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It is known that an increased flow rate can be achieved in channel flows when smooth walls
are replaced by superhydrophobic surfaces. This reduces friction and increases the flux
for a given driving force. Applications include thermal management in microelectronics,
where a competition between convective and conductive resistance must be accounted
for in order to evaluate any advantages of these surfaces. Of particular interest is the
hydrodynamic stability of the underlying basic flows, something that has been largely
overlooked in the literature, but is of key relevance to applications that typically base
design on steady states or apparent-slip models that approximate them. We consider
the global stability problem in the case where the longitudinal grooves are periodic in
the spanwise direction. The flow is driven along the grooves by either the motion of
a smooth upper lid or a constant pressure gradient. In the case of smooth walls, the
former problem (plane Couette flow) is linearly stable at all Reynolds numbers whereas the
latter (plane Poiseuille flow) becomes unstable above a relatively large Reynolds number.
When grooves are present our work shows that additional instabilities arise in both cases,
with critical Reynolds numbers small enough to be achievable in applications. Generally,
for lid-driven flows one unstable mode is found that becomes neutral as the Reynolds
number increases, indicating that the flows are inviscidly stable. For pressure-driven
flows, two modes can coexist and exchange stability depending on the channel height
and slip fraction. The first mode remains unstable as the Reynolds number increases
and corresponds to an unstable mode of the two-dimensional Rayleigh equation, while
the second mode becomes neutrally stable at infinite Reynolds numbers. Comparisons of
critical Reynolds numbers with the experimental observations for pressure-driven flows of
Daniello et al. (Phys. Fluids, vol. 21, issue 8, 2009, p. 085103) are encouraging.
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1. Introduction

Hydrophobicity – defined to be water-repelling, anti-mixing or non-wetting behaviour – is
a feature that has found applications in many areas of modern science. An extreme example
is that of fluid suspended over multiple gas cavities, which are created by microscopic
surface roughness (namely, pillars or ridges). Such structures are characterised as
superhydrophobic if a fluid droplet at rest possesses a liquid–solid contact angle greater
than 150◦ and take much of their inspiration from nature (Wang & Jiang 2007). As an
example, the lotus leaf employs it as a tool for self-cleaning, to improve and regulate
photosynthesis. In the context of a channel flow, depending on the size and shape of these
structures, the liquid may exist in a suspended Cassie–Baxter state (Cassie & Baxter 1944).
Here, the fluid is in contact only with solid maxima, hence exhibiting an effective slip
over the gas phase; the bulk flow is therefore lubricated and a reduction in the viscous
drag follows (Rothstein 2010). Loss of the Cassie–Baxter state produces the Wenzel state
(Marmur 2003), with the liquid partially or completely filling the grooves. Since these
types of surfaces have significantly fewer applications they are not considered from this
point onwards.

Experiments by Ou, Perot & Rothstein (2004), Ou & Rothstein (2005), Davies et al.
(2006) and Choi & Kim (2006) provided evidence of drag reduction in laminar flows over
superhydrophobic surfaces (SHSs) due to a marked reduction in required applied pressure
gradients or torque relative to what is required for smooth solid surfaces. More recent
experiments include those by Peaudecerf et al. (2017) and Song et al. (2018), who pay
particular attention to surfactant-induced Marangoni effects. Song et al. (2018) built and
studied circular Couette microchannels with annular grooves in order to produce a physical
model to compare with the theory and to control the effects of baffles. A fundamental
study into turbulent superhydrophobic (SH) flows was undertaken by Min & Kim (2004),
who used direct numerical simulations (DNS) with Navier-slip boundary conditions at the
walls. Their results indicate that drag reduction is achieved for longitudinal ridges, due to
a weakening of the turbulence intensity and damping of vortical structures. Martell, Perot
& Rothstein (2009) used DNS to examine SHSs in a turbulent channel flow and enforced
the correct stick-slip boundary conditions. Daniello, Waterhouse & Rothstein (2009) used
particle image velocimetry and pressure drop measurements to estimate drag reductions
of the order of 50 %.

The majority of theoretical work in this field considers laminar unperturbed flows whose
stability we seek to analyse. Historically two types of flows have been considered. Those
with transverse grooves perpendicular to the flow direction, and flows with longitudinal
grooves parallel to the flow direction. We are concerned with applications described by
the latter class as they generally induce greater reductions in drag – for studies involving
transversely oriented ridges the reader is referred to Davis & Lauga (2009), Crowdy
(2017b), Landel et al. (2020) and references therein. A schematic of the longitudinal flow
of interest here can be found in figure 1. Theoretical studies involving longitudinal grooves
are mostly concerned with three canonical cases: (i) constant unbounded shear flows over
SHSs, (ii) Couette flows where the bottom plate is structured and the top one is moving at
a constant speed and (iii) channel flows driven by a constant pressure gradient with one or
both of the plates structured.

The seminal work by Philip (1972) analysed a unbounded shear flow with flat menisci
both for transverse grooves (in the absence of inertia), and longitudinal grooves in which
case the resulting flow aligned with the shear is an exact solution of the Navier–Stokes
equations that depends on the cross-plane coordinates. This work was followed by Lauga
& Stone (2003) and Teo & Khoo (2009), who used separation of variables and dual
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Instability of flows with superhydrophobic grooves
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Figure 1. Schematics of the problem: (a) depicts the general picture (a SHS for the bottom plate and a solid
top wall), and (b) the non-dimensional domain, D, by means of the physical assumptions made and symmetry
conditions. In (b), h is the non-dimensional channel height, δ is the slip fraction and the dashed line denotes
one period. Lastly, the dark grey areas indicate the solid boundary, the light blue the modelled fluid and the
white the external gas region.

series techniques, in both cases ignoring meniscus curvature that does not conform with
the ridge geometry. Meniscus curvature was first included by Sbragaglia & Prosperetti
(2007) for longitudinal grooves in a Couette channel flow, by developing a weakly curved
meniscus asymptotic analysis about a flat configuration, and producing corrections to
Philip’s results for the slip lengths. Such domain perturbation methods were also applied
to diabatic pressure-driven SHSs – see Kirk, Hodes & Papageorgiou (2017) – and later
extended numerically to arbitrary curvatures by Game et al. (2018). The powerful complex
analysis tools utilised by Philip were developed further, and for different geometries
notably allowing for curved menisci, see Crowdy (2015, 2016, 2017b), Marshall (2017)
and Luca, Marshall & Karamanis (2018). Further extensions allowing for diabatic effects
have also been carried out – Yariv & Crowdy (2020) and Yariv & Kirk (2021).

All of the studies described above ignore the effect of the gas present in the grooves,
resulting in a zero shear boundary condition on the meniscus. Inclusion of gas effects
have been considered numerically (and compared with available experiments) by Davies
et al. (2006), Maynes, Webb & Davies (2008), Woolford, Maynes & Webb (2009) and
also by Ng & Wang (2009) using eigenfunction expansions for their computations; all
these studies assume flat menisci with no streamwise variation. Additional analytical
explorations for flat menisci have been considered by Schönecker & Hardt (2013) and
Schönecker, Baier & Hardt (2014), where effective constant shear boundary conditions
were used to approximate the effect of the gas region. Keeping with flat menisci and
seeking effective models to lump the gas-region presence into an effective boundary
condition, has enabled Asmolov & Vinogradova (2012) and Nizkaya, Asmolov &
Vinogradova (2014) to propose approximate solutions such as what they call the
‘gas cushion model’. Crowdy (2017a) considered the full equations of motion for
pressure-driven flow with open groove ends, and carried out an asymptotic analysis
combining small meniscus deflection coupled with a small viscosity ratio. More recent
computational studies have been carried out by Game et al. (2017), who accounts fully for
the effects of the gas region and arbitrary meniscus curvature using domain decomposition
spectral methods. Following Davies et al. (2006), they took the gas pocket region to be
closed at the channel entrance and exit, producing a mass-conserving recirculating zone
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whose pressure is determined as part of the solution inducing drag on the main channel
flow.

