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We consider Fokker–Planck equations with tilted periodic potential in the subcritical regime and
characterise the spatio-temporal dynamics of the partial masses in the limit of vanishing diffusion.
Our convergence proof relies on suitably defined substitute masses and bounds the approxima-
tion error using the energy-dissipation relation of the underlying Wasserstein gradient structure.
In the appendix, we also discuss the case of an asymmetric double-well potential and derive the
corresponding limit dynamics in an elementary way.
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1 Introduction

We study the Fokker–Planck equation

τ
(
∂t�(t, x, p)−�x�(t, x, p)

) = ν2∂2
p�(t, x, p)+ ∂p

((
H ′( p)− σ

)
�(t, x, p)

)
, (1.1)

with small parameters τ and ν. Here, t and x ∈R
n denote the time and space variable, respec-

tively, p ∈R stands for an internal but scalar state variable and the unknown � is supposed to be
non-negative and normalised by ∫

Rn

∫
R

�(t, x, p) dp dx = 1 . (1.2)

In the spatially homogeneous situation – that is, without any x-dependence – the resulting partial
differential equation (PDE) for � as function of t and p is also called Kramers–Smoluchowski
equation and can be viewed as the deterministic equation for the probability distribution of a
stochastic particle systems. The latter is governed by the overdamped Langevin or Smoluchowski
equation

τ dp = (
σ − H ′( p)

)
dt +

√
2ν2 dW , (1.3)

where W represents a standard Wiener Process related to Brownian motion in p-space.
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710 M. Herrmann and B. Niethammer

FIGURE 1. Left panel. Example of an L-periodic potential H as in Assumption 1.1. The grey boxes indicate
the spinodal regions in which H is concave. Right panel. The local extrema of H ′ are denoted by σ∗ and σ ∗.
In this paper, we always assume that the tilting parameter σ is restricted by (1.5) so that the effective
potential Heff admits equidistant wells as illustrated in the left panel of Figure 2.

FIGURE 2. Left panel. In the subcritical regime σ∗ <σ < σ ∗ studied in this paper, the effective potential
Heff from (1.4) admits multiple wells (here depicted for 0<σ < σ ∗) with local minima and maxima located
at the positions Pj and Qj, respectively, where j ∈Z and Pj <Qj < Pj+1. The grey boxes indicate the spinodal
regions. Right panel. Our results do not cover the supercritical regime σ > σ ∗ since the effective potential
has no wells anymore. The mass transfer is therefore very fast; see Appendix A.

In what follows we always suppose that the potential H is a smooth and periodic function in p;
see Figure 1 for an illustration. The particles, however, move in the effective potential

Heff( p)= H( p)− σp. (1.4)

due to the presence of the tilting parameter σ ∈R, which is assumed to be independent of ν.
As depicted in Figure 2, the properties of Heff strongly depend on the choice of σ , where the
critical values σ∗ and σ ∗ denote the global minimum and maximum of H ′, respectively. In the
supercritical regime, we have either σ < σ∗ or σ > σ ∗, so Heff is either strictly increasing or
decreasing. In the subcritical regime σ∗ <σ < σ ∗, however, the effective potential possesses
several wells which represent metastable traps for the stochastic particle dynamics (1.3).

Overdamped Langevin equations with tilted periodic potential and the corresponding Fokker–
Planck equations appear in many branches of mathematics and the sciences. There exists a quite
exhaustive literature; see, for instance, [27, 20, 26, 5, 9, 19] and references therein, and applica-
tions range from plasma and solid state physics, materials science and electrical engineering to
molecular motors, surface diffusion, Brownian ratches and Josephson junctions.

Another interpretation of the Fokker–Planck operator is reminiscent of Kramers’ seminal
paper [18] on kinetic models for chemical reactions. More precisely, we can regard each local
minimum of Heff as a local equilibrium of a reacting systems, and the random walk in p-direction
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on the particle level — or equivalently, the term ν2∂2
p – describes reactions; this means transi-

tions between adjacent wells of the effective potential. Notice, however, that the PDE (1.1) also
involves �x. This term describes an additional diffusion with respect to the physical space vari-
able x, where the latter has been scaled so that the corresponding diffusion constant equals the
small relaxation time in front of the time derivative ∂t. Although such combined Fokker–Planck
equations for reaction-diffusion systems are less common in the literature, they appear naturally
in the description of spatially extended dynamical systems and the extra term does not compli-
cate the mathematical analysis very much. Moreover, we regard (1.1) merely as a toy model to
study some aspects of multi-scale analysis and asymptotic model reduction for driven particle
systems.

In the present paper, we concentrate on the subcritical regime and study the singular limit
ν→ 0 on the level of the Fokker–Planck equation. In particular, we derive a dynamical limit
model which is still infinite-dimensional but simpler and more regular than (1.1) as it does not
involve any small parameter.

Before we describe our findings and methods in more detail, we emphasise that both the
supercritical and the subcritical regimes of (1.1) have been studied intensively in the physics
community. There, the main focus is on the long-time behaviour of the effective velocity and the
effective diffusion tensor. These quantities are completely determined by the first and the second
p-moment of � and their averaged growth in time can be computed in many situations; see our
discussion at the end of Section 2.4, [20, 26, 29] for an overview (including more general mod-
els), and [28, 12, 19, 7] for related rigorous results. Our contribution consists in the derivation of
a refined model for the limit dynamics that accounts for the mass inside of each well and in the
presentation of a particular proof strategy.

1.1 Effective mass transport in the subcritical regime

Throughout this paper, we suppose that the potential H has the following properties.

Assumption 1.1 (periodic part of the energy landscape) The potential H is L-periodic and
sufficiently smooth such that

σ∗ := min
p∈R

H ′( p) , σ ∗ := max
p∈R

H ′( p) , ζ := sup
p∈R

∣∣H ′′′( p)
∣∣ .

are well-defined real numbers. Moreover, H ′ is unimodal and non-degenerate in the sense that
each critical point is a global extremum – that is, H ′′( p)= 0 implies H ′( p) ∈ {σ∗, σ ∗}.

A prototypical example of Assumption 1.1 is

H(x)= G
(

sin (x)
)

,

where G : R→R is a smooth and strictly increasing function, and a more asymmetric example
is depicted in Figure 1. As mentioned above, we restrict our considerations to the subcritical
regime. This means we fix σ independent of ν with

σ∗ <σ < σ ∗. (1.5)

so that the effective potential from (1.4) is tilted to the left for σ∗ <σ < 0 but tilted to the right for
0<σ < σ ∗. The constraint (1.5) guarantees that Heff admits an infinite number of local minima
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FIGURE 3. Cartoon of the Fokker–Planck solution for small 0< ν� 1. The function p 	→ �(t, x, p) is
basically the superposition of infinitely many narrow peaks, where the jth peak is localised at p = Pj and
carries mass mj(t, x). These peaks do not move but exchange mass according to the limit dynamics (1.11)
or (1.12).

