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We report a numerical analysis of the unforced break-up of free cylindrical threads of
viscous Newtonian liquid whose interface is coated with insoluble surfactants, focusing
on the formation of satellite droplets. The initial conditions are harmonic disturbances
of the cylindrical shape with a small amplitude ε, and whose wavelength is the most
unstable one deduced from linear stability theory. We demonstrate that, in the limit
ε → 0, the problem depends on two dimensionless parameters, namely the Laplace
number, La = ρσ0R̄/µ2, and the elasticity parameter, β = E/σ0, where ρ, µ and σ0
are the liquid density, viscosity and initial surface tension, respectively, E is the Gibbs
elasticity and R̄ is the unperturbed thread radius. A parametric study is presented to
quantify the influence of La and β on two key quantities: the satellite droplet volume
and the mass of surfactant trapped at the satellite’s surface just prior to pinch-off, Vsat
and Σsat, respectively. We identify a weak-elasticity regime, β . 0.05, in which the
satellite volume and the associated mass of surfactant obey the scaling law Vsat =

Σsat= 0.0042La1.64 for La. 2. For La& 10, Vsat and Σsat reach a plateau of about 3 %
and 2.9 %, respectively, Vsat being in close agreement with previous experiments of
low-viscosity threads with clean interfaces. For La< 7.5, we reveal the existence of a
discontinuous transition in Vsat and Σsat at a critical elasticity, βc(La), with βc→ 0.98
for La . 0.2, such that Vsat and Σsat abruptly increase at β = βc for increasing β.
The jumps experienced by both quantities reach a plateau when La . 0.2, while they
decrease monotonically as La increases up to La= 7.5, where both become zero.

Key words: capillary flows, breakup/coalescence

1. Introduction
The break-up of free-surface flows has been investigated for a long time. The

first quantitative studies of the instability responsible for the spontaneous break-up
of cylindrical liquid threads date back to the 19th century; the correct physical
description of the instability mechanism was due to Plateau (1873), who deduced
that a small perturbation with a wavelength larger than the circumference of the
unperturbed column is unstable, finally breaking up into main drops and smaller
satellite droplets in between. A few years later, Rayleigh (1878), Lord Rayleigh
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883 A35-2 A. Martínez-Calvo and others

(1892) calculated the most unstable wavelength using a linear temporal stability
analysis. The subject experienced a renaissance 50 years ago that has lasted to the
present due to its central role in industrial and medical applications such as chemical
reactors, ink-jet and three-dimensional printing, additive manufacturing, drug and
protein encapsulation, and cytometry, to cite a few; the reader is referred to the
reviews of Bogy (1979), Eggers (1997), Christopher & Anna (2007), Eggers &
Villermaux (2008), Derby (2010) and Anna (2016).

The theoretical approach to the study of the dynamics of jet break-up was first
based on the linear stability analysis of infinite liquid threads. As already mentioned,
the local temporal approach was pioneered by Lord Rayleigh (1892). About 80 years
later, the local spatial and spatiotemporal problems, in which the liquid jet moves with
uniform velocity U with respect to the injector, were solved (Keller, Rubinow & Tu
1973; Leib & Goldstein 1986a,b). In particular, it was demonstrated by Keller et al.
(1973) that the spatial and temporal stability analyses are equivalent if U is sufficiently
larger than the speed of small-amplitude capillary instability waves, Uσ . In the spatial
setting, the latter condition means that the relative growth of the wave amplitude
along one wavelength is small. Thus, in a frame of reference moving with the jet,
the amplitude growth is spatially uniform to a first approximation, which explains the
equivalence of the temporal and spatial approaches if U�Uσ . Since the wavelength
of the unstable capillary waves is much larger than the unperturbed cylinder radius,
R̄, the scaling of Uσ depends on the value of the associated Reynolds number, Reσ =
ρUσ R̄/µ, where ρ and µ are the liquid density and viscosity, respectively. In the limit
of Euler flow, Reσ � 1, the value of Uσ is given by the balance σ0/R̄∼ ρU2

σ , where
σ0 is the surface tension, yielding Uσ ∼

√
σ0/(ρR̄), usually referred to as the capillary

velocity, and U/Uσ ∼
√

We, where We= ρU2R̄/σ0 is the Weber number. Note that, in
this case, Reσ =

√
La� 1, where La = ρR̄σ0/µ

2 is the Laplace number, which may
also be written as La=Oh−2 in terms of the usual Ohnesorge number, Oh=µ/

√
ρR̄σ0.

In the opposite limit of Stokes flow, Reσ � 1, the appropriate balance is σ0/R̄ ∼
µUσ/R̄, whence Uσ ∼ σ0/µ, usually referred to as the visco-capillary velocity. In this
limit, U/Uσ ∼ Ca, where Ca = µU/σ0 is the capillary number, and Reσ = La� 1.
Therefore, the condition that must be satisfied for the temporal and spatial approaches
to be equivalent is that

√
We � 1 when

√
La � 1, or that Ca � 1 when La � 1.

It is also important to point out that the formation of a slender jet from a nozzle
requires that We>Wec∼O(1) when

√
La� 1, or that Ca>Cac∼O(1) when La� 1,

where Wec and Cac are the critical Weber and capillary numbers for the transition
from convective to absolute instability (Leib & Goldstein 1986a,b).

Many experimental studies have been carried out, from the first investigations of
Savart (1833), Magnus (1859), Plateau (1873), Rayleigh (1882) and Donnelly &
Glaberson (1966), to the highly accurate measurements of González & García (2009),
whose aim was to describe the mechanism of instability and to measure the growth
rate of the associated waves in the linear regime. These experiments have shown an
excellent agreement with the dispersion relation obtained by Rayleigh (1878), Lord
Rayleigh (1892) and by Chandrasekhar (1961). It is important to emphasise that,
although linear stability theory cannot describe the final stages of the dynamics prior
to pinch-off, it can be used to predict the break-up time t̄b with small relative errors,
provided that the initial amplitude of the disturbance, ε, satisfies ε = ε/R̄� 1. In the
spatial setting, this fact can be used to estimate the break-up length as Ut̄b, in close
agreement with experiments (Kalaaji et al. 2003; González & García 2009).

However, to describe the satellite formation process, which is the main objective of
the present study, a nonlinear approach is needed. In particular, Goedde & Yuen (1970)
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Satellite formation regimes of surfactant-laden liquid threads 883 A35-3

first investigated such nonlinear effects in detail, comparing their experiments with
the weakly nonlinear theory of Yuen (1968). The satellite drop formation process was
first quantified by Rutland & Jameson (1970) and Lafrance (1975), while Chaudhary
& Maxworthy (1980) studied how satellite drop formation is affected by forcing the
liquid jet with different harmonics, revealing the conditions needed to inhibit their
formation. These efforts to control drop formation were mainly motivated by the
practical need of increasing the performance of the ink-jet printing devices under
development at that time. The increase in computational power finally allowed a fully
nonlinear approach by means of direct numerical simulations of the axisymmetric
Navier–Stokes equations. In particular Mansour & Lundgren (1990) and Ashgriz &
Mashayek (1995) computed the satellite droplet radii just prior to pinch-off, finding an
excellent agreement with the experiments of Rutland & Jameson (1970) and Lafrance
(1975). Due to the high numerical cost of accurately solving the Navier–Stokes
equations with a free boundary up to times close to the break-up singularity, several
works have been devoted to develop one-dimensional approximations by expanding
the flow variables as powers of the radial coordinate (see e.g. Lee 1974; Eggers
& Dupont 1994; García & Castellanos 1994). These models have been shown to
work reasonably well in different configurations (see e.g. Ambravaneswaran et al.
2004; Rubio-Rubio, Sevilla & Gordillo 2013; Martínez-Calvo, Rubio-Rubio & Sevilla
2018). Of particular importance is the fact that the leading-order model allowed
the unravelling of the universal self-similar structure of the local flow close to the
singularity (Eggers 1993; Papageorgiou 1995).

The presence of surfactant molecules at an interface induces an effective surface
rheology by means of Marangoni stresses and surface viscosities (for reviews,
see Fuller & Vermant 2012; Langevin 2014), leading to substantial changes in
the dynamics with respect to the case of clean interfaces. Indeed, different flow
configurations of technological interest are affected by surfactants, for instance
liquid bridges (Liao, Franses & Basaran 2006), dip coating (Scheid et al. 2010;
Delacotte et al. 2012; Champougny et al. 2015) or drop break-up (Roché et al. 2009;
Ponce-Torres et al. 2017; Kamat et al. 2018), to cite a few. Regarding liquid threads,
the effect of surfactants has been explored by means of theory (Timmermans &
Lister 2002; Martínez-Calvo & Sevilla 2018) and numerical simulations (Campana
& Saita 2006; Dravid et al. 2006; McGough & Basaran 2006; Kamat et al. 2018).
In particular, the two latter works focused on the micro-thread cascade that appears
close to break-up due to the presence of surfactants. These works also analyse the
different scalings close to pinch-off and the evolution of the minimum radius of the
thread and its axial position during the unfolding of the micro-cascade. Moreover,
Kamat et al. (2018) revealed that the mechanism responsible for the dynamical
surface tension effects induced by surfactants in filament break-up is the action
of Marangoni stresses rather than the lowering of surface tension. In the case of
a surfactant-free liquid thread, Ashgriz & Mashayek (1995) already reported the
axial movement of the location of minimum radius for low-viscosity filaments,
La� 1. More recently, Castrejón-Pita et al. (2015) generalised this result, showing
that this translation occurs for any finite value of La, leading to the asymptotic
inertial–viscous regime (Eggers 1993). Furthermore, by means of experiments and
high-precision numerical simulations of the full axisymmetric Navier–Stokes equations,
Castrejón-Pita et al. (2015) demonstrated that, depending on the value of La, the
thinning of the filament experiences different transitions that delay the occurrence
of the universal inertial–viscous regime. In contrast with the latter studies, which
focused on a detailed description of the transitions between the different scaling laws
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883 A35-4 A. Martínez-Calvo and others

prior to pinch-off, the present contribution aims at providing a global parametric
description of the satellite formation process when the interface is coated with an
insoluble surfactant monolayer.

