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We study the influence of the shape of the plasma container on the dynamics of the
reversed-field pinch (RFP). The geometries we consider are periodic cylinders with
elliptical and circular-shaped cross-sections. Numerical simulations of fully nonlinear
viscoresistive magnetohydrodynamics are carried out to illustrate how the plasma
dynamics is affected by shaping. It is shown that independent of the plasma shape, the
quantity β, comparing the hydrodynamic pressure to the magnetic pressure, decreases
for increasing values of the Lundquist number, but the pressure gradient fluctuations
remain roughly constant, when compared to the Lorentz force. Different elliptical shapes
of the cross-section of the domain lead to the excitation of different toroidal (or axial)
magnetic and dynamic modes. Furthermore, it is found that in a geometry with circular
cross-section, a significant local poloidal angular momentum is observed, absent in
the geometries with elliptical cross-section. Because the confinement is dominantly
determined by plasma movement, and the dynamics of the velocity and magnetic field are
modified by the modification of the geometry, shaping can thus affect the performance of
RFP devices.
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1. Introduction

Tokamaks and reversed-field pinches (RFPs) are toroidal fusion plasma devices with
a similar magnetic geometry. In both types of reactors, the combination of an imposed
toroidal magnetic field combined with a poloidal magnetic field, associated with an
induced toroidal current, result in helical magnetic field lines around the toroidal axis. The
difference between tokamaks and RFPs is the strength of the toroidal magnetic field, which
needs to be much larger than the poloidal field in tokamaks but is of the same order of
magnitude in RFPs. This requirement arises from the threatening magnetohydrodynamic
(MHD) instabilities, or disruptions, in tokamaks (Biskamp 1993), which lead to loss of
confinement and possibly damage the reactor.
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RFPs work in this unstable regime, but take advantage of the nonlinear saturation of the
instability, thereby bypassing the risk of disruptions and avoiding the need of a very strong
(and costly) toroidal magnetic field. Whereas in early research on the RFP the unstable
character was seen as a drawback for fusion, it has become increasingly clear that the
self-organization of the RFP is actually an asset to reach self-sustained fusion. Indeed in
the 2000s, quasi-single-helicity (QSH) states were detected within turbulent flows in the
reversed-field experiment (RFX) (Escande et al. 2000; Martin et al. 2000, 2003). These
states are characterized by the appearance of a quiescent helical structure in the plasma
core, which improves the plasma confinement (Frassinetti et al. 2006; Terranova et al.
2007; Wyman et al. 2008). Later studies showed that the persistence of these QSH states
and the appearance of a single-helical axis at high-current regimes (Piovesan et al. 2009)
can be increased by applying helical magnetic perturbations (Piovesan et al. 2011, 2013).

These results motivated part of the fusion community to reconsider the RFP as a
serious candidate for nuclear fusion (Lorenzini et al. 2009). Even though the road to
ignition, i.e. self-sustained fusion, is still long for RFPs and they might not be the
most promising geometry to attain the eventual goal of fusion research, they constitute
an interesting example of plasma self-organization and their investigation can help to
develop ideas which might be useful for other reactor geometries. Recently, the RFP has
therefore received renewed attention, focusing on various aspects, such as fast ion transport
(Bonofiglo et al. 2019), ion-temperature-gradient modes (Li et al. 2019), sophisticated
three-dimensional equilibria (Qu et al. 2020) and reconnection (Momo et al. 2020). A
recent review, centred on the Madison Symmetric Torus experiment, can be found in the
paper by Sarff (2020).

Acting on the RFP magnetic field to improve its confinement properties is evidently an
important path to investigate. For instance, applying helical magnetic perturbations seem
to be a promising way to affect the self-organized state in an RFP (Bonfiglio et al. 2013).
Such perturbations were shown to be able to influence the shape of the plasma by imposing
their helical pitch to the plasma (Veranda et al. 2017). Another obvious way to affect the
dynamics would be to directly change the global shape of the plasma. The optimization
of the confinement quality for toroidal fusion plasmas by changing the plasma shape has
been the subject of many studies, in particular for tokamaks. For instance, it has been
shown that shaping has a beneficial effect on the β limits of tokamaks (Troyon et al.
1984), and increases the total plasma current I in the case of elliptic cross-sections, which
thus yields a better confinement. Furthermore, shaping of a tokamak cross-section can
lead to qualitative differences in the plasma flow patterns (Morales et al. 2012; Oueslati &
Firpo 2020). Investigations on the influence of shaping on the confinement properties of
RFPs are, however, relatively scarce. The literature on RFPs contains some rare examples
of experimental observations (Almagri et al. 1987; Oomens, Lassing & Meer 1990) and
numerical investigations where two-dimensional equilibrium studies were carried out to
investigate the shaping effect on RFP plasmas (Paccagnella, Bondeson & Lütjens 1991;
Guo et al. 2013). Their work led to the conclusion that shaping does not bring an advantage
to the plasma dynamics in RFPs and is even destabilizing in the case in which the poloidal
cross-section is elongated. These studies focused on the linear stability properties of RFPs,
but did not consider the fully developed nonlinear dynamics.

