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ABSTRACT

Cash balance pension plans with crediting rates linked to long bond yields are
relatively common in theUnited States, but their liabilities are proving very chal-
lenging to hedge. In this paper, we consider dynamic hedge strategies using the
one-factor and two-factor Hull White models, based on results for the liability
valuation fromHardy et al. (2014). The strategies utilise simple hedge portfolios
combining one or two zero-coupon bonds, and a money market account. We
assess the effectiveness of the strategies by considering how accurately each one
would have hedged a 5-year cash balance liability through the past 20 years, us-
ing real-world returns and crediting rates, and assuming parameters calibrated
using the information available at the time. We show that there is considerable
impact of model and parameter uncertainty, with additional, less severe impact
from discrete hedging error and transactions costs. Despite this, the dynamic
hedge strategies do manage to stabilize surplus substantially, even through the
turbulence of the past two decades.
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1. INTRODUCTION

Cash Balance (CB) pensions represent the fastest growing pension plan design
in the United States, according to Kravitz (2015). The number of CB plans has
increased from around 3% to 28% of all Defined Benefit (DB) plans over the
past decade. In 2014, there were 9,648 CB plans in the United States, with a
total of over 12 million participants.

CB plans are classified and regulated as DB plans but are presented to look
very much like Defined Contribution (DC) plans. For example, participants
have individual accounts showing their up-to-date accrued benefits. However,
an important difference between CB and DC plans is that employee accounts
in the CB plan are notional. The assets are not allocated to individuals and the
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amounts paid into the aggregated plan funds need not be equal to the notional
contributions. The total funds invested are generally not equal to the sum of the
employee accounts, and are often substantially smaller because of the actuar-
ial funding methods used, and because DB plans are not required to be fully
funded (see Hardy et al. (2014)). The notional individual member accounts are
notionally accumulated at the specified plan crediting rate, which may be a fixed
rate, or a variable rate such as the current yield on government bonds of spec-
ified term. In this paper, we focus on the 30-year treasury crediting rate; it is
one of the most common options, (covering around 44% of plans, according to
Kravitz (2015)) and one of the hardest to hedge as the yield to maturity (YTM)
on long treasuries cannot be replicated year to year with standard, over the
counter instruments.

The original motivation for the CB plan design was to replicate the lower
risk properties of DC plans within a DB plan. CB plans started gaining popu-
larity in the mid-1990s; Niehaus and Yu (2005) explain that in 1990s, companies
switching from traditional DB plans favored CB plans over DC, to avoid the
high reversion tax applied to excess pension assets. Coronado and Copeland
(2003) on the other hand conclude that the conversions from traditional DB to
CB were primarily driven by the labour market conditions. In 2015, new regula-
tions came into effect clarifying and extending the permitted range of crediting
rate formulae.1

Until recently, CB plans have been considered by sponsors and most actu-
aries to be low risk, low volatility plans. The views expressed by the consultants
at Kravitz are typical, for example:

Cash balance plans remove the interest rate risk that led to con-
stantly changing value of liabilities in traditional defined benefit plans.
(Kravitz (2012))

More recently, there has been a greater recognition of the inherent risk involved
in guaranteeing returns. In a 2015 report, Segal Rogerscasey wrote:

Cash balance plans do not represent a low-risk arbitrage opportunity, but
rather are a leveraged investment in risk assets, similar to a traditional DB
plan. (Rogerscasey (2015))

Hedging the CB liability has become a more urgent question as the low inter-
est rate environment has persisted so long that rising costs and risks cannot be
ignored. Even the traditional actuarial funding approach, which is highly unre-
sponsive to market conditions, is beginning to generate unexpected strains and
volatility.

The major objective of this paper is to derive and quantitatively explore the
efficacy of a hedging strategy based on financial engineering models and prin-
ciples. We base the hedge on the market valuation of the liability, rather than
the actuarial valuation. There are two reasons for this. The first is that the ap-
plication of traditional actuarial valuation methods to CB plans generates an
“actuarial liability” that is quite unrelated to the short- or long-term costs. Both
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Murphy (2001) and Hardy et al. (2014) conclude that traditional methods may
significantly understate the actual liability for participants who terminate early,
and tend to generate losses even where the participant exits at the assumed age.
Market valuation methods are more objective than actuarial methods and the
valuation and hedging formulae are inextricably linked; the valuation formula
can be used to derive the hedging portfolio for a risk. In Hardy et al. (2014)
explicit valuation formulae were derived in the case where the crediting rate is
the k-year spot rate, and where interest crediting applies continuously. Thus, the
valuation results give us a starting point for determining a hedge strategy.

In practice CB crediting rates based on treasury bonds use the YTM, not
spot rates. The same valuation framework that we used for spot rates can be ap-
plied to the YTM, but the valuation requires Monte Carlo simulation. Hardy
et al. (2014) showed that the numerical results using the spot rate valuation for-
mulae were a good approximation for the YTM valuation. In this paper, we
show that the same is true for hedging strategies based on spot rates and YTMs.
We also use this paper to extend the valuation formulae in Hardy et al. (2014)
to the case where the interest crediting is discrete.

Market consistent valuation techniques have been studied for other pension-
related liabilities; examples can be found in Boyle and Hardy (2003), Marshall
(2011) and Chen and Hardy (2009). Despite the fact that US public and private
sector pension plans have not (yet) adopted market consistent valuation, much
of the recent pension’s literature has discussed the benefit of usingmarket values
to assess objectively the funding status of pension plans. Novy-Marx and Rauh
(2009) and Biggs (2010) recalculate the funding ratios of US public pensions to
market-consistent benchmarks, and conclude that the subjectivity of traditional
actuarial techniques significantly understates the liabilities, and overstates the
funding rates. Moreover, Biggs and Smetters (2013) outline common miscon-
ceptions about using a long-term market rate as the discount rate for pension
liabilities. In this paper, we reinforce the advantage of market consistent valua-
tion from a risk management perspective, as it provides a natural approach not
only to the valuation, but also to the appropriate investment strategies to hedge
the interest rate risk.