Given the success of the leading-order one-dimensional approximation in capturing
the nonlinear dynamics of clean interfaces under certain configurations and values
of La (Eggers & Dupont 1994; Ambravaneswaran, Wilkes & Basaran 2002;
Notz & Basaran 2004; Yildirim, Xu & Basaran 2005; Subramani et al. 2006;
Rubio-Rubio et al. 2013), similar models have been derived that account for the
presence of surfactants, and numerically solved for different flow configurations
(Ambravaneswaran & Basaran 1999; Craster, Matar & Papageorgiou 2002, 2009; Xu,
Liao & Basaran 2007). However, as pointed out by Timmermans & Lister (2002)
and Martínez-Calvo & Sevilla (2018), a higher-order approximation is needed when
the surface viscoelastic stresses are large enough. The failure of the leading-order
one-dimensional models to describe the flow for large enough elastic and surface
viscous stresses is due to the fact that the velocity profile is uniform in the
leading-order equations, and cannot accomodate the shear induced by tangential
interfacial stresses. Therefore, following the same strategy as Mansour & Lundgren
(1990) and Ashgriz & Mashayek (1995) for a clean interface, and Dravid et al.
(2006) and McGough & Basaran (2006) for a surfactant-laden interface, in the present
contribution our approach is to numerically integrate the Navier–Stokes equations in
a temporal setting, thereby avoiding the approximations involved in one-dimensional
models. Unlike Dravid et al. (2006), we use a nonlinear equation of state to relate the
surface tension to the surfactant concentration, derived from first principles, that leads
to substantial differences calling out for a careful experimental analysis. Moreover,
we perform an exhaustive parametric study, accurately quantifying the volume of the
satellite droplet prior to pinch-off and the amount of surfactant trapped at its surface,
as a function of the two dimensionless governing parameters, namely the elasticity
parameter and the Laplace number.

The remainder of the paper is organised as follows. In § 2 we describe the
mathematical model and the numerical method employed for the simulations. In § 3
we first validate the simulations by comparing the initial growth rate of small
harmonic disturbances with the results provided by a temporal stability analysis. We
then unravel the structure of the parameter plane spanned by the Laplace and elasticity
numbers in terms of the satellite formation process, followed by a detailed analysis of
the volume of the satellite droplets and their shape at break-up, the mass of surfactant
trapped at their surface and the nonlinear correction to the linear break-up time. The
detailed time evolution is studied in several representative cases to provide physical
explanations of the results obtained. Conclusions are drawn in § 4. Finally, a stringent
validation of our numerical technique is presented in the Appendix.

2. Mathematical model and numerical method

We consider the axisymmetric motion of an infinitely long liquid thread of density
ρ, viscosity µ, surface tension σ̄ and unperturbed radius R̄, which occupies a volume
V(t̄) and is embedded in a passive ambient at constant pressure pa in the absence
of gravity. The interface ∂V(t̄), placed at a radial position r̄ = ā(z̄, t̄), is coated
with a superficial concentration Γ̄ of insoluble surfactant molecules (see figure 1a).
Note that r̄, z̄ and t̄ stand for the radial and axial coordinates and time, respectively.
Henceforth an overbar will denote dimensional variables if not specified otherwise.
The effect of the surfactant adsorbed at the interface is to reduce the effective
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FIGURE 1. (a) Dimensional sketch of the flow configuration. (b) Example of a liquid
thread approaching pinch-off for La= 0.01, β = 1, ε = 10−3 and k = km = 0.516 at time
t = 123. The contour map represents the dimensionless pressure field p, and the arrows
show the dimensionless velocity field u, both at the top, while the deformed mesh is
shown at the bottom.

surface tension by an amount that depends on Γ̄ , and thus any disturbance of the
interface shape generates an imbalance in Γ̄ that produces a surface stress due
to gradients of σ̄ (Γ̄ ). For simplicity, in the present work we assume that surface
viscous stresses can be neglected, thus disregarding the role of the surface shear
and dilatational viscosities, µs and κs, respectively. The latter approximation is
accurate provided that the corresponding Boussinesq numbers are small, namely
Bµ = µs/(µR̄) � 1 and Bκ = κs/(µR̄) � 1 (Martínez-Calvo & Sevilla 2018). The
problem is non-dimensionalised with the visco-capillary time, µR̄/σ0, as characteristic
time and with R̄ as characteristic length, σ0 being the surface tension associated with
the initial concentration of insoluble surfactant at the interface Γ̄ (z̄, 0) = Γ0, which
are used to scale the surface tension and the surface concentration, respectively.

The flow is governed by the dimensionless Navier–Stokes equations

∇ · u= 0 at V, (2.1)

La
(
∂u
∂t
+ u · ∇u

)
=∇ · T at V, (2.2)

where u(x, t)= u er +w ez is the velocity field and u, w and er, ez are the radial and
axial velocity components and the corresponding unit vectors, respectively. In (2.2),
T =−pI + [∇u+ (∇u)T] is the stress tensor for an incompressible Newtonian liquid,
I is the standard identity tensor and p(x, t) is the pressure field. The numerical
simulations reported herein were performed using an arbitrary Lagrangian–Eulerian
(ALE) method, in which the domain x(X, t) ∈ V(t) is parametrised by the initial
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883 A35-6 A. Martínez-Calvo and others

position X = x(X, 0) ∈ V(0), defining a time-dependent displacement field, x − X,
which is enforced to satisfy the Laplace equation with proper boundary conditions
specified below. The local time derivatives are evaluated in the spatial reference
frame as

∂u
∂t
=
∂û
∂t
−
∂x
∂t
· ∇u at V, (2.3)

where û(X, t)= u(x, t) is the velocity in the material reference frame.
Since the interface ∂V is coated with surfactant, a surface transport equation is

needed for Γ (x, t):
∂Γ

∂t
+∇s · (Γ us)= 0 at ∂V, (2.4)

where us = u(xs) is the liquid velocity at the interface and xs represents any position
at the surface xs(Xs, t) ∈ ∂V(t), which is parametrised by its initial position Xs =

xs(Xs, 0) ∈ ∂V(0). Here ∇s = I s · ∇ is the surface gradient operator, where I s = I − nn
is the surface projection tensor and n is the outer unit normal vector at the surface.
The local time derivatives at the interface are evaluated in the spatial reference frame
as

∂Γ

∂t
=
∂Γ̂

∂t
−
∂xs

∂t
· ∇sΓ at ∂V, (2.5)

where Γ̂ (Xs, t)= Γ (xs, t) is the concentration of surfactant in the material frame of
reference, which is needed in order to be implemented with the ALE method that is
used in the present work. The reader is referred to the works of Stone (1990), Wong,
Rumschitzki & Maldarelli (1996) and Pereira & Kalliadasis (2008) for further details
of the time derivative of a surface quantity.

Note that the surface diffusion of surfactant has been neglected in the transport
equation (2.4). Indeed, in the present work we only consider the limit where the
surface Péclet number Pes = UscR̄/Ds → ∞, where Ds is the surface diffusion
coefficient and Usc is the characteristic liquid velocity at the free surface. The
correct scaling for Usc depends on the value of La. In the limit of dominant inertia,
La � 1, the appropriate velocity scale is the capillary velocity, [σ0/(ρR̄3)]1/2, so
that Pes = [σ0R̄/(ρD2

s )]
1/2. For instance, if we consider a water thread of radius

within the range 1–100 µm, the corresponding Laplace numbers lie in the range
102 . La. 104. Typical values of Ds for SDS, SB12 and other monomers in aqueous
solution are within the range 10−9 . Ds . 10−8 m2 s−1 when Γ is below the critical
micelle concentration (Siderius, Kehl & Leaist 2002), providing values of the surface
Péclet number in the range 104 . Pes . 105. Therefore, in configurations where
La� 1, it is expected that surface diffusion has a very small effect. In the opposite
limit of dominant viscous forces, La . 1, the appropriate velocity scale is the
visco-capillary velocity, σ0/µ, leading to Pes = σ0R̄/(µDs). Considering, for instance,
a polydimethylsiloxane silicon oil of dynamic viscosity in the range 0.1–10 Pa s,
density ρ ≈ 970 kg m−3 and surface tension σ0 ≈ 21.1 mN m−1, the Laplace number
takes values in the range 10−4 . La . 1. Although we are not aware of experimental
studies reporting typical values of Ds in highly viscous solutions, if we assume that
they are of the same order of magnitude as those of aqueous solutions, the Péclet
number lies in the range 1.Pes . 106. It is thereby deduced that, when La. 1, there
may be cases where surface diffusion cannot be neglected in the analysis. Therefore,
although the influence of surface diffusion on the satellite droplet formation process
is not addressed in the present work, it clearly deserves further study, particularly in
the case of highly viscous threads.
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Satellite formation regimes of surfactant-laden liquid threads 883 A35-7

The presence of surfactant at the interface modifies σ by decreasing its value as Γ
increases, and thus the stress balance at the interface takes the following form in the
limit Bµ� 1, Bκ� 1 (Martínez-Calvo & Sevilla 2018):

T · n=∇sσ − n(∇s · n)σ at ∂V, (2.6)

where the viscous stress exerted by the ambient fluid on the interface has been
neglected and the ambient pressure pa has been set to zero without loss of generality.
Additionally, the kinematic condition must also hold at the interface:

us · n=
∂xs

∂t
· n at ∂V . (2.7)

Finally, an equation of state that relates the surface tension, σ , to the surface
concentration of surfactant, Γ , is also needed. Surface-active molecules at the
interface induce a surface pressure Π̄ which depends on the surfactant concentration,
Π̄ = Π̄(Γ̄ ). The surface pressure is defined as the difference in the surface tension
due to the presence of surfactant, Π̄(Γ̄ )= σclean − σ̄ (Γ̄ ), and thus ∇sΠ̄ =−∇sσ̄ . In
addition, the Gibbs elasticity E relates the changes of interface area, Ā, to the surface
pressure through the surface compressibility 1/E=−(1/Ā)(∂Ā/∂Π̄)T̄ , where T̄ is the
temperature at the interface, which is assumed to remain constant. Hence,

E=−Ā
∂Π̄

∂Ā
= Ā

∂σ̄

∂Ā
=−Γ̄

∂σ̄

∂Γ̄
, (2.8)

where in the last equation it has been taken into account that, in the insoluble case
considered in the present work, the number of surfactant molecules is conserved at
the interface. Equation (2.8) can be used to relate σ̄ and Γ̄ :

∇sσ̄ =
∂σ̄

∂Γ̄
∇sΓ̄ =−

E
Γ̄
∇sΓ̄ . (2.9)

Making σ̄ and Γ̄ dimensionless with σ0 and Γ0, respectively, equation (2.9) finally
yields the dimensionless equation of state

σ = 1− β ln Γ , (2.10)

where β = E/σ0 is the so-called elasticity parameter, also referred to as the
Marangoni number (Champougny et al. 2015). Note that, in the limit of small
surface concentration variations around the initial value, Γ̄ =Γ0+ δΓ̄ , with δΓ̄ �Γ0,
one has Γ = 1+ δΓ with δΓ � 1, and the equation of state (2.10) can be linearised to
yield σ = 1− βδΓ , which is equivalent to the equation of state employed by Dravid
et al. (2006). However, it is important to emphasise that the relative variations of Γ
during the thread break-up process are not small, as demonstrated in § 3. Therefore,
the use of a linearised equation of state introduces considerable errors and is not
justified. At this point, the limitations of the nonlinear equation of state (2.10) should
be clearly stated. Indeed, the main shortcoming of (2.10) is that σ →∞ as Γ → 0,
which eventually occurs as the surfactant is depleted from the pinch-off region due
to the local advection out of the collapsing neck. Hence, a different equation of state
is required to properly model the dynamics of the smallest scales close to break-up,
which properly captures the saturation of σ to the clean interface value as Γ → 0 (see
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e.g. McGough & Basaran 2006; Kamat et al. 2018). Nevertheless, for the purposes
of the present contribution, the equation of state (2.10) is perfectly valid. In effect,
at the smallest scales that need to be resolved to provide robust measures of Vsat and
Σsat, the relative variations of Γ and σ are small enough as to guarantee the validity
of (2.10) in all the results reported herein.