Here we proceed one step further in the investigation of the effect of changing the shape
of the cross-section of RFPs by considering the fully nonlinear dynamics within a resistive
fluid description. More precisely, we investigate the effect of elongation of the poloidal
cross-section on plasmas in driven incompressible MHD flow in cylindrical geometry. We
thereto perform direct numerical simulations using a three-dimensional pseudo-spectral
solver (Morales et al. 2014b). We consider the simplified case where the torus is modelled

https://doi.org/10.1017/S0022377821001094 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001094


Effect of shaping on RFP dynamics 3

by a straight periodic cylinder. The choice of this simplification is justified as follows.
In Morales et al. (2014a), we compared the straight-cylinder approach to fully toroidal
simulations. We showed that most of the qualitative features remained unchanged. The
most significant change was the appearance of a toroidally invariant mode, the influence
of which we do therefore necessarily neglect in the present work. It is true that considering
the effect of curvature on the dynamics of RFPs could be interesting, but we aim at
understanding the two effects (curvature and shape of the cross-section) independently to
pinpoint the most important physical effects, before considering their possible interplay.
Furthermore, in Paccagnella et al. (1991), the influence of curvature was considered with
respect to the stability properties of RFPs and its effect was shown to be minor.

In the present work, it is shown that elongation of the cross-section has a significant
effect on the pressure statistics in the plasma and on the turbulence properties in general. In
particular, assessing the value of the β-parameter, and its recent generalization to take into
account the turbulent pressure gradients, illustrates how the dynamics are influenced by
the shaping of the geometry. We also reveal the presence of non-negligible local poloidal
angular momentum, when the cross-section is circular.

The remainder of this article is organized as follows. Section 2 presents the governing
equations, recalling briefly the numerics and the relevant physical parameters. Numerical
results on the influence of shaping on the reversal properties, pressure statistics, spectral
characteristics and local angular momentum are investigated in § 3. Section 4 concludes
the investigation.

2. Equations, numerical methods and parameters
2.1. Viscoresistive MHD equations and geometry

In the present work, we consider a plasma characterized by constant and uniform
permeability μ, permittivity ε and conductivity σ . The more complicated case of
non-uniform conductivity was considered by Futatani, Morales & Bos (2015). In the
MHD description that we consider, the governing equations are the incompressible
Navier–Stokes equations including the Lorentz force and the induction equation.
Normalizing these equations by the Alfvén velocity CA = B0/

√
ρμ, a reference magnetic

field B0 and a conveniently chosen lengthscale L leads to the following expressions for the
evolution of the velocity u and magnetic field B:

∂u
∂t

+ u · ∇u = −∇P + j × B + Pm

S
∇2u, (2.1)

and
∂B
∂t

= ∇ × (u × B)+ 1
S
∇2B, (2.2)

where Pm is the magnetic Prandtl number Pm = νμσ , ν the viscosity, S the Lundquist
number (defined below) and ρ = 1 the density. The current density is given by

j = ∇ × B. (2.3)

The velocity field u and the magnetic field B are both divergence free,

∇ · u = 0, (2.4)

∇ · B = 0. (2.5)

The incompressibility condition (2.4) allows obtaining the pressure P from the velocity
field by taking the divergence of (2.1) and solving the resulting Poisson equation. The
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pressure thereby plays, in this system, the role of a Lagrange multiplier, which enforces
incompressibility of the velocity field. We think it is important to retain this feature
(incompressibility) in the dynamics unlike in a number of previous investigations of RFPs
(e.g. Cappello & Biskamp 1996; Cappello & Escande 2000; Richardson, Finn & Delzanno
2010; Veranda et al. 2017; Futch et al. 2018), where the pressure was entirely neglected
invoking low-β dynamics. Indeed, in some recent RFP investigations, the pressure is
retained (Mizuguchi et al. 2012) and recently we focused on the importance of the
pressure dynamics (Chahine & Bos 2018). In particular, we illustrated in MHD simulations
in cylindrical geometry that, to understand the dynamics of the plasma, the important
quantity to monitor is not the pressure but its gradient. We therefore introduced a quantity
β∇, which compares the influence of the pressure gradient to the magnetic effects (j × B)
acting on the momentum balance. The definition of this quantity and its interpretation will
be given in § 3.2.

In the present work, we thus take into account the influence of pressure on the dynamics
but we neglect all compressibility effects. Note that imposing incompressibility was shown
to diminish the reversal of the magnetic field (Finn, Nebel & Bathke 1992) and this
will thus necessarily be the case in the present investigation. We note here that the
resistivity profile can also influence the reversal (Bonfiglio, Cappello & Escande 2016).
The combined influence of shaping, compressibility and non-uniform resistivity would
constitute an interesting perspective but would complicate disentangling the different
effects.

In figure 1, we illustrate the considered geometry and we indicate the direction of the
imposed current density and magnetic field. Initially, in the plasma, a uniform current
density j0 in the z-direction and an axial magnetic field Bz0 are imposed, which results in
a helically shaped magnetic field. The current density j0 will induce an elliptical poloidal
magnetic field Bp0 parallel to the elliptic boundaries. At later times, the magnetic field will
reorganize through an interplay with the velocity field and the total magnetic field will then
consist of Bz0 and Bp0 plus the self-induced contributions. At the boundaries, the velocity
is imposed to be zero and the magnetic field is parallel to the boundaries. The value of the
poloidal parallel magnetic field at the boundary is fixed and its value is determined by j0.
The expression of Bp0 in cylindrical coordinates reads,

Br = − 1
2 j0rc sin(2θ), (2.6)

Bθ = 1
2 j0r(1 − c cos(2θ)), (2.7)

with c the ellipticity which can be expressed as a function of the ellipse’s major semi-axis
a and minor semi-axis b, i.e.,

c = a2 − b2

a2 + b2
. (2.8)

Note that the coordinates we use are cylindrical and not elliptical coordinates so that only
in the case of the circle, the radial vector er is everywhere perpendicular to the boundary.