The CB payoff based on treasury bond crediting rates can be viewed as an
interest rate derivative. Hedging interest rate derivatives tends to be more sen-
sitive to model risk than pricing the same derivatives. Hardy et al. (2014) show
that the price of the CB payoff evaluated using the one factor Hull-White (HW)
model is very close to the price evaluated with the two-factor HWmodel. How-
ever, that may not be the case for the hedge strategy. Several researchers have
examined how many factors are required for effective hedging of interest rate
risks. Fan et al. (2007) studied up to four factor models in the swaption market
and conclude that although low-dimensional models are capable of accurately
pricing swaptions, they are not sufficient for hedging purposes. Gupta and Sub-
rahmanyam (2005) and Driessen et al. (2003) draw a similar conclusion for the
cap/floor market. Their work is closer to ours, as they used delta hedging strate-
gies, whereas Fan et al. (2007) focus on bucket hedging.
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Other research on hedging CB liabilities includes Brown et al. (2001), who
studied a duration-based hedging strategy and Harvey (2012), who discussed
the difficulties in calculating the duration of a CB plan, and outlined several
practical investment strategies, including credit default swaps, treasury futures
and swaptions, but without supporting theoretical or empirical analysis.

The remainder of the paper is structured as follows. Section 2 introduces the
assumptions, notation andmodels we adopt in this paper, and also the valuation
formulae. Section 3 presents the construction of hedging portfolios. Section 4
describes the accumulated hedge error, which we use to measure hedge effec-
tiveness. Section 5 examines the hedge error arising from discrete rebalancing,
without model or parameter risk. In Section 6, we consider the impact of model
and parameter error by analyse the hedging effectiveness using real historical
interest rates. In Section 7, we consider basis risk, by comparing the results us-
ing a spot rate crediting rate, which is the more tractable approach, with results
using the YTM crediting rate that is what is used in practice. In Section, 8 we
briefly compare the results of hedging with results where the assets are invested
in a traditional DB equity/bond portfolio, and in Section 9, we introduce early
exits through a brief example. Section 10 concludes.

2. MODEL AND ASSUMPTIONS

In this section, we outline the formulae and assumptions used for valuing the
CB pension liability, following Hardy et al. (2014) and Zhu (2015).

2.1. The CB accrued benefit

This paper focuses on the interest rate risk; in this section, we ignore demo-
graphic risk, but we will consider early exits in Section 9. Treating the indi-
vidual CB account balance at retirement as a contingent payment, the market
value of the liability is the risk neutral expectation of the discounted payoff at
termination.

Our valuation approach is accrual based, and so are all the hedging strategies
we construct. Under the accruals principle (equivalent to unit credit in a tradi-
tional pension plan), the accrued liability is based only on past contributions.
Future notional contributions into the plan can be each regarded as a separate
derivative that will be evaluated and hedged in the same way as the existing
account value at the time of payment. This means that our problem is to hedge
the interest rate risk arising from the application of future, unknown crediting
rates to the current notional account value.

Viewing the pension plan as a whole, the hedge portfolio will comprise
hedges based on a range of accrued funds and times to exit, but to illustrate we
consider a single employee fund, with a T-year term to exit from the valuation
date.

We denote by Ft the notional account value at time t, based on a fixed no-
tional account value of F0 at t = 0, and ignoring notional contributions after
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t = 0. The frequency of interest crediting varies between plans, but the most
common choice is annual crediting. Let i c(s) denote the crediting rate applied
in the year s to s + 1. The exit date (which is known in advance) is denoted T.
The lump-sum payment at the retirement date is the random variable FT. For
t = 0, 1, 2, . . . ,T we have

Ft = F0
t−1∏
s=0

(
1 + i c(s)

)
For the continuous crediting case, we let r c(s) denote the continuously com-
pounded crediting rate at time s, so that for 0 < t ≤ T

Ft = F0 e
∫ t
0 r

c(s)ds

The formulae for valuation and hedging are more straightforward for the con-
tinuous crediting case than for the discrete, so in the main part of the paper, we
present the formulae and results using continuous crediting. The formulae for
the discrete case are derived alongside the continuous versions in the appendices.
The results are very close.

As in Hardy et al. (2014), we develop our results assuming that the crediting
rate at t is equal to the k-year spot rate from theUS government bond yield curve
at that time. This is a convenient and reasonably accurate approximation to the
most common form of crediting rate, that is the YTM on k-year government
bonds (Kravitz, 2015), with k = 30 being the most popular choice, and this is
the rate used throughout the numerical illustrations in this paper.

2.2. The valuation formula

Let r(t) denote the continuously compounded short rate of interest at time t, let
P(t,T) denote the price at t of a zero-coupon bond with face value of $1, which
matures at time T, and let rk(t) denote the k-year spot rate at time t. Then,

P(t,T) = e−rT−t(t) (T−t) = EQ
t

[
e− ∫ T

t r(s)ds
]
,

where EQ
t denotes the risk neutral expectation given the information at t.

The market consistent value at time t of the payoff FT due at time T ≥ t
is the expected discounted payoff, using the risk neutral measure. Thus, at time
t > 0, the value is

Vt = EQ
t

[
FTe− ∫ T

t r(s)ds
]

= Ft E
Q
t

[
e
∫ T
t r c(s)−r(s)ds

]
.

If r c(t) and r(t) are independent, for example, if the crediting rate is a con-
stant, this becomes a simple formula. In the case, where r c(t) is based on treasury
rates at t, there is a strong dependence between the crediting rate and the short
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rate, and so we use a stochastic model of the yield curve for the joint distribution
of r c(s) and r(s).

We define the valuation factor V(t,T) as the market value at time t per $1
in the participant’s account balance at time t, where the benefit matures at time
T ≥ t; that is

V(t,T) = EQ
t

[
e
∫ T
t r c(s)−r(s)ds

]
.