The surface stress balance (2.6) can be rewritten in terms of Γ as

T · n=−
β

Γ
∇sΓ − n (∇s · n) (1− β ln Γ ) at ∂V, (2.11)

which, together with (2.1)–(2.5) and (2.7), form a closed system to determine u, p, Γ
and xs.

Concerning the computational domain and the corresponding boundary conditions,
in the temporal approach adopted herein we only consider half a perturbation
wavelength subjected to the following symmetry conditions:

w= 0,
∂u
∂z
= 0 and

∂Γ

∂z
= 0 at z= 0,π/k, (2.12a−c)

where k is the dimensionless axial wavenumber, together with the axisymmetry
condition

∂w
∂r
= 0 and u= 0 at r= 0. (2.13a,b)

Finally, regarding the initial conditions imposed at t= 0, we perturb the position of
the liquid cylinder with a harmonic disturbance of amplitude ε:

xs = zez + [R− ε cos(kz)]er, (2.14)

where R = (1 − ε2/2)1/2 is a dimensionless radius defined in terms of ε, such that
the liquid volume remains constant as ε varies (Ashgriz & Mashayek 1995). We also
assume that the liquid thread is initially at rest and that the surfactant concentration
is uniform:

u(x, 0)= 0, Γ (xs, 0)= 1. (2.15a,b)

Note that the assumption of a uniform initial concentration of surfactant is a good
approximation, since our main results have been obtained in the limit ε� 1 in which
the deviations from a uniform concentration can be neglected. As explained in § 1,
our results can also be applied to describe the spatial instability and subsequent
downstream break-up of liquid jets moving with uniform velocity U with respect
to the injector reference frame, provided that U � Uσ , where Uσ is the speed
of small-amplitude capillary waves. If the latter condition is satisfied, the spatial
evolution of the jet is obtained by the downstream advection of the temporal results
presented herein with a uniform velocity U. In particular, the jet break-up length is
given by Ut̄b to a first approximation.

The problem depends on four dimensionless parameters, namely the Laplace
number La, the elasticity parameter β, the axial wavenumber k and the amplitude of
the initial perturbation ε. However, in the present work we are concerned with the
unforced break-up of cylindrical threads due to small-radius disturbances. Therefore,
all the results were obtained by setting k= km, where km(La, β) is the most unstable
wavenumber (see § 3.1). Moreover, it will be shown that, in the small-disturbance
limit, ε � 1, the only result that depends on ε is the break-up time of the thread,
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tb(La, β, ε). However, our results have revealed that the functional dependence
of tb can be split into a contribution predicted by linear theory in explicit form,
tb,L(La, β, ε), plus a nonlinear correction, 1tNL(La, β), which does not depend
on ε. Consequently, only two independent dimensionless parameters appear in our
formulation, namely La and β.

To perform the numerical simulations, the liquid domain 06 r 6 a(z, t), 06 z6π/k
is partitioned into a rectangular or triangular finite-element mesh which is dynamically
deformed using the ALE method. In particular, the displacement field, x − X, is
enforced to satisfy the Laplace equation, and the normal mesh velocity, nn · u,
solves the kinematic condition (2.7). To that end, equations (2.1)–(2.4), together
with the boundary and initial conditions (2.12)–(2.15), are written in weak form
following the methodology described by Rivero-Rodríguez & Scheid (2018a,b), and
the spatial discretisation is carried out using the finite-element method provided by
COMSOL, where Lagrange linear (P1) elements are used for p and quadratic (P2)
elements are used for x, u and Γ . The time discretisation was performed using the
first-order backward Euler method with adaptive time stepping. Figure 1(b) shows a
representative deformed mesh for a simulation with La = 0.01, β = 1, ε = 10−3 and
k = km = 0.516 at time t = 123, together with the pressure field as a contour plot
and the velocity field represented by arrows. All the results reported were carefully
checked as being mesh-independent, with an integration tolerance of the order of
10−6–10−7. In addition, it was checked that the relative variations of liquid volume
and surfactant mass where smaller than 10−5 during each simulation. The numerical
code has been validated with the linear theory in § 3.1. In the nonlinear regime, the
validation was performed by comparing our results with those of Ashgriz & Mashayek
(1995) for a clean interface and with those of McGough & Basaran (2006) and Kamat
et al. (2018) for a surfactant-laden thread (not shown). In particular, the Appendix
is devoted to show the performance of our numerical framework close to pinch-off,
comparing our results with the different theoretical scalings of the minimum radius
as a function of time to break-up.

3. Results and discussion
Since we are interested in the spontaneous break-up of the surfactant-laden thread,

all the results were computed from an initial condition where the liquid cylinder is
perturbed with the wavenumber of maximum amplification, km(La, β). Hence, the
results of a linear stability analysis are first summarised in § 3.1 to obtain km and
ωm, the latter being the maximum temporal growth rate. Note that km is needed
to define the initial geometry and the initial condition (2.14), while ωm is used
to compute the nonlinear correction to the linear break-up time, which is defined
in § 3.2. In addition, the linear theory has also been used to validate the numerical
code by comparing the associated maximum temporal growth rate, ωm, with the results
extracted from the numerical simulations during the initial transient of exponential
amplitude growth. Sections 3.2 and 3.3 are devoted to the analysis of the nonlinear
break-up and the satellite formation dynamics, separating the weak-elasticity limit
and the surfactant-laden case. To that end, we have performed direct numerical
simulations of (2.1)–(2.15) until times very close to pinch-off. In particular, we report
a parametric study for different values of La and β, computing the volume of the
satellite droplet, the mass of surfactant trapped at its interface, the satellite shape at
pinch-off and the break-up time.

At this point, it has to be pointed out that a similar phenomenology was previously
reported by Dravid et al. (2006) for La= 0.01 and 100, although using the linearised
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equation of state σ(Γ )= 1−β(Γ − 1). In addition, those authors did not consider the
natural break-up of the thread, since the disturbance wavenumber k was restricted to
fixed values different from the most amplified one, km.

3.1. Linear stability analysis
To obtain the dispersion relation D(ω, k)= 0 relating the temporal growth rate ω and
the axial wavenumber k, all the flow variables are slightly perturbed around a uniform
stationary state and decomposed as temporal normal modes:

(u,w, p, a, σ , Γ )= (0, 0, 1, 1, 1, 1)+ ε(û, v̂, p̂, â, σ̂ , Γ̂ ) exp(ikz+ωt). (3.1)

Introducing (3.1) into the system (2.1)–(2.4) and keeping terms proportional to ε, the
following dispersion relation is obtained:

Laω2F(k)− k2(1− k2)+ βk2
[1+ F(k)(F(k̃)− 2)]

+
k4

La

[
4−

β

ω

(
2−

1− k2

ω

)]
[F(k)− F(k̃)] + 2ωk2(2F(k)− 1)= 0, (3.2)

where k̃ =
√

k2 + Laω and F(x) = xI0(x)/I1(x). Here, In(x) denotes the nth-order
modified Bessel function of the first kind. Note that dispersion relation (3.2) is
exactly the same as the one deduced by Timmermans & Lister (2002), and is also a
particular case of the one provided by Martínez-Calvo & Sevilla (2018) in the limit
of negligible surface viscosities. The Rayleigh–Chandrasekhar dispersion relation is
recovered when β→ 0 (Lord Rayleigh 1892; Chandrasekhar 1961).

As shown experimentally by Goedde & Yuen (1970), and numerically by Mansour
& Lundgren (1990) and Ashgriz & Mashayek (1995), a convenient way to compute
the temporal growth rate of small disturbances is through the radius amplitude,
extracted from the present simulations as A(t) = (maxz[a(z, t)] − minz[a(z, t)])/2.
Figure 2(a) shows the temporal evolution of A(t) in semi-logarithmic scale, extracted
from two numerical simulations for an initial perturbation amplitude ε = 10−4, an
elasticity parameter β = 1 and two values of the Laplace number, La = 0.01 and
La = 100, close to the Stokes and Euler regimes, respectively. In each case, the
most amplified wavenumber, km(La, β), is used to build the initial condition. As
expected due to the smallness of ε, figure 2(a) shows that during most of the time
the amplitude grows exponentially, i.e. A∝ exp(ωmt), and thus the maximum temporal
growth rate, ωm(La, β), can be easily computed as the slope of the linear region in
the semi-logarithmic plot, ωm = d ln(A)/dt. It can also be deduced from figure 2(a)
that there is an initial transient during which the growth of A(t) is not exponential,
which can be explained by the fact that the initial conditions in the numerical
simulations are imposed on the shape of the interface, but disregard the associated
disturbances in the velocity, pressure and surfactant concentration fields. As shown in
figure 2(b), this procedure was used to obtain ω for different values of k (symbols),
and the results are compared with the amplification curves ω(k) computed from the
dispersion relation (3.2) (solid lines), affording an excellent agreement that validates
the numerical code in the linear regime. Finally, figure 2(c,d) show the isocontours
of km and ωm, respectively, as a function of La and β extracted from (3.2), whose
values will be used hereafter.
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FIGURE 2. (a) Semi-logarithmic plot of the radius amplitude A(t) as a function of
time, extracted from two numerical simulations for ε = 10−4, β = 1 and two values of
the Laplace number, namely La = (0.01, 100). The corresponding optimal wavenumbers,
km(La, β), highlighted in (b) with stars, are used to build the initial conditions, and
their values are indicated near each curve together with the associated linear temporal
growth rates, ωm(La, β) and La. (b) Temporal growth rate ω as a function of the axial
wavenumber k, computed with the dispersion relation (3.2) (solid lines) and with the
numerical simulations (circles), for β = 1 and two different values of La = (0.01, 100),
indicated near each curve. The maximum growth rates ωm computed in (a) are marked
with stars. (c) Isocontours of the most amplified wavenumber km(La, β) and (d) its
corresponding growth rate ωm(La, β).

