at 54 000 f.p.s. from the top (see figure 2), with a spatial resolution
in this case of 16 µm pixel−1. As was anticipated above, figure 2 shows that tiny
droplets are emitted radially outwards for impact velocities above a threshold value
which is below that found for the case of partially wetting substrates (Riboux &
Gordillo 2014, 2017).

From now on, both the experimental results and the equations describing the
flow will be presented making use of the following dimensionless parameters:
Re = ρ V R/µ, Oh = µ/

√
ρ R σ and We = Oh2 Re2 namely, the Reynolds, Ohnesorge

and Weber numbers, with ρ=1000 kg m−3, µ=10−3 Pa s and σ =7.2×10−2 N m−1
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(a)
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FIGURE 2. (Colour online) Comparison between the predicted and the observed position
of the rim bordering the expanding lamella for the case of a water droplet of radius
R= 1.53 mm impacting a superhydrophobic substrate. From left to right, V = 1.67 m s−1

(We = 60), V = 2.10 m s−1 (We = 94) and V = 3.16 m s−1 (We = 214). The values of
the dimensionless times corresponding to each line are: (a) t = T (V/R)≈ 0, (b) t ≈ 1.0,
(c) 1.5, (d) 2.0 and (e) 3.0. Dashed yellow lines represent the numerical solution of the
system (3.1), (3.3)–(3.5a,b) while the continuous blue ones correspond to the solution of
(3.1) using the analytical expressions for u and h in (3.7). In both cases, λ= 1.

denoting the water density, viscosity and interfacial tension coefficient, respectively.
Dimensionless variables will be written using lower case letters to differentiate
them from their dimensional counterparts (in capital letters) and distances, times
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FIGURE 3. (Colour online) (a) Sketch showing the different variables used along the text.
Here, (i) indicates the drop region, 0 6 r 6

√
3t, (ii) indicates the lamella region,

√
3t 6

r 6 s(t) and (iii) the rim region; (b) representation using a spatio-temporal diagram of the
different regions (i), (ii) and (iii) defined to analyse the flow.

and pressures will be made non-dimensional using, as characteristic values, R, R/V
and ρV2.

Setting the origin of time at the instant when the drop first touches the rough
indentations located closer to the glass slide, the analysis of the experimental data
shows that a thin lamella is first ejected from a radial position r=

√
3 te at a measured

instant te which closely follows the theoretical predictions for the low Ohnesorge limit
given in Riboux & Gordillo (2014, 2017), namely, te = 1.05 We−2/3, see figure 1(b).
The analysis of the images recorded from the top view, see figure 2, reveals that tiny
droplets are expelled from the rim while it is expanding radially outwards only when
the impact velocity exceeds a threshold value Vc ' 1.8 m s−1 for water droplets of
radii R' 1.5× 10−3 m. Figure 2 also shows that the speed of the droplets increases
and their diameters decrease for increasing values of the impact velocity, V . Our
purpose next will be to determine the dependence of Vc on the control parameters
and also to present a model which predicts the velocities and the diameters of the
droplets issued from the rim as a function of We, Oh and the dimensionless time
after impact, t, for impact velocities above the splashing threshold.

3. Equations governing the flow and comparison with experiments
With the purpose of describing the dynamics of the rim limiting the expanding thin

liquid sheet for times t > te, it proves convenient to divide the flow into the three
spatio-temporal regions illustrated in figure 3: (i) the drop region, which extends along
the interval 06 r6

√
3t, where pressure gradients cannot be neglected, (ii) the lamella,

defined in the spatio-temporal region
√

3t 6 r 6 s(t) and where pressure gradients can
be safely neglected because the geometry of the thin liquid film is slender and (iii) a
rim of thickness b(t) located at r= s(t) (see figure 3). The lamella is thus a slender
flow region extending from the end of the drop region, r =

√
3t, to the rim, located

at r= s(t).
Both s(t) and b(t) (see figure 3), can be calculated using the following mass and

momentum balances (Taylor 1959; Culick 1960),

π

4
db2

dt
= [u(s, t)− v]h(s, t),

ds
dt
= v,

π b2

4
dv
dt
= [u(s, t)− v]2 h(s, t)− 2 We−1,

 (3.1)
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with u(r, t) and h(r, t) in (3.1) the averaged velocity and the height of the liquid film
in the region occupied by the lamella (