Almost all theoretical studies to date do not account for three-dimensionality. This is
both due to the complexity of the problem and the limited possibilities for DNS parameter
studies. However, the underlying physics suggests that the menisci vary weakly in the
streamwise direction with small deflections, as detailed next. Considering pressure-driven
flows, the larger pressure at the inlet induces the largest meniscus deflection there, and
this relaxes to a flat state as the channel is traversed, assuming that the outflow is open
to ambient conditions. However, the length of the channel is typically long compared
with the ridge pitch (equivalently the spacing between ridges). In the experiments of Ou
et al. (2004) and Ou & Rothstein (2005), the length is L = 50 mm while the distance
between ridges ranges from 20 to 120 μm. Half-way down the channel, the experiments
find deflections of the order of 3 μm or less for a ridge pitch of approximately 60 μm,
hence the ratio of deflection to ridge pitch is εsp ≈ 0.05, that is sufficiently small to expect
theories such as in Sbragaglia & Prosperetti (2007) to be valid. Additional support for a
small deflection parameter is given here following Kirk et al. (2017). Taking water on a
low-surface-energy fluoropolymer that has a maximum protrusion angle of 20◦ into the
cavity, and additionally taking a low dimensionless solid fraction of 0.01 (where the solid
fraction is defined by the ratio of the ridge width to the pitch), gives a maximum deflection
parameter of εsp ≈ 0.17, again within the limits of asymptotic approximations. Returning
to the experiments of Ou et al. (2004) and Ou & Rothstein (2005), the ratio of ridge pitch
to length is of the order of ε :≈ 10−3. Even for meniscus curvatures that are not small
it is reasonable to assume that the undisturbed state will vary weakly in the streamwise
direction, and the fact ε � 1 opens the way for a rational asymptotic analysis that can fully
account for three-dimensionality in certain applications. Such analyses were undertaken by
Game, Hodes & Papageorgiou (2019) without assuming small deflections. A solution is
built by computing numerically the cross-flow quasi-uniform solution at each streamwise
location if the pressure at that location is known, and coupling this to the determination of
the pressure from streamwise flux conservation.

The objective of the present work is to investigate the stability of flows in SHSs
for different parameters, with the aim of explaining some experimental observations
that find differences between measurements and steady laminar flow theories. The full
three-dimensional problem will not be considered due to its complexity and its tri-global
stability nature. Noting the slowly varying nature of the underlying flows, we proceed
with a detailed study of bi-global stability problems, and indeed the simpler class of flat
meniscus ones. There are two reasons that justify this: (i) meniscus curvature is small in
many situations (see above), and (ii) the quasi-uniform approach is completely consistent
with the results reported here. The latter statement is quantified fully in this paper, but
briefly, with our non-dimensionalisation using the ridge pitch for lengths, we compute the
most unstable wavenumbers to be of order unity, implying that their physical length is of
the order of the pitch, and hence short compared with the channel length over which the
three-dimensionality develops. Our numerical methods apply equally to arbitrarily curved
menisci – indeed computations to be reported elsewhere also predict O(1) wavenumbers.
The underlying instabilities are inherently present due to the two-dimensional flow
structure in the cross-plane and not due to finer details of meniscus curvature or a modified
shear stress that accounts for gas effects (this would undoubtedly affect the growth rates
and would be of considerable interest in the future).

Bi-global stability problems have been considered previously for rectangular duct flows
(Tatsumi & Yoshimura 1990), flows over riblets (Ehrenstein 1996) and shear flows with
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distributed wall roughness (Floryan 1997), to mention some of the earliest ones. Theofilis,
Duck & Owen (2004) revisited the duct flow results of Tatsumi & Yoshimura (1990)
and examined three other two-dimensional basic profiles. Moradi & Floryan (2014)
investigated a channel flow with wavy walls, where they discover a critical groove
wavenumber that can stabilise or destabilise the planar flow. In an extension of this to
grooved channels, Mohammadi, Moradi & Floryan (2015) report an inviscidly unstable
mode which is excited in this configuration (indeed, they predict that this mode is
excited for any spanwise structuring). They connect the viscous and inviscid modes to the
Orr–Sommerfeld and Squire modes of plane Poiseuille flow. These modes are analogous
to the ones we find in this study where the solid walls are replaced by stick-slip surfaces
pertinent to SHSs. Their existence in two quite different flows provides strong evidence
that it is the cross-plane variation of the basic flow that underpins the instabilities rather
than finer details such as meniscus curvature. For completeness, we point out inviscid
bi-global stability studies by Hall & Horseman (1991) who considered the stability of
longitudinal vortices in boundary layers, and Duck (2011) who examined the breakdown of
trailing line vortices. Tri-global stability problems lie outside the scope of this study, as do
weakly varying or other parabolic stability type techniques. More details and an in-depth
review of other global stability problems can be found in Theofilis (2003). Examples
of tri-global stability studies include Bagheri et al. (2009), who investigated the global
stability of a jet in a cross-flow, and Loiseau et al. (2014) and Bucci et al. (2018), who
examined the global stability of a cylindrical roughness element in a boundary layer.

Initial attempts to study the stability of SHS flows centred on replacing the mixed
boundary condition with a Navier-slip condition. Plane Poiseuille flow (PPF) was studied
by Lauga & Cossu (2005), who find an increase in critical Reynolds number due to the
modified condition, but a very weak influence in the non-modal stability characteristics.
More recently, Pralits, Alinovi & Bottaro (2017) model an oblique flow over SHSs by
introducing a slip tensor and carrying out a stability analysis of the resulting basic flow.
Once again the details of the spanwise base flow variations are absent. The instability
modes reported by us would not be picked up by a stability analysis that uses a slip
boundary condition. The use of such conditions renders the basic profile one-dimensional
without the spanwise structure that induces the instability modes reported here. Indeed, the
lid-driven problem would be neutrally stable and the unstable mode of PPF would merely
be perturbed by the imposed slip length rather than supporting lower Reynolds number
inflectional instabilities. More accurate boundary conditions were implemented by Yu, Teo
& Khoo (2016) in a pressure-driven channel, with either one or two SHSs, resulting in the
appropriate bi-global stability problem. For large channel heights, their results agree with
those arising from the PPF analysis. For small channel heights stabilisation is predicted,
and as we show here this is due to their implementation of an inviscid boundary condition
This assumption does not allow for the detection of the viscously unstable modes found in
§ 6.4. More recently, DNS of the laminar–turbulent transitional state has been undertaken
by Picella, Robinet & Cherubini (2019) initially using effective Navier-slip boundary
conditions. They study the evolution of both modal and non-modal disturbances, and show
that SHS may be used to delay transition in the former and have no effect on the latter.
Extending these works, Picella, Robinet & Cherubini (2020) then impose correct mixed
boundary conditions to study the effects of the interface dynamics on transition. They
find that transition again occurs further downstream, however, the stabilisation effects are
reduced relative to the slip conditions.

This work provides an accurate numerical procedure for solving generalised eigenvalue
problems (GEVPs) that arise in SHS flows with mixed boundary conditions. Results are
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presented for lid- and pressure-driven flows, expanding on the current understanding of
the instability of such flows.

The rest of the paper is arranged as follows. In § 2, the channel geometry is
introduced and the linear stability problem formulated. In § 3, the background flow
field is solved for both configurations. In § 4, the stability analysis is performed (this
includes singularity removal), resulting in a GEVP which is solved in both its viscous and
inviscid formulations. Section 5 provides the discretisation using Chebyshev collocation
and domain deposition. Section 6 presents and analyses the viscous stability results for
both pressure- and lid-driven flows. This includes a link to the plane flow, inviscid
instability problem and a comparison with experimental results. Finally, in § 7, we draw
some conclusions and outline some extensions and implications of this work.

2. Governing equations and problem formulation

We consider the linear stability of laminar flow over a SHS which has regularly spaced
grooves aligned in the streamwise direction – see figure 1(a). Two configurations will be
considered. First, a Couette flow which is driven by an unstructured upper lid moving with
velocity U∗

c over a SHS. This we term as superhydrophobic Couette (SHSC) flow. The
second is driven by a constant pressure gradient −G∗

p over a SHS. Such flows can be found
in pipes or channels and will be referred to as superhydrophobic Poiseuille (SHSP) flow. As
a starting point for such complex flows, the liquid is taken to be in the Cassie–Baxter state.
Furthermore, we take the liquid–gas interface to be flat (work is underway to generalise
our results to curved menisci). For a study of the basic flows emerging in the presence of
curved menisci see Game et al. (2017, 2019). One may exploit the spanwise periodicity
of the problem across the ridges (we assume that there is a large number of them), and
restrict the domain by symmetry to one-half period. We then define a Cartesian coordinate
frame located at the top and centre of the gas cavity, such that r∗ ≡ (x∗, y∗, z∗); x∗ is taken
to be in the streamwise (flow) direction, the y∗ coordinate is in the normal direction and
z∗ represents the spanwise direction – see figure 1(b). The corresponding velocity field is
given by u∗(r∗; t) ≡ (u∗, v∗, w∗), and the liquid pressure is p∗ = p∗(r∗; t). The full period
of the ridges (ridge pitch) is 2d∗ and the width of the gas cavity is 2a∗, so that δ = a∗/d∗
is a measure of the cavity width which we refer to as the slip fraction (in other literature
it may be referred to as the cavity fraction Kirk et al. 2017). Lastly, h∗ is taken to be
the height of the channel. Note that stars are used to denote dimensional quantities. The
problem studied is adiabatic and the gas’ viscosity is neglected. – see Kirk et al. (2017),
Hodes et al. (2017) and Game et al. (2017).