2.3. Shortrate models

We use both the one-factor and two-factor versions of the HW model. Both of
these are well-recognizedmodels; both allow a perfect match between themodel
and market starting yield curve, and both offer convenient analytical tractabil-
ity.2 For the one-factor HWmodel, the instantaneous short rate under the risk-
neutral measure has the following stochastic differential equation (SDE):

dr(t) = (θ(t) − ar(t)) + σdW(t), r(0) = r0,

where a > 0, σ > 0 are constant, θ(t) is a deterministic function chosen to
match the market term structure at the starting date, W(t) is a standard Brow-
nian motion under the Q measure, and r0 is the observed short rate at time
0. There are two common parameterizations for the two-factor HW model.
The one, we adopt here is commonly referred to as G2++ (Brigo and Mercurio
(2001)). The dynamics of the instantaneous short rate under Q are

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0

dx(t) = −a1x(t)dt + σ1dW1(t), x(0) = 0

dy(t) = −a2y(t)dt + σ2dW2(t), y(0) = 0

dW1(t)dW2(t) = ρdt,

where r0 is the initial observed short rate, a1, a2, σ1,σ2 are all positive constants,
ϕ(t) is the deterministic function used to match the initial-term structure, and
(W1(t),W2(t)) is a two-dimensional Brownian motion under the Q measure,
with correlation ρ, −1 ≤ ρ ≤ 1.

The valuation formulae for the continuous and discrete crediting cases are
given in Appendices A and B, respectively. Interested readers can refer to Hardy
et al. (2014) and Zhu (2015) for more detailed derivations.

3. CONSTRUCTING THE DYNAMIC HEDGING PORTFOLIO

In this section, we develop hedging strategies for a CB plan with crediting rate
equal to the 30-year spot rate on Treasuries. We develop and compare three
different strategies.
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1. A delta hedge under the one-factor HW model (requires two assets).
2. A delta-gamma hedge under the one-factor HW model (requires three

assets).
3. A delta hedge under the two-factor HW model (requires three assets).

The hedging instruments we use are a money market account, with return equal
to the short rate, and treasury STRIPs of varying length. In practice, hedging
with treasury STRIPs may be impractical due to the size of the STRIPs mar-
ket, but the techniques may be adapted to other fixed income securities, such as
treasury bonds, as we show in Section 7.2.

3.1. Greeks

The delta and gamma for a particular security are defined as the first- and
second-order derivatives respect to the underlying risky process. Here, we pro-
vide the delta and gamma for the CB liability (subscript V) and for the zero-
coupon bond price (subscript B) under the one-factor HW model. In the fol-
lowing, recall that t > 0 is the valuation date, T ≥ t is the exit date, and k is the
assumed term of the spot rate used as a crediting rate under the plan.

�B(t) = ∂P(t,T)

∂r(t)
= −B(a,T − t)P(t,T), (1)

�V(t) = ∂V(t,T)

∂r(t)
= −γ (a, k)B(a,T − t)V(t,T), (2)

	B(t) = ∂2P(t,T)

∂r(t)2
= B(a,T − t)2P(t,T), (3)

	V(t) = ∂2P(t,T)

∂r(t)2
= γ (a, k)2B(a,T − t)2V(t,T), (4)

where

B(a, s) = 1 − e−as

a
,

and

γ (a, k) = 1 − B(a, k)
k

.

Under the two-factor HW model, the deltas for the CB liability and for the
zero-coupon bond are the first partial derivatives with respect to each stochastic
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driver (x and y).

�x
B(t) = −B(a1,T − t)P(t,T),

�
y
B(t) = −B(a2,T − t)P(t,T),

�x
V(t) = −γ (a1, k)B(a1,T − t)V(t,T),

�
y
V(t) = −γ (a2, k)B(a2,T − t)V(t,T).

Analogous formulae for discrete crediting are given in Appendix D.

3.2. Position of hedging instruments

The hedging instruments we use for delta hedging under the one-factor HW
model are the money market account, with return equal to the short rate, and a
zero-coupon bond with maturity T1.

For delta-gamma hedging under the one-factor HW model and for delta
hedging under the two-factor HW model, we need a third asset, so we add an-
other zero-coupon bondwithmaturity T2 > T1. The position in each instrument
can be obtained by solving linear equation(s). For example, for delta hedging
under the one-factor HW model, we solve for the position in the T1-year zero-
coupon bond (
HW

1 (t)) as

�V(t) = �B(t,T1)
HW
1 (t) = −B(a,T − t)P(t,T)
HW

1 (t) from (1)

⇒ −B(a,T − t)P(t,T)
HW
1 (t) = −γ (a, k)B(a,T − t)V(t,T) from (2)

⇒ 
HW
1 = γ (a, k)B(a,T − t)V(t,T)

B(a,T1 − t)P(t,T1)
.

Similarly, for delta-gamma hedging with the one-factor HW model, the po-
sition in the T1-year zero-coupon bond (
HW

1 ) and the position in the T2-year
zero-coupon bond (
HW

2 ), are


HW
1 = γ (a, k)B(a,T − t)(γ (a, k)B(a,T − t) − B(a,T2 − t))V(t,T)

B(a,T1 − t)(B(a,T1 − t) − B(a,T2 − t))P(t,T1)
,


HW
2 = γ (a, k)B(a,T − t)(γ (a, k)B(a,T − t) − B(a,T1 − t))V(t,T)

B(a,T2 − t)(B(a,T2 − t) − B(a,T1 − t))P(t,T2)
.

For delta- hedging with the two-factor HW model, the position in the T1-
year zero-coupon bond (
G2

1 ) and the position in the T2-year zero-coupon bond
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(
G2
2 ) are


G2
1 = (γ (a1, k)B(a1,T − t)B(a2,T2 − t) − γ (a2, k)B(a2,T − t)B(a1,T2 − t))V(t,T)

(B(a1,T1 − t)B(a2,T2 − t) − B(a2,T1 − t)B(a1,T2 − t)) P(t,T1)
,


G2
2 = (γ (a1, k)B(a1,T − t)B(a2,T1 − t) − γ (a2, k)B(a2,T − t)B(a1,T1 − t))V(t,T)

(B(a1,T2 − t)B(a2,T1 − t) − B(a1,T1 − t)B(a2,T2 − t)) P(t,T2)
.

In each case, the amount invested in the bank account S(t) equals the difference
between the liability value and the total value of the position in zero-coupon
bonds.

For simplicity, we select the first zero-coupon bond duration, T1 to be the
same maturity as the horizon of the liability, and select the longest maturity
zero-coupon bond available for T2 (30-year for the US Treasury Strip market).