2.2. Numerical methods
Equations (2.1) and (2.2) are solved using a pseudo-spectral method in a periodic domain
of size π × π × 8π with 64 × 64 × 512 grid points. The aspect ratio of the physical
domain containing the plasma is Lz/2πb = 4. Spatial derivatives are evaluated in Fourier
space and multiplications are computed in physical space. To avoid aliasing errors, i.e.
the production of small scales owing to nonlinear terms which are not resolved on the
grid, the velocity and magnetic fields are dealiased at each time step by truncating its
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FIGURE 1. Sketch of the cylindrical geometry and imposed magnetic field and current density.

Fourier coefficients using the 2/3 rule (Canuto et al. 1987). Using the incompressibility
condition of the fluid, the pressure term can be eliminated by solving a Poisson equation.
A semi-implicit time-advancing scheme of Adams–Bashforth type is used to solve the
equations with exact integration of the dissipative and magnetic diffusion terms. Boundary
conditions are imposed using a volume penalization method to build the cylindrical
domain. Detailed description and validation of the method can be found in the paper by
Morales et al. (2014b), and an application of the method to investigate RFPs in toroidal
domains is reported in previous work (Morales et al. 2014a; Futatani et al. 2015). We
have verified by assessing the high-wavenumber range of the kinetic and magnetic energy
spectra that the resolution for all simulations was sufficient to resolve all down to the
smallest dynamical flow scales.

Simulations are started from random initial conditions and the dynamics are observed
to evolve towards an initial-condition independent statistically stationary state. To obtain
the results presented in § 3, the equations are integrated for 104τA Alfvén times, with
τA = L/CA. The results presented in the following are all obtained during the statistically
stationary state.

2.3. Shaping parameters
In the present investigation, we focus on the influence of the shape of the cross-section on
the confinement properties of the plasma. The parameters should be carefully chosen to
disentangle the effect of changing the geometry from the effect of changing other control
parameters. Considering a periodic cylinder instead of a torus is motivated by this attempt
to reduce the number of control parameters to a strict minimum. Even in this simplified
geometry, the way in which the parameters are varied is not unique. For instance, if the
same toroidal current-density Jz is chosen for two geometries, the mean current Iz will be
the same, only if the surface A of the cross-section is kept constant, a condition which we
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will impose. This will also lead to equal values of the toroidal magnetic flux ψ = BzA for
a given imposed toroidal magnetic field Bz.

The poloidal magnetic Bp field is computed from the current density. Its reference value
is evaluated as an average over the circular or elliptic boundary. Necessarily, keeping the
surface A, Jz and Bz fixed, the average value Bp varies when changing the shape of the
cross-section (the bar indicates a boundary average). Therefore, the pinch ratio, defined as

Θ = Bp

〈Bz〉 , (2.9)

where the brackets denote a volume average, depends on the value of the ellipticity c.
An important parameter in non-ideal MHD is the Lundquist number, which is defined

as

S = 2CAb
λ

, (2.10)

where the Alfvén velocity is based on the poloidal field strength, CA = Bp/
√
ρμ with the

magnetic diffusivity λ = (μσ)−1 and the (minor) diameter 2b as reference quantities. We
have chosen b, rather than a, as the smallest minor radius which will probably determine
the confinement quality. Imposing the same value of S for different values of the ellipticity
allows determining the value of λ. In all our simulations, the value of the magnetic Prandtl
number is chosen to be unity.

3. Results
3.1. F-Θ dependence

The imposed magnetic field in RFPs is unstable for large values of Θ and S, and it will
form a dynamic helical structure with a certain amount of chaotic or turbulent motion
superimposed.

The modification of the magnetic field can be quantified by the field reversal parameter
F, which represents the normalized toroidal field at the boundary,

F = Bz

〈Bz〉 . (3.1)

As the current increases, the kink instability increases, which leads to the decrease of
the toroidal magnetic field at the boundary, so that F decreases as a function of Θ .
This behaviour can be qualitatively predicted by Taylor’s theory (Taylor 1974) and more
sophisticated theories allow to improve this agreement (Reiman 1980, 1981; Taylor 1986).
In studies by Paccagnella et al. (1991) and Guo et al. (2013) based on two-dimensional
equilibrium equations, it was shown that shaping does not alter the F-Θ curve.

To be able to systematically assess the F −Θ dependence, we carry out preliminary
simulations for cylinders of small aspect ratio Lz/2πb ∼ 2, an ellipticity a = 1.6 and
moderate Lundquist number S ∼ 4200. We compare with Taylor’s prediction (Taylor 1974)
and simulations with circular cross-section. Figure 2 shows the results of the field-reversal
parameter F versus Θ , which are in reasonable agreement with the two previous studies
(Paccagnella et al. 1991; Guo et al. 2013). In these references it was shown that shaping
had a small destabilizing effect for large curvature, but the F −Θ curve was unaffected.
Indeed, the two geometries yield roughly the same behaviour.