Using d∗ to non-dimensionalise lengths and a typical speed U∗ (e.g. the lid speed U∗
c

for SHSC flows; or the centre point velocity U∗
p = G∗

pd∗2/(2μ∗)) to non-dimensionalise
velocities, the three-dimensional Navier–Stokes equations follow

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0, (2.1)

and
∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u. (2.2)

Here, the Reynolds number is Re = ρ∗U∗d∗/μ∗, where μ∗ is the dynamic viscosity and
ρ∗ is density of the fluid. We highlight that this definition is based on the period as
opposed to the channel height, keeping in trend with works for flows in microchannels
rather than hydrodynamic stability theory (Schmid & Henningson 2012; Game et al. 2018).
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In order to generalise the results to the latter, one can multiply by the inverse ratio of these
dimensional quantities. The non-dimensional flow domain becomes D ≡ {z ∈ [0, 1]} ×
{y ∈ [0, h]}, where the gas phase at y = 0 resides over the interval zs ≡ {z ∈ [0, δ]} and
the solid phase throughout zns ≡ {z ∈ [δ, 1]}. The slip fraction δ has been defined above
and h = h∗/d∗ is the non-dimensional channel height – see figure 1(b).

3. Background flow

3.1. Lid-driven Couette flow
At steady state the lid-driven flow field with longitudinal and temporal homogeneity is
given by u = (U( y, z), 0, 0), where the streamwise velocity field satisfies

∂2U
∂y2 + ∂2U

∂z2 = 0. (3.1)

Imposing symmetry conditions at the left- and right-hand sides of the domain, we have
that

∂U
∂z

( y, 0) = ∂U
∂z

( y, 1) = 0. (3.2)

On the structured surface at y = 0, we impose a no-shear condition at the liquid–gas
interface and a no-slip condition at the liquid–solid boundary. These are given by

∂U
∂y

(0, zs) = U(0, zns) = 0, (3.3)

where zs and zns are the spanwise intervals defined in § 2. Due to the chosen
non-dimensionalisation, the no-slip condition at the top plate reads

U(h, z) = 2. (3.4)

This lateral scaling is chosen such that a comparison with existing linear stability studies
of flow between two flat plates may be performed (see § 6.1 for a further discussion).

3.2. Pressure-driven Poiseuille flow
When the flow is driven by a constant streamwise pressure gradient, the streamwise
velocity U( y, z) satisfies

∂2U
∂y2 + ∂2U

∂z2 = −2. (3.5)

The forcing term in (3.5) arises due to our non-dimensionalisation, which is consistent
with § 3.1. Our choice recovers the unstructured PPF in the limit δ → 0 when h = 1 –
see Schmid & Henningson (2012). The symmetry and bottom wall boundary conditions
remain the same as in § 3.1; i.e. they are (3.2) and (3.3). At the smooth upper wall, the
no-slip condition now reads

U(h, z) = 0. (3.6)

For completeness, we consider the case where the upper wall is a SHS, and is identical to
the bottom one. A symmetry condition follows at the channel centre y = h/2; namely

∂U
∂y

(h/2, z) = 0. (3.7)

An investigation into the differences between these two types of SHSP flow has been
carried out in Yu et al. (2016), where the authors find similar stability characteristics.
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Figure 2. Contours of constant streamwise velocity, for: (a) SHSC flow, and (b) SHSP flow, where h = 1 and
δ = 0.5. The thick dark lines represent the solid boundaries of the channel.

We do not consider this case further in this study since we wish to compare with
experiments in channels containing only one SHS – see § 6.5 and Daniello et al. (2009).

3.3. Solution and discussion
As mentioned in § 1, semi-analytical solutions exist for both problems: (3.1)–(3.4) and
(3.5)–(3.6), using separation of variables and series methods – see Teo & Khoo (2009) and
Kirk et al. (2017). We instead solve these problems numerically using spectral collocation
methods which are detailed in § 5. We monitor the convergence via the dimensionless
volume flux

Q =
∫ 1

z=0

∫ h

y=0
U( y, z) dz dy, (3.8)

which provides a global accuracy test. As previously mentioned, technical difficulties arise
where the ridge meets the meniscus. The presence of a stress singularity contaminates the
numerical computations with errors. To improve convergence, singular derivatives must
be removed from the triple contact line, and then reincorporated into the final solution –
see Peyret (2013). Also, see an earlier work by Woods (1953) which was motivated by the
so-called Motz problem (Motz 1947). The algorithm for the background flow has been
tested extensively with the SHSP paradigm results of Game et al. (2018), and agreement
is excellent. For completeness, two of the streamwise velocity profiles generated are given
in figure 2, for typical SHSC and SHSP flows – see figures 2(a) and 2(b), respectively. For
more details on such flows and their properties, see the references provided in § 1.

The introduction of SHSs are known to result in reductions in viscous drag (Ou &
Rothstein 2005), due to higher velocities which are attained over the suspended gas region.
Our objective is to study the stability of such flows in a parameter regime where drag
reduction is optimised for applications. We characterise the drag reduction by computing
the normalised flow rates Q̂c = Qc/Q̃c and Q̂p = Qp/Q̃p, where the flow rates Qc and Qp

are calculated via (3.8) for each base state; similarly, Q̃c = h and Q̃p = h3/6 are the flow
rates for smooth boundary Couette and PPFs per unit width. The normalised flow rates,
Q̂c and Q̂p, are plotted in figure 3 against the half-channel height h, and for a range of slip
fractions δ. The largest values are attained for small h and large δ as expected. Physically,
however, we must be careful to ensure that a Cassie–Baxter state can be maintained in this
limiting regime – see Cassie & Baxter (1944). Nonetheless, via arguments given within
Kirk et al. (2017), it may be deduced that the area of the parameter space considered
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Figure 3. The normalised flow rate for: (a) SHSC, and (b) SHSP problems.

here lies well within this range. Here, the authors relate their solutions to the molecular
dynamic simulations of Cottin-Bizonne et al. (2004), where it can be deduced that h � 1
for the surface to become wetted. One observes greater improvements for the SHSP flow
in figure 3(b), which is as to be expected due to the uniform forcing throughout the interior
of the domain. The qualitative development concerning the channel height is similar for
the two configurations. We also note that as h → ∞ then Q̂c and Q̂p → 1, so that the
SHS has little effect on the flow rate unless δ is close to unity. Finally, these results are
supported by the experiments of Ou et al. (2004), where the same dependencies for Q̂p are
reported. These experiments are discussed next. At this stage, we consider the situation
where the meniscus is curved, in order to evaluate where our flat interface approximation
is valid. Using the code developed in Game et al. (2018), we evaluate the flow rate and
Nusselt number from δ ∈ [0.25, 0.75], ϕ = [−45◦, 45◦] and h ∈ [1, 20]. For h > 2, then
the maximum variation away from the ϕ = 0◦ case is approximately 5 %. For h < 2, it
becomes important to take into account meniscus curvature, however, we retain these
results to compare with the experiments in Ou et al. (2004).

3.4. Comparison with experiment
Our theoretical study enables the evaluation of the stability of a wide range of basic
states at different Reynolds numbers. Due to the large Reynolds numbers required for
linear instability of PPF (Couette flow is stable at all Re), we carry out numerical
experiments at such large values for comparison and also to underpin future large Reynolds
number analyses. It should be noted, however, that other nonlinear mechanisms such as
vortex–wave interactions (Waleffe 1997; Hall & Sherwyn 2010), can induce transition at
lower Reynolds numbers than those predicted by linear theory, and such aspects for SHSC
flows are left for future studies.

Our main interest here is to discuss physical experiments in SH channels that operate in
parameter regimes that support instabilities in the present study. We choose to describe the
experiments in Ou et al. (2004); Ou & Rothstein (2005), that were the original motivation
for the present work. These researchers considered (among other surface structuring)
longitudinal ridges as in figure 1. In the comparisons that follow we will use our notation
adopted to that of the experiments. The width w∗ of the channels in the experiments is
finite and selected to be 20 times the channel height h∗, i.e. w∗ = 20h∗, justifying our
ridge periodicity assumption away from the walls. Ou et al. (2004) and Ou & Rothstein
(2005) report flow rates Q∗ between 0.03 and 115 mm3 s−1 and channel thicknesses
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76 μm < h∗ < 254 μm. Results for a range of solid ridge sizes separated by gas cavities
of different widths are reported. The Reynolds number in the experiments is defined
by Reou = U∗

ouD∗/ν∗, where U∗
ou = Q∗/A∗ is the average velocity, A∗ = w∗h∗ = 20h∗2

is the channel cross-sectional area and D∗ = 4A∗/P∗ is the hydraulic diameter where
P∗ = 2(w∗ + h∗) = 42h∗ is the channel perimeter. Expressing our Reynolds number in
terms of Reou gives Re = U∗d∗/ν∗ = (d∗/D∗)Reou = (21d∗)(40h∗)Reou. Writing Reou
in terms of Q∗ and h∗ for the experiments provides Reou = (2Q∗)/(21ν∗h∗). Using
ρ∗ = 1 g (cm−3), ν∗ = 10−6 m2 s−1 for water along with the flow rate and channel
thickness ranges gives 0 � Reou � 144. Most experiments are performed for three sets of
ridge pitch and slip fractions (d∗, a∗); in terms of our variables these are (30 μm, 15 μm),
(45 μm, 15 μm), (20 μm, 10 μm) which give slip fractions δ = 1/2 and δ = 1/3.
In addition, the dimensionless channel heights h = h∗/d∗ in the experiments have a
range 1.7 � h � 12.7 thus placing our computations in the experimental realm. Finally,
considering values for Re, we see that for the experiments this can be as large as Re ≈ 47
which is of the same order of magnitude for the critical Reynolds numbers computed
in § 6.4 for pressure-driven flows over SHSs. Furthermore, it is commonly stated that the
Reynolds number should be less than 1000 for the flow to be laminar (where this definition
is based on the half-channel height). This means that the range Re ∈ [0, 311] requires
consideration for the subset of slip fractions found in these experiments. However, in order
to connect with the plane flow results that are considerably more stable, a larger interval is
necessary. As δ → 0 and for h = 2, say, then the critical Reynolds number Rec ≈ 5772 of
plane Poiseuille flow is recovered. As a compromise between these two regimes, in § 6.3,
we will take Re ∈ [0, 5000].

