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The effect of gravity on the dynamics of non-isothermic ultra-thin two-layer films
is studied in this paper. The joint action of disjoining pressure and thermocapillary
forces is taken into account. The problem is considered in a long-wave approximation.
The linear stability of a quiescent state and thermocapillary flows is investigated. It
has been found that the influence of the upper fluid density is significantly stronger
than that of the difference of fluid densities. Nonlinear flow regimes are studied by
means of numerical simulations. The gravity can lead to the formation of stripes
or holes instead of droplets. The two-dimensional wavy patterns are replaced by
one-dimensional waves with the fronts inclined or transverse to the direction of the
horizontal temperature gradient.
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1. Introduction
In the last few decades, the development of microfluidics and nanotechnology

has led to a significant progress in the exploration of thin film flows. When the
layers are sufficiently thin, the flows are strongly affected by interfacial phenomena,
specifically by the Marangoni effect. The Marangoni convection in layered fluid
systems has been studied in the case of a temperature gradient applied across the
layers and in the case of a temperature gradient directed along the interfaces, as
well as for a temperature gradient inclined with respect to the interface (Davis 1987;
Simanovskii & Nepomnyashchy 1993; Nepomnyashchy, Simanovskii & Legros 2006).
The Marangoni effect strongly influences the stability of flowing films (Miladinova
et al. 2002a,b; Demekhin, Kalliadasis & Velarde 2006; Trevelyan et al. 2007).

The dynamics of ultra-thin (but still macroscopic) films, with the thickness less
than 100 nm, is of a special interest. Such kind of flows has numerous technological
applications (coating, flotation, biological membranes, adhesives, etc.). The instabilities
in thin films are of potential use in the formation of regular nanostructures and
ordered porous membranes, in soft lithographic techniques and in other areas of
nanotechnology. For the description of the ultra-thin film dynamics, it is necessary
to take into account the long-range intermolecular forces (first of all, van der Waals
forces), acting between molecules of the liquid and substrate (Israelachvili 1992).
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2 A. Nepomnyashchy and I. Simanovskii

It is essential that these forces act on distances that are large relative to interatomic
distances. Hence, despite their microscopic origin, they can be incorporated into a
macroscopic theory.

In the framework of the continuum approach, the van der Waals forces manifest
themselves in the disjoining pressure (Williams & Davis 1982; Sharma & Ruckenstein
1986), which can be derived from the potential energy of intermolecular interactions.
Hydrodynamic behaviour of thin films has been extensively studied (see Oron, Davis &
Bankoff 1997 and Sharma 2003 for review). A destabilizing disjoining pressure may
lead to a true rupture of the film. Otherwise, the development of instability is similar
to a phase separation when the unstable ‘phase’ with an intermediate value of h is
destroyed, and the system is separated into two stable ‘phases’: a thin film and a thick
film (Sharma 2003; Thiele 2003).

In some coating processes and biological systems, liquid films can be composed
of several liquid layers. Specifically, a lower film obtained by a liquid coating of a
substrate can be used in order to significantly change the stability properties of the
upper film. A two-layer liquid system driven by Marangoni stresses and influenced
by van der Waals forces has been considered by Craster & Matar (2000) and
Matar, Craster & Warner (2002) by modelling a liquid lung lining. An example of
a biological three-layer systems is a tear film, which consists of an aqueous layer
sandwiched between a mucous layer and a lipid layer; its break-up is induced by
long-range intermolecular forces (Sharma, Khanna & Reiter 1999). Recently, a series
of experiments have been carried out on the stability of systems which consist of two
immiscible thin films on a solid substrate (Higgins & Jones 2000; Lin et al. 2001,
2002a,b).

Dynamics of multilayer ultra-thin films are characterized by several Hamaker
constants, which can be of different signs; therefore, they can be much richer. A
theoretical description of two-layer ultra-thin films has been developed by Pototsky
et al. (2004, 2005, 2006), Bandyopadhyay, Gulabani & Sharma (2005), Fisher &
Golovin (2005) and Bandyopadhyay & Sharma (2006).

The dynamics of ultra-thin films under the joint action of the Marangoni effect and
the van der Waals forces have not yet been explored extensively. The authors are not
aware of any experimental works on that subject. There is a number of theoretical
papers where instabilities of ultra-thin films have been considered. A general structure
of the evolution equations has been studied by Merkt et al. (2005) and Pototsky et al.
(2005). The development of instabilities has been studied in the case of a temperature
gradient directed along the interfaces (Nepomnyashchy & Simanovskii 2006) and
across the layers (Joo & Hsieh 2000; Nepomnyashchy & Simanovskii 2007), as well
as in the case where the temperature gradient is inclined with respect to the interfaces
(Nepomnyashchy & Simanovskii 2009a,b). It has been found that for sufficiently large
values of the ratio between the longitudinal and transverse Marangoni numbers,
the real part of the linear growth rate does not depend on the direction of the
wavenumber, except the case of nearly longitudinal disturbances. Numerous types of
nonlinear evolution have been observed, which include ordered systems of droplets,
‘splashes’, oblique waves, modulated transverse and longitudinal structures.

As a rule, the influence of the gravity on the ultra-thin film dynamics is neglected.
Indeed, the disjoining pressure varies with the film thickness h as 1/h3, while the
hydrostatic pressure is proportional to h. Therefore, the ratio of the hydrostatic
pressure to the disjoining pressure decreases as h4. Surprisingly, the effect of gravity
on the film stability can be significant. As has been shown for an isothermal two-layer
film by Fisher & Golovin (2005), the hydrostatic pressure cannot be neglected in
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Figure 1. Geometric configuration of the region and coordinate axes.

the case where the Hamaker constants are of different signs and can ‘cancel each
other’. While the linear stability threshold is weakly affected by gravity, the nonlinear
development of instability is rather sensitive to the influence of the hydrostatic
pressure. Specifically, decomposition of the film into droplets can be replaced by the
appearance of holes. Besides, a flattening of the droplet shapes is observed.