3.2. Satellite formation regimes and transitions in the (La, β) parameter plane

Let us first present the structure of the (La, β) parameter plane in terms of the satellite
formation process. To that end, we conducted an exhaustive parametric study in which
the Laplace and elasticity parameters were varied in small steps within wide ranges,
namely 0.016La6 100 and 06β 6 1. Thus, for each pair of values of La and β, we
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FIGURE 3. The structure of the (La, β) parameter plane. An abrupt transition takes place
along the solid line, β = βc(La), across which both the satellite volume and the entrapped
mass of surfactant experience a discontinuous jump, such that both magnitudes are larger
above the solid line. The inset shows the jumps in the satellite volume, 1Vsat(La) =
Vsat(β − βc→ 0+)−Vsat(β − βc→ 0−), and in the associated entrapped mass of surfactant,
1Σsat. Both jumps, together with βc, increase monotonically as La decreases, and reach
respective Stokes asymptotes as La → 0, namely 1Vsat → 0.022, 1Σsat → 0.045 and
βc→ 0.98. The filled circle indicates the origin of the discontinuous transition, (La, βc)=
(7.5, 0.55), at which both jumps become zero. For La > 7.5, the satellite volume is a
continuous function of β. The open circles correspond to the values of La and β of the
shapes just before pinch-off shown in figure 4.

simulated the instability-driven time evolution of the thread from an initial condition
with ε� 1 until a time tb very close to break-up. In total, around 104 time-dependent
simulations were carried out to characterise the (La, β) parameter plane shown in
figures 3 and 5.

At this point, it is important to emphasise that the fate of the main and satellite
drops after pinch-off is outside the scope of the present work, and therefore we do
not explore the possible successive break-up events that may take place and lead to
the formation of sub-satellites. Keeping this in mind, we have extracted the satellite
volume at the last numerical step, t= tb. Normalising its value with the total volume
provides the definition

Vsat =

∫ zmin

0
a2 dz∫ π/km

0
a2 dz

, (3.3)

where zmin is the axial position where the liquid column reaches its minimum radius,
amin, at t = tb. A more common measure of the satellite size is its equivalent radius,
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FIGURE 4. The satellite shapes just prior to pinch-off in the (La, β) parameter plane
(see open circles in figure 3). The vertical lines indicate the axial positions, zmin, of the
minimum thread radii, amin.

Rsat, which is the radius of a spherical drop of the same volume as the satellite
(Rutland & Jameson 1971; Mansour & Lundgren 1990; Ashgriz & Mashayek 1995;
Mashayek & Ashgriz 1995). All the results reported herein in terms of Vsat can be
easily converted to Rsat through the equation Rsat = [3πVsat/(2km)]

1/3. Following the
same procedure, we have also computed the mass of surfactant trapped at the satellite
surface which, normalised with the total mass of surfactant, provides the definition

Σsat =

∫ zmin

0
aΓ

√
1+

(
∂a
∂z

)2

dz

∫ π/km

0
aΓ

√
1+

(
∂a
∂z

)2

dz

. (3.4)

We point out that, since Vsat and Σsat are always obtained when amin is within the
range amin ∼ 10−4–8 × 10−3, the sensitivity of these magnitudes to the exact value
of amin is negligible, such that both represent very robust measures. Similarly, the
corresponding break-up time tb is barely sensitive to the value of amin.

In contrast with Vsat and Σsat, which do not depend on the initial amplitude in the
limit ε� 1, the break-up time is a function of the form tb(La, β, ε) such that tb→∞
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FIGURE 5. Isocontours in the (La, β) parameter plane of (a) the normalised satellite
volume Vsat, (b) the normalised mass of surfactant trapped at its interface Σsat, (c) the
nonlinear correction to the break-up time 1tNL and (d) the sphericity of the satellite
droplet S.

as ε→0. Indeed, the break-up time can be easily estimated from linear theory through
the equation amin(t) ∼ 1 − ε exp (ωmt), where ωm is the growth rate associated with
the most amplified wavenumber km shown in figure 2(c,d), leading to the estimation
tb ∼ ln (ε−1)/ωm. Based on the latter result, we define the nonlinear correction to the
linear break-up time as

1tNL = tb −
ln(ε−1)

ωm
, (3.5)

where tb is obtained by extrapolating amin to zero using the last few computed time
steps. Unlike tb, 1tNL only depends on La and β, but not on ε, provided only that
ε � 1. The latter fact is demonstrated in § 3.3. Finally, we have also computed the
sphericity of the satellite droplet at pinch-off as

S =
2
(

3
4

∫ zmin

0
a2 dz

)2/3

∫ zmin

0
a

√
1+

(
∂a
∂z

)2

dz

, (3.6)
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which is the ratio between the surface of a sphere of the same volume as the satellite
and its actual surface. The quantification of the satellite formation process will be
based on the four functions Vsat, Σsat, 1tNL and S , extracted from the numerical
simulations. These four functions only depend on La and β when ε is sufficiently
small, as is demonstrated in § 3.3. Thus, the main results reported herein have been
computed in the limit ε→ 0.

The structure of the (La, β) parameter plane is summarised in figures 3 and 4 in
terms of the satellite formation process. In particular, figure 3 depicts the most salient
features of the parameter plane, and figure 4 displays several satellite shapes at the last
computed numerical step just prior to pinch-off, whose associated values of La and
β are indicated with circles in figure 3. The most important feature of the parameter
plane is the solid line shown in figure 3, which represents a discontinuous transition
that takes place for a critical elasticity, β = βc(La) for La < 7.5. In particular, both
the satellite volume and the associated entrapped mass of surfactant experience sudden
jumps from certain values Vsat(β − βc→ 0−) and Σsat(β − βc→ 0−) to larger values
Vsat(β−βc→0+) and Σsat(β−βc→0+). Indeed, the inset of figure 3 shows the jumps
experienced by the satellite volume, 1Vsat(La)=Vsat(β−βc→0+)−Vsat(β−βc→0−),
and by the associated entrapped mass of surfactant, 1Σsat. Both jumps and βc increase
monotonically as La decreases, and reach respective Stokes asymptotes as La→ 0,
namely 1Vsat→ 0.022, 1Σsat→ 0.045 and βc→ 0.98. The filled circle in figure 3
indicates the origin of the discontinuous transition, (La, βc) = (7.5, 0.55), at which
both jumps become zero. For values of La>7.5, Vsat and Σsat are continuous functions
of La and β.

As shown in figure 4, for values of β = 0< βc and β = 0.5< βc the sequence of
interface shapes at pinch-off depends continuously on La, with the trend that larger
satellites are formed as La increases, reaching the regular limit of inviscid flow as
La→∞. For β < βc and small values of La, figure 4 reveals that the main drops
are separated by very thin threads of tiny volume whose break-up behaviour has
been characterised in previous studies (see e.g. Kowalewski 1996). For β < βc and
intermediate values of La, the main drops are separated by a satellite centred at z= 0
that is connected to the main drops by very thin threads (see e.g. the case for La= 1
and β = 0 in figure 4). Finally, for β <βc and large values of La, the satellite drop is
directly connected to the main drops. In contrast, when β = 1>βc, figure 4 shows a
different picture, where large satellites are formed for all values of La. These results
have also been analysed quantitatively, and are discussed in detail below.

From figures 3 and 4 it is deduced that, although the physical mechanisms are
different, both the liquid inertia and the interfacial elastic stress favour the formation
of satellites. In particular, surface elasticity tends to form spherical-shaped satellites
at pinch-off, whereas the increase of the liquid inertia generates oval-shaped satellites.
In the set of shapes close to pinch-off shown in figure 4, a discontinuous transition is
observed for La= 0.01 and 1, as β increases. However, for La= 10> 7.5 a continuous
transition of the thread shape is observed as β increases. Finally, for La = 100, the
upper row evidences that the influence of the elastic stress on the shape of the thread
is much weaker when the value of La is large enough. The physics underlying these
transitions can be explained in terms of the coupling between the liquid inertia, the
viscous stress, the surface tension and the interfacial elastic stress. The competition
between these forces is discussed in § 3.3, based on the trends exhibited by the
functions Vsat, Σsat, 1tNL and S , and also by analysing the temporal evolution of
the interface shapes starting from small disturbances, depending on the values of La
and β.
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3.3. Nonlinear dynamics of a surfactant-laden interface: satellite drop formation
To unveil the effect of liquid inertia, viscous stresses and surface elasticity on the
satellite droplet formation regimes, here we present and discuss the quantitative results
of the detailed numerical analysis that has been carried out in the present work.

Figure 5 shows the isocontours of Vsat, Σsat, 1tNL and S in the (La, β) parameter
plane. We first observe that, at the discontinuous transition that occurs for La< 7.5,
the value of Vsat increases from 10−3–1.5 % to 2–2.3 %, whereas Σsat increases from
10−3–1.5 % to 3.5–4.7 %. The exact value of both jumps as functions of La can be
seen in the inset of figure 3. In contrast, for La > 7.5 or β > βc(La), the values of
Vsat, Σsat, 1tNL and S vary continuously.

As a first general observation, it is deduced from figure 5 that the linear theory
may either underestimate or overestimate the break-up time, in a way that does not
necessarily coincide with the transitions in the satellite formation process. Indeed, tb

is underestimated for La� 1 independently of the value of β. However, for La� 1,
tb is overestimated for 0.28 . β . 1, while it is underestimated outside this range.
Regarding the sphericity S , figure 5 confirms the trend deduced from figure 4: the
most spherical satellite shapes, with S & 0.9, take place for β & βc and La . 10. In
contrast, the shapes become most elongated, with S . 0.2, when β <βc and La. 0.1
(grey area in figure 5d).