We also note, for completeness, the experiments of Daniello et al. (2009) that are also
of interest to the present study. Those authors considered drag reduction using SHSs as
in our study but for much larger channel heights from the earlier studies of Ou et al.
(2004) and Ou & Rothstein (2005). The ridge pitch was still of the order of 30 to
60 μm but the channel height h∗ was between 5.5 and 7.9 mm, thus giving dimensionless
heights h of approximately 100. A particular comparison is made later where we compute
with parameters directly taken from the experiment and find a reasonable prediction of
transition. Note that, in the laminar regime, Daniello et al. (2009) find little effect of the
SH surfaces. However, dramatic gains in drag reduction are found in the turbulent regime;
due to an interaction of the SH scales with the turbulent wall layer.

4. Linear stability

4.1. Linearised stability equations
We are mostly concerned with shear instability modes. Hence, in our linearisation we
assume that the liquid–gas interface remains fixed, and interfacial modes are excluded
from the present study. We introduce perturbations of amplitude ε around the basic states
calculated in § 3, by writing⎛

⎜⎝
u(r; t)
v(r; t)
w(r; t)
p(r; t)

⎞
⎟⎠ =

⎛
⎜⎝

U( y, z)
0
0
Bx

⎞
⎟⎠ + ε

⎛
⎜⎝

ũ( y, z)
ṽ( y, z)
w̃( y, z)
p̃( y, z)

⎞
⎟⎠ exp(i(kx − ωt)) + c.c., (4.1)

where k is the real streamwise wavenumber, ω is the complex frequency and c.c. denotes
the complex conjugate. The constant B = 0 and −2/Re, for the lid- and pressure-driven
flows, respectively. Substituting (4.1) into (2.1)–(2.2) and linearising in ε, gives the
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disturbance equations

ikũ + ∂ṽ

∂y
+ ∂w̃

∂z
= 0, (4.2)

ik(U − c)ũ + ∂U
∂y

ṽ + ∂U
∂z

w̃ = −ikp̃ + 1
Re

(
−k2ũ + ∂2ũ

∂y2 + ∂2ũ
∂z2

)
, (4.3)

ik(U − c)ṽ = −∂ p̃
∂y

+ 1
Re

(
−k2ṽ + ∂2ṽ

∂y2 + ∂2ṽ

∂z2

)
, (4.4)

and

ik(U − c)w̃ = −∂ p̃
∂z

+ 1
Re

(
−k2w̃ + ∂2w̃

∂y2 + ∂2w̃
∂z2

)
. (4.5)

It is possible to reduce this set of equations from four to two, for the normal and spanwise
variables – see Tatsumi & Yoshimura (1990). However, the primitive variable formulation
was chosen here as the boundary conditions and singularity removal methodology are
simpler to implement. Taking Re → ∞ and eliminating: ũ, ṽ and w̃ in favour of p̃, we
arrive at the two-dimensional Rayleigh equation

∂2p̃
∂y2 + ∂2p̃

∂z2 − 2
U − c

∂U
∂y

∂ p̃
∂y

− 2
U − c

∂U
∂z

∂ p̃
∂z

− k2p̃ = 0. (4.6)

Regarding general viscous boundary conditions, the bottom boundary of the SH channel
consists of two parts requiring different constraints. Along the liquid–solid part we apply
no slip in the velocity perturbations, so that

ũ(0, zns) = ṽ(0, zns) = w̃(0, zns) = 0. (4.7)

Then, similar to § 3, assuming no-shear stress and no-penetration conditions along the
meniscus (Game et al. 2017), we obtain

∂ ũ
∂y

(0, zs) = ṽ(0, zs) = ∂w̃
∂y

(0, zs) = 0. (4.8)

Considering (4.4) with Re � 1, and noting that ṽ(0, z) = 0 on the boundary (for both
liquid–gas and liquid–solid contact lines), yields

∂ p̃
∂y

(0, z) = 0, (4.9)

to be used in solving (4.6). At the top solid boundary we need to impose the no-slip
condition to all velocity variables. That is

ũ(h, z) = ṽ(h, z) = w̃(h, z) = 0, (4.10)

for the viscous problem (4.2)–(4.5), and

∂ p̃
∂y

(h, z) = 0, (4.11)

in the inviscid problem (4.6). Due to spanwise periodicity across the ridges, both
symmetric and anti-symmetric modes in z must be considered (Tatsumi & Yoshimura
1990). A summary of the configurations and conditions on all variables are given in table 1,
where we identify symmetric modes by the label 1 and anti-symmetric ones by 2.
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Mode type Streamwise velocity Normal velocity Spanwise velocity Pressure

SHSP1 ũ(‘-’, ‘s’) ṽ(‘-’, ‘s’) w̃(‘-’, ‘as’) p̃(‘-’, ‘s’)
SHSP2 ũ(‘-’, ‘as’) ṽ(‘-’, ‘as’) w̃(‘-’, ‘s’) p̃(‘-’, ‘as’)

SHSC1 ũ(‘-’, ‘s’) ṽ(‘-’, ‘s’) w̃(‘-’, ‘as’) p̃(‘-’, ‘s’)
SHSC2 ũ(‘-’, ‘as’) ṽ(‘-’, ‘as’) w̃(‘-’, ‘s’) p̃(‘-’, ‘as’)

Table 1. A summary of the different mode types considered within this work: a symmetric mode, which
requires Dirichlet boundary conditions at z = 0 and z = 1, or an anti-symmetric mode, which requires
Neumann ones instead. The notation ‘s’ (‘as’) is used to mean symmetry (anti-symmetry) in the appropriate
coordinate direction and, lastly, ‘-’ means that no simplifications could be made in this case.

4.2. A bi-global GEVP
Upon rearranging (4.2)–(4.5) or (4.6), we arrive at what is known as a continuous bi-global
GEVP – see Theofilis et al. (2004). Solving this system to find non-trivial eigenvalues and
eigenvectors provides a dispersion relation f (k, ω; δ, h, Re) = 0, say. We adopt a temporal
instability framework by fixing the wavenumber k to be real and calculating complex ω =
ωr + iωi (instability follows if ωi > 0). For the inviscid problem, we are interested in the
modes with the largest growth rates, and hence neutral stability is not considered in detail.
At neutral conditions, the dynamics inside critical layers is important and is left for future
work (Hall & Horseman 1991).

4.3. Singularity removal
As mentioned earlier, the stress singularities at triple contact points (z = δ in our domain)
are removed before carrying out computations. Details are provided in Appendix A, where
we describe the technique for the basic state (following Game et al. 2017, 2018). We then
modify it for the viscous and inviscid stability equations (4.2)–(4.5) and (4.6), respectively,
that inherit their singularities through U and its spatial derivatives.