In this paper, we consider the influence of the gravity on the instabilities of non-
isothermic two-layer films. The mathematical model is formulated in § 2. In § 3, we
develop the linear stability theory. The nonlinear dynamic regimes are described in
§ 4. Section 5 contains concluding remarks.

2. Long-wave evolution equations
2.1. Formulation of the problem

Consider a system of two superposed layers of immiscible liquids with different
physical properties (see figure 1). The bottom layer rests on a solid substrate and
the top layer is in contact with the adjacent gas phase. The temperature of the solid
substrate is Ts + Ax and the temperature of the gas is Tg +Ax. All the variables
referring to the bottom layer are marked by subscript 1 and all the variables referring
to the top layer are marked by subscript 2. The coordinates of the interfaces in a
quiescent state are H 0

i , i = 1, 2. The deformable interfaces are described by equations
z = H1(x, y, t) (liquid–liquid interface) and z =H2(x, y, t) (liquid–gas interface). The
ith fluid has density ρi , kinematic viscosity νi , dynamic viscosity ηi = ρiνi , thermal
diffusivity χi and heat conductivity κi . The surface tension coefficients on the lower
and upper interfaces, σ1 and σ2, are linear functions of temperature T : σ1 = σ 0

1 − α1T

and σ2 = σ 0
2 − α2T . The gravity acceleration is g.

In the case of thin-film flows, when the fluid system is thin in one direction
and extended in other directions, the nonlinear model governing three-dimensional
flows with a deformable interface can be drastically simplified by means of a
long-wavelength expansion. The leading order of this expansion is known as the
‘lubrication approximation’. The long-wave approach is based on the assumption that
the characteristic spatial scales in the x- and y-directions are much larger than that in
the z-direction. It is assumed that the solution of the problem depends on the scaled
horizontal coordinates, X = εx and Y = εy, ε � 1, rather than on x and y. Also, it
is assumed that the solution depends on the scaled time variable τ = εt . The details
of the long-wave approach can be found in review papers (Davis 1987; Oron et al.
1997).
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4 A. Nepomnyashchy and I. Simanovskii

2.2. Thermocapillary flows

First, let us derive the long-wave evolution equations for a thermocapillary flow,
neglecting the interfacial tensions and the van der Waals forces.

To the leading order, the evolution of the system is governed by the following
equations and boundary conditions:

U1zz = 0, V1zz = 0, U1X + V1Y + W1z = 0, T1zz = 0, 0 < z < H1, (2.1)

U2zz = 0, V2zz = 0, U2X + V2Y + W2z = 0, T2zz = 0, H1 < z < H2, (2.2)

z = 0 : U1 = V1 = W1 = 0, T1 = Ts + Ax, (2.3)

z = H1 : U1 = U2, V1 = V2, W1 = W2, (2.4)

η2U2z − η1U1z − α1(T1X + H1XT1z) = 0, (2.5)

η2V2z − η1V1z − α1(T1Y + H1Y T1z) = 0, (2.6)

H1τ + U1H1X + V1H1Y = W1, (2.7)

T1 = T2, κ1T1z = κ2T2z, (2.8)

z = H2 : −η2U2z − α2(T2X + H2XT2) = 0, (2.9)

−η2V2z − α2(T2Y + H2Y T2z) = 0, (2.10)

H2τ + U2H2X + V2H2Y = W2, (2.11)

κ2T2z = −q(T2 − Tg − Ax), (2.12)

where subscripts z, X, Y and τ denote corresponding partial derivatives, and Uj , Vj

and Wj , j = 1, 2, are the leading-order terms in the expansions of velocity coordinates
in powers of ε:

uxj = Uj + · · · , uyj = Vj + · · · , uzj = εWj + · · · . (2.13)

The variable q is the heat exchange coefficient which is assumed to be constant.
Solving the problem for the temperature fields, we find that

T1 = Ts − (Ts − Tg)Dqκ2z + Ax, (2.14)

T2 = Ts − (Ts − Tg)Dq[(κ2 − κ1)H1 + κ1z] + Ax, (2.15)

where

D = [κ1κ2 + q(κ2 − κ1)H1 + qκ1H2]
−1. (2.16)

The x-components of the flow velocities generated by the thermocapillary stresses are
determined by the following formulae:

U1 =
(Ts − Tg)κ2

η1

[D(α1qH1 − α2κ1)]Xz − (α1 + α2)A

η1

z, (2.17)

U2 =
(Ts − Tg)κ2

η2

{
−α2κ2DXz +

H

η1

[D(α1η2qH1 − α2(η2 − η1)κ1)X]X

}

−
[
α2

η2

(z − H1) +
α1 + α2

η1

H1

]
A. (2.18)
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Effect of gravity on the dynamics of non-isothermic ultra-thin two-layer films 5

The expressions for y-components of the flow velocities, V1 and V2, can be obtained
from U1 and U2 by replacing X by Y . Solving the continuity equations with respect
to W1 and W2 with corresponding boundary conditions, we find that

W1(X, Y, H1) = −
∫ H1

0

(U1X + V1Y ) dz, (2.19)

W2(X, Y, H2) = −
∫ H1

0

(U1X + V1Y ) dz +

∫ H2

H1

(U2X + V2Y ) dz. (2.20)

Using (2.19) and (2.20), we rewrite the kinematic conditions (2.7) and (2.11) in the
following form:

H1τ +

(∫ H1

0

U1 dz

)
X

+

(∫ H1

0

V1 dz

)
Y

= 0, (2.21)

H2τ +

(∫ H1

0

U1 dz +

∫ H2

H1

U2 dz

)
X

+

(∫ H1

0

V1 dz +

∫ H2

H1

V2 dz

)
Y

= 0. (2.22)

Substituting expressions for flow velocities obtained above into (2.21) and (2.22), we
arrive at a closed system of equations that govern the evolution of a heated two-layer
film under the action of the thermocapillary effect:

H1τ + ∇ · QT
1 = 0, H2τ + ∇ · QT

2 = 0, (2.23)

where

QT
1 =

(Ts − Tg)κ2

2η1

H 2
1 ∇[D(qα1H1 − α2κ1)] − (α1 + α2)A

2η1

H 2
1 ex, (2.24)

QT
2 =

(Ts − Tg)

2η1η2

{
H 2

2 ∇[(−α2κ1η1)D] + (2H2 − H1)H1∇{D[qα1η2H1

− α2κ1(η2 − η1)]}
}

−
[
α2A

2η2

(H2 − H1)
2 +

α1 + α2

2η1

AH1(2H2 − H1)

]
ex, (2.25)

where ex is the unit vector of the axis x.