3.3.1. Analysis of the temporal evolution of clean interfaces
To present the dynamics of satellite droplet formation, we take as reference cases

the two canonical temporal evolutions of clean interfaces (β = 0) illustrated in
figure 6, for La= 0.01 in figure 6(a–d), close to the Stokes limit, and for La= 100
in figure 6(e–h), an almost inviscid case close to the Euler limit (as shown in § 3.3.4).
Specifically, we plot snapshots at different times, indicated in the labels, of the jet
radius a (upper rows), the axial surface velocity ws (middle rows, black lines), the
axial velocity at the centreline wa (middle rows, green lines) and the radial surface
velocity us (bottom rows). In both cases the initial disturbance amplitude is very
small, ε = 10−3, and thus the initial evolution is triggered by the Plateau–Rayleigh
instability mechanism, and can be described with linearised theory. This initial stage
is not shown in figure 6 for conciseness, but it can be appreciated in figure 2(a).
The initial disturbance, of most amplified wavelength km, creates an axial capillary
pressure gradient that induces a flow from the valley to the crest of the wave. The
latter mechanism finally leads to the break-up of the liquid thread and the formation
of two main drops with either a liquid thread or a satellite droplet in between.

A key feature that determines the nonlinear evolution of the destabilised thread is
the fact that the axial curvature makes the capillary pressure gradient to be locally
larger in the regions that connect the central part of the thread with the growing crests,
as evidenced by the surface and axis velocities in the snapshot of figure 6( f ). This
enhanced pressure gradient drives liquid towards the crests faster in the nearby regions
than in the central part, and explains the appearance of two local minima in the jet
radius for large enough values of La, as can be clearly appreciated in snapshots of
figure 6( f,g) for La= 100. In addition, the axial position of the minimum radii zmin is
advected with the flow along with the maximum pressure gradient, i.e. towards higher
values of z as time advances (Ashgriz & Mashayek 1995; Castrejón-Pita et al. 2015).
These two local minima become the two neck regions where pinch-off takes place,
leading to the formation of an oval-shaped satellite droplet, as can be observed in the
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FIGURE 6. Temporal evolution of the liquid thread radius a (a–d), of the axial velocities
at the free surface ws and at the axis wa (e–h) and the radial surface velocity us (i),
for ε = 10−3, β = 0, (a–d) La = 0.01, k = km = 0.150, and (e–h) La = 100, k = km =

0.635. The vertical lines in each last snapshot indicate the axial position zmin of minimum
radii amin, being zmin = 1.49 and amin = 3.63 × 10−5 for La = 0.01 and zmin = 3.12 and
amin= 1.29× 10−4 for La= 100. (i) Zoomed region close to the neck at the instant shown
in (h).

snapshot of figure 6(h). This scenario applies to cases where La� 1 (figure 6e–h), for
which the viscous stress is negligible, and the capillary pressure gradient is entirely
transferred to liquid inertia leading to a self-accelerated process.

In contrast, when La� 1 (figure 6a–d), the viscous dissipation inhibits the growth
of higher harmonics, and larger pressure gradients are needed to overcome the viscous
damping, as has already been pointed out by Ashgriz & Mashayek (1995). Hence,
the axial movement of the minimum radius is delayed by the viscous stress, since it
weakens the capillary pressure and the concomitant liquid advection. Consequently, the
central region shrinks almost uniformly until the last instants before break-up, giving
rise to long and thin filaments without the formation of appreciable satellite droplets
before detachment. Notice also that, for La� 1, the axial velocities at the centreline,
wa, and at the interface, ws, are almost equal (green and black lines, respectively, in
figures 6a–d), indicating that the radial profile of axial velocity inside the thread is
nearly uniform at low Laplace numbers.
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FIGURE 7. Values of Vsat and Σsat as a function of β for (a,b) La= 0.01 and (c,d) La=
100, and for different values of the initial perturbation amplitude ε indicated in the legend.
The dotted line represents the results of using the linear equation of state σ =1−β(Γ −1)
(Dravid et al. 2006). The insets show Vsat as a function of ε in logarithmic scale for (a)
β = 1.3 and (c) β = 0.7, demonstrating that the final stage of the liquid thread just before
pinch-off becomes independent of ε when its value is sufficiently small. The insets in
(b,d) show the nonlinear correction to the break-up time 1tNL as a function of β.

3.3.2. Analysis of the temporal evolution of surfactant-laden interfaces
To explain the different trends and transitions observed in figure 5, let us first focus

on the effect of β for the particular cases of La= 0.01 and La= 100. Figure 7 shows
Vsat (figure 7a,c), Σsat (figure 7b,d) and 1tNL (insets in figure 7b,d) as functions of β
for La= 0.01 in figure 7(a,b) and for La= 100 in figure 7(c,d). In addition, we have
computed the results for several values of ε indicated in the legend of figure 7(a),
with the aim of clearly establishing the limit of infinitesimal disturbances. In particular,
figure 7 shows that Vsat, Σsat and 1tNL become independent of ε provided that ε
is small enough, as stated before. Indeed, the insets in figure 7(a,c), which show
the dependence of Vsat on ε, clearly demonstrate that the value of Vsat reaches the
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FIGURE 8. Temporal evolution of the liquid thread radius a (first row), surfactant
concentration Γ (second row, black lines), surface tension σ (second row, blue lines),
axial velocity at the interface ws (third row, black lines) and at the centreline wa (third
row, green lines) and radial surface velocity us (fourth row), for La= 0.01, ε = 10−3 and
β = 0.960< βc(La= 0.01), with k= km = 0.508. The vertical line in the last snapshot of
a indicates the position of zmin. Here zmin = 0.33 and amin = 7.29× 10−4.

infinitesimal-disturbance plateau when ε . 0.1. Figure 7 also displays the results
obtained with the linear equation of state σ = 1− β(Γ − 1) (dotted line), instead of
the nonlinear one (2.10). It is important to note that the use of the linear equation
of state leads to substantial quantitative differences with respect to the nonlinear
one (2.10). In particular, the linear equation underestimates the values of Vsat and
Σsat considerably. We note also that we compared our numerical results using the
linear equation of state with those reported by Dravid et al. (2006), finding very
good agreement. However, their results were calculated for wavenumbers k 6= km, and
the satellite droplet was measured by those authors by means of the thread radius at
z= 0 close to pinch-off, instead of using either Vsat or Rsat.

Figure 7(a,b) shows the discontinuous transition in Vsat and Σsat that occurs when
β is increased above the critical value βc(La = 0.01) = 0.978 ± 0.0003. For β > βc
(La= 0.01) a satellite drop centred at z= 0 is formed, trapping approximately 2.1 %
of the total volume of liquid and 4.5 % of the total mass of surfactant.

3.3.3. Physical explanation of the discontinuous transition
To explain the abrupt transition induced by the presence of surfactants, figures 8

and 9 show the temporal evolution of the liquid thread for La= 0.01 and two different
values of β, namely β = 0.960<βc(La= 0.01), with k= km= 0.508, and β = 0.979>
βc(La= 0.01), with k= km= 0.512, respectively. In both cases, we have computed the
thread radius a (first row), the surfactant concentration Γ together with the surface
tension σ (second row), the axial velocity at the interface ws and at the centreline wa
(third row) and the radial surface velocity us (fourth row). Time is indicated in the
labels.

The presence of surfactants introduces two main effects. The advection of surfactant
molecules outside the central region of the thread increases the local surface tension
in this region, as can be observed in figures 8(a) and 9(a). This surfactant depletion
generates two opposed effects. First, the axial capillary pressure gradient is enhanced,
since the value of σ becomes larger in the central region, where Γ is smaller, while
σ becomes smaller away from the centre, where Γ is larger. Second, there is a
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FIGURE 9. Same as figure 8 but for β = 0.979 > βc(La = 0.01), with k = km = 0.512.
The insets are zooms showing the normalised velocity vector field and isocontours of the
pressure field. Here zmin = 1.93 and amin = 2.5× 10−4.

stabilising effect induced by the elastic or Marangoni stress, which competes with the
destabilising Plateau–Rayleigh mechanism enhanced by the first effect. Actually, the
gradient of σ generates a tangential stress at the interface directed towards increasing
values of σ , which opposes the drainage flow and tends to replenish the central zone
with surfactant.

In the case of β < βc(La = 0.01), figure 8(b,c) shows that the Marangoni stress
reduces the axial surface velocity, ws, compared with the centreline velocity, wa, the
difference between both velocities being larger in the region where ∇sσ is higher. As
the fluid is drained from the centre for increasing times, ∇sσ becomes larger. When
β <βc(La= 0.01) the capillary pressure gradient is able to remove most of the liquid
from the centre. Eventually, close to pinch-off, inertia becomes important and the flow
is reverted close to z= 0.33, so that the rate of thinning increases in this region and
zmin moves towards the latter axial position where the liquid thread finally detaches
forming a tiny satellite droplet with Vsat < 10−5, as evidenced by figure 8(d). Note
that, during thread evolution, two bulges connecting the central and outer regions grow
due to the reduction of the surface velocity, and are finally connected by a thin liquid
thread close to pinch-off.

When β > βc(La= 0.01) the foregoing explanation still holds, but the elastic stress
is large enough to revert the flow near the interface at early times far from break-up,
as shown in figure 9(a). The associated stagnation point diffuses radially inwards, and
leads to a counterflow separating a region where liquid flows towards the centre and
induces the formation of a satellite from another region where the incipient main drop
is fed with liquid. Consequently, the thread detaches in between these two regions. If
β increases further, the break-up time increases and the flow reversal occurs at earlier
stages, so that Vsat and Σsat increase monotonically, as shown in figure 7(a,b).

When La = 100, figure 7(c,d) shows that the effect of surface elasticity is much
weaker in the case of dominant inertia, as was anticipated both in figure 5 and also
by the shapes shown in the upper row of figure 4. The small influence of insoluble
surfactants in the inviscid limit, La� 1, had been already noted in the linear stability
analyses of Whitaker (1976), Hansen, Peters & Meijer (1999) and Timmermans &
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FIGURE 10. Same as figure 8 but for La= 100 and β = 0.203, with k= km= 0.625. Here
zmin = 3.09 and amin = 7.89× 10−4.

Lister (2002). Indeed, the effect of Marangoni stresses is confined to a thin boundary
layer at the free surface, where the viscous stress rapidly restores any imbalance of
σ , and which does not have any influence in the bulk liquid motion. Consequently,
for La = 100, the satellite volume Vsat varies only slightly with respect to the value
of a clean liquid thread, Vsat(β = 0, La= 100)' 0.03, with a minimum at β ' 0.203,
whereas Σsat increases monotonically as β increases. To explain this result, figures 10
and 11 show two sets of snapshots of a, Γ , σ , ws, wa and us for β = 0.203, at which
Vsat is minimum, and for β = 1, respectively.