We begin with the background flow and remove as many as two singularities as
described in Appendix A.2. We write, for example, U = Bs

1Us
1 + Ū, where the singular

part is Us
1 = r1/2 sin(θ/2) in a local polar coordinate system (see (A3)), Bs

1 is its strength
and Ū is the regular part (Peyret 2013). The unknown strength Bs

1 was determined by
imposing the following first derivative regularity condition on Ū:

RbŪ ≡ ∂Ū
∂z

(0, δ) = 0. (4.12)

The choice (4.12) is not unique; indeed, a derivative in any direction and of any value
could have been chosen (Game et al. 2018). However, the composite solution U is unique.
The governing equations, (3.1) or (3.5), can be written in matrix form as( P PUs

1Rb 0

) (
Ū
Bs

1

)
=

(
d
0

)
, (4.13)

where P = ∂2/∂y2 + ∂2/∂z2, and Rb denotes the derivative operator evaluated at the
singular point (defined in (4.12)). In addition, d = −2 for a pressure-driven flow, and d = 0
for the lid-driven case. Multiplying (4.6) by U − c and defining the differential operators
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A and B, casts the Rayleigh equation into

Ap̃ ≡
{

U
(

∂2

∂y2 + ∂2

∂z2 − k2
)

− 2
∂U
∂y

∂

∂y
− 2

∂U
∂z

∂

∂z

}
p̃

= c
{

∂2

∂y2 + ∂2

∂z2 − k2
}

p̃ ≡ cBp̃. (4.14)

Then, as the pressure eigenmode has first-order derivatives that are regular (see
Appendix A.3), this is all that is required for the inviscid eigenvalue problem (EVP). For
the viscous problem, we also rearrange our system into a GEVP form by writing

ikũ + ∂ṽ

∂y
+ ∂w̃

∂z
= 0, (4.15)

S ũ + ∂U
∂y

ṽ + ∂U
∂z

w̃ + ikp̃ = ikũ c, (4.16)

S ṽ + ∂ p̃
∂y

= ikṽ c, (4.17)

and

Sw̃ + ∂ p̃
∂z

= ikw̃ c, (4.18)

where the operator S ≡ ikU + (1/Re)(−k2 + ∂2/∂y2 + ∂2/∂z2). From Appendix A.4, we
know that the streamwise velocity field decomposes as ũ = Us

1ũs
1 + ū, the wall-normal

velocity field takes the form ṽ = v̄, the spanwise velocity field becomes w̃ = w̄ and the
pressure field decomposes as p̃ = Ps

1p̃s
1 + p̄. The regularity conditions for the basic state

variables that require singularity removal read

Rbū = Rbp̄ = 0. (4.19)

Defining the regularised basic state and singular coefficient vectors by q̄ ≡ (ū, v̄, w̄, p̄)T

and Qs ≡ (Us
1, Ps

1)
T respectively, we arrive at the following GEVP:( E Es

Rv O
) (

q̄
Qs

)
= c

(F F s

O O
) (

q̄
Qs

)
. (4.20)

The sub-matrices are referred to as the regular matrices

E ≡

⎛
⎜⎝

ik ∂y ∂z 0
S Uy Uz ik
0 S 0 ∂y
0 0 S ∂z

⎞
⎟⎠ and F ≡

⎛
⎜⎝

0 0 0 0
ik 0 0 0
0 ik 0 0
0 0 ik 0

⎞
⎟⎠ , (4.21a,b)

the singular matrices

Es ≡

⎛
⎜⎜⎜⎝

ikũs
1 0

S ũs
1 ikp̃s

1

0 ∂yp̃s
1

0 ∂zp̃s
1

⎞
⎟⎟⎟⎠ and F s ≡

⎛
⎜⎝

0 0
ikũs

1 0
0 0
0 0

⎞
⎟⎠ , (4.22a,b)
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z
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1
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Figure 4. A schematic illustrating the way in which the domain is decomposed into two sub-domains:
(a) depicts the whole domain, (b) domain 1 and (c) domain 2. These are then transformed to Dn, such that
Chebyshev collocation techniques can be used.

and a regularity matrix

Rv ≡
(Rb 0 0 0

0 0 0 Rb

)
. (4.23)

The systems (4.13), (4.14) and (4.20) derived above, represent the governing equations for
the background flow, inviscid, and viscous EVPs respectively (with singular derivatives
removed up to O(r)).

5. Numerical procedure and algorithmic considerations

5.1. Domain decomposition
We begin by decomposing the domain into two rectangular regions separated by a line
perpendicular to the SHS and originating from the triple contact point – see figure 4.
These are then mapped to Dn ≡ {ξ ∈ [−1, 1]} × {η ∈ [−1, 1]}, using the transformations

(ξ1, ξ2, η) =
(

2zs

δ
− 1,

2(zns − δ)

1 − δ
− 1,

2y
h

− 1
)

, (5.1)

so that standard Chebyshev collocation methods can be used in each region. We introduce
discrete points inside the domain, using N = (Nξ + 1)(Nη + 1) nodes at the locations

(ξi, ηj) = (
cos

(
iπ/Nξ

)
, cos

(
jπ/Nη

))
, (5.2)

where i = 0, 1, . . . , Nξ and j = 0, 1, . . . , Nη. The lateral and horizontal domain
boundaries are given by i = 0 and Nξ , and j = 0 and Nη, respectively. Additional
continuity conditions are imposed at the common sub-domain boundaries

R1 = R2 and
∂R1

∂z1
= ∂R2

∂z2
for Rn ≡ (Ū, q̄), (5.3)

where n = 1, 2 represents the evaluation of a given variable R in a particular domain, and
q̄ is as defined in § 4.3.
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Evaluating (4.13) in each domain and incorporating (5.3), (4.13) becomes⎛
⎜⎝

P1 M12 P1U s
1 + M12U s

2

M21 P2 M21U s
1 + P2U s

2

Rb
1 Rb

2 0

⎞
⎟⎠

⎛
⎝U1

U2
Bs

1

⎞
⎠ =

⎛
⎝d1

d2
0

⎞
⎠ . (5.4)

The contributions M12 and M21, apply the discretised matching conditions from (5.3). The
inviscid stability equation (4.14) becomes(

A1 M12
M21 A2

) (
p̄1
p̄2

)
= c

(
B1 M12
M21 B2

) (
p̄1
p̄2

)
. (5.5)

All matrices An, Bn, Pn, M12 and M21 for n = 1, 2, have dimension N × N and the
elements Rb

n for n = 1, 2, which apply the regularity condition to the less singular function
in the bottom row of (5.4), are of size 1 × N. Conversely, the elements in the new column
that apply the governing equation, matching and boundary conditions, to the leading-order
singular expression are N × 1. Lastly, taking (4.15)–(4.19), discretising and incorporating
of the boundary conditions, we arrive at⎛

⎜⎝
E1 M12 Es

1 + Ms
12

M21 E2 Ms
21 + Es

2

Rv
1 Rv

2 O

⎞
⎟⎠

⎛
⎝ q̄1

q̄2
Qs

⎞
⎠ = c

⎛
⎜⎝

F 1 M12 F s
1 + Ms

12

M21 F 2 Ms
21 + F s

2

O O O

⎞
⎟⎠

⎛
⎝ q̄1

q̄2
Qs

⎞
⎠ . (5.6)

Note that unlike the basic flow and inviscid stability problems, all matrices En, F n, M12
and M21 for n = 1, 2, are of size 4N × 4N. On the other hand, the elements in the new
column added in (5.6) are of size 4N × 2, and they apply the field equation, matching
and boundary conditions, to the first-order contributions in the singular expansions for
streamwise velocity and pressure. Next, Rv

n for n = 1, 2, are of size 2 × 4N, and act as the
discrete approximations to the regularity conditions. Finally, O represents a zero matrix of
an appropriate size.

5.2. Eigenvalue tracking algorithms
The above EVPs could be tackled by a QZ-algorithm to obtain the full spectrum. However,
due to the size of the matrices (requiring memory and runtime requirements of O(N2)
and O(N3), respectively), this method was applied at low resolution, in order to provide
us with an initial guess to the most unstable eigenvalue. An example of a simple local
algorithm is the inverse iterations technique, implemented by Moradi & Floryan (2014).
The final method to be discussed is the Krylov–Schur algorithm, which takes the form of
eigs in MATLAB. This algorithm ordinarily has an advantage over the last two methods
mentioned, in that it can be run without an initial guess. This is not the case in our
problem, as one of the GEVP matrices is singular. This algorithm can be understood as a
bridge between global and local techniques, and can also utilise sparsity, which is highly
advantageous. In the results that follow, the Krylov–Schur algorithm was used to compute
the most unstable eigenmodes presented. In Theofilis (2003), one may find a comparison
between these two techniques.

6. Results and discussion

6.1. Validation of the numerical procedure
Before presenting our results we describe several validations of the code based on existing
literature. The accuracy of the basic flow was evaluated by the flux calculations of § 3,
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which are in agreement with the work of Game et al. (2017, 2018). The spectral method
and domain decomposition for the inviscid EVP has been validated by comparing with the
work of Duck (2011), where good agreement with figure 4 from this reference has been
established. Next, for the viscous EVP, the study of Theofilis et al. (2004) provides us with
a paradigm to validate our algorithm. For the pressure-driven case an excellent agreement
is achieved with the critical mode of duct aspect ratio A = 5, streamwise wavenumber
k = 0.91 and Reynolds number Re = 10 400, with our converged eigenvalue given by c =
0.2323. Similarly, in the lid-driven configuration, the stable mode c = 0.9033 − 0.0622i
for A = 2, Re = 3800 and k = 1, was also recovered correct to four decimals. Note also
that in all the validations above, an unnecessary domain decomposition was applied at
some value z = zd in the interior of the domain. This is in anticipation of the stick-slip
surface in SHS flows, and the agreement implies a further validation for the domain
decomposition algorithm.