3.3. Estimating the parameters

In both Hardy et al. (2014) and Zhu (2015), the same parameters are used. For
the one-factor HWmodel, we used α = 0.02, σ = 0.006, and for the two-factor
model, we used

a1 = 0.055, a2 = 0.108, σ1 = 0.032, σ2 = 0.044, ρ = −0.9999

Notice that the correlation ρ is close to negative one, which implies that the two-
factor model is in some sense very close to an one-factor model. However, this
one-factor model is not equivalent to the one-factor HWwhenever a1 �= a2 (see
Brigo and Mercurio (2001)). Gurrieri et al. (2009), Gupta and Subrahmanyam
(2005) and Brigo and Mercurio (2001) all note that ρ may become highly neg-
ative depending on the instruments used for calibration. The parameter values
shown above imply a long-term unconditional standard deviation for the short
rate that is close to experience over the past 30–40 years.

In Section 4, we will assess the effectiveness of delta and delta-gamma hedg-
ing strategies by applying them to CB liabilities maturing in the period 2005–
2015. It would not be appropriate to use the parameters above to examine the
hypothetical effectiveness of the hedging strategies over this testing period, as
the parameters were derived using that same data. To test whether the hedge
strategy would have been effective, we should only use information available at
the time. The parameters used should be consistent with the data available at the
assumed initial valuation; we also consider the possibility that the parameters
could be updated between the initial valuation and the termination date.

The most common choices of market derivatives used for calibration of in-
terest rate models are caps and swaptions. We use swaptions as they contain
more information on the correlations between forward rates, which is critical in
our application (see Brigo and Mercurio (2001)). The choices for the number
of swaptions used in the calibration strongly affects the parameter values. For
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FIGURE 1: Calibrated Parameters for the one-factor HW based on swaption prices, 2000–2015. (Color online)

example, Gurrieri et al. (2009) compare the calibration results using three sets of
swaptions for the one-factor HWwith time-varying mean reversion and volatil-
ity. We use at-the-money swaptions with expiration dates between one year and
the maturity of the CB liability. The tenors of the swaptions are chosen to be
30 years, with quarterly payment.3 We set the model parameters by minimising
the sum of the relative squared difference between the theoretical swaption price
and the market price, that is, minimizing

obj =
n∑
i=1

(
model implied swaption pricei − market swaption pricei

market swaption pricei

)2

.

For the two-factor model, to distinguish between the parameters of the two
stochastic drivers, we set constraints as

0 < a2 < a1 < 1, 0 < σ1, σ2 < 0.5, −1 < ρ < 1.

There exist closed-form solutions for swaption prices under the one and two
factorHWmodels.However, the calibration is computationally expensive.Here,
we adopt the approximation proposed by Schrager and Pelsser (2006), which
greatly simplifies the formulae for swaption prices with sufficient accuracy (for
parameter values in our study, the relative difference in the swaption prices is at
most 2%).

Figures 1 and 2 present the calibrated parameters as a function of the calibra-
tion date. At first glance, the estimated parameters for the two-factorHWmodel
do not match with the estimated parameters for the one-factor HW model. In-
deed, the variance of future short rates under these two sets of parameters differs
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FIGURE 2: Calibrated Parameters for two-factor HW (volatility and correlation only) based on swaption
prices, 2000–2015. (Color online)

significantly. The reason is that the swaptions we used for calibration are focused
on the long rates over the next five years. In fact, the two sets of parameters imply
a close match for the variance of spot rates with long maturity in the next one
to five years. Also, notice that all calibrated parameters are somewhat volatile,
especially for the two-factor HW model (where parameters are often close to
the constraints). This phenomenon has been observed elsewhere in the litera-
ture (for example, Enev (2011) and Gurrieri et al. (2009)). In Section 6, we will
apply the hedging strategies derived from these models and parameters to real-
world interest rate paths; we will demonstrate that in spite of the volatility in the
implied parameters, the hedging strategies can nevertheless be quite effective.

4. HEDGING PERFORMANCE METRICS

Under certain theoretical assumptions, a dynamic hedging strategy with no
transaction costs can perfectly replicate the liability. However, this is impossible
in practice, and the difference between the liability and the replicating instru-
ment value is the hedge error. The hedge error comes from two main sources:
the fact that hedges are re-balanced discretely, not continuously as the theory
requires, and from the difference between the model and parameters assumed,
and the actual real-world interest rate process. There are also additional poten-
tial errors from transaction costs, but these are not very significant here because
fees for trading government bonds are assumed to be very low. See Zhu (2015)
for more details.
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In Section 5, we quantify the discrete hedge error by considering weekly,
monthly and annual re-balancing, where the monthly case serves as the bench-
mark, and where we eliminate the impact of model and parameter risk, by using
the hedging model, adapted for the market price of risk, to generate the simu-
lated “real world” interest paths.

In Section 6, we examine themodel and parameter risk by testing the hedging
strategies derived from our models, using historical paths of crediting rates and
yield curves, assuming crediting rates are treasury spot rates.

The approach in Section 6 introduces basis risk, from the fact that we are
assuming spot crediting rates, where the real liability is the YTM. In Section 7,
we investigate the basis risk by considering the difference between the spot rate
hedge and the YTM liability.

4.1. Accumulated Maturity Hedging Error (MHE)

We let H(t) denote the value of the hedge portfolio at time t, given the par-
ticipant remains in the plan. By definition, on re-balancing dates we have
H(t) = V(t) = Ft V(t,T). LetH(t−) denote the value of the hedge portfolio at
time t immediately before re-balancing, and we let E(t) denote the hedge error
at time t.

E(t) = V(t) − H(t−).

Assuming that at each re-balancing date, we invest/borrow the amount equal
to the hedge error at the risk-free rate, we get the accumulated hedge error at
maturity (MHE)

MHE =
T∑
t=1

E(t)e
∫ T
t r(s)ds .

5. EVALUATING DISCRETE RE-BALANCING HEDGING ERRORS

The distribution of hedge errors arising from discrete re-balancing can be ob-
tained by generating a large number of random sample paths for the future cred-
iting rate under the real-world probability measure, then calculating the MHE
for each sample path, based on a notional fund of $1,000 at the start of the
simulation.

We use 10,000 paths under a P-measure model for future interest rates that
is a simple shift of the assumed risk neutral model, to allow for the market price
of risk. For details, see Björk (2009). All other model assumptions are the same
for the random paths and for the hedging and valuation model, so we are iso-
lating the effect of discrete re-balancing without considering model, parameter
or basis risk, which are all considered in subsequent sections.
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Specific assumptions for both this section and Section 6 are as follows:

• The crediting rate is the k = 30-year treasury spot rate.
• We are hedging the payoff from a CB plan, based on the notional account
F0 = $1, 000 at the initial valuation date, and assuming the participant exits
T = 5 years later. We ignore additional notional contributions between the
valuation date and the exit date.