and maxima, whose positions are denoted by Pj and Qj, respectively. These positions depend
on σ but the periodicity of H guarantees that Pj = P0 + jL and Qj = Q0 + jL for all j ∈Z; see
Figure 2 for an illustration.
For any j ∈Z, we define the partial mass

mj(t, x) :=
Qj∫

Qj−1

�(t, x, p) dp , (1.6)

which quantifies at any (t, x) the amount of mass that is contained in the well around the local
minimum Pj. The PDE (1.1) implies that the pointwise total mass

m(t, x) :=
∑
j∈Z

mj(t, x), (1.7)

diffuses in x-space according to

∂tm(t, x)−�xm(t, x)= 0 ,

but it remains to understand the spatio-temporal dynamics of mj. This problem is well-understood
on the heuristic level and the key arguments for small ν can be summarised as follows. Due to
the deterministic part in the Brownian motion, it is very likely to find particles near one of the
local minima. In other words, �(t, x, ·) consists of infinitely many localised peaks and we can
approximate

�(t, x, p)≈
∑
j∈Z

mj(t, x)δPj( p). (1.8)

at least in weak* sense with Dirac distributions on the right-hand side; see Figure 3 for a
schematic representation. The small diffusion in p-direction, however, guarantees that each peak
has width of order O(ν) and that particles can cross the energy barriers at the local maxima of Heff

due to random fluctuations. For fixed x, this gives rise to a hopping process between the different
wells whose characteristic timescales can be computed asymptotically by Kramers celebrated
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formula from [18]. More precisely, in the limit ν→ 0 the expected time for a jump to the next
well on the left and on the right is given by

τc−1
K exp

(
hL

ν2

)
and τc−1

K exp

(
hR

ν2

)
,

respectively, and the periodicity of H implies that the energy barriers

hL := Heff
(
Qj−1

) − Heff
(
Pj

)
, hR := Heff

(
Qj

) − Heff
(
Pj

)
,

are actually independent of j; see again Figure 2. Moreover, the Kramers constant

cK :=
√∣∣H ′′(Pj

)
H ′′(Qj

)∣∣
2π

. (1.9)

is also independent of j and is the same for jumps to the left and to the right. This motivates the
following choice of the timescale.

Assumption 1.2 (choice of τ ) For fixed σ as in (1.5), we set

τ := cK exp

(
−min{hL, hR}

ν2

)
. (1.10)

where ν > 0 is the small but free parameter.

Due to the informal discussion about the characteristic Kramers timescales for the aforemen-
tioned hopping process, we can formulate the expected limit dynamics depending on whether the
value of the tilting parameter σ favours transport to the left or transport to the right.

Result (effective mass transport in the subcritical regime) In the limit ν→ 0, the partial masses
evolve according to

∂tmj(t, x)−�xmj(t, x)=
{

mj+1(t, x)− mj(t, x) for σ∗ <σ < 0,
mj−1(t, x)− mj(t, x) for 0<σ < σ ∗,

(1.11)

and

∂tmj(t, x)−�xmj(t, x)= mj−1(t, x)+ κmj+1(t, x)− (1 + κ)mj(t, x) for σ = 0 . (1.12)

where the constant κ depends only on the properties of H and can be computed explicitly.

Our goal in this paper is to justify the limit model for the partial masses rigorously in a purely
analytical framework with no appeal to probabilistic techniques. It should also be possible to
justify the lattice equations (1.11) and (1.12) using standard methods from stochastic analysis
(such as Large Deviation Principles) but we are not aware of any reference.

We further mention that the fundamental solution to the linear limit model can be computed
explicitly. For instance, assuming 0<σ < σ∗ and that the entire initial mass is concentrated at
j = j0 and x = x0, we readily verify that the corresponding solution to (1.12) is given by

mj(t, x)= Kheat(t, x − x0) · Kpois(t, j − j0) , (1.13)
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where

Kheat(t, x)= (4π t)−n/2exp

(
−x2

4t

)
and Kpois(t, j)=

⎧⎨
⎩

0 for j< 0
t j exp (−t)

j! for j ≥ 0
.

represent the heat kernel and the Poisson point process, respectively.

1.2 Wasserstein gradient structure and proof strategy

The PDE (1.1) can be regarded as a Wasserstein gradient flow on the space of probability
measures since it can be written as

τ∂t�= (
τ 1/2ν−1∂x + ∂p

)(
�

(
τ 1/2ν−1∂x + ∂p

)
∂�E

)
,

where E abbreviates the free energy of the system and ∂� denotes the functional derivative.
In particular, with

E(t) :=
∫
Rn

∫
R

ν2�(t, x, p) ln �(t, x, p) dp dx +
∫
Rn

∫
R

(
H( p)− σp

)
�(t, x, p) dp dx, (1.14)

we readily verify by direct computations the energy balance

τ Ė(t)= −τ ν2 C(t)− ν4 D(t) , (1.15)

where

C(t) :=
∫
Rn

∫
R

(
∇x�(t, x, p)

)2

�(t, x, p)
dp dx,

and

D(t) :=
∫
Rn

∫
R

(
∂p�(t, x, p)+ ν−2

(
H ′( p)− σ

)
�(t, x, p)

)2

�(t, x, p)
dp dx. (1.16)

yield the total dissipations due to the Brownian motion of particles in the x- and the p-direction,
respectively.

The variational interpretation of Fokker–Planck equations like (1.1) has been first described
in [16] and attracted a lot of attention during the last decades, especially for Fokker–Planck
equations that admit a unique equilibrium corresponding to a global minimiser of the energy.
This is, however, not true for tilted periodic potentials because the system can constantly lower
its total energy by transporting mass towards p = −∞ (for σ < 0) or p = +∞ (for σ > 0), and
thus there exists neither a lower bound for the energy nor a steady state for the gradient flow. The
energy-dissipation relation (1.15) is nevertheless very useful as it provides a temporal L1-bounds
for the total dissipation on each finite time interval.

The gradient flow perspective has also been used to study the diffusive mass transfers in
Fokker–Planck equations with double-well potential, for which the effective dynamics in the
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limit ν→ 0 is a scalar ordinary differential equation (ODE) that governs the mass flux though
the single barrier which separates the two wells. Since our work on tilted periodic potentials has
much in common with this problem, we discuss the recent literature in Appendix B and sketch
how our method can be applied to the case of a double-well potential. One advantage of our
approach is that it covers also asymmetric energy landscapes while most of the recent gradient
flow results are restricted to even functions H . We also mention that potentials with finitely many
wells having the same energy are studied in [22]. This situation shares some similarities with the
untilted case σ = 0 in our paper but the analytic techniques are rather different as they rely on a
careful spectral analysis of the Fokker–Planck operator; see also [5] for related work.

Our approach to the asymptotic justification of the limit dynamics consists of three main steps,
which can informally be described as follows:

(1) Effective dynamics of substitute masses: We first identify two different approximations of
the partial masses such that the time derivative of the first substitute mass can be expressed
in terms of the second one. In this way, we obtain dynamical relations which resemble the
lattice equations (1.11) and (1.12) up to certain error terms. The details are presented in
Section 2.2 and rely on the balance equations of carefully chosen moment integrals of � as
well as the asymptotic auxiliary results and the local equilibrium densities from Section 2.1.