It remains to provide evidence that the removal of singular derivatives is working with
the desired effect. We present results for the lid-driven viscous EVP with parameters
h = 1, k = 1, δ = 0.5 and Re = 100. Analogous to the streamwise flux which we used
to monitor the convergence in (3.8), we define a perturbation norm

QNη =
∫ 1

z=0

∫ h

y=0
Re[ũ + ṽ + w̃ + p̃] dz dy. (6.1)

This allows one to estimate the residual error heuristically via the absolute value of
the difference in successive fluxes |QNη − QNη−2|, as the number Nη of nodes in the
wall-normal direction increases. The results are presented in figure 5, which includes
numerical convergence calculations from a single domain discretisation, to two domains,
to two domains with the leading-order singularity removed, and finally two domains with
two leading-order singularities removed. In figure 5 we chose to fix 2Nξ = Nη, in order to
keep the same number of nodes in either direction. Convergence is predicted for all cases
and as expected, where the algebraic decay with Nη is fastest for case (iv) that removes two
leading-order singularities coupled with a domain decomposition. Figure 5(b) is a log–log
plot, and the slope of the lines provide an estimate for the algebraic decay rate. In the
stability results that follow, we chose to adopt case (iii). Namely, a domain decomposition
with the leading-order singularity removed, to strike a balance between efficiency and
accuracy. The same level of accuracy must be retained for the background flow. This is
because convergence is limited to the lowest-order singularity left in the problem, and
derivatives of this function force (4.2)–(4.5).

Finally, we highlight the importance of our semi-analytical approach that combines
singularity removal and domain decomposition in problems with irregular geometries (this
is relevant to the curved meniscus SHSs also, that we study elsewhere). For example,
with a resolution of around 20 nodes in the spanwise direction for a one domain spectral
technique, an accuracy of one decimal place is achieved. On the other hand, with domain
decomposition, two singularities removed and an equivalent resolution of approximately
10 nodes per sub-domain in the spanwise direction, we can instead achieve accuracy
greater than four decimal places which is a huge improvement. For problems which require
higher resolution for convergence, e.g. large h and Re, similar comparable reductions in
the required resolution are observed once the semi-analytical methodology is applied.
It should be noted, however, that the improvements are not as dramatic for certain
geometrical values (say either as h → 0 or δ → 0), as these new singular limits instead
dominate and corrupt the convergence rate (mathematically, two triple-point singularities
come together and a separate asymptotic approximation becomes possible then – see Yariv
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Figure 5. Convergence of the perturbation integral measure (6.1) for the SHSC problem, depicting: (a) the
value of QNη , and (b) the difference between successive iterations, with parameters h = 1, k = 1, δ = 0.5 and
Re = 1000. In (i) the circles correspond to a solution on one domain with no singularity removal, (ii) the pluses
correspond to a solution on two domains and with no singularity removal, (iii) the asterisks correspond to a
solution on two domains and with the leading-order singularity removed and (iv) the crosses correspond to a
solution on two domains and with the two leading-order singularities removed.

& Schnitzer (2018) for such a study of a similar basic state problem). The simulations
herein were carried out using maximum resolution of Nξ = 30 nodes per sub-domain,
which means an error of less than 10−8 when h = 1 – see figure 5(b). When the height
of the channel is greater this error increases (e.g. figures 7 and 10e, f ), but is still small
enough to ensure sufficient convergence in the growth rates presented herein.

6.2. The effect of SHSs, plane Couette and PPF
We begin by examining the results as the width of the gas cavity tends to zero, where the
problem becomes invariant in the spanwise direction and tends to the flow between two
parallel infinite plates. Our stability results should then tend to those of classical parallel
channel shear flows. To simplify matters, we will only be considering those channels with
a fixed aspect ratio having h = 2 (an appropriate scaling will generalise these results).
Schmid & Henningson (2012) provide tables of the most unstable Orr–Sommerfeld
and Squire modes for both plane Poiseuille and Couette flow. Considering first the
pressure-driven configuration (as the transformation is more straight forward), the parallel
background flow used within this reference is given by U( y) = 1 − y2 for y ∈ [−1, 1].
As previously mentioned, this corresponds to taking h = 2 in our geometry, with k and
Re unchanged (as the aspect ratio is the same in both configurations). For the Couette
flow the domain remains the same, however, the background flow becomes U( y) = y
for y ∈ [−1, 1]. This again means that there is no change in the governing length
scale (and therefore the definitions of k and Re), but since our flow is now no longer
uni-directional, an appropriate shift must be incorporated into the eigenvalue spectrum
to make a meaningful comparison. By considering a flow driven by one moving plate,
symmetry around Re(c) = 0 in the resulting eigenvalue spectrum is lost.

The results in table 2 demonstrate the convergence of the most unstable mode to those
arising in the parallel configuration, for discrete values of δ close to zero. For the pressure-
and lid-driven problems, the two modes with the largest growth rates are chosen. These
correspond to parities given by SHSP2 then SHSP1, and SHSC2 then SHSC1, such that
the anti-symmetry or symmetry of the streamwise velocity eigenfunction in the spanwise
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δ SHSP2 (Re = 2000) SHSP1 (Re = 2000) SHSC2 (Re = 800) SHSC1 (Re = 800)

0.01 0.9843 − 0.0163i 0.3121 − 0.0198i 0.7819 − 0.1272i 0.5765 − 0.1295i
0.05 0.9881 − 0.0163i 0.3138 − 0.0199i 0.7822 − 0.1270i 0.5768 − 0.1294i
0.1 1.0000 − 0.0155i 0.3215 − 0.0160i 0.7830 − 0.1265i 0.5776 − 0.1292i
0.2 1.0483 − 0.0103i 0.4385 + 0.0272i 0.7862 − 0.1244i 0.5810 − 0.1282i
0.4 1.2568 + 0.0061i 0.8510 + 0.0085i 0.7974 − 0.1151i 0.5949 − 0.1243i

PF 0.9842 − 0.0163 0.3121 − 0.0198i 0.7819 − 0.1272i 0.5765 − 0.1295i

Table 2. A summary of the effects of the slip fraction on the plane flow modes, where the two eigenvalues
with the largest growth rates are considered. The reference eigenvalues are taken from Schmid & Henningson
(2012), with k = 1, and are denoted the plane flow (PF) eigenvalues.
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Figure 6. The spectrum and most unstable eigenmodes corresponding to plane Poiseuille flow, where
(a) depicts 100 eigenvalues that are closest to the values in table 2 for different slip fractions (the large symbols
denote the values presented in table 2), (b) is the velocity perturbation for the most unstable antisymmetric
eigenmode and (c) is the velocity perturbation for the most unstable symmetric eigenmode for δ = 0.01.

direction represents the difference between the Orr–Sommerfeld and Squire modes in
each case (see table 1 for the definition of these modes). For modes SHSP2, SHSC2 and
SHSC1, the progression from the parallel flow is gradual, with the final growth rate at
δ = 0.4 correct to one significant figure. For a very small value of δ excellent agreement
between the eigenvalues is achieved. On the other hand, the variation in slip fraction affects
the SHSP1 mode much more drastically. As we will report later (see § 6.3), this is not
important to the stability characteristics of the flow. This is because the growth rate of this
mode is dominated by the SHSP2-mode, especially when δ is large and h is small.

To complement this analysis we also analyse the spectrum’s dependence on δ and the
most unstable eigenmodes for δ = 0.01 in figure 6(a–c). In figure 6(a), one observes that,
as the slip fraction increases, the P- and A-branches of the plane Poiseuille spectrum shift
up and right, where they become unstable for δ = 0.4. We may examine both symmetric
and antisymmetric streamwise velocity eigenmodes in figure 6, where both the wall
(figure 6c) and centre modes (figure 6b) translate as the slip fraction is increased. The
former and latter correspond to the Squire and Orr–Sommerfeld modes, respectively, from
Schmid & Henningson (2012).
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6.3. Instability of lid-driven superhydrophobic channel flow
We begin by studying neutral curves to identify the regions of instability in terms of the
key flow variables and geometrical parameters. We first consider the SHSC flow and search
a relatively large region of the parameter space given by 0 � k � 3 and 1 � Re � 5000,
considering both symmetric and non-symmetric modes of instability. We restrict Re �
5000 since Reynolds numbers greater than this are unlikely to arise in micro-channel
configurations (Ou et al. 2004; Daniello et al. 2009). In the former, the Reynolds number
defined as Reou = U∗

ouD∗/ν∗ (where D∗ = 4A∗/P∗ is the hydraulic diameter, A∗ is the
cross-sectional area and P∗ is the perimeter of the channel), is stated to be less than 1000
such that the flows examined were observed to be laminar. Considering the differences
in length and velocity scales, one has that Re = U∗d∗/ν∗ ≈ Reou(d∗/h∗)(21/40) ∈
[0, 311] explicitly require consideration; see § 3.4 for a more detailed discussion and
derivation. We increase this Reynolds number interval to higher values in order to
capture the full dynamics when δ → 0 (where the critical Reynolds numbers of
PPF are recovered), allowing for theoretical predictions for parameters not covered in
experiments.