In the weak-elastic limit, β → 0, a satellite droplet with volume Vsat ' 3% is
formed at pinch-off, as already shown in figures 5 and 7(c). The satellite volume
decreases as β increases in the range 0 < β . 0.203. Indeed, when β increases,
the Marangoni rigidification of the interface slows down the pinch-off process by
decreasing the interfacial velocities, as evidenced by the time evolution of ws, wa and
us in figure 10 with respect to figure 6(e–h). The latter behaviour, together with the
fact that the pressure gradient is locally enhanced due to the variations of σ , explain
why a larger volume is drained out of the satellite droplet compared to the case of a
clean interface. However, the Marangoni stress that opposes the drainage flow away
from the centre reduces the advection of surfactant towards the main drops, and thus
the value of Σsat increases, as shown in figure 7(d). The snapshot in figure 10(c)
shows that the flow is reversed near the neck region, as happens for a clean interface
(see e.g. figure 6h,i). However, in the elastic regime the flow reversal takes place
earlier than in the clean interface limit. This behaviour at high values of La and low
values of β was previously noticed by Kamat et al. (2018), who showed that the
stagnation point occurs at earlier stages in surfactant-laden interfaces compared with
clean interfaces, due to the strong Marangoni stress in the neck region.

A representative case of La = 100 and β > 0.203 is shown in the snapshots of
figure 11 for β=1. The main change with respect to the preceding case is the fact that
for β = 1 the Marangoni stress is strong enough to revert the surface flow at earlier
stages, as shown in figure 11(b,d). Therefore, the stagnation point appears earlier than
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FIGURE 11. Same as figure 10 but for β = 1 with k= km = 0.647. Here zmin = 2.94 and
amin = 5.14× 10−4.

in the case of figure 10, and diffuses almost instantaneously in the radial direction,
leading to a satellite droplet with larger values of the normalised volume and of the
surfactant mass. It can thus be deduced that the minimum value of Vsat displayed in
figure 7(c) appears due to a competition between the two aforementioned opposite
effects induced by the presence of surfactants.

For La< 7.5, the two effects described previously coexist when β is increased, as
shown by the isocontours of Vsat in figure 5. For instance, when La = 1, Vsat first
decreases as β increases, and when the elastic stress is strong enough, the flow is
reversed and the discontinuous transition occurs. Note that, in the latter case, inertia
is important since La is of order unity, and a small but finite satellite droplet exists
in the clean limit, β→ 0 (see e.g. the second row of figure 4), where Vsat = 0.394 %
(a value significantly larger than in the limit La� 1, as shown in the isocontours of
figure 5). Hence, the main difference with respect to the limit La� 1 is that in this
case, since Vsat(β→ 0) is small, the increase of β reduces the satellite volume and
may even make it negligible. For La< 7.5, Σsat also decreases monotonically together
with Vsat when β < βc, which can be explained by the fact that Vsat is already small
when β = 0, so that Σsat necessarily decreases when β is increased.

Let us recall at this point that the critical elasticity, βc(La), decreases as La
increases within the range 0 < La < 7.5, as shown in figures 3 and 5. The reason
for the latter trend is the fact that the advection of surfactant away from the central
region is enhanced by the liquid inertia, so that ∇sσ also increases, and thus the
value of β for which the elastic stress reverts the flow is smaller. Furthermore, the
value of Vsat(La, β → 0) increases as La becomes larger, and therefore the jumps
experienced by Vsat and Σsat at the discontinuous transition, β = βc, decrease, as
deduced from the inset of figure 3. Finally, for La> 7.5, the discontinuous transition
disappears.

3.3.4. Scaling laws for Vsat and Σsat as functions of La
Figure 12 shows Vsat and Σsat as functions of La for different values of β indicated

in the legend. The circle with error bars corresponds to the experiment of Rutland &
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FIGURE 12. (a) Normalised satellite volume Vsat and (b) normalised mass of surfactant
trapped at its interface Σsat as a function of the Laplace number La on log–log scales
for different values of β indicated in the legend. The inset shows the dependence of the
maximum amplification wavenumber km with respect to La on a log–log scale. The circle
with error bars corresponds to the experiments of the natural break-up of a liquid jet of
water performed by Rutland & Jameson (1970).

Jameson (1971) of the natural break-up of a liquid jet of clean water, which is in close
agreement with our numerical result for β = 0. The inset displays the most unstable
wavenumber, km, as a function of La, showing the inviscid plateau km ' 0.697 for
La � 1 (Rayleigh 1878), as well as the power-law dependence for small values
of La. The latter power law can be deduced from the long-wave approximation of
the dispersion relation (3.2) or, equivalently, from the leading-order one-dimensional
model deduced by Eggers & Dupont (1994) and García & Castellanos (1994).
In the clean case, β = 0, the leading-order one-dimensional results are km ∼

(2 + 3
√

2La−1/2)−1/2 and ωm ∼ (2
√

2 + 6La−1/2)−1 (Eggers & Villermaux 2008).
The latter long-wave result provides very accurate results in the whole range of
La, since k ∈ (0, 1) accomplishes the slenderness assumption. In the inviscid limit,
La→∞, both ωm and km are slightly overestimated by the one-dimensional model,
namely ωm→ 2−3/2 and km→ 2−1/2. However, in the Stokes limit, La� 1, the values
of ωm→ 1/6 and km= 3−1/22−1/4La1/4 are in excellent agreement with the exact linear
theory. When β > 1/2, the elastic stress regularises km in the limit of La→ 0, as
analysed in detail by Timmermans & Lister (2002) (see also the isocontours of km in
figure 2c).
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In the limit of a clean interface, β = 0, Vsat increases monotonically with La,
as previously shown in figures 4 and 5, and explained in figure 6. In particular,
our numerical results reveals that the satellite volume scales as Vsat = 0.00421La1.64

when La . 2, and thus Vsat → 0 and Σsat → 0 as La → 0. When La is finite,
a satellite drop is always formed, since the liquid thread always experiences a
transition to the inertial–viscous regime (Eggers 1993; Castrejón-Pita et al. 2015)
and thus zmin moves from z= 0 towards higher values when t is close enough to tb.
The elongated satellite droplet formed when La� 1 can break up into more droplets
after pinch-off as it relaxes, depending on the value of La (Notz & Basaran 2004;
Castrejon-Pita, Castrejon-Pita & Hutchings 2012; Anthony et al. 2019; Wang et al.
2019), unless La→ 0 (Eggers & Fontelos 2005). Alternatively, using the expression
for the equivalent radius Rsat developed in § 3.2, which depends on km, and since
km= 3−1/22−1/4La1/4 within the range of La for which Vsat exhibits power-law scaling,
it is deduced that Rsat = 0.34La0.463.

When La&10, the value of Vsat reaches a plateau of about 3 %, as already discussed
in the context of figures 5 and 7(c). Equivalently, since km'0.697 when La�1, Rsat'

0.588 in the inviscid limit, in excellent agreement with the experiments of Rutland
& Jameson (1971) (circle with error bars in figure 12a), and also with the numerical
simulations of Ashgriz & Mashayek (1995). In the weak-elasticity limit, β < 0.05, the
behaviour of Σsat is identical to that of Vsat, displaying the same scaling law within the
same range in La, and also reaching an inviscid plateau of about 2.9 % when La& 10.
This scaling law for Vsat and Σsat prevails when β < βc and La < Lac, although the
prefactor changes with β as shown in figure 12. In particular, when β increases the
prefactor is smaller and thus Vsat and Σsat reach smaller values as La→ 0. This can
be explained by the translation of zmin, which is inhibited as β becomes higher and
thus the surface stress exerted at the interface increases.

Figure 12 also shows that, when La� 1, the 3 % plateau reached by Vsat is barely
affected by β since, as explained previously, inertia dominates and the elastic stress
cannot induce any substantial change in the bulk motion (Whitaker 1976; Hansen et al.
1999; Timmermans & Lister 2002). As inertia increases, the influence of β on Vsat

becomes even weaker than in the case of La= 100 displayed in figure 7(c). Although
the satellite shape at pinch-off is the same because viscosity cannot balance the elastic
stress and transmit it to the bulk, Σsat reaches different inviscid limits as β increases.
In particular, the 2.9 % inviscid plateau reached by Σsat in the weak-elasticity limit
increases with β, the reason being the same as in the case of figure 7(d).

When β = 1> βc(La) for arbitrary values of La, a satellite is always formed with
Vsat & 2 % and Σsat & 4 %, and both increase smoothly with La as inertia becomes
more important. In fact, Vsat and Σsat reach respective plateaus in both the Stokes
and Euler limits. For La → 0, the values of Vsat and Σsat are about 2.30 % and
4.67 %, respectively, whereas in the limit La→∞, their values are 3 % and 12 %,
approximately. This trend prevails provided that β > βc(La→ 0) = 0.978, as shown
in the isocontours of Vsat and Σsat in figure 5. Hence, in the elasticity-dominated
regime where β > βc, the effect of inertia on Vsat and Σsat is weaker, although the
column for β = 1 in figure 4 reveals that the shape of the thread at pinch-off changes
substantially. As already mentioned, inertia tends to form oval-shaped satellites, which
are more likely to break up in the relaxation process after pinch-off, whereas the
surface elasticity tends to form spherical satellites which will not experience secondary
break-up events.
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4. Conclusions
In this paper we have reported an exhaustive numerical study of the unforced

break-up of free axisymmetric threads of a Newtonian liquid whose interface is
coated with insoluble surfactants. Our main objective was to describe and explain
how the presence of these molecules affects the nonlinear dynamics of the liquid
thread and the satellite drop formation regimes when the dynamics is triggered by
the most dangerous initial disturbance. Under these conditions we have shown that,
when the initial perturbation amplitude is sufficiently small, the flow depends on two
dimensionless parameters, namely the Laplace number La and the elasticity parameter
β. Our numerical simulations have allowed us to characterise the influence of these
two parameters on the satellite volume Vsat, the mass of surfactant trapped at its
interface Σsat, the nonlinear correction to the linear break-up time 1tNL and the
satellite sphericity S , all of them computed at times very close to break-up. It is
important to emphasise that our numerical simulations do not contemplate the post
break-up behaviour of the threads and satellites, including their relaxation or eventual
secondary break-up events. Indeed, an accurate analysis of the dynamics beyond
break-up is an important though technically challenging task, which is out of the
scope of the present study. Clearly, a future task to be pursued would be to extend
the present results by performing numerical simulations that are able to compute the
post pinch-off dynamics to reveal the ultimate state of the unstable liquid thread.

We have found a discontinuous transition at a critical elasticity number β = βc(La)
within the range 0 < La < 7.5, at which Vsat and Σsat change abruptly. We have
explained this behaviour in terms of a competition between the Plateau–Rayleigh
instability mechanism and the elastic or Marangoni stresses that arise due to interfacial
surface tension gradients. When β is high enough, the elastic stress that opposes the
flow induced by the capillary pressure gradient is able to revert it at the interface.
Afterwards, the surface stagnation point diffuses radially inwards, and finally a net
flux of liquid swells the central region forming a satellite droplet prior to pinch-off.