√
3t 6 r 6 s(t)) (see figure 3a). The equations

for both u(r, t) and h(r, t) are deduced in Gordillo, Riboux & Quintero (2019)
once the effect of the shear stress at the wall is added to the momentum equation
using the results in Roisman (2009), Eggers et al. (2010), where it is reported that
the dimensionless boundary layer thickness only depends on time, and not on the
distance to the axis of symmetry: δ(t)=

√
t/Re. Therefore, the mass and momentum

integral balances applied to a portion of the lamella of height h, width dr and angular
extension dφ yield, respectively (Gordillo et al. 2019)

∂(rh)
∂ t
+
∂(ruh)
∂ r

= 0 and
∂(ruh)
∂ t
+
∂(ru2h)
∂ r

=−λ
u r
√

Re t
, (3.2a,b)

with λ the friction factor which is adjusted experimentally because it absorbs the
effects of the following assumptions in the model: (i) the velocity varies linearly
within the boundary layer and (ii) the prefactor in the definition of the boundary
layer thickness, δ(t) is fixed here to one i.e. δ(t)=

√
t/Re. Moreover, the value of the

friction factor λ will also take into account the deviations from the no-slip boundary
condition at the wall, which is altered in the case of superhydrophobic substrates as
a consequence of the entrapment of gas pockets in the corrugations of the solid.

Notice that both the momentum and continuity equation (3.2) can be written in
a form appropriate to apply the method of characteristics along rays dr/dt = u, see
figure 3(b). Indeed, equation (3.2) can be alternatively written as

∂(rh)
∂t
+ u

∂(rh)
∂r
=−rh

∂u
∂r
H⇒

D(rh)
Dt
=−rh

∂u
∂r
H⇒

D ln(rh)
Dt

=−
∂u
∂r
, (3.3)

and

∂(ruh)
∂ t
+
∂(ru2h)
∂ r

= u
(
∂(rh)
∂ t
+
∂(ruh)
∂ r

)
+ rh

(
∂ u
∂ t
+ u

∂ u
∂ r

)
=−λ

u r
√

Re t

H⇒
Du
Dt
=−λ

u

h
√

Re t
, (3.4)

with D/Dt ≡ ∂/∂ t + u ∂/∂r indicating the material derivative and where use of the
continuity equation in (3.2) has been made.

The fields u(r, t) and h(r, t) are calculated in the spatio-temporal region t > te,√
3 t 6 r 6 s(t) using the method of characteristics once u0(t)= u(

√
3t, t) and h0(t)=

h(
√

3t, t) are known at r =
√

3t from the solution of the flow in the drop region,
0 6 r 6

√
3t. In the free-slip limit, λ = 0, u0(t) and h0(t) can be found numerically

using a boundary element code since, in this case, the velocity field can be expressed
as a function of a velocity potential, yielding u0(t) = ua(t) and h0(t) = ha(t) with
ua(t)=

√
3/t and ha(t) the functions given in Riboux & Gordillo (2016), Gordillo et al.

(2019) which are valid for all values of t.
For λ 6= 0, a boundary layer of uniform dimensionless thickness δ(t) =

√
t/Re

develops in the region occupied by the lamella
√

3t 6 r 6 s(t) (Roisman 2009; Eggers
et al. 2010). In this case, using a boundary layer description of the flow, u0(t) and
h0(t) can be expressed as a function of their free-slip counterparts, ua(t) and ha(t).
Indeed, the velocity field at the drop interface in the region 0 6 r 6

√
3t is not

modified, in a first approximation, by the presence of the boundary layer. Therefore,
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for λ 6= 0, the integral mass balance at the drop region indicates that flow rate entering
into the lamella is the same as in the potential flow case, λ= 0, a fact implying that,
at r =

√
3t, ua(t) ha(t) = ua(t)(h0(t) − δ(t)) + ua(t) δ(t)/2. Here, we have used the

approach in Gordillo et al. (2019) that the liquid velocity profile in the boundary
layer varies linearly from zero at the wall to ua(t) at a distance δ =