• The hedge instruments at t for the one-factor HW model with delta hedg-
ing, are the money market and a pure discount bond with T1 = T − t years
remaining.

• The hedge instruments at t for the one-factor HW model with delta-gamma
hedging, and for the two factor HWmodel with delta hedging, are the money
market, a pure discount bond with T1 = T − t years remaining, and another
pure discount bond with T2 = 30.

For the market price of risk, we follow the work of PricewaterhouseCoopers
(2014), which assumed a constant market price of risk, denoted λ, estimated
through historical rates from 2001 to 2012. The dynamics of the short rate under
the real-world measure are

dr(t) = (θ(t) − ar(t) + λσ)dt + σdWP(t).

We evaluate λ using historical monthly returns (from 1990 to 2015) on zero-
coupon bonds with maturities varying from 5 years to 30 years. The estimates
we obtained range from 0.46 to 0.6. We assume that 0.5 would be a reasonable
approximation for λ, and since we use 0.006 for the volatility term, the drift
adjustment would be 0.003.

Figures 3 and 4 display the distribution of MHEs under simulation using
the one-factor HW model, where F0 = $1, 000. The starting date of the plan
(or the initial term structure) is chosen as at 2009-02-27, but we find that the
MHE is not very sensitive to the initial term structure. Immediately, we observe
that increasing the frequency of the re-balancing will reduce the overall hedge
loss, as we expect. Also, for delta hedging, the effect of switching from annual
re-balancing to monthly is much greater than from monthly to weekly (in both
the magnitude and the shape of the distribution). Most importantly, even for
annual re-balancing, the MHE for a 5-year plan is less than 0.2%, which is in-
significant compared with other sources of error (as we shall illustrate in Section
6). In terms of terminal funding level, a monthly hedge frequency replicates the
maturity benefit with error less than 0.01%.

We conclude that the impact of discrete hedging error is relativelyminor, and
in the following sections where we consider model, parameter and basis risk we
may assumemonthly hedging does not significantly impact the ultimate hedging
errors.
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FIGURE 3: Simulation results for delta hedging (onefactor HW), plan started at 2009-02-27, initial account
value F0 = 1, 000. Annual (top), monthly (middle) and weekly (bottom) re-balancing. (Color online)

6. EVALUATING MODEL AND PARAMETER ERROR USING THE HYPOTHETICAL
HISTORICAL HEDGING PERFORMANCE

In this section, we consider the sameCBplan as in Section 5, but instead of using
randomly generated 5-year paths for short rates and crediting rates, we will use
a succession of 5-year paths from the past 15 years, with end dates ranging from
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FIGURE 4: Simulation results for gamma hedging (onefactor HW), plan started at 2009-02-27, initial account
value F0 = 1, 000. Annual (top), monthly (middle) and weekly (bottom) re-balancing. (Color online)

2005 to 2015. That is, we assume the plan trustees hedge the accrued liability
(i.e., past notional accumulated contributions) assuming all members leave at
the end of 5-years from the valuation date.4 We assume monthly re-balancing,
based on the results of Section 5 which indicate that this will be sufficiently
frequent.
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FIGURE 5: Valuation factors evaluated using different parameter calibration approaches, for HW using
one-factor (labelled HW) and two factors (labelled G2). (Color online)

To model the potential impact of different ways of updating the parameters,
we show the results using three different approaches

(i) Constant parameters.
(ii) Parameters calibrated at the plan starting date, and then maintained

through the five year term.
(iii) Parameters re-calibrated at each hedging date.

Recalibrating will, in principle, affect both the hedge and the valuation fac-
tors, but the impact is very small. In Figure 5, we present the valuation fac-
tors under different parameter calibrations and under the different models (one
factor or two factors). The graph demonstrates that the valuation factors are
extremely close, meaning that they are not very dependent on the parameters or
on the number of factors.

In Figures 6 to 8, we show results for each of the different hedging portfolios,
with different approaches to parameter recalibration. For easier comparison,
the graphs are all shown on the same scale. Figure 6 shows the results for the
delta strategy, using the one-factorHWmodel. Figure 7 shows the delta-gamma
strategy hedging result, still with the one-factor HWmodel, and Figure 8 shows
the delta strategy hedging result using the two-factor HW model.

From Figure 6, we see that the accumulated hedge errors are quite variable,
and the impact of re-calibrating the model is quite significant. Using constant
parameters, the MHE ranges from around +11% (in 2005, 2012) to −4% (in
2008–9) of the terminal liability (which ranges from around $1180 to $1320).
Using parameters that are set at the start of each 5-year term, the errors range
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FIGURE 6: Maturity hedge loss for CB plan, 5-year horizon, maturing at 2005–2015, with initial account
value F0 = 1, 000, Delta-hedging with the one-factor HW Model, using different parameter calibration

approaches. (Color online)
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FIGURE 7: Maturity hedge loss for CB plan, 5-year horizon, maturing at 2005–2015, with initial account
value F0 = 1, 000, Gamma-hedging with the one-factor HW Model, using different parameter calibration

approaches. (Color online)
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FIGURE 8: Maturity hedge loss for CB plan, 5-year horizon, maturing at 2005–2015, with initial account
value F0 = 1, 000, Delta-hedging with the two-factor HW Model, using different parameter calibration

approaches. (Color online)

from +12% (in 2012) to −4% (in 2008–9). Using parameters that are recali-
brated monthly, the higher end of the range is reduced to around +6% of the
terminal liability.

In Figure 7, we see that adding the gamma hedge to the one-factormodel has
not significantly improved the hedge accuracy in the constant parameter case,
but has improved accuracy where the parameters are regularly recalibrated.

In contrast, Figure 8 shows that the hedge using the two-factor model is
quite robust to the parameter variability, and overall losses are contained in a
range from close to 0% up to around 5% of the terminal liability.