These moderate-Lundquist simulations allow a parametric investigation of the F −Θ
dependence for two different ellipticities. Carrying this out for higher values of S would
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FIGURE 2. Field-reversal parameter F as a function of the pinch parameterΘ for cylinders with
circular and elliptic cross-section. Also shown is Taylor’s prediction (Taylor 1974) for reference.

require substantially more computational resources. In the remainder of this investigation,
we will consider, at a higher value of the Lundquist number, three different ellipticities but
focus on only one F −Θ value for each geometry. We have thereto performed simulations
for values of the Lundquist number ranging up to S ≈ 2 × 104 and a larger aspect ratio
Lz/2πb = 4. These higher values of the Lundquist number are still several orders of
magnitude smaller than those in experimental RFPs, which are currently out of reach
using precise numerical schemes. We consider three shapes, i.e. cylindrical devices with
different cross-sections: a circle with radius a = 1, an ellipse with a = 1.2 and b = 0.83
and an ellipse with a = 1.4 and b = 0.714. In the statistically steady states considered at
this higher Lundquist number, both the F and Θ parameter fluctuate around their steady
value, which is also plotted in figure 2. It is observed that these results are in the F–Θ plane
situated closer to Taylor’s prediction, which is obtained using statistical mechanics of ideal
MHD (Taylor 1974). We do not know whether higher values of S will allow to approach
this theoretical prediction even closer. The fluctuations are for Θ inferior to 0.5 %. The
absolute value of the fluctuations of the F-parameter are of the order of 0.01 (for instance,
fluctuating between F = −0.07 and F = −0.082 for the circular geometry).

We observe thus that the effect of shaping is small on the global behaviour of the
magnetic field, as characterized by F andΘ . The present results indicate that the influence
of the Lundquist number is significantly larger than that of shaping in the considered range
of parameters. The reversal parameter is a global parameter and does not give insight into
the fine structure of the dynamics. It is this fine structure, constituted by the nonlinear
interplay of a large number of modes, which will determine the confinement quality of a
reactor. The modification of the fine structure is in the following assessed by evaluating
pressure gradients and the modal behaviour of the flow.

3.2. The role of the pressure: β and gradient-β
Clearly, in fusion research, the plasma pressure plays a major role. In the present
investigation, we do not focus on the confinement quality of the system, but rather on
the dynamics and the velocity field. Therefore, we will assess the influence of shaping on
the pressure and its influence on the dynamics. In figure 3, we show visualizations of the
pressure fluctuations in cross-sections of the domains at the highest considered Lundquist
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(a) (b) (c)

FIGURE 3. Instantaneous visualizations of the pressure field for S ≈ 2 × 104 in cross-sections
through the cylinders for the three different ellipticities. From (a–c), a = 1, a = 1.2, a = 1.4.

number. Spatial fluctuations of the pressure are observed in all geometries. In particular,
in the elliptic cases, the strongest values of the absolute pressure are situated in the centre
of the domain and lower pressure values are observed close to the wall. In the circular
case, the value of the pressure is smaller than for the elliptic cases. We will now focus on
different measures of the influence of pressure on the dynamics.

Classically, to assess the influence of the pressure on the plasma dynamics, the quantity
β is evaluated, which measures the importance of the plasma pressure compared with the
magnetic pressure,

β = 2
〈P〉
〈B2〉 , (3.2)

where the brackets indicate a volume average over the plasma volume of interest. Other
definitions are also used (Wesson & Campbell 2011) based on the value of B at the wall
of the plasma, for instance. Clearly, β is an important parameter because the plasma
pressure is a key parameter in the analysis of the confinement quality. However, if we are
interested in the turbulence properties and the velocity field in general, it is the pressure
gradients that are important. It is known from turbulence research that estimating simply
the order of magnitude of pressure gradients by O(∇P) ∼ P/L, with L a macroscopic
lengthscale, can seriously underestimate their magnitude because the pressure gradients
are, in general, dominated by small-scale contributions l � L. Therefore, we recently
introduced the alternative, gradient-based βs (Chahine & Bos 2018),

β∇ ≡ 2
〈‖∇P‖〉
〈‖∇B2‖〉 and β ′

∇ ≡ 〈‖∇P‖〉
〈‖J × B‖〉 . (3.3a,b)

It is only when β ′
∇ is small compared to unity that the influence of the pressure term

might be negligible in the dynamics, compared with the influence of the other terms in the
velocity equation. This is not necessarily the case when β is small.

In figure 4, we show the behaviour of the different versions of β. The size of the temporal
fluctuations of the different quantities around the time-averaged value are indicated by
error bars. In agreement with the results of Chahine & Bos (2018), the value of β is
decreasing for increasing values of the Lundquist number. We see that for the highest
values of S, β has dropped most importantly in the circular geometry. This is not
inconsistent with figure 3, which shows that the normalized pressure is weaker in this
geometry than in the other two. Indeed, focusing only on this observation, one might be
tempted to extrapolate and assume that the pressure plays no dominant role in the dynamics
at high values of S. However, the gradient based β ′

∇ remains approximately constant when

https://doi.org/10.1017/S0022377821001094 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001094


Effect of shaping on RFP dynamics 9

103 104

S

10-1

100

103 104

S

10-1

100

103 104

S

10-1

100

(a)

(b)

(c)

FIGURE 4. Lundquist-number dependence of three alternative definitions of β in cylinders
with ellipticity (a) a = 1, (b) a = 1.2, (c) a = 1.4. Whereas the pressure based β is strongly
decreasing with S, the gradient-based value β ′∇ is roughly constant.

the Lundquist number is increased. This shows that the influence of the pressure gradients
does not become less important for larger S.

These observations are quite robust and qualitatively independent on the shape of
the cylinder. What changes however, is the S-dependence of β∇. This indicates that
〈‖∇B2‖〉/〈‖J × B‖〉 is influenced by the ellipticity of the cylinder cross-section. From
the vector identity J × B = −∇B2/2 + B · ∇B, this shows that the different behaviour is
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(a) (b) (c)

FIGURE 5. Flux lines in a cross-section through the differently shaped geometries. From left to
right, the cross-sections are a circle with radius a = 1, an ellipse with major semi-axis a = 1.2
and one with a = 1.4, for S ≈ 2 × 104. Visualized is the induced field, i.e. the magnetic field
without the imposed contribution.

associated with the curvature term B · ∇B, which seems to be affected by the shaping.
Shaping does therefore change the magnetic structure of the flow. We will further
investigate this in the following, considering spectral considerations. Before that, we will
visualize the magnetic structure of the simulated plasmas.