2.3. Flows in the presence of interfacial tensions and van der Waals forces

In the framework of the continuum approach, the van der Waals forces manifest
themselves as external normal stresses (‘disjoining pressures’) imposed on each
interface (Israelachvili 1992). The disjoining pressures modify the dependences of
the pressures P1 and P2 in each layer on the layers’ thicknesses H1 and H2 as follows
(Fisher & Golovin 2005):

P1 = −σ1∇2H1 − σ2∇2H2 + W1(H1, H2), (2.26)

P2 = −σ2∇2H2 + W2(H1, H2), (2.27)

where

W1(H1, H2) =
Asg − As2 − Ag1

6πH 3
2

+
As2

6πH 3
1

+ ρ1gH1 + ρ2g(H2 − H1), (2.28)

W2(H1, H2) =
Asg − As2 − Ag1

6πH 3
2

+
Ag1

6π(H2 − H1)3
+ ρ2gH2. (2.29)

Here Asg , As2 and Ag1 are Hamaker constants, characterizing the interactions between
the solid substrate and the gas across the two layers, between the solid substrate and
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6 A. Nepomnyashchy and I. Simanovskii

an infinite layer of liquid 2 across liquid 1, and between the gas phase and an infinite
layer of liquid 1 across liquid 2, respectively (see Fisher & Golovin 2005).

Recall that in the case of a one-layer film, the influence of the intermolecular forces
is determined by a single Hamaker constant, and the dependence of the interaction
energy between the gas phase and the substrate on the thickness of the layer is
monotonic. Depending on the sign of the Hamaker constant, the film is either stable
or unstable. In the unstable case, the development of the van der Waals instability
leads to the film rupture, if it is not stopped by a repulsive interaction of another
physical nature (e.g. by electrostatic interaction or steric repulsion).

As we have seen, in the case of a two-layer film the problem is characterized by
three non-dimensional Hamaker constants: Asg, As2 and Ag1. The Hamaker constants
are determined by the dielectric permittivities of all the media as functions of the
frequency (Lifshitz & Pitaevskii 1980; Israelachvili 1992), and they mainly depend on
the zero-frequency dielectric constants and high-frequency refractive indices of the
media (Israelachvili 1992; Pototsky et al. 2005). The signs of Hamaker constants can
be different.

If As2 > 0 or Ag1 > 0, the effective interactions between corresponding adjacent
interfaces are attractive, and they lead to a rupture of the bottom or top layer,
respectively. A more interesting situation takes place when As2 < 0 and Ag1 < 0, but
Asg −As2 −Ag1 > 0, i.e. the effective interaction between the liquid 2/gas interface and
the liquid 1/substrate interface is attractive, while the effective interaction between
adjacent interfaces is repulsive, one can expect that a van der Waals instability will
develop, but it will not lead to the rupture of the layers (Fisher & Golovin 2005).
Instead of rupture, one will observe a certain kind of ‘spinodal decomposition’ of
the film into localized ‘droplets’ and a thin ‘precursor’ film (Fisher & Golovin 2005;
Nepomnyashchy & Simanovskii 2006). Hence, a continuum mechanics approach is
valid. In the present paper, we consider solely the case where Asg − As2 − Ag1 > 0,
As2 < 0 and Ag1 < 0.

In the framework of the lubrication approximation, we arrive at the following
evolution equations, which are valid in the case of an inclined temperature gradient:

H1τ + ∇ ·
(

QT
1 + QvdW

1

)
= 0, H2τ + ∇ ·

(
QT

2 + QvdW
2

)
= 0, (2.30)

where

QvdW
1 = F11∇P1 + F12∇P2, QvdW

2 = F21∇P1 + F22∇P2, (2.31)

where QT
1 and QT

2 are determined by (2.24) and (2.25).
The pressures P1 and P2 are determined by expressions (2.26) and (2.27), and

following are the mobility functions:

F11 = − 1

3η1

H 3
1 , F12 = − 1

2η1

H 2
1 (H2 − H1), F21 =

1

6η1

H 3
1 − 1

2η1

H 2
1 H2,

F22 = (H2 − H1)

[
H 2

1

(
1

2η1

− 1

3η2

)
+ H1H2

(
− 1

η1

+
2

3η2

)
− 1

3η2

H 2
2

]
.