In Figure 9, we show the MHEs for each model, where the hedges were de-
termined using constant parameters. The most immediate result is that the two-
factor model appears to create a much more reliable hedge than the one factor,
even though the valuation results were shown in Hardy et al. (2014) to be very
insensitive to the number of factors. However, the conclusion is less clear when
we compare results allowing for recalibration of the model at each hedging date,
as shown in Figure 10. Here, we see that, although the variability of hedging er-
rors in the two-factor case is less than either of the one-factor cases, the upper
end of the errors are similar – though generated by different market conditions.
The one-factor model does worst through the 2001–2006 period, with declining
spreads between long and short rates. The two-factor model is less sensitive to
the changing market conditions up to the crisis; the worst performance cov-
ers the period from around 2008–2013. We note also from this graph that the
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FIGURE 9: MHE for 5-year CB plan maturing at 2005–2015, using constant parameters. (Color online)
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FIGURE 10: MHEs for 5-year CB plan maturing at 2005–2015, parameters re-calibrated
monthly. (Color online)
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addition of the gamma hedge in the one-factor case does seem to generate im-
proved hedging accuracy.

7. CREDITING WITH THE YIELD TO MATURITY

As mentioned in previous sections, in practice a treasury-based crediting rate in
a CB plan would use the YTM on treasuries, not the spot rate. This means that
there is basis risk in the analysis in Section 6, arising from the difference between
the assumed hedge liability and the actual hedge liability. The reason for using
spot rates is tractability; using YTMs all the hedging portfolios must be deter-
mined using repeated Monte Carlo simulation. In this section, we examine the
magnitude of the basis risk by considering the difference between hedging spot
crediting rates and hedging YTM crediting rates, with all other assumptions as
in Section 6; specifically, 30-year treasury bond crediting rates, 5-year hedging
horizon, with HW one- and two-factor interest rate models.

7.1. Valuation by control variate method

Unfortunately, there is no closed-form solution available, thus, numerical meth-
ods such as the Monte Carlo method must be implemented. Here, we denote
yk(t) as the k-year YTM at time t, which is the annual coupon rate payable
semi-annually on a new k-year bond issued at par at time t:

yk(t) = 2(1 − P(t, t + k))∑2k
u=1 P(t, t + u

2 )
.

Due to the close relationship between the YTM and the spot rate, the valuation
factor for a CB plan using the spot rate can be set as a control variate in the
Monte Carlo simulation for the YTM crediting rate valuation. To measure the
effectiveness of the control variate, we use the variance reduction ratio (VRR),
which is defined as

VRR = Var(naive estimator)
Var(estimator with control variate(s))

.

Figure 11 displays the VRRs for different valuation dates. The effectiveness of
the control variate depends on the correlation between the spot rate and the
YTM. When the yield curve is relatively flat, the YTM is close to the long-term
spot rate, and the VRR is almost 15,000. Even when the yield curve is fairly
steep the VRR is above 5,000. This implies that the control variate reduces at
least 99.98% of the variance of the naive Monte Carlo method.

Figure 12 compares the valuation factors using spot crediting rates rate and
YTM crediting rates, assuming constant parameters. We note that spot credit-
ing rates have generally produced larger valuation factors over this period; the
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FIGURE 11: VRR for YTM crediting rate valuation under one-factor HW, using spot rate as the control
variable, 10,000 simulations. (Color online)
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FIGURE 12: Compare valuation factors using 30-year spot and YTM crediting rates, 5-year horizon, initial
fund $1,000, 10,000 simulations. (Color online)

difference is usually less than 4%, but in periods where the yield curve is partic-
ularly steep it has been as high as 9%.

7.2. Hedging the YTM crediting rate

To calculate the delta for the YTM valuation factor, we adopt the pathwise
method (see Glasserman (2003)), and use the delta from equation (2) as the
control variate. Although the variance reduction is not as effective as the valua-
tion factors, VRR remains above 15 (up to 200) for all scenarios. It is important
to point out that although the valuation factors for the spot rate and YTM
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FIGURE 13: MHE for a CB plan with 5-year horizon, maturing at 2005–2015, initial amount $1,000, 30-year
treasury bond YTM crediting rate, constant parameters. (Color online)
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FIGURE 14: MHE for a CB plan with 5-year horizon, maturing at 2005–2015, initial amount $1,000, 30-year
treasury bond YTM crediting rate, parameters recalibrated monthly. (Color online)

are close, their Deltas and Gammas may differ significantly. This is because the
sensitivity of the spot rate to the YTM is quite different from the sensitivity of
the short rate to the long-spot rate. Therefore, it is important to verify if delta
hedging remains effective.

In this section, instead of using treasury STRIPS, we considered more liquid
treasury bonds in our portfolio. All other settings follow exactly as in Section 6.

Comparing Figures 13 and 14 with Figures 9 and 10, we can observe many
similarities. The shape of the graphs are almost identical, and, as we expected
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FIGURE 15: Maturity hedge loss for 5-year CB plan maturing at 2005–2015, initial account value
F0 = 1, 000, 30-year teasury spot crediting rate, traditional equity/bond investment strategy and delta hedge

strategy. Constant parameters. (Color online)

from the comparison between valuation factors, the absolute value of theMHE
is slightly lower for YTM crediting rates. Importantly, we see that, as for the
spot rates, the delta hedge applied under the one- or two-factor HW models
appears to offer a stable risk management strategy, with accumulated hedging
errors generally less than around 5% of the fund value at maturity.

8. COMPARING THE DELTA HEDGE STRATEGY WITH A TRADITIONAL
INVESTMENT STRATEGY

One of the initial attractions of CB plans to employers is that by investing in
equities, the employer could pay less than the notional contribution rate (as %
of pay), since the additional return on equities would fund the crediting rate and
make up the shortfall in contributions (see Gold (2001)).

Using a traditional approach to pension investing for DB plans, trustees
might select a simple 60% equity/40% long-bond portfolio, and it is interesting
to compare the funding deficit or surplus at maturity under this strategy with
the case where one of the hedging strategies is adopted. In Figure 15, we show
the maturity hedging loss (or surplus) following a traditional 60/40 equity/long-
bond strategy, alongside the accumulatedMHEusing the two-factorHWhedge.
Note that we have had to extend the scale dramatically compared with the hedg-
ing graphs above. We have assumed the same starting assets for each 5-year pe-
riod (specifically, 1, 000V(t, 5)), although in practice this is significantly more
than a traditionally managed CB plan might hold.