3.3. Characterization of the velocity and magnetic field
In figure 5, we show magnetic flux lines in cross-sections through the three cylindrical
geometries. The lines correspond to iso-values of the axial component of the magnetic
vector potential. This potential is computed from the induced field, i.e. the imposed field
is subtracted from the total magnetic field.

The most dramatic difference is observed for the a = 1.4 geometry. Indeed, for the
circular cross-section, the iso-lines are mostly concentric. Changing the shape, for a = 1.2,
a separatrix appears at the edges of the ellipse and for a = 1.4, the central flux surfaces
are destroyed and magnetic islands appear. Clearly, the shape of the magnetic field is
dramatically altered by the shaping in this latter geometry, compared with the circular
cross-section.

In figure 6, axial magnetic fluctuations are shown in various poloidal cross-sections.
The fluctuations of the axial magnetic field are obtained by showing the magnetic field
without the axially invariant (kz = 0) magnetic contribution. Only in a few sections is a
clear poloidal mode structure observed. From these observations, it seems relatively clear
that no single-helicity state is present in our simulations. A large number of modes seems
to be evolving simultaneously and instantaneous local visualizations are not the best tool
to illustrate this.

To analyse the presence of different modes, we visualize now the effect of shaping
on these helical modes by evaluating the axially Fourier-transformed magnetic field. In
figure 7, we observe that all considered cases show strong fluctuations, which illustrates
that we are in a highly nonlinear regime, far away from quasi-static equilibria.

Figure 7 shows the predominance of a magnetic mode with toroidal mode number n = 7
in the circular case, which is consistent with what has been observed in the RFX-mod
device (Lorenzini et al. 2009; Martin et al. 2009). In the elliptical case (a = 1.2), a
tendency for mode n = 14 to dominate is observed, while the magnetic modes n = 3 and
n = 4 contain most of the magnetic energy for a = 1.4. This last case seems to be closer to
a multiple-helicity state, where it is not a single mode which contains most of the energy.
Similar spectral differences are observed in the kinetic spectra, where n = 0 and n = 1 are
the dominating kinetic modes in the circular case, n = 14 in the a = 1.2 elliptical case and
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FIGURE 6. Poloidal cross-sections of the cylinder, illustrating the axial magnetic fluctuations at
t = 9.8 × 103τA for S ≈ 2 × 104. The geometries are a circle with radius a = 1, an ellipse with
major semi-axis a = 1.2 and one with a = 1.4.

n = 8 in the a = 1.4 elliptical case. A different representation of the modal dynamics is
shown in the appendix, where the modal spectra are plotted using the double-logarithmic
scale for the different cases.

We have not carried out a detailed poloidal mode composition, which is in particular
less convenient in the elliptical geometries, and we have therefore no further interpretation
of the possible underlying instabilities, which could be external tearing modes or other
MHD instabilities. We think that a linear instability analysis of the present system would
allow further insights in the origin of the magnetic structures. However, because the modal
spectra indicate the large range of active modes, the outcome of such an analysis is of
limited use in the here considered fully turbulent state.
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(a)

(b)

FIGURE 7. Axial spectra of kinetic (a) and magnetic (b) energy, normalized respectively by the
total kinetic and magnetic energy. Three shapes are considered, respectively from top to bottom,
a circle with radius a = 1, an ellipse with major semi-axis a = 1.2 and one with a = 1.4, for
S ≈ 2 × 104.
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FIGURE 8. The z-dependence of the instantaneous poloidal angular momentum for the three
geometries at t = 11 × 103τA.

It is clear from these observations that shaping significantly influences the topology of
the velocity and magnetic fields, both qualitatively and quantitatively. All three geometries
do however show the presence of a large range of active scales.

3.4. Poloidal angular momentum
The presented results show a clear influence of the shape of the cross-section on the
dynamics. It would be beneficial if we could understand these differences in the light of a
clear, large-scale dynamical feature which changes through the shaping. We have identified
one such feature which behaves quite differently in the differently shaped geometries. This
quantity is the poloidal angular momentum, a quantity which has received considerable
attention in two-dimensional flows.

In fact, an interesting difference between two-dimensional flows in circular or elliptical
domains is the change in dynamics associated with a form of symmetry breaking of the
large-scale flow patterns. Indeed in 2-D turbulence, changing the flow geometry from
circular to elliptical leads to the generation of angular momentum (Keetels, Clercx & van
Heijst 2008). This effect was shown to persist in 2-D MHD turbulence (Bos, Neffaa &
Schneider 2008, 2010) and its investigation is considered to be interesting in the context of
confinement studies, because large-scale poloidal motion could enhance radial transport
barriers and stabilize MHD instabilities (Shan & Montgomery 1994).