⎫⎪⎪⎬
⎪⎪⎭

(2.32)

Let us transform (2.30) to a non-dimensional form. The natural vertical length scale is
the initial thickness of the lower layer, H 0

1 . In Fisher & Golovin (2005), the horizontal
length scale,

L∗ =
(
H 0

1

)2
√

6πσ 0
1 /|Asg|, (2.33)
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Effect of gravity on the dynamics of non-isothermic ultra-thin two-layer films 7

has been suggested, which is convenient for the analysis of the instability induced by
intermolecular forces. We choose

τ ∗ =
η1(L

∗)4

σ 0
1

(
H 0

1

)3
(2.34)

as a time scale and

p∗ =
σ 0

1 H 0
1

(L∗)2
(2.35)

as a pressure scale.
Equations (2.30), when written in the non-dimensional form, look as follows:

h1τ + ∇ · q1 = 0, h2τ + ∇ · q2 = 0, (2.36)

q1 = f11∇p1 + f12∇p2 + qT
1 , q2 = f21∇p1 + f22∇p2 + qT

2 , (2.37)

where hj = Hj/H
0
1 , pj = Pj/p

∗, j = 1, 2,

f11 = − 1
3
h3

1, f12 = − 1
2
h2

1(h2 − h1), (2.38)

f21 =
1

6
h3

1 − 1

2
h2

1h2, f22 = (h2 − h1)

[
h2

1

(
1

2
− η

3

)
+ h1h2

(
−1 +

2η

3

)
− η

3
h2

2

]
. (2.39)

We use the same notation, τ and ∇, for new, non-dimensional variables. Later on, we
assume that the dependence of interfacial tensions on the temperature is relatively
weak and can be neglected in the boundary conditions for normal stresses (but not
in those for tangential stresses where it is the source of a thermocapillary motion).
The contributions of disjoining pressures and hydrostatic pressures are included:

p1 = −∇2h1 − σ∇2h2 + w1(h1, h2), (2.40)

p2 = −σ∇2h2 + w2(h1, h2), (2.41)

w1 =
a0 − a1 − a2

h3
2

+
a1

h3
1

+ g1h1 + g2(h2 − h1), (2.42)

w2 =
a0 − a1 − a2

h3
2

+
a2

(h2 − h1)3
+ g2h2. (2.43)

The non-dimensional expressions for the fluxes generated by the thermocapillary
effect are the following:

qT
1 =

M⊥

2
h2

1∇[d(Bih1 − ακ)] −
M‖

2
(1 + α)h2

1ex, (2.44)

qT
2 =

M⊥

2

{
−h2

2∇(dηακ) + (2h2 − h1)h1∇{d[Bih1 − ακ(1 − η)]}
}

−
M‖

2

[
ηαh2

2 + (1 + α − ηα)h1(2h2 − h1)
]
ex. (2.45)

Here

M⊥ =
α1(Ts − Tg)

σ 0
1

(
L∗

H 0
1

)2

, (2.46)

M‖ =
α1AL∗

σ 0
1

(
L∗

H 0
1

)2

(2.47)
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8 A. Nepomnyashchy and I. Simanovskii

are the modified transverse and longitudinal Marangoni numbers, respectively,

Bi =
qH 0

1

κ2

(2.48)

is the Biot number,

d = [κ + Bi (1 − κ)h1 + Biκh2]
−1, (2.49)

η = η1/η2, κ = κ1/κ2, σ = σ 0
2 /σ 0

1 , α = α2/α1,

a0 = sign(Asg), a1 =
As2

|Asg| , a2 =
Ag1

|Asg| , (2.50)

g1,2 = 6πρ1,2g
(
H 0

1

)4
/|Asg|. (2.51)

If the scaling of the horizontal length is chosen as (2.33), then |a0| =1.
The system of equations (2.36) contains 12 non-dimensional parameters: M⊥, M‖,

Bi, σ , α, η, κ , g1, g2, a0, a1 and a2.
Let us estimate the characteristic values of these parameters. Fisher & Golovin

(2005) showed that for H 0
1 ∼ 100 nm, the typical values of parameter L∗ determined

by (2.33) are between 20 and 200 µm. Thus, the ratio ε = H 0
1 /L∗ is between 5 × 10−4

and 5 × 10−3, which justifies the long-wave approach. The characteristic values of g1

and g2 are between 2 × 10−4 and 2 × 10−2. The Marangoni numbers are determined
by the intensity of the external heating. The assumption that the surface-tension
coefficients are linear functions of the temperature is reasonable when αj |Ts −Tg| � σ 0

j

and αjAL � σ 0
j , j = 1, 2, where L is the characteristic size of the system in the x-

direction. Therefore, the modified Marangoni numbers should satisfy the conditions
M⊥ � ε−2 and M‖ � ε−2(L∗/L). The Biot number characterizes the heat transfer at
the free boundary. Generally, one can expect that this parameter is rather small in
the case of a thin layer. However, the evaporation of a film can significantly increase
cooling at the liquid/gas interface and hence the effective Biot number (Colinet et al.
2003; Haut & Colinet 2005). Other six parameters are intrinsic characteristics of the
multilayer system substrate/liquid 1/liquid 2/gas. Parameters α, η and σ are just
ratios of physical parameters of the liquids, while a0, a1 and a2 depend on the values
of the Hamaker constants Asg , As2 and Ag1.

3. Linear stability theory
As mentioned in § 2, we consider the case a0 = 1, a1 < 0 and a2 < 0, where the effective

interaction between the outer interfaces of the system is attractive and creates a van
der Waals instability, while the interaction between the liquid/liquid interface and the
outer interfaces is repulsive. In numerical examples, we fix the following values of
parameters: a1 = −0.4, a2 = −0.1, η =1.2, σ = 0.8, κ = 1, α = 1, h1 = 1 and h2 = 2.5.

3.1. Dispersion relation

Let us consider a parallel thermocapillary flow with plane interfaces located at z = H 0
1

and z = H 0
2 . This flow corresponds to the basic solution of (2.36):

h1 = 1, h2 = h = 1 + a, (3.1)

where h = H 0
2 /H 0

1 and a = (H 0
2 − H 0

1 )/H 0
1 .