√
t/Re from

the wall. Indeed, notice that the equations governing the time evolution of the rim
thickness and velocity, given in (3.1), are not very sensitive to the specific velocity
profile chosen to represent the boundary layer (see pages 319–320 in Batchelor
(1967), where the integral method to analyse boundary layers firstly introduced
by von Kármán is applied) because b(t) and s(t) depend on integral quantities i.e.
the fluxes of mass and momentum. Hence, the partial differential equation (3.2) are
deduced from local balances of mass and momentum with u representing the averaged
value of the velocity in the direction perpendicular to the wall and then, from the
definition of u, u0(t) h0(t) = ha(t)ua(t), which together with the mass balance above
involving δ(t) yields (see Gordillo et al. (2019) for further details),

h0(t)= ha(t)
(

1+
δ(t)

2 ha(t)

)
, u0(t)= ua(t)

(
1+

δ(t)
2 ha(t)

)−1

with δ(t)=
√

t/Re.

(3.5a,b)

The functions u(r, t) and h(r, t) in (3.2), subjected to the boundary conditions (3.5),
are calculated integrating in time equations (3.3)–(3.4) along rays dr/dt = u(r, t)
departing from the spatio-temporal boundary r =

√
3x with x > te a parameter

denoting time because u0(r =
√

3x, x) and h0(
√

3x, x), are now known at the
boundary separating the drop and lamella regions through (3.5). The integration
in time is carried out using the characteristic form of the continuity and momentum
equations given in (3.3)–(3.4) by means of a first-order Euler method. Indeed, given
the values of u(r, t) and h(r, t) at a fixed instant of time t > te, with r included
in the spatio-temporal region

√
3t 6 r 6 s(t), the values of u and h at t + dt are

calculated at the new radial position r + dr, with dr = u(r, t)dt, once −∂ u/∂r is
determined at the instant t using a first-order backward finite difference scheme in
space. Next, the value of the velocity is updated as u(r + dr, t + dt) = u(r, t) + du,
with du = −λ u(r, t)/(h(r, t)

√
Re t) dt and h(r + dr, t + dt) = h(r, t) + dh, with dh

calculated from d[ln(rh)] =−∂ u/∂r dt, see (3.3)–(3.4).
Once u(r, h) and h(r, t) are known within the spatio-temporal region

√
3t 6 r 6

s(t), the rim radial position and rim thickness, s(t) and b(t), are calculated integrating
the ordinary differential equations in (3.1) once the functions u(r, t) and h(r, t) are
particularized at r = s(t) and the following initial conditions are imposed at t = te =

1.05 We−2/3 (see Riboux & Gordillo (2015) for details):

s(te)=
√

3 te, v(te)= (1/2)
√

3/te and b(te)=
√

12 t3/2
e /π. (3.6a−c)

The good agreement depicted in figure 2 between experimental measurements and the
time evolution of s(t) predicted integrating equations (3.1) once the system (3.3)–(3.4)
and (3.5) is solved using the numerical method described above, reveals that the model
developed here correctly captures the effect of the viscous boundary layer on the drop
spreading dynamics. But the time evolution of the spreading radius can be predicted in
a much simpler way, avoiding the numerical integration of the system (3.3)–(3.4) and
(3.5). Indeed, it was demonstrated in Gordillo et al. (2019) that the averaged velocity
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FIGURE 4. (a) Time evolution of the function ha(t) given in Riboux & Gordillo (2016),
Gordillo et al. (2019) and h0(r=

√
3t, t) defined in (3.5). The inset shows that the ratio

δ(t)/ha(t) is of order unity. (b) Time evolution of ua(t)=
√

3/t, u0(t) defined in (3.5) and
the approximation u0(t) ' ua(t)(1 − δ(t)χ/(2 ha(t))) with χ = 0.6. Here, We = 100 and
Oh= 2.9× 10−3.

field and the height of the lamella, u(r, t) and h(r, t), can be expressed, with errors
∼O(Re−1), as

u(r, t)=
r
t
−

Re−1/2

t

[√
3χ x

2 ha(x)
+

2
√

3λ
7ha(x)x5/2

(t7/2
− x7/2)