An analysis of a similar possibility in the present geometry is shown in figure 8, where
for a given time instant, the angular momentum associated with the poloidal flow is
computed for each cross-section. Its definition is

Lu(z) =
∫

A
ez · (r × u) dA, (3.4)

where r is the radial vector, pointing from the centreline of the geometry outwards
and A is the surface of the poloidal cross-section. In a periodic cylinder with circular
cross-section, global angular momentum can only be created by viscous effects. However,
locally, at a given axial position, the angular momentum can be strong. This is exactly
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FIGURE 9. Axial mode spectra of kinetic energy fluctuations (a,b) and magnetic fluctuations
(e, f ) in cylinders with ellipticity (a,d) a = 1, (b,e) a = 1.2, (c, f ) a = 1.4. Spectra are shown
at four different time instants during the statistically steady state. The Lundquist number is S ≈
2 × 104.
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what is observed for the case of a circular geometry, where locally large values of the
poloidal angular momentum exist. Through the associated rotating motion, confinement
could be improved, because rotation suppresses instabilities (Shan & Montgomery 1994).
Note that this is one particular time instant, but qualitatively the same effect is observed
at different time instants, with local fluctuations of Lu, which are largest in amplitude in
the circular geometry. Possibly, this structure is associated with the n = 1 velocity mode
observed in the temporal spectrum of the kinetic energy in figure 7(a).

This observation is somewhat the opposite of what is observed in investigations of
spontaneous spin-up in 2-D systems. There, it is seen that the generation of angular
moment is absent in circular 2-D domains and becomes more important in elliptical
domains (Keetels et al. 2008).

The important amount of circular movement characterized here by the poloidal angular
momentum is perhaps simply owing to the fact that a circular shape is more compatible
with circular movement, compared with non-circular-shaped cross-sections. However,
such a poloidal flow could be beneficial for confinement, which shows here that with
respect to that effect, circular domains might be favourable for good confinement. This is
also what was concluded, for different reasons, by Guo et al. (2013). This observation is
clearly of speculative nature and further research is required to investigate the link between
poloidal angular momentum, shaping and the turbulent dynamics of the RFP.

4. Conclusion

Direct numerical simulations of viscoresistive MHD show that in periodic cylindrical
geometry in the RFP regime, the shape of the cross-section significantly changes the
nonlinear dynamics. Moreover, different helical states can be observed and different
toroidal modes are excited in different geometries. Modifying the elliptical elongation
leads to different modal behaviours.

We quantified first the influence of shaping on the F −Θ characteristics and showed
that the influence of shaping on these global quantities is less important than a change in
the Lundquist number. For other quantities, which do not concern the global properties,
the picture is different. Indeed, shaping in our simulations significantly modified the
magnetic flux-lines in a cross-section. It was observed that for circular and moderately
elliptical cross-section, the contours of the magnetic flux surfaces were roughly concentric.
However, when the domain became elliptical enough (a = 1.4 in our simulations), the
contours started to show two magnetic islands.

Perhaps most obvious in our simulations was the generation of local poloidal angular
momentum in the circular geometry, which is absent in the more elliptical shapes. The
presence of such local but large-scale poloidal structures could possibly stabilize the
plasma dynamics. It seems with respect to this feature that circular cross-sections are
better candidates to improve confinement. However, the addition of toroidal curvature to
the system might alter this feature. As a matter of fact, in toroidal geometry, a quasi-single
helicity state was observed to be more persistent than in a cylindrical geometry (Morales
et al. 2014a). How poloidal flow structures containing angular momentum and helical
modes are related and how they interact deserves further attention.

The most important outcome of this work is therefore not the determination of a
certain value of the elongation most efficient to obtain an optimal confinement, but the
mere fact that elongation radically changes the dynamics of RFPs. We would therefore
encourage experimentalists to consider the poloidal shape of the confining magnetic field
as an important control parameter for RFP design and operation, because different modes
are triggered when the shape of the cross-section is modified. If an experiment allows
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for a simple modification of the plasma shape, it might give more freedom to obtain a
competitive fusion plasma.
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Appendix A
A.1. Temporal evolution of modal spectra

To complete the modal analysis carried out in § 3.3, we show in figure 9 the modal spectra
in double-logarithmic representation. For each spectrum, four time instants are shown
during the statistically steady state. The most striking observation is the large number of
active modes. In this representation, we cannot clearly identify a dominant mode in the
system. Quasi-single helicity states might be attainable, but this is certainly not observed
in the present results.

REFERENCES

ALMAGRI, A., ASSADI, S., DEXTER, R., PRAGER, S., SARFF, J. & SPROTT, J. 1987 Studies of large,
non-circular, reversed field pinch discharges. Nucl. Fusion 27 (11), 1795.

BISKAMP, D. 1993 Nonlinear Magnetohydrodynamics. Cambridge University Press.
BONFIGLIO, D., CAPPELLO, S. & ESCANDE, D. 2016. Impact of a uniform plasma resistivity in MHD

modelling of helical solutions for the reversed field pinch dynamo. arXiv:1603.03563.
BONFIGLIO, D., VERANDA, M., CAPPELLO, S., ESCANDE, D. & CHACÓN, L. 2013 Experimental-like

helical self-organization in reversed-field pinch modeling. Phys. Rev. Lett. 111 (8), 085002.
BONOFIGLO, P.J., ANDERSON, J.K., GOBBIN, M., SPONG, D.A., BOGUSKI, J., PARKE, E., KIM, J. &

EGEDAL, J. 2019 Fast ion transport in the quasi-single helical reversed-field pinch. Phys. Plasmas
26, 022502.

BOS, W.J.T., Neffaa, S. & Schneider, K. 2008 Rapid generation of angular momentum in bounded
magnetized plasma. Phys. Rev. Lett. 101 (23), 235003.

BOS, W.J.T., NEFFAA, S. & SCHNEIDER, K. 2010 Self-organization and symmetry-breaking in
two-dimensional plasma turbulence. Phys. Plasmas 17 (9), 092302.