In order to investigate the stability of the plane two-layer film, we substitute

h1 = 1 + h̃1, h2 = 1 + a + h̃2 (3.2)

into (2.36), and linearize them with respect to variables h̃1 and h̃2.
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The solutions of the linear problem can be written as

h̃j (X, Y, τ ) = h̄jexp(ik · R + λτ ), j = 1, 2, (3.3)

where R = (X, Y ), k = (kx, ky) is the wave vector, λ is the growth rate and h̄j , j = 1, 2,
are constants. Substituting (3.3) into the linearized equations, we obtain a dispersion
relation

det(N − λI) = 0, (3.4)

which determines the eigenvalues λ(k). Here I is the unit matrix, while matrix N can
be presented in the following form:

N = B +
M⊥Bik2κ

2(κ + Bi + Biκa)2
C + ikxM‖D. (3.5)

Matrix B presents the contribution of the van der Waals forces, gravity and surface
tensions, and it has the following components:

B11 = −k2

3
(k2 − 3a1 + g1 − g2) − 3k2a2

2a3
, (3.6)

B12 = −k2

(
1

3
+

a

2

)[
σk2 − 3(a0 − a1 − a2)

(a + 1)4
+ g2

]
+

3k2a2

2a3
, (3.7)

B21 = −k2

(
1

3
+

a

2

)
(k2 − 3a1 + g1 − g2) +

[
1

2
− η

3
+ (a + 1)

(
−1 +

2η

3

)

−η

3
(a + 1)2

] 3k2a2

a3
, (3.8)

B22 = −k2

(
1

3
+

a

2

)[
σk2 − 3(a0 − a1 − a2)

(a + 1)4
+ g2

]
+ ak2

[
1

2
− η

3

+ (a + 1)

(
−1 +

2η

3

)
− η

3
(a + 1)2

] [
σk2 − 3(a0 − a1 − a2)

(a + 1)4
− 3a2

a4
+ g2

]
. (3.9)

One can see that in the framework of the linear stability theory, the action of the
gravity is equivalent to the replacement of the van der Waals coefficients, a0, a1 and
a2, by a renormalized coefficients, â0, â1 and â2, determined by the following relations:

â1 = a1 − (g1 − g2)/3, â2 = a2, (3.10)

â0 − â1 − â2 = a0 − a1 − a2 − g2(a + 1)4/3. (3.11)

Hence, one can see that the van der Waals instability, which is related to the positive
value of a0 − a1 − a2, is weakened with the growth of the upper liquid density
(parameter g2), while the stabilizing action of the negative parameter a1 is enhanced
in the case of a stable density stratification (g1 >g2) and diminished by the unstable
density stratification (g1 <g2).

The second and third terms on the right-hand side of (3.5) are caused by the
thermocapillary effect. The elements of matrix C are as follows:

C11 = 1 + Bi (a + 1) + α(1 − κ), (3.12)

C12 = ακ − Bi , (3.13)

C21 = ηαa2(1 − κ) + (2a + 1)[α(1 − κ) + 1 + Bi (a + 1)], (3.14)

C22 = ηακa2 + (2a + 1)(ακ − Bi ). (3.15)
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Figure 2. Dependences of the growth rate λ on the wavenumber k for g1 = g2 = 0 (line 1),
g1 = g2 = 0.02 (line 2) and g1 = g2 = 0.04 (line 3).
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Figure 3. Dependences of the growth rate Re λ on the wavenumber k for monotonic modes
(solid lines) and oscillatory mode (dashed line). (a) M⊥ = −5; (b) M⊥ = −5.2; (c) M⊥ = −5.4;
(d ) M⊥ = − 5.7.

The elements of matrix D are as follows:

D11 = 1 + α, D12 = 0, D21 = (a/2)[1 + α(1 − η)], D22 = 1 + α(1 + ηa). (3.16)
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Figure 4. Dependences of (a) the maximum growth rate Re λm and (b) the corresponding
wavenumber km on |M⊥| for the monotonic mode (solid line) and the oscillatory mode (dashed
line).

3.2. Isothermic film

First, let us discuss the influence of the gravity on the van der Waals instability in the
absence of heating (M⊥ = M‖ = 0).

The major factor is the stabilizing effect of the parameter g2, which is described
by (3.11) (see figure 2). The influence of the density stratification parameter g1 − g2,
described by (3.10), is much weaker. For the values of the parameters corresponding
to figure 2, for a fixed value of g2 = 0.02, the derivative dλm/dg1 ≈ 7 × 10−4 in the
interval 0.01 � g1 � 0.03. (Here λm = maxk λ(k)).

3.3. The case of a vertical temperature gradient

In the presence of a vertical temperature gradient (M‖ = 0, M⊥ 	= 0), an additional
instability mechanism appears, which is caused by the Marangoni effect. The interplay
of the van der Waals and Marangoni instability mechanisms in the absence of gravity
has been studied in detail by Nepomnyashchy & Simanovskii (2007). An example
of the transition from the monotonic van der Waals instability to an oscillatory
Marangoni instability by heating from above (M⊥ < 0) for the values of parameters
g1 = 0.02, g2 = 0.04 and Bi = 10 is shown in figure 3. The oscillatory instability mode
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Figure 5. Dependence of the transition Marangoni number M∗ on g2; g1 = 0.02.

appears at finite wavenumbers (figures 3a,b), becomes the strongest mode with the
growth of |M⊥| (figure 3c) and finally ousts the monotonic mode of instability
(figure 3d ). The maximum growth rate, Re λm = maxk Re λ(k), and the corresponding
wavenumber, km, are shown for both monotonic and oscillatory modes in figure 4. In
the framework of the linear theory, the transition between the monotonic instability
and oscillatory instability takes place at the value of the Marangoni number M∗, where
the maximum growth rates of both kinds of instability are equal. The dependence
of the transition Marangoni number M∗ on the parameter g2 is almost linear (see
figure 5).

3.4. The case of an inclined temperature gradient

In the general case (M‖ 	= 0 and M⊥ 	= 0), the matrix N defined by (3.5) can be presented
as

N = E + iβD, (3.17)

where

E = B +
M⊥Bik2κ

2(κ + Bi + Biκa)2
C, β = kxM‖. (3.18)

The eigenvalue λ satisfies the quadratic equation

λ2 − [Tr(E) + iβTr(D)]λ + det(E) + iFβ − β2D11D22 = 0, (3.19)

where F = E11D22 + E22D11–E12D21.