(2) Dissipation bounds approximation error: Another key argument is that the difference
between the partial masses and their substitutes can be controlled by the Wasserstein dis-
sipation. More precisely, we show in Section 2.3 for given t that almost all mass is in
fact contained in the vicinity of the local minima p = Pj provided that D(t) from (1.16) is
sufficiently small. Similar mass-dissipation estimates have been used in [15].

(3) Energy balance bounds dissipation: We finally prove in Section 2.4 that (1.15) implies
that D is small in an L1-sense and hence, loosely speaking, also at most of the times t.
This results hinges on lower bounds for E(t) and hence on upper bounds for the
modulus of

P(t) :=
∫
Rn

∫
R

p�(t, x, p) dp dx . (1.17)

but the latter can de deduced from the moment integrals for the substitute masses.

All partial results are combined in the proof of Theorem 2.9 and imply a rather elementary
justification of the lattice model for the partial masses. Moreover, the authors believe that most
of the key arguments can also be applied to other types of Fokker–Planck equations; see the
appendices for first examples. Another, more challenging equation is the non-local variant of
(1.1), in which σ is not given a priori but enters as the time-dependent Lagrangian multiplier of
a dynamical constraint; see [14, 15] for a related problem.

We finally mention that systems of weakly coupled Fokker–Planck equations with periodic
coefficients arise in the theory of motor proteins. Effective dynamical models for the limit of
vanishing p-diffusion have been established rigorously in [25, 23] but they concern another
scaling limit and are derived by different asymptotic techniques, namely homogenisation via
viscosity solutions and non-linear Hamilton-Jacobi equations. Moreover, the asymptotic drift
coefficient for a similar class of models has been derived in [8] and homogenisation for stationary
Fokker–Planck equations can be found in [5].
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FIGURE 4. Schematic representation of the Gibbs function γ from (2.2) (left panel) and its reciprocal
(right panel) for 0< ν� 1. Each function can be approximated by a infinite superposition of equidistant
peaks with width of order ν, where the mass inside each peak depends exponentially on its position; see
Lemma 2.1.

2 Asymptotic analysis

To prove our main result from Section 1, we assume from now on that

0 ≤ σ < σ ∗. (2.1)

but emphasise that the case σ∗ <σ ≤ 0 can be proven along the same lines. We also denote by C
any generic constant that is independent of ν but can depend on the potential H and the choice
of σ .

2.1 Preliminaries

A key quantity for our asymptotic analysis is the Gibbs function

γ( p) := exp

(−H( p)+ σp

ν2

)
, (2.2)

which is illustrated in Figure 4. Notice that γ is not integrable and this reflects the lack of non-
trivial steady states. This is different to other variants of the Fokker–Planck equation – as, for
instance, the case of a proper double-well potential discussed in Appendix B – in which the
normalisation of γ defines the unique and globally attracting equilibrium.

Our first auxiliary result characterises the behaviour of γ and 1/γ in the intervals

Jj := (Qj−1, Qj) and Kj := (Pj, Pj+1), (2.3)

respectively, and provides a rigorous link to the exponential scaling parameter τ from the
Kramers law (1.10). The derivation of the latter exploits the well-known Laplace method from
the theory of asymptotic integrals; see, for instance, [3, Section 6.4, esp. equations (6.4.1) and
(6.4.35)].

Lemma 2.1 (asymptotic integrals) The scalars

μj :=
∫
Jj

γ( p) dp , ηj :=
∫
Kj

1

γ( p)
dp (2.4)
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satisfy

μj =μ0κ
−j , ηj = η0κ

+j , κ := exp

(
−σL

ν2

)
. (2.5)

Moreover, we have

|θ | ≤ Cν2 , θ := τμ0η0

ν2
− 1. (2.6)

for some constant C which depends on σ but not on ν.

Proof The identities (2.5) follow – thanks to the L-periodicity of H – immediately from the
definition in (2.2) and (2.4). Moreover, by Laplace’s method we verify

μ0 = ν
√

2π√|H ′′(P0)| exp

(−H(P0)+ σP0

ν2

)(
1 ± O

(
ν2

))
, (2.7)

as well as

η0 = ν
√

2π√|H ′′(Q0)| exp

(+H(Q0)− σQ0

ν2

)(
1 ± O

(
ν2

))
.

where (2.1) ensures H ′′(Q0) < 0<H ′′(P0). We thus obtain (2.6), thanks to the definition of τ in
(1.10).

Using the Gibbs function (2.2), we define local equilibrium measures

γj( p)=μ−1
j χJj( p)γ( p) , (2.8)

where χJj denotes the characteristic function of the interval Jj. We also introduce a local relative
density w2

j by

w2
j (t, x, p) :=μj

�(t, x, p)

γ( p)
for p ∈ Jj , (2.9)

where the second power on the left-hand side of (2.9) has been introduced for convenience. In
terms of wj, the partial masses from (1.6) can be written as

mj(t, x)=
∫
Jj

w2
j (t, x, p)γj( p) dp, (2.10)

while the dissipation due to the diffusion in p-space reads

D(t)= 4
∫
Rn

D(t, x) dx, (2.11)

with

D(t, x) :=
∑
j∈Z

Dj(t, x) , Dj(t, x) :=
∫
Jj

(
∂pwj(t, x, p)

)2
γj( p) dp . (2.12)

In particular, mj and Dj are naturally related to the weighted L2- and H1-norms of wj, where the
weight function γj is a normalised and localised variant of γ.
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2.2 Substitute masses and their dynamics

As already outlined in Section 1, our asymptotic analysis is based on suitably defined substitutes
to the partial masses mj from (1.6). The first approximation stems from the evaluation of the
relative density; this means we set

mj(t, x) := w2
j

(
t, x, Pj

)
. (2.13)

with wj as in (2.9). This definition is motivated by the observation that γj from (2.8) is strongly
localised near Pj for small ν and that wj is basically constant for p ≈ Pj provided that the partial
dissipation Dj from (2.12) is sufficiently small.

The second substitute mass is given by

m̃j(t, x) :=
∫
R

(
ψj−1( p)−ψj( p)

)
�(t, x, p) dp , (2.14)

where the weight function ψj is uniquely determined by

ψ ′
j ( p) := 1

ηjγ( p)
for p ∈ Kj, (2.15)

and

ψj( p)= 0 for p< Pj−1 , ψj( p)= 1 for p> Pj . (2.16)

These definitions imply ∑
j∈Z

ψj−1( p)−ψj( p)= 1,

for all p ∈R and hence ∑
j∈Z

m̃j(t, x)=
∑
j∈Z

mj(t, x)= m(t, x). (2.17)

for all t ≥ 0 and any x ∈R
n.

As illustrated in Figure 5, the weight function p 	→ (
ψj−1( p)−ψj( p)

)
approximates, for small

ν > 0, the indicator function of the interval Jj but the main point is that the transition layers near
Qj−1 and Qj take a particular form which enables us to compute the time derivative of m̃j up to
high accuracy.

Proposition 2.2 (balance of substitute masses) The masses from (2.13) and (2.14) satisfy

(1 + θ)
(
∂tm̃j(t, x)−�xm̃j(t, x)

)
= mj−1(t, x)− (1 + κ)mj(t, x)+ κ mj+1(t, x) . (2.18)

where the constants κ and θ depend on ν as is Lemma 2.1.