CANUTO, C., HUSSAINI, M., QUARTERONI, A. & ZANG, T. 1987 Spectral Methods in Fluid Dynamics.
Springer.

https://doi.org/10.1017/S0022377821001094 Published online by Cambridge University Press

arXiv:1603.03563
https://doi.org/10.1017/S0022377821001094


Effect of shaping on RFP dynamics 17

CAPPELLO, S. & BISKAMP, D. 1996 Reconnection processes and scaling laws in reversed field pinch
magnetohydrodynamics. Nucl. Fusion 36, 571.

CAPPELLO, S. & ESCANDE, D.F. 2000 Bifurcation in viscoresistive MHD: the Hartmann number and the
reversed field pinch. Phys. Rev. Lett. 85 (18), 3838.

CHAHINE, R. & BOS, W.J.T. 2018 On the role and value of β in incompressible MHD simulations. Phys.
Plasmas 25 (4), 042115.

ESCANDE, D.F., MARTIN, P., ORTOLANI, S., BUFFA, A., FRANZ, P., MARRELLI, L., MARTINES, E.,
SPIZZO, G., CAPPELLO, S., MURARI, A., et al. 2000 Quasi-single-helicity reversed-field-pinch
plasmas. Phys. Rev. Lett. 85, 1662.

FINN, J.M., NEBEL, R. & BATHKE, C. 1992 Single and multiple helicity ohmic states in reversed-field
pinches. Phys. Fluids B 4 (5), 1262–1279.

FRASSINETTI, L., PREDEBON, I., KOGUCHI, H., YAGI, Y., HIRANO, Y., SAKAKITA, H., SPIZZO,
G. & WHITE, R. 2006 Improved particle confinement in transition from multiple-helicity to
quasi-single-helicity regimes of a reversed-field pinch. Phys. Rev. Lett. 97 (17), 175001.

FUTATANI, S., MORALES, J.A. & BOS, W.J.T. 2015 Dynamic equilibria and magnetohydrodynamic
instabilities in toroidal plasmas with non-uniform transport coefficients. Phys. Plasmas 22 (5),
052503.

FUTCH, A., CRAIG, D., HESSE, R. & JACOBSON, C. 2018 Role of resistivity and viscosity in the
excitation of stable m = 0 modes during the RFP sawtooth crash. Phys. Plasmas 25 (11), 112506.

GUO, S., XU, X., WANG, Z. & LIU, Y. 2013 Does shaping bring an advantage for reversed field pinch
plasmas? Nucl. Fusion 53 (11), 113035.

KEETELS, G., CLERCX, H. & VAN HEIJST, G. 2008 Spontaneous angular momentum generation of
two-dimensional fluid flow in an elliptic geometry. Phys. Rev. E 78 (3), 036301.

LI, J., LIU, S., KONG, W., GUO, S. & DONG, J. 2019 Effects of trapped electrons and impurity ions on
ITG modes in reversed-field pinch plasmas. Europhys. Lett. 127 (4), 45002.

LORENZINI, R., MARTINES, E., PIOVESAN, P., TERRANOVA, D., ZANCA, P., ZUIN, M., ALFIER, A.,
BONFIGLIO, D., BONOMO, F., CANTON, A., et al. 2009 Self-organized helical equilibria as a new
paradigm for ohmically heated fusion plasmas. Nat. Phys. 5 (8), 570–574.

MARTIN, P., APOLLONI, L., PUIATTI, M., ADAMEK, J., AGOSTINI, M., ALFIER, A., ANNIBALDI,
S.V., ANTONI, V., AURIEMMA, F., BARANA, O., et al. 2009 Overview of RFX-mod results. Nucl.
Fusion 49 (10), 104019.

MARTIN, P., BUFFA, A., CAPPELLO, S., D’ANGELO, F., ESCANDE, D., FRANZ, P., MARRELLI, L.,
MARTINES, E., ORTOLANI, S., SPIZZO, G., et al. 2000 Quasi-single helicity states in the reversed
field pinch: beyond the standard paradigm. Phys. Plasmas 7 (5), 1984.

MARTIN, P., MARRELLI, L., SPIZZO, G., FRANZ, P., PIOVESAN, P., PREDEBON, I., BOLZONELLA,
T., CAPPELLO, S., CRAVOTTA, A., ESCANDE, D., et al. 2003 Overview of quasi-single helicity
experiments in reversed field pinches. Nucl. Fusion 43 (12), 1855.

MIZUGUCHI, N., SANPEI, A., FUJITA, S., OKI, K., HIMURA, H., MASAMUNE, S. & ICHIGUCHI,
K. 2012 Modeling of formation of helical structures in reversed-field pinch. Plasma Fusion Res.
7, 2403117–2403117.

MOMO, B., ISLIKER, H., CAVAZZANA, R., ZUIN, M., CORDARO, L., LOPEZ-BRUNA, D., MARTINES,
E., PREDEBON, I., REA, C., SPOLAORE, M., et al. 2020 The phenomenology of reconnection
events in the reversed field pinch. Nucl. Fusion 60 (5), 056023.

MORALES, J.A., BOS, W.J.T., Schneider, K. & Montgomery, D.C. 2012 Intrinsic rotation of toroidally
confined magnetohydrodynamics. Phys. Rev. Lett. 109 (17), 175002.

MORALES, J.A., BOS, W.J.T., SCHNEIDER, K. & MONTGOMERY, D.C. 2014a On the effect of
toroidicity on reversed field pinch dynamics. Plasma Phys. Control. Fusion 56 (9), 095024.