The most unstable mode is found to be the SHSC2 mode, which is anti-symmetric in
the spanwise direction, and in the remainder of this study, we concentrate on this mode
alone. Our results indicate that the flow is stable in the limits k → 0 and ∞, implying
that for a given Reynolds number, instability (if it exists) is restricted to a finite band of
wavenumbers k ∈ [kmin, kmax], say. Furthermore, as Re → ∞ we have that kmin, kmax →
0, such that the flow is inviscidly stable (this is discussed in greater detail in § 6.5). In
figures 7(a)–7(e) we present the neutral curves and selected growth rates for different
slip fractions ranging from δ = 0.1 to 0.9, and channel heights ranging from h = 1 to
10. Figures 7(a), 7(c) and 7(d) show computed neutral curves in the (k, Re)-plane for
channel heights h = 1, 2 and 10, respectively. In the accompanying figures 7(b), 7(d) and
7(e) we present growth rates at each slip fraction and fixed Reynolds number of Re =
2500, 1500 and 1250, respectively; this is identified by a dashed line in figures 7(a), 7(c)
and 7(e).

It is observed that the most unstable configuration, in the sense of the one with the
smallest critical Reynolds number, is where the greatest reductions in drag are observed for
the basic flow. Namely, from § 3, this is in small channels with large exposed gas regions.
For example, in figure 7(a), with h = 1 and δ = 0.9, the critical Reynolds number above
which instability exists is Rec ≈ 200. This then increases monotonically, as the channel
height is increased, and the slip fraction is decreased. The value of the critical streamwise
wavenumber, on the other hand, is seen to remain relatively constant in both of these limits,
i.e. kc ≈ 1 for all h and δ. The maximum growth rates depicted in figures 7(b), 7(d) and
7( f ) are seen to decrease with increasing h, and for the smaller channels having h = 1 and
2, a maximum is attained for δ = 0.7. The results also show clearly that a critical value of
the slip fraction is necessary for this new instability mode to exist at the chosen range of
Reynolds numbers. If we are below the critical value of δ (where physically, there is less
slip than no slip exposed to the fluid), then we observe stability as in the plane flow or duct
configuration (Theofilis et al. 2004; Schmid & Henningson 2012). Additional evidence
is supplied by the neutral curves in figures 7(a), 7(c) and 7(e), where the separation
between contours becomes larger for different slip fractions as h is increased. Specifically,
and for the range of Reynolds numbers considered, when h = 1 no neutral curves (and
hence no instability) could be found for δ � 0.3 and Re ∈ [1, 5000], when h = 2 then
δ � 0.4 and Re ∈ [1, 2000] and when h = 10 then δ � 0.6 and Re ∈ [1, 2000]. We can
conclude, therefore, that given a h and Re ∈ [1, 5000], the flow is stable for δ < δc(h, Re);
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Figure 7. Neutral curves for different channel heights in the SHSC problem, given by: (a) h = 1, (c) h = 2
and (e) h = 10, where the left-hand side of each line represents the stable, and the right-hand side the
unstable, region of the (k, Re)-plane. Additionally included are the growth rates for different channel heights
and Reynolds numbers, such that (b) h = 1 and Re = 2500, (d) h = 2 and Re = 1500 and ( f ) h = 10 and
Re = 1250.

where these values can be read off 9(a). The limit as Re → ∞ is considered in detail
later.

Having identified unstable regions in parameter space, we turn to the examination of the
structure of the disturbance field. The three components of velocity and pressure which
form it, are two-dimensional functions of y and z, and depend on δ, h, Re and k. We
concentrate on the mode which becomes unstable first, and normalise it by its absolute

932 A12-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.990


Instability of flows with superhydrophobic grooves

z

y 0.5

1.0

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

z

y

y

0.4

0.2

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.6

0 0.5 1.0 z

1

2

3

4

5

6

7

8

9

10

0 0.5 1.0
0

0

0.2

0.3

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.7

0.9

0.6

0.8

1.0

y 0.5

1.0

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

y 0.5

1.0

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0
(a)

(b)

(c)

(d)

(e)

Figure 8. Contours of constant streamwise velocity for the most unstable mode in the SHSC problem, with
(a) h = 1, δ = 0.3 and (k, Re) = (1.5, 4000), (b) h = 1, δ = 0.5 and (k, Re) = (1.5, 4000), (c) h = 1, δ = 0.7
and (k, Re) = (1.5, 4000), (d) h = 2, δ = 0.5 and (k, Re) = (1, 1500) and (e) h = 10, δ = 0.7 and (k, Re) =
(1, 1000). Here, the arrows represent the cross-plane velocity field such that all values are normalised, and
lastly, the thick lines on the boundary represent the solid wall regions.

maximum interior value, i.e. q̂ = |q̃|/ max |q̃|, where q̃ is defined in §5. In figures 8(a)–8(e)
we present such eigenfunctions and in particular show the streamwise velocity field ũ in
the channel cross-sectional ( y, z)-plane. We then superimpose the cross-plane velocity
vector field (ṽ, w̃), by a collection of vectors that show its magnitude and direction. Hence,
plots such as figure 8 (and figure 11 later on), allow us to view the full three-dimensional
structure of the perturbation velocity field. The geometry corresponding to the different
figures is characterised by h = 1, δ = 0.3 − 0.7 for figures 8(a)–8(c), h = 2, δ = 0.5
for figure 8(d) and h = 10, δ = 0.7 for figure 8(e), with the values of the streamwise
wavenumber and Reynolds number selected to attain near-critical instability. The critical
disturbance forms a relatively high-velocity streak in the streamwise direction, which is
located near the SHS and over the meniscus to the left of the solid region (as depicted in
the figure). It can be seen to increase in size and translate when the channel height and
slip fraction are increased respectively – see figures 8(a)–8(c). The cross-plane velocity
field also affects a larger spanwise area and traverses from left to right where it meets
the solid ridge. This encounter with the no-slip surface induces a vertical velocity and
translation up and towards the top of the channel. Furthermore, the streamwise velocity
is seen to decay rapidly for increasing y, so that in figure 8(e) where h = 10, the majority
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Figure 9. Critical (a) Reynolds numbers, and (b) phase speeds, for the SHSC problem.

of the channel is free from the disturbance. Increasing the slip fraction has the effect of
translating this structure outwards in the positive wall-normal and spanwise directions,
where there is less overhang into the area above the solid region. Finally, considering
values around those which are critical, it is observed that an increase in the streamwise
wavenumber concentrates the disturbance closer to the wall, whereas, a decrease diffuses
it out. Variation in the Reynolds number around its critical value, on the other hand, have
little to no qualitative effect.

Having given details of the underlying instabilities and corresponding eigenfunction
structures, we summarise our computational findings by constructing the variation of the
critical Reynolds number Rec with the channel height and slip fraction. Such data could
be of considerable use in practical design and operation of SH channel flows, and we
emphasise that little theoretical attention has been given to instabilities in such flows. The
results are given in figure 9(a,b) for the variation of Rec and the corresponding instability
phase velocity, respectively. As the channel height is increased it is observed that the value
of Rec also increases. This because we are considering a fixed lid velocity and therefore
shear rate (i.e. U(h, z) = 2), whose value decreases with increasing h. Furthermore, as the
slip fraction is reduced from δ = 0.9 to 0.3, the critical Reynolds number also increases
monotonically. Indeed the increase of Rec with a decrease in δ is quite dramatic; for
example, fixing h = 1 and decreasing δ from 0.9 to 0.7 results in a doubling of Rec to
approximately 500. While a further decrease to δ = 0.4 yields Rec ≈ 2250, i.e. a tenfold
increase. Note that such large increases in Rec pose considerable numerical challenges
regarding resolution and computation time. The results imply that the most unstable
configuration is found for small channels where there is a large amount of gas phase
exposed. However, it is important to note that not all of these curves will exist for all h. As
we reported previously, there is a critical value δc (also related to the height of the channel),
such that the stability characteristics return to that of the parallel or duct flow (Theofilis
et al. 2004; Schmid & Henningson 2012). This is unconditionally stable for all values of k
and Re, and therefore we surmise that Rec → ∞ for δ < δc. Also shown in figure 9(b)
is the variation with h of the corresponding phase velocity Re(cc), where Re denotes
the real part of a quantity and cc is the critical eigenmode, for the different values of δ

included in figure 9(a). Here, one observes an exponential decrease in its magnitude for
increasing channel size, and as the size of the gas region is reduced its value additionally
decreases.
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6.4. Instability of pressure-driven superhydrophobic channel flow
Having studied lid-driven flow, we now consider the more physically relevant case of
the flow generated by a constant pressure gradient. Once again we begin our stability
investigation with the calculation of neutral curves, where the parameter space is as
outlined in § 6.3. Instability is found for both SHSP2 and SHSP1 modes, where the latter
exists only in smaller height channels and the former develops considerably larger growth
rates. Consequently, in what follows we will only be considering the SHSP2 mode, which
is anti-symmetric in the spanwise direction (this parity is also the most unstable mode
in the SHSC and pressure-driven duct flow configurations Theofilis et al. 2004). As in
lid-driven flows, instability is restricted to a finite range of streamwise wavenumbers.
However, for small heights h we now find that kmax → kupper as Re → ∞. This implies
that the flow is inviscidly unstable (this is discussed further in § 6.5), and the upper
branch of the neutral curve does not decay to zero as it does for plane Poiseuille flow,
or the SHSC flows considered here. For the SHSP flow, there exist a multitude of distinct
unstable modes. Due to the challenges associated with analysing multiple eigenvalues, we
have computed and followed the characteristics of the first two unstable modes, which
we believe are the most physically relevant anyway. The first one that appears is termed an
inviscidly unstable mode in the sense that it persists at infinite Re, and the second is termed
a viscously unstable one, that typically emerges for larger h and connects to the mode seen
in PPFs at sufficiently large Reynolds numbers (as shown by Yu et al. 2016). It appears
that the inviscid instabilities connect to centre modes from the plane flow that are only
excited in the pressure-driven case. The cross-over of unstable modes happens for a fixed
channel height, where the magnitude grows as the slip fraction decreases. Representative
results are given in figure 10 for channel heights h = 1 (figure 10a,b), h = 2 (figure 10c,d)
and h = 10 (figure 10e, f ). The slip fractions range between δ = 0.1 and 0.9.