Proof By construction – see (2.4), (2.15) and (2.16) – the function ψj is continuous and
piecewise smooth, and satisfies on R the singular ODE

ν2ψ ′′
j ( p)− (

H ′( p)− σ
)
ψ ′

j ( p)= α−, j δPj( p)− α+, j δPj+1( p),
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FIGURE 5. Left panel. Piecewise smooth moment weights as used in the definition of the substitute mass
m̃j(t) in (2.14) for a small and a moderate value of ν (dashed and solid lines, respectively). The grey
boxes indicate the intervals Ij, Jj and Kj from (2.3) and Lemma 2.4. Right panel. Moment weight φ for the
definition of K; see (2.21) and (2.20), again for two values of ν. The mean slope of φ is 1/L.

with Dirac weights

α−, j := ν2ψ ′
j

(
Pj+0

) = ν2

ηjγ
(
Pj

) , α+, j := ν2ψ ′
j

(
Pj+1−0

) = ν2

ηjγ
(
Pj+1

) .

Using the PDE (1.1) and integration by parts with respect to p, we thus verify

τ
(
∂t −�x

) ∫
R

ψj( p)�(t, x, p) dp = α−, j�
(
t, x, Pj

) − α+, j�
(
t, x, Pj+1

)
= ν2

μjηj
mj(t, x)− ν2

μj+1ηj
mj+1(t, x)

= ν2

μ0η0

(
mj(t, x)− κmj+1(t, x)

)
.

(2.19)

thanks to (2.5), (2.8), (2.9) and (2.13). The claim thus follows thanks to (2.14) and the definition
of θ in (2.6).

Proposition 2.2 is at the very heart of asymptotic analysis as it provides a dynamic relation
between the different substitute masses which does not involve the small parameter τ in front of
the time derivative. In particular, (2.18) implies the validity of the limit model from Section 1
provided that we can control the approximation errors mj − m̄j and mj − m̃j, and this will be done
below using the Wasserstein gradient structure.

A particular challenge in this context is that the energy E is not bounded below (for σ �= 0)
but decreases in t since there is an effective mass transport due to the tilting of the potential. In
order to estimate the decrease of E , one has to control the growth of P from (1.17), but the PDE
(1.1) does not give rise to uniform bounds for d

dtP . To overcome this difficulty, we introduce the
moment

K(t) :=
∫
Rn

∫
R

φ( p)�(t, x, p) dp dx , (2.20)

whose weight function is uniquely defined by

φ′( p) :=
∑
j∈Z

ψ ′
j ( p) , φ(P0) := 0. (2.21)

and illustrated in the right panel of Figure 5.
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Lemma 2.3 (evolution of K) We have

(1 + θ) d
dtK(t)= (1 − κ)

∑
j∈Z

∫
Rn

mj(t, x) dx,

as well as ∣∣P0 + L K(t)−P(t)∣∣ ≤ C.

for some constant C which does not dependent on t or ν.

Proof The definitions (2.15), (2.15) and (2.21) yield

φ( p)=
+∞∑
j=0

ψj( p)−
−∞∑

j=−1

(
1 −ψj( p)

)
, (2.22)

where the right-hand side is actually a finite sum for any given p ∈R. In particular, we have

sup
p∈R

∣∣P0 + Lφ( p)− p
∣∣<∞ , (2.23)

and this implies the second claim. The first one follows from (2.19) and (2.22) after summation
over j and integration with respect to x.

2.3 Asymptotic error estimates

In this section, we establish the key asymptotic estimates concerning the approximation of mj

from (1.6) by the substitute masses mj and m̃j from (2.13) and (2.14), respectively.

Lemma 2.4 (asymptotic auxiliary result) For any j, there exists an interval Ij ⊂ Jj such that∫
Jj\Ij

γj( p)≤ Cν
√
τ , sup

p∈Ij

∣∣ψj( p)
∣∣ + ∣∣1 −ψj−1( p)

∣∣ ≤ Cν
√
τ .

holds for some constant C which depends on σ but not on ν.

Proof For any j we can – thanks to the monotonicity properties of H ′ (see Assumption 1.1 and
Figure 6) – choose Rj and Rj such that

Qj−1 < Rj < Pj , H
(
Rj

) − σRj = 1
2

(
H

(
Qj−1

) + H
(
Pj

) − σ
(
Qj−1 + Pj

))
.

and

Pj < Rj <Qj , H
(
Rj

) − σRj = 1
2

(
H

(
Qj

) + H
(
Pj

) − σ
(
Qj + Pj

))
.
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FIGURE 6. Positions Rj and Rj as used in the proof of Lemma 2.4. The constants hL and hR are the Kramers
barriers from the scaling law in (1.9) and (1.10), and satisfies hR ≤ hL thanks to σ ≥ 0.

We define

Ij := (Rj, Rj) ,

and the Laplace method – compare also the asymptotic formula for μj in (2.7) – yields

Rj∫
Pj

γj( p) dp = Cν exp

(
− hL

2ν2

)(
1 ± O(ν)

)
,

as well as

Pj∫
Rj

γj( p) dp = Cν exp

(
− hR

2ν2

)(
1 ± O(ν)

)
.

These formulas imply the first claim due to the time scaling (1.10) and since σ ≥ 0 guarantees
hL ≥ hR. Finally, in view of (2.15)+(2.16), the second claim can be justified along the same
lines.

The main result in this section can be formulated as follows and controls the pointwise approx-
imation error of the substitute masses in terms of the pointwise dissipation D and the total mass
m from (1.7) and (2.11), respectively.

Proposition 2.5 (dissipation bounds approximation error) We have∑
j∈Z

∣∣mj(t, x)−mj(t, x)
∣∣ + ∣∣mj(t, x)−m̃j(t, x)

∣∣ ≤ Cτ−1/2ν2D(t, x)+ Cτ 1/2ν−2m(t, x).

for some constant C independent of ν.

Proof Since all arguments hold pointwise in space and time, we omit both the t- and the
x-dependence in all quantities.
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Local approximation error for m: By direct computations and Hölders inequality, we find

ej :=
∫
Jj

∣∣∣w2
j ( p)− w2

j

(
Pj

)∣∣∣ γj( p) dp ≤
Qj∫

Qj−1

p∫
Pj

∣∣2wj(q)∂pwj(q)
∣∣ dq γj( p) dp

≤ 2

Qj∫
Qj−1

⎛
⎜⎝

p∫
Pj

w2
j (q)

γj(q)
dq

⎞
⎟⎠

1/2⎛⎜⎝
p∫

Pj

(
∂pwj(q)

)2
γj(q) dq

⎞
⎟⎠

1/2

γj( p) dp .

(2.24)

Since 1/γj( p) is strictly increasing on the interval [Pj, Qj], we also have

∫ p

Pj

w2
j (q)

γj(q)
dq ≤ 1

γ2
j ( p)

∫ p

Pj

w2
j (q)γj(q) dq ≤ mj

γj( p)2
for p ∈ [Pj, Qj],

due to (2.10), and combining this with the analogous estimate for p ∈ [Qj−1, Pj], we demonstrate
that (2.24) can be written as

ej ≤ C
√

mjDj, (2.25)

with Dj(t) as in (2.12). This yields

∣∣mj − mj

∣∣ =
∣∣∣∫
Jj

(
w2

j ( p)− w2
j

(
Pj

))
γj( p) dp

∣∣∣ ≤ ej ≤ C
√

mjDj. (2.26)

thanks to (2.10), (2.13), and since
∫

Jj
γj( p) dp = 1 holds by (2.4) and (2.8).