MORALES, J.A., LEROY, M., BOS, W.J.T. & Schneider, K. 2014b Simulation of confined
magnetohydrodynamic flows with Dirichlet boundary conditions using a pseudo-spectral method
with volume penalization. J. Comput. Phys. 274, 64–94.

OOMENS, A., LASSING, H. & MEER, A.V. D. 1990 Reversed Field Pinch discharges with elongated
minor cross-section. Rijnhuizen Rep. 90-197. FOM-Instituut voor Plasmafysica.

OUESLATI, H. & FIRPO, M.-C. 2020 Breaking up-down symmetry with magnetic perturbations in
tokamak plasmas: increase of axisymmetric steady-state velocities. Phys. Plasmas 27 (10), 102501.

https://doi.org/10.1017/S0022377821001094 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001094


18 R. Chahine, K. Schneider and W.J.T. Bos

PACCAGNELLA, R., BONDESON, A. & LÜTJENS, H. 1991 Ideal toroidal stability beta limits and shaping
effect for reversed field pinch configurations. Nucl. Fusion 31 (10), 1899.

PIOVESAN, P., BONFIGLIO, D., AURIEMMA, F., BONOMO, F., CARRARO, L., CAVAZZANA, R., DE

MASI, G., FASSINA, A., FRANZ, P., GOBBIN, M., et al. 2013 RFX-mod: a multi-configuration
fusion facility for three-dimensional physics studies. Phys. Plasmas 20 (5), 056112.

PIOVESAN, P., BONFIGLIO, D., BONOMO, F., CAPPELLO, S., CARRARO, L., CAVAZZANA, R.,
GOBBIN, M., MARRELLI, L., MARTIN, P., MARTINES, E., et al. 2011 Influence of external 3D
magnetic fields on helical equilibrium and plasma flow in RFX-mod. Plasma Phys. Control. Fusion
53 (8), 084005.

PIOVESAN, P., ZUIN, M., ALFIER, A., BONFIGLIO, D., BONOMO, F., CANTON, A., CAPPELLO, S.,
CARRARO, L., CAVAZZANA, R., ESCANDE, D., et al. 2009 Magnetic order and confinement
improvement in high-current regimes of RFX-mod with MHD feedback control. Nucl. Fusion
49 (8), 085036.

QU, Z., DEWAR, R.L., EBRAHIMI, F., ANDERSON, J.K., HUDSON, S.R. & HOLE, M.J. 2020 Stepped
pressure equilibrium with relaxed flow and applications in reversed-field pinch plasmas. Plasma
Phys. Control. Fusion 62 (5), 054002.

REIMAN, A. 1980 Minimum energy state of a toroidal discharge. Phys. Fluids 23.
REIMAN, A. 1981 Taylor relaxation in a torus of arbitrary aspect ratio and cross section. Phys. Fluids

24 (5), 956–963.
RICHARDSON, A., FINN, J. & DELZANNO, G. 2010 Control of ideal and resistive magnetohydrodynamic

modes in reversed field pinches with a resistive wall. Phys. Plasmas 17 (11), 112511.
SARFF, J. 2020 Reversed field pinch research in MST-final technical report. Tech. Rep. No.

DOE-UWMADISON-ER54814. The Board of Regents of the University of Wisconsin.
SHAN, X. & MONTGOMERY, D. 1994 Magnetohydrodynamic stabilization through rotation. Phys. Rev.

Lett. 73 (12), 1624.
TAYLOR, J. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett.

33 (19), 1139.
TAYLOR, J.B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58 (3), 741.
TERRANOVA, D., ALFIER, A., BONOMO, F., FRANZ, P., INNOCENTE, P. & PASQUALOTTO, R. 2007

Enhanced confinement and quasi-single-helicity regimes induced by poloidal current drive. Phys.
Rev. Lett. 99 (9), 095001.

TROYON, F., GRUBER, R., SAURENMANN, H., SEMENZATO, S. & SUCCI, S. 1984 MHD-limits to
plasma confinement. Plasma Phys. Control. Fusion 26 (1A), 209.

VERANDA, M., BONFIGLIO, D., CAPPELLO, S., ESCANDE, D.F., AURIEMMA, F., BORGOGNO,
D., CHACÓN, L., FASSINA, A., FRANZ, P., GOBBIN, M., et al. 2017 Magnetohydrodynamics
modelling successfully predicts new helical states in reversed-field pinch fusion plasmas. Nucl.
Fusion 57 (11), 116029.

WESSON, J. & CAMPBELL, D.J. 2011 Tokamaks, Vol. 149. Oxford University Press.
WYMAN, M., CHAPMAN, B., AHN, J., ALMAGRI, A., ANDERSON, J., BONOMO, F., BROWER, D.,

COMBS, S.K., CRAIG, D., DEN HARTOG, D., et al. 2008 Plasma behaviour at high β and high
density in the Madison Symmetric Torus RFP. Nucl. Fusion 49 (1), 015003.

https://doi.org/10.1017/S0022377821001094 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001094

	1 Introduction
	2 Equations, numerical methods and parameters
	2.1 Viscoresistive MHD equations and geometry
	2.2 Numerical methods
	2.3 Shaping parameters

	3 Results
	3.1 F- dependence
	3.2 The role of the pressure:  and gradient-
	3.3 Characterization of the velocity and magnetic field
	3.4 Poloidal angular momentum

	4 Conclusion
	Appendix A
	A.1 Temporal evolution of modal spectra

	References