]
+O(Re−1),

h(r, t)= 9
t2

r4
ha[3(t/r)2] +

Re−1/2

rt

[√
3

2
x2
+

√
3(105χ − 60λ)

42
x3(t−1

− x−1)

+
24
√

3λ
105

x−1/2(t5/2
− x5/2)

]
+O(Re−1),

(3.7)

with x= 3(t/r)2 and χ a constant such that u0(t)' ua(t)(1− δ(t)χ/(2 ha(t))) is a good
approximation to the exact value in (3.5) for all values of t. Indeed, for δ/ha� 1, the
Taylor expansion of the equation for u0 in (3.5) indicates that χ = 1 but, for instance,
consider that δ/h ' 1: in this case, u0(t) ' ua(t)(1 − δ(t)χ/(2 ha(t))) would be, for
χ = 2/3, an excellent approximation to the initial condition in (3.5). For the range
of Ohnesorge numbers considered here, 10−3 . Oh . 10−2, the ratio δ(t)/ha(t) ∼ 1
and then, the linearized expression u0(t) ' ua(t)(1 − δ(t)χ/(2 ha(t))) is a very good
approximation to the exact value of u0 given in (3.5) for χ = 0.6, see figure 4. Based
on this fact, all the results presented here have been calculated for χ = 0.6. Notice,
however, that for values of the Ohnesorge number larger than those considered in this
study, the ratio δ(t)/ha(t) could be δ(t)/ha(t) > 1 and then, the value of χ in (3.7)
would then be even smaller i.e. χ < 0.6.

The integration of the ordinary differential equations in (3.1) using the analytical
expressions for u and h in (3.7) particularized at r= s(t), also represented in figure 2,
reveals that the results obtained in this way are indistinguishable from those calculated
solving numerically the system (3.3)–(3.4) and (3.5). Therefore, from now on, the
results presented will be calculated using the analytical expressions for u and h given
in (3.7).

The sensitivity analysis to variations of λ is analysed in figure 5, where the
spreading radius predicted by solving the system of (3.1) using the analytical values
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 5. (Colour online) Effect of varying the value of the friction factor λ in (3.7).
(a) t= T(R/V)' 0, (b) 0.4, (c) 0.7, (d) 0.9, (e) 1.2, ( f ) 1.4, (g) 1.9, (h) 2.4, (i) 2.9. The
continuous lines represent the solution of the ordinary differential equations in (3.1) using
the analytical expressions of u and h in (3.7) for: Re→∞, namely, free-slip case (black),
λ= 0.5 (green), λ= 1 (blue), λ= 2 (red).

of u and h given in (3.7), is shown for different cases and different instants of
time. For instance, the predicted spreading radius s(t) in the limit Re→∞, which
corresponds to droplets in the Leidenfrost regime i.e. to the purely free-slip case,
is much larger than the one observed experimentally, a fact revealing that viscous
friction plays a major role in the spreading of droplets impacting a superhydrophobic
substrate. Figure 5 also shows that, as expected, the calculated radii increase for
decreasing values of λ i.e. for decreasing values of the shear stress at the wall.
Notice that one of the effects of increasing the proportion of gas pockets beneath the
drop would be to decrease the value of the friction factor λ. Although the differences
observed in figure 5 for different values of λ are not large, the best agreement
between predictions and the experiments carried out here using superhydrophobic
substrates with a hierarchical texture and random roughness is achieved for λ= 1, a
value which coincides with that found in Gordillo et al. (2019). The results presented
from now on will correspond to λ= 1, but this choice made here does not imply that
exactly the same value of λ should be used to describe the spreading and splashing of
droplets impacting other types of superhydrophobic substrates. Indeed, λ is the friction
factor and hence, its value is influenced by the amount of gas entrapped beneath the
drop, which depends on how the solid substrate is micro- or nanostructured.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

25
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.258


184 E. S. Quintero, G. Riboux and J. M. Gordillo

0 1 2 20 200 10003 4 5 6 7

7

6

5

4

3

2

1
1

5

10
[4]

[1]
[2]
[3]

[5]
Model

Model

Exp.
Model

We = 94
We = 181
We = 285

Wec

Wet

s s m
ax

(a) (b)