This figure clearly demonstrates how the hedged portfolio targets the ter-
minal liability, while the unhedged portfolio may end up vastly over or un-
derfunded. On the other hand, the unhedged case does generate some very
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enticing profits – but this is not a good case for rejecting hedging, as the profits
are unlikely to be repeated in the near future. The gains from the equity/bond
portfolio are largely generated from the steady period of declining interest rates,
which has generated consistent gains on long bonds that cannot continue indef-
initely, and indeed will reverse in periods of rising interest rates. There is a sig-
nificant possibility that the massive gains experienced in the last 10 years could
be replaced by equally large losses in the next 10 years using the equity/bond
investment approach. If the purpose of modern pension risk management is
not to generate windfall gains, but to minimize losses and hence minimize con-
tribution variability as much as possible, then the hedging strategy appears far
more suitable.

9. INCORPORATING PRE-RETIREMENT EXITS

In practice, employees may terminate their pension plan prior to the normal
retirement date for various reasons: change of employment, disability, death or
early retirement. These termination events are often assumed to be independent
from the market performance. Here, we construct a simple example to illustrate
that delta hedging remains effective if the termination events are assumed to be
independent from interest rates, and diversifiable. Let U(t,T) denote the val-
uation factor incorporating pre-retirement exits, and assuming (for simplicity)
that the individual will receive their account value at the end of the year of exit.

U(t,T) =
T−1∑

u=�t+2�
V(t, u)�t+u−1�−t p00x q

(τ )

x+�t+u−1�−t

+ �t+1�−tq(τ )
x V(t, �t + 1�) + �t+T−1�−t p00x V(t,T).

where t p(τ )
x is the probability that a plan member age x is still in the plan at age

x+ t, and q(τ )
x is the probability that a plan member age x exits the plan before

age x+1 (Dickson et al. (2013)).We see thatU(t,T) is simply a weighted average
of V(t, S) where t ≤ S ≤ T. In Figure 16, we show the surface of V(0,T) for a
range of horizon periods (T) and start dates. Although V(0,T) is not a strictly
increasing function in T it is generally increasing for T ∈ [0, 20]. Using V(t,T)

as an approximation forU(t,T) will tend to over-price and over-hedge the risk.
When the exit events are diversifiable the plan can be hedged by combining

the exit probabilities with the appropriate hedge portfolios from Section 7.2. For
a single cohort, this could be constructed as follows.

• Step 1: At time 0, evaluate the valuation factor V(0,T) and construct the
hedging portfolio based on the Greeks.

• Step 2: At the end of month 1, 1/12 px percent of people remain in the plan
(requires V(1/12,T) in liability), and 1/12qx percent of people leave the plan
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FIGURE 16: V(0,T) using 30 year treasury bond YTM crediting rate, with different horizons and start dates,
one-factor HW model. (Color online)

and will receive the full account balance at the year end. We measure the
hedge loss for the period and re-construct the portfolio.

• Repeat Step 2 for t = [1/12, · · · ,T].

We illustrate this approach using demographic assumptions from the 2016
Actuarial Report for University of Toronto Pension Plan with a maximum
horizon of 15 years. We set 1

12
q(τ )
x as the aggregate 1-month exit probability for

a member age x. The probability that an employee will remain in the plan at
the end of 15th year is approximately 47%. For a cohort starting on January
1st, 2000 and ending on December 31st 2014, the MHE is 10.7% of the initial
account value. To show how this hedge error arises, in Figure 17 we show the
monthly hedge errors that accumulate to the MHE of 10.7% of F0 (which is set
at $1,000), with and without early exits. Notice that the plan allowing for early
exits has a slightly more stable hedging performance, but the hedge errors at
each re-balancing date are close. Therefore, introducing early exits that are di-
versifiable will not affect the overall hedging results materially, and diversifiable
exits can easily be incorporated into the hedging strategy.

10. CONCLUSION

In this article, we have studied dynamic hedging strategies for CB pension plans.
Dynamic hedging strategies are relatively simple to construct, and offer effective
mitigation of the significant interest rate risk inherent in CB plans with long
treasury bond YTM crediting rates.

We have restricted the examples, for example by excluding consideration of
floors, by limiting the horizon to only five years, and by limiting the hedging
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FIGURE 17: Monthly hedging rrrors for a 15-year CB cohort starting on 1/1/2000, with and without
allowance for exits. One-factor HW model, delta hedge, 30 year treasury bond YTM crediting

rates. (Color online)

portfolio to simple treasury bonds/STRIPs. Nevertheless, the results when ap-
plied to real world scenarios do indicate that the simple delta strategy is able to
provide a practical, affordable hedge against interest rate risk, even through the
turmoil of the past decade.

In future work, we will explore other types of hedging strategies, including
semi-static hedging, as we incorporate more complex crediting rate designs. See
Marshall (2011) and Liu (2010) for discussions of semi-static hedging for differ-
ent guaranteed options embedded in variable annuities. We also plan to explore
different approaches to the valuation liability; in particular, we will examine the
impact of a traditional unit credit approach, where the liability at each date is
equal to the notional account, ensuring that assets are designed to meet the
liabilities whenever the participant exits the plan, once the benefits are vested.
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NOTES

1. Internal Revenue Bulletin, T.D.9743, 2015-48 I.R.B.679, “Transitional Amendments to Sat-
isfy the Market Rate of Return Rules for Hybrid Retirement Plans”.
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2. One disadvantage of these models is that the short rate has a Gaussian distribution, with
the possibility of being negative, but Hardy et al. (2014) show that this does not have a significant
impact on the valuation factor.