Local approximation error for m̃: With Ij as in Lemma 2.4 and in view of (2.10) and (2.13),
we find

∫
Jj\Ij

w2
j ( p)γj( p) dp = mj −

∫
Ij

w2
j ( p)γj( p) dp

= (
mj − mj

) ∫
Ij

γj( p) dp + mj

∫
Jj\Ij

γj( p) dp

+
∫

Ij

(
w2

j

(
Pj

) − w2
j ( p)

)
γj( p) dp

≤ 2ej + mj

∫
Jj\Ij

γj( p) dp

≤ C
√

mjDj + mj

∫
Jj\Ij

γj( p) dp ,
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where we employed (2.25) and (2.26) to derive the estimates. Combining this with Lemma 2.4,
we thus obtain∫

Jj

ψj( p)w2
j ( p)γj( p) dp =

∫
Jj\Ij

ψj( p)w2
j ( p)γj( p) dp +

∫
Ij

ψj( p)w2
j ( p)γj( p) dp

≤
∫

Jj\Ij

w2
j ( p)γj( p) dp + Cν

√
τmj

≤ C
√

mjDj + Cν
√
τmj,

(2.27)

and analogously ∫
Jj

(
1 −ψj−1( p)

)
w2

j ( p)γj( p) dp ≤ C
√

mjDj + Cν
√
τmj . (2.28)

Moreover, from (1.6), (2.9), (2.14) and the piecewise definition of ψj – see (2.16) – we deduce
the exact representation formula

mj − m̃j = −
∫

Jj−1

ψj−1( p)w2
j−1( p)γj−1( p) dp +

∫
Jj

(
1 −ψj( p)

)
w2

j ( p)γj( p) dp

+
∫
Jj

ψj−1( p)w2
j ( p)γj( p) dp −

∫
Jj+1

(
1 −ψj( p)

)
w2

j+1( p)γj+1( p) dp .
(2.29)

Here, the four terms on the right-hand side represent the approximation error from the intervals
[Pj−1, Qj−1], [Qj−1, Pj], [Pj, Qj] and [Qj, Pj+1]; see Figure 5. From (2.29), we finally obtain the
estimate ∣∣mj − m̃j

∣∣ ≤ C
∑

|i−j|≤1

(√
miDi + ν

√
τmi

)
. (2.30)

by employing (2.27) on both Ij−1 and Ij and (2.28) on Ij and Ij+1.

Global approximation error: Due to the Cauchy–Schwarz estimate and Young’s inequality
for products, we have

∑
j∈Z

√
mjDj ≤

( ∑
j∈Z

mj

)1/2( ∑
j∈Z

Dj

)1/2 = √
mD ≤ 1

2τ
1/2ν−2m + 1

2τ
−1/2ν2D. (2.31)

so the claim follows from summing up the local estimates (2.26) and (2.30).

For completeness, we also derive an approximation result for other moments of �.

Corollary 2.6 (approximation of moment integrals) For any smooth and bounded weight
function v, we have∣∣∣∣∣∣

∫
R

v(t, x, p)�(t, x, p) dp −
∑
j∈Z

mj(t, x)v
(
t, x, Pj

)∣∣∣∣∣∣ ≤ Cτ−1/2ν2D(t, x)+ Cν2m(t, x).

for all t ≥ 0 and all x ∈R
n, where the constant C depends on v but not on ν.
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Proof To ease the notation, we omit again the t- and the x-dependence. Our definitions in (2.8),
(2.9) and (2.10) imply∫

R

v( p)�( p) dp =
∑
j∈Z

∫
Ij

v( p)w2
j ( p)γj( p) dp =

∑
j∈Z

(
v(Pj)mj + ea, j + eb, j

)
,

where the error terms are given by

ea, j :=
∫
Ij

(
v(p) − v(Pj)

)(
w2

j (p) − w2
j (Pj)

)
γj( p) dp,

eb, j :=
∫
Ij

(
v(p) − v(Pj)

)
w2

j (Pj)γj( p) dp .

Similarly to the proof of Lemma 2.5 – cf. the estimates (2.24) and (2.25) – we show∣∣ea, j

∣∣ ≤ C
√

mjDj ,

where we used that the moment weight v is uniformly bounded on Ij. Moreover, (2.13) and the
Laplace method ensure that

∣∣eb, j

∣∣ ≤ mj

∣∣∣∣∣∣∣
∫
Ij

(
v( p)− v(Pj)

)
γj( p) dp

∣∣∣∣∣∣∣ ≤ Cmjν
2.

since γj is localised near p = Pj and because v is sufficiently smooth. Thanks to (2.31) the desired
estimate follows after summation with respect to j from Proposition 2.5 and (1.10).

2.4 Passage to the limit ν → 0

In this section, we pass to the limit ν and prove that the partial masses of a solution to the Fokker–
Planck equation (1.1) converge to a solution of the limit dynamics as stated in Section 1. To this
end, we rely on the following assumption concerning the initial data, where

V(t) :=
∫
Rn

∫
R

( |x|2 + p2
)
�(t, x, p) dp dx. (2.32)

refers to the variance of �.

Assumption 2.7 (initial data) The initial data are non-negative and satisfy the normalisation
condition ∫

Rn

∫
R

�(0, x, p) dp dx = 1,

as well as the estimates

V(0)≤ C , E(0)≤ C.

for some constant C independent of ν, where the moments V and the energy E have been defined
in (2.32) and (1.14), respectively.
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The existence, uniqueness and regularity of a smooth solution � are then guaranteed by stan-
dard results; see, for instance, [11] for a classical approach. In particular, the solution satisfies
(1.2) for all t ≥ 0 and this implies ∑

j∈Z

∫
Rn

mj(t, x) dx = 1 . (2.33)

Our first technical result in this section is to bound the total dissipation in the temporal L1-norm,
which enables us to control the approximation errors from Proposition 2.5 in a time-averaged
sense. Notice that such estimates for the dissipation are not granted a priori because the energy
is not bounded below but approaches the value −∞ as t → ∞. The key ingredients to our proof
are the Wasserstein gradient structure as well as the estimates from Lemma 2.3 for the moment
K. The latter ensure that the moment P grows nicely in time although we are not able to bound
its time derivative independently of ν.

Lemma 2.8 (L1-bound for the dissipation) There exists a constant C independent of ν such that

T∫
0

D(t) dt ≤ τν−4C(1 + T),

holds for all 0< T <∞ and all sufficiently small ν > 0.