FIGURE 6. (Colour online) (a) Comparison between the predicted and the measured
position of the rim bordering the expanding lamella for several values of We. The inset
sketches that the experimental value of s(t) corresponding to the averaged measurement
of the radial position of the outer edge of the rim at two different angles for which no
corrugations are developed. In (b), the values of the maximum spreading radius measured
here (blue circles) together with the data in [1] Clanet et al. (2004), [2] Tsai et al. (2011),
[3] Antonini, Amirfazli & Marengo (2012) are compared with the values predicted by the
model (black continuous line, λ = 1); the Weber number defined here is based on the
drop radius, whereas in Clanet et al. (2004), Antonini et al. (2012) the Weber number is
defined using the diameter; also in (b), the experimental values in [4] Tran et al. (2012)
are compared with those predicted for the case Re→∞ (thick red dashed line). The
dashed thin black line represents the maximum spreading radius predicted by the theory
in [5] Wildeman et al. (2016), based on energetic arguments.

Figure 6(a) shows that the solution of (3.1) subjected to the initial conditions in
(3.6) with t= te=1.05 We−2/3 and u and h given in (3.7), reproduces the time evolution
of the drop spreading radius determined experimentally. Notice that the experimental
measurements shown in this figure (with errors of the order of the image resolution,
16 µm pixel−1, which cannot be appreciated in this plot) represent the averaged radial
position of the edge of the rim i.e. of the outer contour of the rim, measured at two
different angular directions at which it was checked that no capillary corrugations are
observed for all values of t, see the sketch in the inset of figure 6(a). Moreover,
figure 6(b), shows that our model is also able to predict the measured maximum
spreading radius smax in the free-slip limit, Re→∞ (Tran et al. 2012; Wildeman et al.
2016). The predicted values of smax for the case of superhydrophobic substrates, λ= 1,
are also in good agreement with our own experimental data and with the experiments
available in the literature (Clanet et al. 2004; Tsai et al. 2011; Antonini et al. 2012;
Wildeman et al. 2016).

Our theory can also be used to compute both the critical conditions for splashing
as well as the instant of time tb at which the rim starts to disintegrate. Indeed,
tb is calculated using the criterion developed in Riboux & Gordillo (2015), which
expresses that drops will only be ejected when the time characterizing the radial
growth of the rim, Th = (R/V)th = (R/V)(1/b db/dt)−1, is substantially larger than
the capillary time Tc = (R/V)tc = (ρ R3 b3/8σ)1/2. In Riboux & Gordillo (2015), the
instant at which droplets are ejected from the rim was determined based on the
following facts: (i) the time characterizing the radial growth of a capillary instability
is ∼3Tc (Eggers & Villermaux 2008), (ii) the classical Rayleigh stability analysis
reveals that the wavenumber corresponding to the fastest capillary instability growing
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FIGURE 7. (Colour online) Time evolution of the ratio tc/th for different values of the
Weber number and Oh= 2.9× 10−3. The horizontal blue band indicates the critical value
0.1 ± 0.02, below which the capillary time tc is sufficiently small when compared with
the hydrodynamic time th to produce the capillary breakup of the toroidal rim. The curve
corresponding to We= 50 never crosses the horizontal blue band, a fact indicating that the
rim is stable to capillary perturbations. However, the curves corresponding to values of the
Weber number We& 70, cross the horizontal band at the breakup time tb, which decreases
for increasing values of We. The critical Weber number is calculated as the smaller value
of We for which tc/th(t). 0.1± 0.02 for at least one value of t.