3. The swaption data are quoted as a Black-volatility matrix and are obtained fromBloomberg.
4. This is somewhat analogous to a partly projected approach to traditional pension valuation.
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APPENDIX A. CONTINUOUS CREDITING BASED
ON THE K-YEAR SPOT RATE: ONE-FACTOR HW

MODEL

This section and the following three sections provide formulae for valuation factors. Detailed
proofs can be found in Hardy et al. (2014) and Zhu (2015). For CB plans with the k-year
spot rate as the continuous crediting rate, the valuation factor using the one-factor HW
model is

V(t,T) = EQ
t

[
e

∫ T
0 rk(s)ds−

∫ T
t r(s)ds+m(k)T

]
= e

∫ t
0 rk(s)dse− ∫ T

t
A(s,s+k)

k ds Pγ (t,T)em(k)T,
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where

Pγ (t,T) = exp
{
Aγ (t,T) − Bγ (a,T − t)r(t)

}
Aγ (t,T) = γ log

{
PM(0,T)

PM(0, t)

}
+

{
σ 2γ

4a
{ 2
a

(γ − 1)(T − t) + (e−2at − γ )B2(a,T − t)

+ 1
a

(2 − 2γ )B(a,T − t)} + γ f M(0, t)B(a,T − t)
}

Bγ (a,T − t) = γ B(a,T − t)

B(a, k) = 1 − e−ak

a

A(t, t + k) = log
p(0, t + k)
p(0, t)

+ f (0, t)B(a, k) − σ 2

4a
B(a, k)2(1 − e−2at)

γ = 1 − B(a, k)
k

.

APPENDIX B. DISCRETE CREDITING BASED ON
THE K-YEAR SPOT RATE: ONE-FACTOR HW

MODEL

ACB plan with the k-year spot rate as the crediting rate and crediting frequency n times per
year, has the valuation factor using the one-factor HW model

V(t,T) = e
∑tn

s=1
rk( sn )

n eA(t,T)−B(a,T−t)r(t)eEH(t,T,n)+ 1
2 VH(t,T,n), (B.1)

where

EH(t,T, n) =
Tn∑

i=tn+1

−A
(
i
n ,

i
n + k

)
nk

+ B(a, k)
nk

Tn∑
i=tn+1

[
r(t)e−a( i

n −t) + ϕ

(
i
n

)
− ϕ(t)e−a( i

n −t)

− σ 2

a2

(
1 − 1

2
e−a(T− i

n ) − e−a( i
n −t) + 1

2
e−a(T+ i

n −2t)
)]

VH(t,T, n) =
(

σ B(a, k)
nk

)2 Tn∑
j=tn+1

(
e− a

n ( j−1) − e−aT

e
a
n − 1

)2
e2a

j
n − e2a

j−1
n

2a

ϕ(t) = f M(0, t) + σ 2

2a2
(1 − e−at)2.
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f M(0, t) is the observed instantaneous forward rate at time t, and A(t,T), B(a, k) are defined
in the previous section.

APPENDIX C. CONTINUOUS CREDITING BASED
ON THE K-YEAR SPOT RATE: TWO-FACTOR HW

MODEL

For a CB plan with the k-year spot rate as the continuous crediting rate, the valuation factor
using the two-factor HW model is

V(t,T) = exp
{∫ t

0
rk(s)ds

}
exp {m(k)T} exp

{
−

∫ T

t

AG(s, s + k)
k

ds
}

exp (A∗(t,T) − γ (a1, k)B(a1,T − t)x(t) − γ (a2, k)B(a2,T − t)y(t)) ,

where

AG(t,T) = log
p(0,T)

p(0, t)
+ 1

2
(ν(T − t) + ν(t) − ν(T))

ν(k) = σ 2
1

a21
(k− 2B(a1, k) + B(2a1, k)) + σ 2

2

a22
(k− 2B(a2, k) + B(2a2, k))

+ 2ρσ1σ2

a2a2
(k− B(a1, k) − B(2a2, k) + B(a1 + a2, k))

B(a, k) = 1
a

(1 − e−ak)

A∗(t,T) = log
p(0,T)

p(0, t)
+ 1

2
(ν∗(T − t) + ν(t) − ν(T))

ν∗(k) = γ (a1, k)2σ 2
1

a21
(k− 2B(a1, k) + B(2a1, k))+γ 2(a2, k)σ 2

2

a22
(k− 2B(a2, k)+B(2a2, k))

+ 2ργ (a1, k)γ (a2, k)σ1σ2

a1a2
(k− B(a1, k) − B(a2, k) + B(a1 + a2, k))

γ (a j , k) = 1 − B(a j , k)
k

, j = 1, 2
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APPENDIX D. DISCRETE CREDITING BASED ON
THE K-YEAR SPOT RATE: TWO-FACTOR HW

MODEL

The CB plan with the k-year spot rate as the crediting rate and crediting frequency n times
per year, has the valuation factor using the two-factor HW model

V(t,T) = e
∑tn

s=1
rk( sn )

n eA
G (t,T)−B(a1,T−t)x(t)−B(a2,T−t)y(t)eEG(t,T,n)+ 1

2 VG(t,T,n),

where

EG(t,T, n) =
Tn∑

i=tn+1

−AG
(
i
n ,

i
n + k

)
nk

+ B(a1, k)
nk

[
x(t)e−a1( in −t) − MT

x (t,
i
n

)

]

+ B(a2, k)
nk

[
y(t)e−a2( in −t) − MT

y (t,
i
n

)

]

VG(t,T, n) =
(

σ1B(a1, k)
nk

)2 Tn∑
j=tn+1

(
e− a1

n ( j−1) − e−a1T

e
a1
n − 1

)2
e2a1

j
n − e2a1

j−1
n

2a1

+
(

σ2B(a2, k)
nk

)2 Tn∑
j=tn+1

(
e− a2

n ( j−1) − e−a2T

e
a2
n − 1

)2
e2a2

j
n − e2a2

j−1
n

2a2

2ρ
(

σ1B(a1, k)
nk

)(
σ2B(a2, k)

nk

)

×
Tn∑

j=tn+1

(
e− a1

n ( j−1) − e−a1T

e
a1
n − 1

) (
e− a2

n ( j−1) − e−a2T

e
a2
n − 1

)
e(a1+a2) jn − e(a1+a2) j−1

n

a1 + a2

MT
x (s, t) =

(
σ 2
1

a1
+ ρ

σ1σ2

a2

)
B(a1, t − s) − σ 2

1

a1
e−a1(T−t)B(2a1, t − s)

− ρσ1σ2

a2
e−a2(T−t)B(a1 + a2, t − s)

MT
y (s, t) =

(
σ 2
2

a2
+ ρ

σ1σ2

a1

)
B(a2, t − s) − σ 2

2

a2
e−a2(T−t)B(2a2, t − s)

− ρσ1σ2

a1
e−a1(T−t)B(a1 + a2, t − s)
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