Proof Lower bound for the energy: Using (1.1) as well as integration by parts, we verify

τ
d

dt
V(t)= 2

(
τ + ν2

) − 2
∫
Rn

∫
R

p
(
H ′( p)− σ

)
�(t, x, p) dp dx ≤ Cτ−1 + τV(t) ,

where we also used the Young-type estimate

2
∣∣p(

H ′( p)− σ
)∣∣ ≤ τp2 + Cτ−1

∣∣H ′( p)− σ
∣∣2 ≤ τp2 + Cτ−1.

as well as (1.10) and the conservation of mass; see (2.33). The comparison principle for scalar
ODEs combined with Assumption 2.7 therefore yields

V(T)≤ Cτ−2 exp (T) . (2.34)

Since the Gaussian minimises the convex Boltzmann entropy – that is, the integral of � ln � –
with prescribed zeroth and second moment, we verify

ν2
∫
Rn

∫
R

�(T , x, p) ln
(
�(T , x, p)

)
dp dx ≥ Cν2

( − 1 − ln V(T))
≥ Cν2

( − 1 − T + ln τ
) = C

(−1 − ν2T
)

,

where the first estimate stems from direct computations for Gaussian and the second one is
provided by (2.34) and the scaling law (1.10). Moreover, since H is bounded by Assumption 1.1
we find ∫

Rn

∫
R

(
H( p)− σp

)
�(T , x, p) dp dx ≥ −C − σP(t),

https://doi.org/10.1017/S0956792519000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000251


726 M. Herrmann and B. Niethammer

with P as in (1.17), while the properties of φ and K in (2.20) and (2.23) imply∣∣P(T)− L K(T)∣∣ ≤ C .

In summary, we have

E(T)≥ −C
(
1 + ν2T + ∣∣K(T)∣∣) . (2.35)

Upper bound for the dissipation: The energy balance (1.15) provides

0 ≤
T∫

0

(D(t)+ τ ν−2 C(t)) dt ≤ τν−4
(E(0)− E(T)), (2.36)

and Lemma 2.3 guarantees

∣∣K(T)−K(0)∣∣ ≤
T∫

0

∑
j∈Z

∫
Rn

mj(t, x) dx dt = T +
T∫

0

∑
j∈Z

∫
Rn

∣∣mj(t, x)− mj(t, x)
∣∣ dx dt ,

where we used that the total mass is conserved due to (2.33). Exploiting Proposition 2.5 and the
conservation of mass, we further get

∑
j∈Z

∫
Rn

∣∣mj(t, x)− mj(t, x)
∣∣ dx ≤ C

∫
Rn

(
τ−1/2ν2D(t, x)+ τ 1/2ν−2m(t, x)

)
dx

≤ τ−1/2ν2D(t)+ τ 1/2ν−2 .

(2.37)

Assumption 2.7 ensures E(0)+ |K(0)| ≤ C, so combining (2.35), (2.36) and (2.37) we arrive at

T∫
0

D(t) dt ≤ Cτν−4

⎛
⎝1 + T +

T∫
0

(
τ−1/2ν2D(t)+ τ 1/2ν−2

)
dt

⎞
⎠ .

The thesis now follows from rearranging terms and since τ is exponentially small in ν according
to Kramers’ law (1.10).

We are now able to prove our main result on the dynamics in the vanishing diffusivity limit
ν→ 0. To ease the notation, we restrict ourselves to the case 0<σ < σ∗ but emphasise that all
arguments can be easily adapted to the cases σ∗ <σ < 0 and σ = 0.

Theorem 2.9 (limit dynamics) For 0<σ < σ∗ and fixed 0< T <∞, we have

∑
j∈Z

T∫
0

∫
Rn

∣∣m̆j(t, x)− mj(t, x)
∣∣ dx dt ≤ Cν2

(
1 + T2

)
, (2.38)

where m̆ denotes the unique solution to the initial value problem

∂tm̆j(t, x)−�xm̆j(t, x)= m̆j−1(t, x)− m̆j(t, x) , m̆j(0, x)= m̃j(0, x). (2.39)

and depends on ν via the initial data.

https://doi.org/10.1017/S0956792519000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000251


Fokker–Planck equations with tilted periodic potential 727

Proof Error terms and bounds: Proposition (2.2) provides

∂tm̃j(t, x)−�xm̃j(t, x)= m̃j−1(t, x)− m̃j(t, x)+ fj(t, x)+ gj(t, x)+ hj(t, x)

1 + θ
,

where the error terms on the right hand are given by

fj := (
mj−1 − m̃j−1

) − (
mj − m̃j

)
,

as well as

gj := κ
(
mj+1 − m̃j+1

) − κ
(
mj − m̃j

)
,

and

hj := κ
(
m̃j+1 − m̃j

) + θ
(
m̃j − m̃j−1

)
.

From Proposition 2.5, Lemmas 2.8 and (2.5), we infer the estimate

∑
j∈Z

T∫
0

∫
Rn

∣∣ fj(t, x)
∣∣ + ∣∣gj(t, x)

∣∣ dx dt ≤ C

T∫
0

(
τ−1/2ν2D(t)+ τ 1/2ν−2

)
dt

≤ Cτ 1/2ν−2(1 + T) ,

while the conservation of mass combined with (2.17) gives

∑
j∈Z

T∫
0

∫
Rn

∣∣hj(t, x)
∣∣ dx dt ≤ 2(κ + θ)

∑
j∈Z

T∫
0

∫
Rn

m̃j(t, x) dx dt = C(κ + θ)T .

Properties of the limit dynamics: The linear limit model gives rise to a well-defined semi-group
which is non-expansive with respect to the natural L1-norm (sums over j and integrals with
respect to x) as it preserves the positivity and conserves mass; see also the explicit formula for
the fundamental solution in (1.13). We can therefore apply Duhamel’s principle to the difference
m̆ − m̃ and obtain

∑
j∈Z

∫
Rn

∣∣m̆j(t, x)− m̃j(t, x)
∣∣ dx ≤

∫ t

0
e(s) ds ,

where

e(t) := (1 + θ)−1
∑
j∈Z

∫
Rn

(∣∣ fj(t, x)
∣∣ + ∣∣gj(t, x)

∣∣ + ∣∣hj(t, x)
∣∣) dx .

Concluding arguments: All partial results derived so far imply

∑
j∈Z

T∫
0

∫
Rn

∣∣mj(t, x)− m̃j(t, x)
∣∣ dx dt ≤

T∫
0

t∫
0

e(s) ds dt ≤ T

T∫
0

e(t) dt

≤ C
(
T + T2

)(
τ 1/2ν−2 + κ + θ

) ≤ C
(
T + T2

)
ν2 ,
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where the last estimate holds thanks to the scaling laws for τ , κ and θ ; see (1.10), (2.5) and (2.6).
The thesis now follows since

∑
j∈Z

T∫
0

∫
Rn

∣∣mj(t, x)− m̃j(t, x)
∣∣ dx dt ≤ Cτ 1/2ν−2(1 + T).

is another consequence of Proposition 2.5 and Lemma 2.8.