in a cylindrical jet is k = π R b/` ' 0.7, with ` the wavelength of the perturbation,
which is assumed to be constant in time and (iii) for k > 1, the growth of capillary
instabilities is inhibited (Eggers & Villermaux 2008). Thus, for capillary corrugations
with initial wavenumber k = 0.7 to be amplified up to the point where the drops
are ejected from the rim, it is necessary that in a time 3Tc, 1k < 0.3, namely,
(db/dt)× 3 tc . 0.3 b⇒ tc/th . 0.1. Figure 7, which shows the time evolution of the
ratio tc/th as a function of time, reveals that capillary instabilities will only break
the rim for values of the Weber number above a certain threshold, Wec and also
that the breakup time, tb, decreases for increasing values of We > Wec. Figure 8
shows a sensitivity analysis of Wec to variations in the value K = 0.1 ± 0.02 at
which we fix the breakup condition i.e. tc/th < K, for a range of values of Oh of
interest in applications. Figure 8 shows that Wec is not strongly dependent on K or
Oh and also that the values of the critical Weber number are slightly larger than the
ones corresponding to droplets impacting in the dynamic Leidenfrost regime (Staat
et al. 2015; Riboux & Gordillo 2016) and noticeably smaller than the value of Wec
for droplets impacting smooth non-superhydrophobic solids at normal atmospheric
conditions. Figure 8 also shows that the values of Wec predicted by the model are in
fair agreement with experimental measurements.

The radii rd(t) and velocities vd(t) of the droplets ejected for We>Wec can also be
predicted by our model. Indeed, neglecting the small time delay between the instant
at which the protuberance at the rim appears and the moment at which the drop is
emitted from the rim (Wang & Bourouiba 2018), vd(t) and rd(t) can be calculated
equating vd(t)= v(t), rd(t): rd(t)= 0.5b(t) (see Riboux & Gordillo (2015)) and using
the values of v(t) and of b(t) obtained solving the system of (3.1) subjected to the
initial conditions in (3.6), with t = te = 1.05 We−2/3 and with u and h given in (3.7).
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FIGURE 8. (Colour online) The calculated values of the critical Weber number for
normal atmospheric conditions and different values of the Ohnesorge number. The black
continuous line corresponds to the values of Wec calculated using the theory in Riboux
& Gordillo (2014, 2017) [1], which is applicable to the cases of partially wetting
smooth solid substrates and is in very good agreement with experiments. The red band
represent the range of values of the critical Weber number calculated using the criterion
tc/th 6 0.1 ± 0.02 with the values of u and h given by (3.7) in the limit Re → ∞,
corresponding to the impact of droplets in the Leidenfrost regime. The values obtained
are in very good agreement with the results in Staat et al. (2015), Riboux & Gordillo
(2016). The blue band represent the values of the critical Weber number calculated using
the criterion tc/th 6 0.1± 0.02 with the values of u and h given by (3.7) for the case of a
superhydrophobic substrate, λ= 1. The values obtained are in very good agreement with
the experimental measurements (dots) for different values of Oh.
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FIGURE 9. (Colour online) Comparison between the predicted and the experimentally
measured diameters and velocities of the droplets ejected for (a) We = 107, Oh = 2.9 ×
10−3 and (b) We= 310, Oh= 2.9× 10−3.

The agreement between the predicted values and the experimental measurements is
fairly good, as it is shown in figure 9 for two different values of the Weber number.
Finally, notice that the results shown in figure 9 also validate our approximation
of neglecting the mass loss at the rim caused by the ejection of droplets. Indeed,
we neglected this effect in (3.1) based on the fact that the volume of the droplets
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of diameter b(t) ejected from the rim, πb3(t)/6, is much smaller than the volume
π2 b3(t)/2.8 of the cylinder of length πb(t)/0.7 from which the drop is issued, a fact
indicating that the relative errors in the calculation of b(t) are even smaller since
they are one third of the error in the calculation of the volume. Then, although the
modification of the mass balance in (3.1) including the mass loss caused by the
ejection of droplets is straightforward and makes sense from a physical point of view,
the much simpler approach considered here, introduces only small relative errors in
the calculation of b(t) and s(t) and, most importantly, avoids introducing constants
in (3.1).

4. Conclusions

The physical model presented here retains the essential ingredients needed to
describe in full detail the spreading and splashing of water droplets impacting a
superhydrophobic substrate at normal atmospheric conditions. Our model accurately
predicts the diameters and the velocities of the droplets ejected from the rim bordering
the lamella as well as the critical Weber number below which the droplet does not
disintegrate into smaller parts while it is expanding radially outwards. As a final
remark, it is of most importance to notice that the splash criterion deduced here
differs from that in Riboux & Gordillo (2014) because, in contrast with the case
of partially wetting substrates, the rim limiting the expanding liquid sheet is never
in contact with the solid for the case of surfaces covered with a superhydrophobic
material.
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