3.4.1. The case of small β

Let us present the eigenvalue λ in the form

λ = λ0 + βλ1 + β2λ2 + · · · . (3.20)
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Figure 6. Dependences of eigenvalues λ on the wavenumber k for the waves moving to the
left (lines 1) and to the right (lines 2). (a) g2 = 0.04; (b) g2 = 0.04; (c) g2 = 0.02; (d ) g2 = 0.02.

In the zeroth order, we obtain the following:

λ2
0 − Tr(E)λ0 + det(E) = 0. (3.21)

Its solutions correspond to the case M‖ = 0 considered in the previous subsection. As
we have seen, both real and complex eigenvalues are possible.

In the first order, we find that

2λ0λ1 − λ1Tr(E) − iλ0Tr(D) + iF = 0. (3.22)

Hence,

λ1 = i
λ0Tr(D) − F

2λ0 − Tr(E)
. (3.23)

If λ0 is real, the first-order correction λ1 is purely imaginary. Thus, the longitudinal
component of the temperature gradient does not influence the threshold of the
monotonic instability of the order O(β). For imaginary λ0 (on the threshold of the
oscillatory instability), the correction λ1 is complex. Note that the real part of λ1

depends on the sign of Im λ0, i.e. the waves moving in opposite directions grow
differently. In other words, the oscillatory neutral curve splits into two curves.
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Figure 7. Dependence of (a) the maximum growth rate Re λm and (b) the corresponding
wavenumber km on the angle ¯̄ϕ for M‖ = 0.001 (lines 1), M‖ = 0.1 (lines 2) and M‖ = 5 (lines
3). Other parameters: M⊥ = −5, g1 = 0.02 and g2 = 0.04.

Similarly, the second-order correction λ2 can be calculated:

λ2 =
−λ2

1 + iλ1Tr(D) + D11D22

2λ0 − Tr(E)
. (3.24)

Note that it is purely real for a monotonic mode (when λ0 is real and λ1 is imaginary).
The predictions presented above are illustrated by the numerical computation of the
eigenvalues for the same set of parameter as in figure 3(c), but with M‖ =10−4 (see
figures 6a,b). Comparing figures 6(a) and 3(c), one can see that for values of k where
the instability is monotonic at M‖ =0, the change of the growth rate Re λ is small.
In the region of k, where the instability is oscillatory at M‖ =0, the growth rate of
the waves moving to the left (Im λ> 0, lines 1) is significantly higher than that of the
waves moving to the right (Im λ< 0, lines 2). With the decrease of the parameter g2,
all the lines keep their shape, but the growth rate becomes much larger (see figures 6c
and 6d ).
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Figure 8. (Colour online) Isolines of h̃2(X,Y,τ ): (a) τ =20 000; (b) τ =40 000; (c) τ =120 000;
(d ) τ = 360 000. M⊥ = M‖ =0; g1 = 0.02; g2 = 0.03; other parameters are given in the text.

3.4.2. The case of large β

This case corresponds to a strong longitudinal temperature gradient (M‖ is
sufficiently large) and a disturbance orientation not close to a longitudinal one
(kx is not small). The solution of (3.19) can be written as

λ = λ−1β + λ0 + · · · . (3.25)

For λ−1, we obtain the following quadratic equation:

λ2
−1 − iλ−1Tr(D) − D11D22 = 0. (3.26)

We find that the roots are

λ+
−1 = iD11, λ−

−1 = iD22. (3.27)

Thus, the corresponding terms in the expansion (3.25) are purely imaginary and do
not influence the stability. The term λ0 is obtained from the relation

2λ0λ−1 − λ−1Tr(E) − iλ0Tr(D) + iF = 0. (3.28)
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Figure 9. (Colour online) Shapes of the free surface, h̃2(X, Y, τ ): (a) τ = 20 000;
(b) τ = 360 000; other parameters are as in figure 8.

Hence,

λ+
0 =

D11Tr(E) − F

D11 − D22

, λ−
0 =

D22Tr(E) − F

D22 − D11

(3.29)

are real.
Therefore, the growth rates

Re λ± = λ±
0 + o(1), (3.30)
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Figure 10. (Colour online) Fields of h̃2(X,Y,τ ): (a) τ = 20 000; (b) τ =40 000; (c) τ = 120 000;
(d ) τ = 360 000. M⊥ = M‖ =0; g1 = 0.02; g2 = 0.04; other parameters are given in the text.

i.e. they do not depend on the orientation of the wave vector and on the longitudinal
Marangoni number M‖. (Although the elements of matrix D, which is related to the
longitudinal temperature gradient, are significant).

We come to the conclusion that for sufficiently large M‖, on the linear stage
of the instability development, any disturbances grow or decay independently on
the orientation of their wave vectors, except the disturbances with small kx (nearly
longitudinal disturbances).

Thus, we arrive at the following paradoxical situation. The longitudinal component
of the temperature gradient is the only factor that violates the rotational symmetry of
the problem. However, when this component is sufficiently large, the isotropy of the
problem is partially restored (the real part of the growth rate depends only on k2 and
not on kx to the leading order, while the imaginary part keeps its dependence on kx),
except the region of nearly longitudinal structures that have small β , even for large M‖.

The predictions presented above are confirmed by direct computations (see
figure 7a). For a fixed direction of the wave vector, determined by the angle
ϕ = tan−1(ky/kx), we have found the maximum growth rate

(Re λ)m(ϕ) = max
k

(Re λ)(k cos ϕ, k sinϕ). (3.31)
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Figure 11. (Colour online) Shapes of the free surface, h̃2(X, Y, τ ): (a) τ = 20 000;
(b) τ = 360 000; other parameters are as in figure 10.