The rather large error in (2.38) stems from the estimate |θ | = O
(
ν2

)
. If we replaced the time

scaling (1.10) by the refined but less explicit law

τ = ν2

μ0η0
= cK exp

(
−min{hL, hR}

ν2

)(
1 + O

(
ν2

))
.

with ν-dependent integral constants μ0, η0 as in (2.5), the approximation error would be
of order O

(
κ + τ 1/2ν−2

)
and hence exponentially small in ν. Notice also that the initial

data for m̆ in (2.39) are defined in terms of m̃j(0, x) instead of mj(0, x). The difference∑
j∈Z

∫
Rn

∣∣m̃j(0, x)− mj(0, x)
∣∣ dx is small for sufficiently nice initial data – for instance, if the

initial dissipation D(0) is small – and can only be large if a non-negligible amount of the initial
mass is concentrated in the ν-vicinity of the local maxima of the effective potential, that is, near
the Qj’s. In the latter case, a fast transient dynamics can/will produce rapid changes in the masses
mj while the substitute masses m̃j still evolve quite regularly according to the limit dynamics.

We finally mention that the combination of Theorem 2.9 and Corollary 2.6 implies the time-
dependent probability measure � can in fact be approximated as in (1.8). Moreover, adapting the
arguments from in the proof of Corollary 2.6, we also verify

P(t)≈
∑
j∈Z

Pj

∫
Rn

mj(t, x) dx , V(t)≈
∑
j∈Z

Pj
2
∫
Rn

mj(t, x) dx +
∫
Rn

x2mj(t, x) dx,

for the moment integrals from (1.17) and (2.32), where the error terms can be bounded for 0 ≤
t ≤ T explicitly in terms of ν and

∫ T
0 D(t) dt. Of particular interest are the first p-moments in the

spatially homogeneous case with

Mk(t)=
∫
R

pk �(t, p) dp ≈
∑
j∈Z

Pk
j mj(t).

for k = 0, 1, 2. The mass conservation implies M0(t)= 1 and due to Pj+1 = Pj + L, we infer from
the limit dynamics the validity of

Ṁ1(t)≈
∑
j∈Z

Pj ṁj(t)≈
∑
j∈Z

(
Pj+1 − Pj

)
mj(t)= L,

and

Ṁ2(t)≈
∑
j∈Z

P2
j ṁj(t)≈

∑
j∈Z

(
P2

j+1 − P2
j

)
mj(t)≈ 2 L M1(t)− L2 ,
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where the approximation holds at least in a weak sense for 0<σ < σ∗ and on the timescale under
consideration. We thus conclude

M1(t)

t
≈ L ,

M2(t) · M0(t)− M2
1 (t)

t
≈ L2. (2.40)

and recover well-known formulas for the limit ν→ 0. In the literature, cf., for instance, [27, 28,
20, 26, 12], the two quantities on the left-hand side are often called drift coefficient ( or mean
velocity or particle current) and diffusion coefficient, respectively, and the characterisation of
their long-time behaviour is usually the main motivation for studying Fokker–Planck equations
with tilted periodic coefficients. Recall that the ratios from (2.40) concern the effective drift and
diffusion in the p-direction and that our approach does not cover the limit t → ∞. Instead, it is
based on the energy-dissipation balance (1.15) for finite times intervals and provides a refined
asymptotic model for the limit ν→ 0 as it accounts for the mass exchange between the different
wells of the effective potential.

Appendix A Mass transport in the supercritical regime

In this appendix, we show that appropriately defined moment integrals are also useful in the
supercritical (or ballistic) case σ /∈ [σ∗, σ ∗], in which the effective potential for (1.1) has no
local extrema; see the right panel of Figure 2. For simplicity, we restrict our considerations to

σ > σ ∗.

and show that the large-time evolution of the first p-moment can be deduced from the balance
law of a substitute moment. In this way, we recover the well-known linear grow relation for P(t),
see, for instance, [26], which reveals that the natural choice for the ballistic timescale is τ = 1.

Proposition A.1 (centre of mass in the supercritical regime) There exists a constant C such that

τ
∣∣P(t)− λ t

∣∣ ≤ C
(
1 + τ + ν2t

)
with

1

λ
:= 1

L

L∫
0

dp

H ′( p)− σ
.

holds for any t and all sufficiently small ν > 0.

Proof We define a moment weight ψ by the ODE initial value problem

ν2ψ ′′( p)= (
H ′( p)− σ

)
ψ ′( p)+ 1 , ψ ′(0)= c , ψ(0)= 0 , (A1)

where c will be chosen below, and using integration by parts we infer from (1.1) the identity

τ
d

dt

∫
Rn

∫
R

ψ( p)�(t, x, p) dp dx =
∫
Rn

∫
R

(
ν2ψ ′′( p)− (

H ′( p)− σ
)
ψ ′( p)

)
�(t, x, p) dp dx

=
∫
Rn

∫
R

�(t, x, p) dp dx = 1 . (A2)
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By variation of constants, we further demonstrate that ψ satisfies

ψ ′( p)= 1

γ( p)

⎛
⎝c γ(0)+

p∫
0

γ(q)

ν2
dq

⎞
⎠,

with γ as in (2.2), and conclude that there is precisely one choice of c, namely

c = 1

ν2
(
γ(L)− γ(0)

) L∫
0

γ(q) dq> 0 ,

such that ψ ′ is L-periodic. This implies∣∣∣∣∣∣
∫
Rn

∫
R

ψ( p)�(t, x, p) dp dx − P(t)
L

L∫
0

ψ ′(q) dq

∣∣∣∣∣∣ ≤ C.

since p 	→ψ( p)− p L−1
∫ L

0 ψ
′(q) dq is bounded, and it remains to compute the integral of ψ ′

over [0, L]. Inserting the ansatz

ψ ′ =: u = u0 + ν2u1 + ν4u2 + · · · ,

into the differential equation (A1), we verify

u0( p)= 1

σ − H ′( p)
, u1( p)= u′

0( p)

H ′( p)− σ
= − H ′′( p)(

σ − H ′( p)
)3

.

and the claim follows after integrating (A2) with respect to t.

Appendix B Mass exchange in a double-well potential

In this appendix, we apply the asymptotic arguments from above to the case of a double-well
potential as illustrated and described in Figure B1. For simplicity, we restrict our considerations
to the spatially homogeneous situation and study the Fokker–Planck equation

τ∂t�(t, p)= ∂p

(
ν2∂p�(t, p)+ H ′( p)�(t, p)

)
, (B1)

where the scaling law

τ :=ω0 ω− exp

(
−h−
ν2

)
.

involves the curvature constants from Figure B1 and is provided by Kramers formula. For the
latter, we refer to [18, 4], and to [6, 21] for generalisation to higher dimensions.

B.1 Limit dynamics and known proof strategies

As in the tilted case, one expects that almost all mass of the system is – at least for regular initial
data and after a small transient time – concentrated near the stable wells, that is, in the vicinity
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FIGURE B1. In this appendix, H is a smooth double-well potential which grows at least quadratically at
infinity, admits the normalised local maximum H(0)= 0 and attains two local minima at P± with P− <
0< P+. Moreover, we always assume h− ≤ h+, where h± := −H(P±) > 0, and suppose that H is non-
degenerated according to 0>H ′′(0)=: −2πω2

0 and 0<H ′′(P±)=: 2πω2
±.

of the local minima at p = ±P. It is therefore natural to introduce the intervals (or ‘phases’)

J− := (−∞, 0) , J+ := (0, +∞),

and to define the partial masses by

m±(t) :=
∫
J±

�(t, p) dp so that m−(t)+ m+(t)= 1 .