When La< 7.5, Vsat and Σsat increase from a non-zero satellite droplet for β < βc
to a larger value when β >βc. When La. 0.2, the critical elasticity number reaches a
plateau, βc=0.978. Finally when La>7.5 the abrupt transition disappears. In between,
βc decreases monotonically with La, since inertia enhances the gradients of surface
tension.

For a clean liquid thread, β → 0, we have provided a new scaling law for the
normalised satellite volume, namely Vsat = 0.00421La1.64, which is valid for La . 1.
We have shown the existence of a regular weak-elasticity limit, β < 0.05, for which
the latter scaling law holds, and for which the normalised mass of surfactant carried
by the satellite, Σsat, exhibits the same scaling law as Vsat. In this limit, when
inertia is sufficiently dominant, namely La & 10, both Vsat and Σsat reach respective
limits of about 3 % and 2.9 %, the value of 3 % being in close agreement with
previous experiments (Rutland & Jameson 1971) and numerical simulations (Ashgriz
& Mashayek 1995).

When La= 100 the 3 % inviscid plateau in Vsat varies slightly with β, and displays
a minimum within the range 0.2. β . 0.4, whereas the 2.9 % inviscid plateau of Σsat
increases monotonically. The existence of this minimum has been explained by the
competition between two opposed effects induced by the presence of surfactants: (I)
the reduction of the surface tension σ when Γ increases, which enhances the capillary
pressure gradient, and (II) the Marangoni stress exerted at the interface due to the
gradients of σ . The initial decrease of Vsat when β grows is due to (I), whereas the
increase above the minimum value is due to (II), which is able to revert the flow at
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earlier stages of the thread evolution when β is sufficiently high. The decrease of Vsat

with β also coexists with the discontinuous transition for La< 7.5. Additionally, the
increase of Σsat when La> 7.5 is explained by the reduction of the interfacial velocity
due to (II), which tends to accumulate surfactant molecules at the satellite.

When La� 1, the effect of surface elasticity is very weak and the 3 % plateau of
Vsat does not vary with β, since its effect is confined to a thin Marangoni boundary
layer at the interface, where viscous dissipation tends to restore a modified but
constant value of σ . The most important effect of β in the inviscid limit is the fact
that Σsat increases with β for the reason explained in the previous paragraph.

Here, we have considered a nonlinear equation of state for σ(Γ ) that is deduced
from the equilibrium thermodynamics of the interface together with the conservation
of molecules in the insoluble limit. We have shown that using this nonlinear equation
leads to substantial quantitative differences with respect to the use of its linearised
version (Dravid et al. 2006). These differences call for a careful experimental study
of the present jet flow configuration or a similar one, e.g. a cylindrical liquid bridge
between two static discs whose length is above the critical one for spontaneous
break-up. The latter configuration has been recently studied experimentally by
Kovalchuk et al. (2018) for concentrations above the critical micelle concentration.
An experimental campaign would also be needed to probe the validity of the insoluble
approximation. In fact, it would be interesting to extend the present numerical study
to the soluble case, contemplating both bulk diffusion and sorption kinetics. To that
end, the bulk diffusion equation together with appropriate adsorption and desorption
kinetic equations should be coupled to the equations integrated in the present work
(Karapetsas & Bontozoglou 2013). We believe that the numerical techniques employed
herein should be able to properly tackle the soluble problem with minor modifications.

A natural and important extension of the present work is tackling the forced jet
problem, in which the wavenumber k is not restricted to the most unstable one, and
the amplitude ε is not necessarily small. Another feature that deserves future work is
the effect of surface diffusion on the satellite drop formation regimes described herein,
especially in cases where La . O(1), for which the surface diffusion time could be
of the order of the thread break-up time. Similarly, for small-scale threads, the
surface shear and dilational viscosities could also play an important role (Boussinesq
1913; Scriven 1960; Martínez-Calvo & Sevilla 2018). The present numerical analysis
should also be extended together with experiments to reveal the conditions under
which diffusive and surface viscous effects become relevant, and how they affect the
transitions described in the present work.
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FIGURE 13. (a) Minimum thread radius amin as a function of the time to break-up τ for
two different values of the Laplace number, namely La= 18.9 and 100, and β = 0. The
dashed lines indicate the scaling laws in the different regimes, and the symbols correspond
to the results extracted from the numerical simulations of Castrejón-Pita et al. (2015). (b)
Shape of the thread for the case La= 18.9 at t= 138.017, where amin = 1.43× 10−4 and
zmin = 3.65, and which corresponds to the star symbol in (a) for τ = 1.08 × 10−3. The
zoomed region shows the micro-filament formed just prior to pinch-off. (c) Local mesh
in the micro-filament region.

Appendix. Validation of the numerical method
To demonstrate the performance of our numerical technique, in this appendix we

report numerical simulations aimed at comparing our results with the well-known
scaling laws of amin as a function of the time to break-up, τ = tb − t, for two
different values of the Laplace number, namely La = 18.9 and 100, in the case
of a clean interface, β = 0. Figure 13 shows amin as a function of τ , where the
dashed lines represent the different scaling laws, and symbols have been extracted
from the results of Castrejón-Pita et al. (2015) for the particular case of La = 18.9.
Since La is moderately high in both cases, intertial and capillary forces balance
initially, providing amin ∼ τ

2/3 (Keller & Miksis 1983; Day, Hinch & Lister 1998;
Eggers & Fontelos 2015), a regime usually referred to as the inertial (I) regime.
However, as the thread thins, viscous forces come into play, as shown numerically
and experimentally by Castrejón-Pita et al. (2015), leading to the linear behaviour
amin = 0.0709τ (Papageorgiou 1995), which is known as the viscous (V) regime.
Finally, when amin is sufficiently small, inertial, capillary and viscous forces balance,
leading to what is usually known as the inertial–viscous (IV) regime, in which
amin = 0.0304τ (Eggers 1993). As revealed by figure 13(a), our numerical method
is in excellent agreement with these scaling laws close to pinch-off, and with
the numerical computations of Castrejón-Pita et al. (2015), thereby validating our
numerical framework. Finally, although not shown here for conciseness, we have
checked that the unphysical singularity of the equation of state (2.10) as Γ → 0 leads
to a spurious deviation from the asymptotic IV regime, which precludes its use in
correctly predicting the smallest scales prior to pinch-off for β 6= 0. To that end, a
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different equation of state that provides the clean-interface constant value of σ as
Γ → 0 must be used (McGough & Basaran 2006; Kamat et al. 2018).

REFERENCES

AMBRAVANESWARAN, B. & BASARAN, O. A. 1999 Effects of insoluble surfactants on the nonlinear
deformation and breakup of stretching liquid bridges. Phys. Fluids 11 (5), 997–1015.

AMBRAVANESWARAN, B., SUBRAMANI, H. J., PHILLIPS, S. D. & BASARAN, O. A. 2004 Dripping-
jetting transitions in a dripping faucet. Phys. Rev. Lett. 93, 034501.

AMBRAVANESWARAN, B., WILKES, E. D. & BASARAN, O. A. 2002 Drop formation from a capillary
tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite
drops. Phys. Fluids 14 (8), 2606–2621.

ANNA, S. L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285–309.
ANTHONY, C. R., KAMAT, P. M., HARRIS, M. T. & BASARAN, O. A. 2019 Dynamics of contracting

filaments. Phys. Rev. Fluids 4 (9), 093601.
ASHGRIZ, N. & MASHAYEK, F. 1995 Temporal analysis of capillary jet breakup. J. Fluid Mech.

291, 163–190.
BOGY, D. B. 1979 Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207–228.
BOUSSINESQ, J. V. 1913 J. Ann. Chim. Phys. 29, 349–357.
CAMPANA, D. M. & SAITA, F. A. 2006 Numerical analysis of the Rayleigh instability in capillary

tubes: the influence of surfactant solubility. Phys. Fluids 18, 022104.
CASTREJON-PITA, A. A., CASTREJON-PITA, J. R. & HUTCHINGS, I. M. 2012 Breakup of liquid

filaments. Phys. Rev. Lett. 108 (7), 074506.
CASTREJÓN-PITA, J. R., CASTREJÓN-PITA, A. A., THETE, S. S., SAMBATH, K., HUTCHINGS,

I. M., HINCH, J., LISTER, J. R. & BASARAN, O. A. 2015 Plethora of transitions during
breakup of liquid filaments. Proc. Natl Acad. Sci. USA 112 (15), 4582–4587.

CHAMPOUGNY, L., SCHEID, B., RESTAGNO, F., VERMANT, J. & RIO, E. 2015 Surfactant-induced
rigidity of interfaces: a unified approach to free and dip-coated films. Soft Matt. 11 (14),
2758–2770.

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability, ed and Transl. E MacCurdy.
George Brazillier.

CHAUDHARY, K. C. & MAXWORTHY, T. 1980 The nonlinear capillary instability of a liquid jet.
Part 3. Experiments on satellite drop formation and control. J. Fluid. Mech. 96 (2), 287–297.

CHRISTOPHER, G. F. & ANNA, S. L. 2007 Microfluidic methods for generating continuous droplet
streams. J. Phys. D: Appl. Phys. 40, R319–R336.

CRASTER, R. V., MATAR, O. K. & PAPAGEORGIOU, D. T. 2002 Pinchoff and satellite formation in
surfactant covered viscous threads. Phys. Fluids 14 (4), 1364–1376.

CRASTER, R. V., MATAR, O. K. & PAPAGEORGIOU, D. T. 2009 Breakup of surfactant-laden jets
above the critical micelle concentration. J. Fluid Mech. 629, 195–219.

DAY, R. F., HINCH, E. J. & LISTER, J. R. 1998 Self-similar capillary pinchoff of an inviscid fluid.
Phys. Rev. Lett. 80 (4), 704.

DELACOTTE, J., MONTEL, L., RESTAGNO, F., SCHEID, B., DOLLET, B., STONE, H. A., LANGEVIN,
D. & RIO, E. 2012 Plate coating: influence of concentrated surfactants on the film thickness.
Langmuir 28 (8), 3821–3830.

DERBY, B. 2010 Inkjet printing of functional and structural materials: Fluid property requirements,
feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414.

DONNELLY, R. J. & GLABERSON, W. I. 1966 Experiments on the capillary instability of a liquid
jet. Proc. R. Soc. Lond. A 290, 547–566.