The value (Re λ)m(±π/2) does not depend on M‖. For relatively small M‖, the
maximum growth rate depends significantly on the orientation of the wave vector
(lines 1 and 2). With the growth of M‖, a long ‘plateau’ is developed (lines 3): the
maximum growth rate is nearly constant and decreases rapidly when ϕ approaches
±π/2. Note that (Re λ)m(0) > (Re λ)m(π/2), i.e. the disturbance with a longitudinal
orientation grows slower than any other disturbances. The dependences of the
wavenumber km(ϕ) corresponding to the maximum growth rate are similar (see
figure 7b).
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Figure 12. (Colour online) Fields of h̃2(X, Y, τ ): (a) τ = 40 000; (b) τ = 120 000;
(c) τ = 240 000. M⊥ = −1; M‖ = 0; g1 = 0.02; g2 = 0.04; other parameters are given in the text.
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Figure 13. (Colour online) Fields of h̃2(X, Y, τ ): (a) τ =6500; (b) τ = 20 000; (c) τ = 120 000.
M⊥ = −5; M‖ = 0; g1 = 0.02; g2 = 0.04; other parameters are given in the text.

4. Nonlinear simulations
Evolution equations (2.36) have been discretized by central differences for spatial

derivatives and solved using an explicit scheme. Periodic boundary conditions have
been applied on the boundaries of the computational region. Initial conditions for
hj , j =1, 2, have been chosen in such a way that the mean value of h1(X, Y, 0) was
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Figure 14. (Colour online) Fields of h̃2(X, Y, τ ): (a) τ = 48 800; (b) τ = 50 150; (c) τ = 51 100;
(d ) τ = 62 100; (e) τ = 72 800; (f ) τ =96 200. M⊥ = −5; M‖ = 0.1; (a) g1 = g2 = 0; (b)–(f )
g1 = 0.04, g2 = 0.02; other parameters are given in the text.
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Figure 15. (Colour online) Fields of h̃1(X, Y, τ ): (a) τ = 48 800; (b) τ = 50 150; (c) τ = 51 100;
(d ) τ =62 100; (e) τ = 72 800; (f ) τ = 96 200. M⊥ = −5; M‖ = 0.1; (a) g1 = g2 = 0; (b)–(f )
g1 = 0.04, g2 = 0.02; other parameters are given in the text.
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Figure 16. (Colour online) Shapes of interfaces at τ = 48 800: (a) h̃2(X, Y, τ ); (b) h̃1(X, Y, τ ).
g1 = g2 = 0; other parameters are given in the text.

equal to 1 and the mean value of h2(X, Y, 0) was equal to h, where h > 1. Hence,
our computations depend on the additional geometric parameter h = H 0

2 /H 0
1 . Small

random deviations of hj (X, Y, 0) from their mean values were imposed using a code,
creating pseudo-random numbers. The computations have been performed in the
region 240 × 240 using the grid 400 × 400 for the following values of parameters:
η =1.2, κ =1, α = 1 and h = 2.5.
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Figure 17. (Colour online) Shapes of interfaces at τ = 96 200: (a) h̃2(X, Y, τ ); (b) h̃1(X, Y, τ ).
g1 = 0.04, g2 = 0.02; other parameters are given in the text.

4.1. Coarsening regimes

First, let us recall the results of simulations done by Fisher & Golovin (2005) in
the case where a0 = 1, a1 = −0.4, a2 = −0.1; M⊥ = M‖ = 0; and g1 = g2 = 0. As was
explained in § 3, this choice corresponds to an attraction between the outer interfaces
and to a repulsion between the adjacent interfaces. The attraction is the origin of an
instability, while the repulsion prevents the rupture of the film. Due to the interplay of
both types of interactions, the film is separated into two phases: a number of relatively
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Figure 18. (Colour online) Fields of h̃2(X, Y, τ ): (a) τ = 59 080; (b) τ = 61 140; (c) τ = 62 900;
(d ) τ = 78 980. M⊥ = − 5; M‖ = 0.1; (a) g1 = g2 = 0; (b)–(d ) g1 = 0.02, g2 = 0.04; other
parameters are given in the text.

thick ‘droplets’ of a parabolic shape and a relatively thin ‘precursor’ film between the
‘droplets’. Let us emphasize that the repulsive interaction keeps the thickness of the
‘thin film’ macroscopic; therefore, it can be described within the continuum approach.
No true rupture of the film and the formation of a contact line take place. (For
the description of the above-mentioned phenomena beyond the approach used in the
present paper, see Shikhmurzaev 2008.) Let us also note that the horizontal size of
‘droplets’ is large in comparison to their height; hence, the apparent ‘contact angle’ is
very small. Therefore, the separation of the film into the phases does not violate the
validity conditions of the lubrication approximation.

In the framework of the linear stability theory, the major factor is the stabilizing
effect of the parameter g2, while the influence of the density stratification parameter
g1 − g2 is much weaker (see § 3). With the growth of g1 and g2, the coefficient
in the weakly nonlinear amplitude equation, which is responsible for the nonlinear
development of disturbances, diminishes and then changes its sign (see figure 10
in Fisher & Golovin 2005). This is a cause of the replacement of droplets by
‘labyrinths’ and then by hole-like disturbances. Our strongly nonlinear simulations
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Figure 19. (Colour online) Fields of h̃1(X, Y, τ ): (a) τ = 59 080; (b) τ = 61 140; (c) τ = 62 900;
(d ) τ =78 980. M⊥ = − 5; M‖ = 0.1; (a) g1 = g2 = 0; (b)–(d ) g1 = 0.02, g2 = 0.04; other
parameters are given in the text.

have confirmed that prediction. Indeed, for g1 = 0.02 and g2 = 0.03, the droplets
are not developed anymore. Instead of them, one observes a structure where both
elevations and depressions are present. (See figure 8, where snapshots for the field of
h̃2(X, Y, τ ) = h2(X, Y, τ )−h are shown.) The three-dimensional plots of h̃2(X, Y, τ ) are
shown in figure 9. Let us note that the horizontal scale and the vertical scale in figure 9
(and in other similar figures below) are strongly different; although the elevations
and depressions look steep, they are actually very sloping; therefore, the shapes of the
interfaces are within the validity region of the lubrication approximation. For even
larger values of g2 (g2 = 0.04), a big hole develops on the free surface and on the
interface (see figure 10). In the latter case, the three-dimensional plots of h̃2(X, Y, τ )
are shown in figure 11.