Using formal asymptotic analysis, we show – see, for example, [18, 14] for more details – that
the two phases exchange mass according to

ṁ+(t)= −ṁ−(t)=
{

m−(t) in the generic case with h− > h+ ,
m−(t)− m+(t) in the symmetric case of H( p)= H(−p) ,

(B2)

and there exists several ways to derive the limit ODEs rigorously. The first one is to apply large
deviation results to the underlying stochastic ODE, see, for instance, [4], but alternatively, PDE-
analytic proofs have been given during the last decades by several authors in the framework of
gradient flows. However, those proofs have so far been restricted to the symmetric situation with
even function H and require non-obvious modification in the general, asymmetric case.

A first key observation – both in the symmetric and the asymmetric case – is that the Gibbs
function

γ( p) := exp
(−ν−2H( p)

)
,

is now integrable, so that (B1) admits the global equilibrium

γ( p) := γ( p)

μ− +μ+
, (B3)

where the constant μ± will be computed below and ensure that
∫
R

γ( p) dp = 1. In terms of the
relative density

u(t, p) := �(t, p)

γ( p)
,
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the PDE (B1) reads

τγ( p)∂tu(t, p)= ν2∂p

(
γ( p)∂pu(t, p)

)
. (B4)

and can be interpreted as scaled variant of the H0
γ-gradient flow to the H1

γ-energy of u, where
the lower index indicates that the Sobolev spaces involve the weight function γ. This Hilbert
space formulation has – in a slightly different setting – been exploited in [24] for the rigorous
derivation of the limit model in the symmetric case with even potential H . In particular, it has
been shown that the quadratic metric tensor as well as the quadratic energy for u – which both
depend on ν via γ – �-converge to limit objects that provide a linear gradient structure for the
partial masses (m−, m+). Finally, [10] also passes to the limit ν→ 0 in (B4) but exploits more
elementary concepts instead of �-convergence.

As already mentioned and shown in [16, 17], the Fokker–Planck equation (B1) can also be
regarded as the Wasserstein gradient flow to the energy

E(t) :=
∫
R

(
ν2�(t, p) ln

(
�(t, p)

) + H( p)�(t, p)
)

dp.

in the space of all probability measure on R, and it is reasonable to ask whether one can also
pass to the limit ν→ 0 in this non-flat setting with state-dependent metric tensor; cf. [1, 30]
for the general theory of such gradient flows. A positive answer – again in a slightly different
setting – has been given in [13] and [2] using different concepts of evolutionary �-convergence;
see especially [2] for a comparative discussion. However, both results are again restricted to the
spatial case h− = h+ because otherwise u cannot be bounded independently of ν.

In what follows we sketch an alternative derivation of the limit models (B2) which com-
bines the dynamics of substitute masses with the a priori bounds for the Wasserstein dissipation,
does not appeal to any notion of �-convergence and covers both symmetric and asymmetric
functions H .

B.2 Substitute masses and passage to the limit

In consistency with the case of a tilted periodic potential, we define the scalar quantities

μ± :=
∫
J±

γ( p) dp , η :=
P+∫

P−

1

γ( p)
dp , κ := μ−

μ+
, θ := τμ−η

ν2
− 1,

and introduce relative densities ω2± : J± →R by

w2
±(t, p) := �(t, p)

γ±( p)
for p ∈ J± ,

where

γ±( p) :=μ−1
± γ( p)χJ±( p).
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represent the normalised restrictions of γ to J±. Moreover, choosing the moment weight ψ
according to

ψ(P−)= 0 , ψ ′( p)=
⎧⎨
⎩

1

ηγ( p)
for p ∈ (P−, P+) ,

0 else ,
(B5)

the different substitute masses are given by

m̃−(t) :=
∫
R

(
1 −ψ( p)

)
�(t, p) dp , m̃+(t) :=

∫
R

ψ( p)�(t, p) dp,

and

m±(t) := w±(t, P±)2 .

We finally observe that

�(t, p)= w−(t, p)2γ−( p)+ w+(t, p)2γ−( p),

as well as

m±(t)=
∫
J±

w2
±(t, p)γ±( p) dp, m−(t)+ m+(t)= m̃−(t)+ m̃+(t)= 1.

hold by construction, and that the Wasserstein dissipation can be written as

D(t)=
∫
R

(
∂p�(t, p)+ ν−2H ′( p)�(t, p)

)2

�(t, p)
dp = 4D−(t)+ 4D+(t),

with

D±(t) :=
∫
J±

(
∂pw±(t, p)

)2
γ±( p) dp .

Thanks to these definitions and employing the techniques from Section 2, we establish the
following results on the effective dynamics for ν→ 0.

Proposition B.1 (building blocks for the limit ν→ 0) The following statements are satisfied for
all sufficiently small ν > 0:

(1) Elementary asymptotics: The scalar quantities fulfil

∣∣θ ∣∣+ ∣∣∣η ω0

ν
− 1

∣∣∣ +
∣∣∣∣μ± ω±

ν
exp

(
−h±
ν2

)
− 1

∣∣∣∣ +
∣∣∣∣κ ω−
ω+

exp

(
h+ − h−
ν2

)
− 1

∣∣∣∣ ≤ Cν2 .

(2) Effective dynamics: The substitute masses evolve according to

±(1 + θ)
d

dt
m̃±(t)= m−(t)− κm+(t) . (B6)

(3) Dissipation bounds error: We have∣∣m̃±(t)− m±(t)
∣∣ + ∣∣m±(t)− m±(t)

∣∣ ≤ C
∣∣τ−1/2ν2D(t)+ τ 1/2ν−2

∣∣ .
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(4) Energy balance: The total Wasserstein dissipation is bounded by

∞∫
0

D(t) dt ≤ Cτν−4
(
C + E(0)) .

Here, the constant C depends on H but not on ν.

Proof The first three assertions can be derived analogously to the proofs of Lemma 2.1 and
Propositions 2.2 and 2.5. The justification of the fourth claim is even simpler than in Section 2
because the energy E is now bounded below due to the existence of the global minimiser γ from
(B3). In particular, we have

E(t)≥
∫
R

γ( p)
(
ν2 ln

(
γ( p)

) + H( p)
)

dp ≥ −ν2 ln (μ− +μ+)≥ −C,

thanks to μ± ∼ exp
(−h±/ν2

)
.

Proposition B.1 allows us to pass to the limit ν→ 0 similarly to Theorem 2.9, that is, by
means of functions m̆± which solve the limit ODEs and attain the same initial values as m̃±. The
outcome can informally stated as follows.

Corollary B.2 (limit dynamics for ν→ 0) For sufficiently nice initial data, the asymptotic mass
exchange is governed by

±ṁ±(t)= m−(t),

for h− > h+ and by

±ṁ±(t)= m−(t)− κm+(t).

in the non-generic case of h− = h+, where κ =ω+/ω−.

We finally emphasise that the primitive of 1/γ, which defines the moment weight ψ in (B5),
features prominently also in [24, 13, 2, 15, 10], but it seems that this function has never been
used before to establish a dynamical identity like (B6).
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