DRAVID, V., SONGSERMPONG, S., XUE, Z., CORVALAN, C. M. & SOJKA, P. E. 2006
Two-dimensional modeling of the effects of insoluble surfactant on the breakup of a liquid
filament. Chem. Engng Sci. 61, 3577–3585.

EGGERS, J. 1993 Universal pinching of 3d axisymmetric free-surface flow. Phys. Rev. Lett. 71, 3458.
EGGERS, J 1997 Nonlinear dynamics and breakup of free surface flows. Rev. Mod. Phys. 69, 865–929.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.874


Satellite formation regimes of surfactant-laden liquid threads 883 A35-29

EGGERS, J. & DUPONT, T. F. 1994 Drop formation in a one-dimensional approximation of the
Navier–Stokes equation. J. Fluid Mech. 262, 205–222.

EGGERS, J. & FONTELOS, M. A. 2005 Isolated inertialess drops cannot break up. J. Fluid Mech.
530, 177–180.

EGGERS, J. & FONTELOS, M. A. 2015 Singularities: Formation, Structure, and Propagation, vol. 53.
Cambridge University Press.

EGGERS, J. & VILLERMAUX, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
FULLER, G. G. & VERMANT, J. 2012 Complex fluid-fluid interfaces: rheology and structure. Ann.

Rev. Chem. Biol. Engng 3, 519–543.
GARCÍA, F. J. & CASTELLANOS, A. 1994 One-dimensional models for slender axisymmetric viscous

liquid jets. Phys. Fluids 6 (8), 2676–2689.
GOEDDE, E. F. & YUEN, M. C. 1970 Experiments on liquid jet instability. J. Fluid Mech. 40 (3),

495–511.
GONZÁLEZ, H. & GARCÍA, F. J. 2009 The measurement of growth rates in capillary jets. J. Fluid

Mech. 619, 179–212.
HANSEN, S., PETERS, G. W. M. & MEIJER, H. E. H. 1999 The effect of surfactant on the stability

of a fluid filament embedded in a viscous fluid. J. Fluid Mech. 382, 331–349.
KALAAJI, A., LOPEZ, B., ATTANE, P. & SOUCEMARIANADIN, A. 2003 Breakup length of forced

liquid jets. Phys. Fluids 15, 2469–2479.
KAMAT, P. M., WAGONER, B. W., THETE, S. S. & BASARAN, O. A. 2018 Role of marangoni stress

during breakup of surfactant-covered liquid threads: Reduced rates of thinning and microthread
cascades. Phys. Rev. Fluids 3 (4), 043602.

KARAPETSAS, G. & BONTOZOGLOU, V. 2013 The primary instability of falling films in the presence
of soluble surfactants. J. Fluid Mech. 729, 123–150.

KELLER, J. B., RUBINOW, S. I. & TU, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16,
2052–2055.

KELLER, J. B. & MIKSIS, M. J 1983 Surface tension driven flows. SIAM J. Appl. Maths 43 (2),
268–277.

KOVALCHUK, N. M., JENKINSON, H., MILLER, R. & SIMMONS, M. J. H. 2018 Effect of soluble
surfactants on pinch-off of moderately viscous drops and satellite size. J. Colloid Interface
Sci. 516, 182–191.

KOWALEWSKI, T. A. 1996 On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17,
121–145.

LAFRANCE, P. 1975 Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18 (4), 428–432.
LANGEVIN, D. 2014 Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid

Mech. 46, 47–65.
LEE, H. C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev. 18 (4), 364–369.
LEIB, S. J. & GOLDSTEIN, M. E. 1986a Convective and absolute instability of a viscous liquid jet.

Phys. Fluids 29 (4), 952–954.
LEIB, S. J. & GOLDSTEIN, M. E. 1986b The generation of capillary instabilities on a liquid jet.

J. Fluid Mech. 168, 479–500.
LIAO, Y. C., FRANSES, E. I. & BASARAN, O. A. 2006 Deformation and breakup of a stretching

liquid bridge covered with an insoluble surfactant monolayer. Phys. Fluids 18 (2), 022101.
MAGNUS, G. 1859 Hydraulische undersuchungen. Ann. Phys. Chem. 106, 1.
MANSOUR, N. N. & LUNDGREN, T. S. 1990 Satellite formation in capillary jet breakup. Phys.

Fluids A: Fluid Dyn. 2 (7), 1141–1144.
MARTÍNEZ-CALVO, A., RUBIO-RUBIO, M. & SEVILLA, A. 2018 The nonlinear states of viscous

capillary jets confined in the axial direction. J. Fluid Mech. 834, 335–358.
MARTÍNEZ-CALVO, A. & SEVILLA, A. 2018 Temporal stability of free liquid threads with surface

viscoelasticity. J. Fluid Mech. 846, 877–901.
MASHAYEK, F. & ASHGRIZ, N. 1995 Nonlinear instability of liquid jets with thermocapillarity.

J. Fluid Mech. 283, 97–123.
MCGOUGH, P. T. & BASARAN, O. A. 2006 Repeated formation of fluid threads in breakup of a

surfactant-covered jet. Phys. Rev. Lett. 96 (5), 054502.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.874


883 A35-30 A. Martínez-Calvo and others

NOTZ, P. K. & BASARAN, O. A. 2004 Dynamics and breakup of a contracting liquid filament.
J. Fluid Mech. 512, 223–256.

PAPAGEORGIOU, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7 (7), 1529–1544.
PEREIRA, A. & KALLIADASIS, S. 2008 On the transport equation for an interfacial quantity. Eur.

Phys. J. Appl. Phys. 44 (2), 211–214.
PLATEAU, J. 1873 Statique expérimentale et théorique des liquides. Gauthier-Villars et Cie.
PONCE-TORRES, A., MONTANERO, J. M., HERRADA, M. A., VEGA, E. J. & VEGA, J. M. 2017

Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys. Rev. Lett.
118, 024501.

RAYLEIGH, W. S. 1878 On the instability of jets. Proc. R. Soc. Lond. 10, 4–13.
RAYLEIGH, W. S. 1882 Further observations upon liquid jets, in continuation of those recorded in

the royal society’s ‘proceedings’ for march and may. Proc. R. Soc. Lond. 130–145.
LORD RAYLEIGH SEC., R. S. 1892 XVI. On the instability of a cylinder of viscous liquid under

capillary force. Lond. Edinb. Dublin Phil. Mag. J. Sci. 34 (207), 145–154.
RIVERO-RODRÍGUEZ, J. & SCHEID, B. 2018a Bubble dynamics in microchannels: inertial and

capillary migration forces. J. Fluid Mech. 842, 215–247.
RIVERO-RODRÍGUEZ, J. & SCHEID, B. 2018b Bubble dynamics in microchannels: inertial and

capillary migration forces – CORRIGENDUM. J. Fluid Mech. 855, 1242–1245.
ROCHÉ, M., AYTOUNA, M., BONN, D. & KELLAY, H. 2009 Effect of surface tension variations on

the pinch-off behavior of small fluid drops in the presence of surfactants. Phys. Rev. Lett.
103 (26), 264501.

RUBIO-RUBIO, M., SEVILLA, A. & GORDILLO, J. M. 2013 On the thinnest steady threads obtained
by gravitational stretching of capillary jets. J. Fluid Mech. 729, 471–483.

RUTLAND, D. F. & JAMESON, G. J. 1970 Theoretical prediction of the sizes of drops formed in
the breakup of capillary jets. Chem. Engng Sci. 25 (11), 1689–1698.

RUTLAND, D. F. & JAMESON, G. J. 1971 A non-linear effect in the capillary instability of liquid
jets. J. Fluid Mech. 46 (2), 267–271.

SAVART, F. 1833 Mémoire sur la constitution des veines liquides lancées par des orifices circulaires
en mince paroi. Ann. Chim. 53, 337–386.

SCHEID, B., DELACOTTE, J., DOLLET, B., RIO, E., RESTAGNO, F., VAN NIEROP, E. A., CANTAT, I.,
LANGEVIN, D. & STONE, H. A. 2010 The role of surface rheology on liquid film formation.
EPL 90, 24002.

SCRIVEN, L. E. 1960 Dynamics of a fluid interface. Equation of motion for Newtonian surface
fluids. Chem. Engng Sci. 12 (2), 98–108.

SIDERIUS, A., KEHL, S. K. & LEAIST, D. G. 2002 Surfactant diffusion near critical micelle
concentrations. J. Sol. Chem. 31 (8), 607–625.

STONE, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for
surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111–112.

SUBRAMANI, H. J., YEOH, H. K., SURYO, R., XU, Q., AMBRAVANESWARAN, B. & BASARAN,
O. A. 2006 Simplicity and complexity in a dripping faucet. Phys. Fluids 18 (3), 032106.

TIMMERMANS, M.-L. & LISTER, J. R. 2002 The effect of surfactant on the stability of a liquid
thread. J. Fluid Mech. 459, 289–306.

WANG, F., CONTÒ, F. P., NAZ, N., CASTREJÓN-PITA, J. R., CASTREJÓN-PITA, A. A., BAILEY,
C. G., WANG, W., FENG, J. J. & SUI, Y. 2019 A fate-alternating transitional regime in
contracting liquid filaments. J. Fluid Mech. 860, 640–653.

WHITAKER, S. 1976 Studies of the drop-weight method for surfactant solutions III. Drop stability,
the effect of surfactants on the stability of a column of liquid. J. Colloid Interf. Sci. 54 (2),
231–248.

WONG, H., RUMSCHITZKI, D. & MALDARELLI, C. 1996 On the surfactant mass balance at a
deforming fluid interface. Phys. Fluids 8 (11), 3203–3204.

XU, Q., LIAO, Y.-C. & BASARAN, O. A. 2007 Can surfactant be present at pinch-off of a liquid
filament? Phys. Rev. Lett. 98 (5), 054503.

YILDIRIM, O. E., XU, Q. & BASARAN, O. A. 2005 Analysis of the drop weight method. Phys.
Fluids 17, 062107.

YUEN, M.-C. 1968 Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33 (1), 151–163.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.874

	Natural break-up and satellite formation regimes of surfactant-laden liquid threads
	Introduction
	Mathematical model and numerical method
	Results and discussion
	Linear stability analysis
	Satellite formation regimes and transitions in the (La,β) parameter plane
	Nonlinear dynamics of a surfactant-laden interface: satellite drop formation
	Analysis of the temporal evolution of clean interfaces
	Analysis of the temporal evolution of surfactant-laden interfaces
	Physical explanation of the discontinuous transition
	Scaling laws for Vsat and Σsat as functions of La


	Conclusions
	Acknowledgements
	Appendix. Validation of the numerical method
	References