In accordance with the predictions of the linear theory, a heating from above
(M⊥ < 0) strengthens the instability for the value Bi = 10. On the nonlinear stage, a
faster coarsening of holes and the enhancement of the holes depth are observed (see
figure 12). For even larger M⊥, the symmetry between depressions and elevations is
restored; therefore, neither holes nor droplets are formed (see figures 13a,b). Finally,
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Figure 20. (Colour online) Fields of h̃2(X, Y, τ ): (a) τ = 59 200; (b) τ = 64 360; (c) τ = 67 840;
(d ) τ = 78 880. M⊥ = − 5; M‖ = 0.11; (a) g1 = g2 = 0; (b)–(d ) g1 = 0.04, g2 = 0.02; other
parameters are given in the text.

a one-dimensional structure is developed that resembles a kink–antikink pair of the
pure Cahn–Hilliard equation (see figure 13c).

4.2. Wavy patterns

Coarsening is not the only scenario of the nonlinear development of instabilities.
In a definite region of parameters, the coarsening can been stopped, and finally,
an ordered or disordered system of droplets/holes is created, which never coalesce
into a sole droplet/hole (Nepomnyashchy & Simanovskii 2008). In the absence of
gravity (g1 = g2 = 0), an ordered structure of equally sized droplets moving with equal
velocities and located at equal distances from each other has been observed at M⊥ = −5
and M‖ = 0.1 (see figures 14a and 15a). Let us emphasize that the ordered droplets
system is not a result of a casual monodispersity of droplets due to a specific choice
of initial conditions, but a result of a natural evolution of the system to its stable
configuration. The same ordered system of droplets has been obtained from different
initial conditions. Under the action of the gravity force (g1 = 0.04 and g2 = 0.02),
the ordered system of droplets is destroyed and transforms through intermediate
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Figure 21. (Colour online) Fields of h̃1(X, Y, τ ): (a) τ = 59 200; (b) τ = 64 360; (c) τ = 67 840;
(d ) τ = 78 880. M⊥ = − 5; M‖ = 0.11; (a) g1 = g2 = 0; (b)–(d ) g1 = 0.04, g2 = 0.02; other
parameters are given in the text.

stages (figures 14b–e and 15b–e) to a new stable configuration of a one-dimensional
waves (figures 14f and 15f ), moving in the direction inclined with respect to the
direction of the horizontal temperature gradient (from the right to the left). The
shapes of h̃2(X, Y, τ ) and h̃1(X, Y, τ ) are shown in figures 16 (for g1 = g2 = 0) and 17
(for g1 = 0.04 and g2 = 0.02).

Another possible scenario of the destruction of the ordered droplets system takes
place under the action of the inverted values of g1 and g2 (g1 = 0.02 and g2 = 0.04).
In this case, the ordered system of droplets transforms into a one-dimensional wave,
moving parallel to the horizontal temperature gradient (from the right to the left);
see figures 18 and 19.

Similar final wavy patterns are obtained for M⊥ = − 5 and M‖ = 0.11, where in
the absence of gravity (g1 = g2 = 0), a disordered system of droplets is observed. For
g1 = 0.04 and g2 = 0.02, the evolution leads to a system of one-dimensional waves with
the fronts inclined to the direction of the horizontal temperature gradient (figures 20
and 21), while for g1 = 0.02 and g2 = 0.04, the wave fronts are transverse to its
direction (figure 22).
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Figure 22. (Colour online) Fields of h̃1(X, Y, τ ): (a) τ = 59 360; (b) τ = 60 520; (c) τ = 62 280;
(d ) τ = 78 360. M⊥ = − 5; M‖ = 0.11; (a) g1 = g2 = 0; (b)–(d ) g1 = 0.02, g2 = 0.04; other
parameters are given in the text.

5. Conclusions
The novelty of the present investigation compared to the existing literature is in

the analysis of the influence of the gravity on the instabilities of non-isothermic
two-layer films by means of the long-wave approach. A system of nonlinear evolution
equations, which takes into account the van der Waals forces and the thermocapillary
effect, is derived. It has been found that the influence of the upper fluid density,
characterized by the parameter g2, is stronger than that of the difference of fluid
densities, characterized by the parameter g1 − g2. The vertical temperature gradient
may create a transition from the monotonic instability, which is mostly due to the
van der Waals forces, to an oscillatory instability, caused mostly by the thermocapillary
effect. In a contradistinction to one-layer systems, the horizontal component of the
temperature gradient strongly influences the instability growth rate; this influence
is especially strong in the case of an oscillatory instability. With the growth of the
horizontal temperature gradient, the isotropy of the growth rate is restored, except a
small interval of inclination angles for the wave vector. The gravity also influences
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the nonlinear stage of the disturbances development. Specifically, one can observe
formation of stripes or holes instead of droplets. In the case of wavy patterns, the
gravity leads to the simplification of the patterns’ structures. A novel effect is the
transformation of the two-dimensional ordered and disordered wavy patterns into
one-dimensional waves with the fronts inclined or transverse to the direction of the
horizontal temperature gradient.

Finally, let us discuss the observability of the phenomena described above. Using
the estimates H 0

1 ∼ 100 nm and L∗ ∼ 20 µm, we come to the conclusion that a typical
value of the parameter M⊥ ∼ 5 corresponds to the case α1(Ts − Tg)/σ

0
1 ∼ 10−4, i.e.

the characteristic temperature differences sufficient for the development of the above-
mentioned regimes are about 10−2 K. Hence, even a very weak heating of the film
can create an instability.

The work was partially supported by the Israel Ministry of Science through grant
no. 3-5799 and grant PITN-GA-2008-214919 by the European Union.
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