Starting with the smallest channel height h = 1, the neutral curves in figure 10(a)
show that the first mode becomes unstable at a critical Reynolds number Rec ≈ 100 for
δ = 0.9, i.e. for the largest slip fraction computed. Interestingly, flows with slip fractions
of δ = 0.5 or less still become unstable above Reynolds numbers of 300 or less, which
are an order of magnitude smaller than PPF instability. Figure 10(b) collects the growth
rates for different slip fractions at Re = 2000, as depicted by the vertical dashed line in
figure 10(a). Two things are worth noting. First, the maximum growth rate and band of
unstable wavenumbers decrease as δ decreases, and indeed the flow completely stabilises
for a sufficiently small δ. Physically, the no-slip strip is larger for small δ and the instability
due to three-dimensionality of the basic flow is diminished. Second, there is only one mode
present as can be determined from the smoothness of the curves (note that our eigenvalue
tracking algorithm computes the largest available growth rate, and so mode switching can
take place as k varies, as seen below).

Next, we discuss the results in figures 10(c) and 10(d), that correspond to a larger channel
height h = 2. In this case, we begin to observe the coexistence of the inviscid and viscously
unstable modes, and their interplay as δ is varied. The neutral curves in figure 10(c) show
that δ = 0.9 produces the most unstable scenario and that the corresponding mode, in this
case, is the viscously unstable mode (referred to as mode I). As δ decreases to values
between approximately 0.7 and 0.5, we can see the presence of two modes that appear
as a merged union of two branches. This is due to our eigenvalue tracking algorithm that
searches for the smallest critical Reynolds number. For instance, with δ = 0.5, 0.6 and
0.7 we discern two lobes in the neutral curves, with the lower one providing the smallest
critical Reynolds number for instability. This lower mode is the viscously unstable mode
(referred to as mode II), and hence mode switching takes place in going from large slip
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Figure 10. Neutral curves for different channel heights in the SHSP problem, given by (a) h = 1, (c) h = 2
and (e) h = 10, where the left-hand side of each line represents the stable, and the right-hand side the unstable,
region of the (k, Re)-plane. Additionally included are the growth rates for different channel heights and
Reynolds numbers, such that (b) h = 1 and Re = 2000, (d) h = 2 and Re = 1000 and ( f ) h = 10 and Re = 125.

fractions (mode I) to smaller ones (mode II is most unstable). These findings are quantified
further in figure 10(d), which depicts the growth rate curves for different δ and a fixed
value Re = 1000 (as displayed by the dashed line in figure 10c). The results show that as δ

decreases from 0.9 we observe the influence of the second mode for longer waves (smaller
k) when δ = 0.8. For δ = 0.7 and 0.6 we can see the second mode being mode unstable for
longer waves, and indeed providing the largest growth rate when δ = 0.7 and its environs.
Note that, by the time the slip fraction is reduced to values δ � 0.4, the flow is linearly
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stable at this Reynolds number. Before discussing larger channel heights, we highlight
an interesting and possibly practically important finding. We do this by inspection of the
neutral curves at h = 1, 2 and 10. To fix matters let us consider a slip fraction δ = 0.5
which is depicted by the gold curves in figure 10. When h = 1 the critical Reynolds
number is approximately 200 (figure 10a), whereas increasing the height to h = 2 yields a
critical Reynolds number of approximately 1200 (figure 10c). This seemingly monotonic
increase in Rec is reversed at higher channel heights, however. As can be seen from
figure 10(e), the critical Reynolds number for δ = 0.5 now decreases to approximately
110 which is, in fact, smaller than the narrow channel case h = 1 (see below). From an
applications perspective, these results indicate the existence of some height h = hstab, say,
which defines an optimum height for stability. This is meant in the sense that for a given
δ, the critical Reynolds number is maximised. Should one wish to maintain linearly stable
flows, then this is the geometry that could be considered.

Next, we turn to the results for h = 10 which is the largest channel height computed
here. The neutral curves and corresponding growth rates at fixed Re = 125, are given
in figure 10(e, f ). Two notable features are worth pointing out. First, in contrast to the
smaller heights: h = 1 and 2, the range in critical Reynolds numbers as δ is varied is
significantly reduced. For example when h = 10, changing δ from 0.9 to 0.3 changes the
critical Reynolds number from approximately Rec = 17 to 231, whereas the corresponding
changes for h = 1 are significantly larger from Rec = 165 to 1741; for h = 2 the critical
Reynolds number is larger than 2000 and outside the parameter range considered. Second,
the instability is due to mode II, which is the three-dimensional SH modification of
the classical plane Poiseuille mode; it can be seen from figure 10(e) that the upper and
lower branches of the neutral curves appear to be decreasing to zero as Re increases. The
upper branches require higher resolutions for convergence as Re increases and so they
terminate as seen in the figure – this of course does not impact the calculation of critical
Reynolds numbers and maximum growth rates. The growth rates at Re = 125 are given in
figure 10( f ). We find that the maximum growth rates when h = 10 are significantly larger
than those for the smaller channels; roughly five to seven times as large. In addition, we
can conclude that for the selected Reynolds numbers and small (h = 1) or large (h = 10)
channels, the most unstable configuration has slip fraction δ = 0.7, while for h = 2 the
slip fraction δ = 0.9 provides the largest growth rates. Also in general, the growth rates at
large channel heights for SHSP flows are orders of magnitude larger than those for SHSC
flows (e.g. figure 7f ), something that is physically expected given the nature and stability
of plane Poiseuille and Couette flows. We note that mode I was not found in the range of
parameters computed but is expected to be present at larger Reynolds numbers.

Sample eigenfunction computations are given in figure 11(a–e), with parameters
selected to construct solutions that are unstable and just above the critical Reynolds
number. As in figure 8, we plot the normalised streamwise perturbation velocity ũ as
constant-velocity contours in the ( y, z)-plane. We then superimpose the velocity vector
in the cross-plane using vector velocity distributions. Figure 11(a) corresponds to h = 1,
δ = 0.3 and shows a disturbance having k = 1.4 and Re = 2000 (this is on the green
unstable growth rate curve in figure 10(b), and is an inviscidly unstable mode). Figure 11(b)
shows the inviscid disturbance for k = 1.4 and Re = 500 (this is past the yellow contour
in figure 10a). Figures 11(c) and 11(d) have h = 2, δ = 0.5 and plots the streamwise
eigenfunction for mode I with k = 1.4 and Re = 1400 and mode II with k = 0.7 and Re =
1300 (see the gold curve in figure 10(c), to place the position of the eigenfunctions for these
unstable modes). Finally, figure 11(e) has h = 10 and δ = 0.7; it depicts a disturbance
with streamwise wavenumber k = 0.7 at Re = 60 (here see the pink neutral curve in
figure 10(e) to confirm that this unstable mode is just above critical, and furthermore,
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that it is a viscously unstable). Starting with h = 1, we note that mode I has significantly
more structures than its counterpart for lid-driven flow given in figure 8(a–d). The salient
differences are that there is no longer localisation near the SHS for the pressure-driven
instability, with a second vortical structure occupying the whole channel. The dominant
contribution of streamwise velocity is located near the liquid–gas interface and the channel
centre (this localisation is, of course, the same for the normal and spanwise components),
and we can see that the cross-plane velocity field convects fluid towards the channel centre
before sending it from left to right in the positive z-direction. When one increases the
slip fraction we see that the two structures combine in figure 11(c). As the channel height
is increased to h = 2, the eigenfunction shown in figure 11(c) still occupies almost the
whole channel but is now comprised of a single structure, having lost the streak near the
meniscus that is present for smaller h. The maximum perturbation streamwise velocity is
now detached and at the channel centre y = h/2, and the cross-plane secondary velocity
field convects fluid up from the SHS; to the channel centre and then to the right. On
the other hand, post-transition from inviscidly unstable to viciously unstable mode, the
eigenfunctions bear a strong resemblance to those attained for the SHSC flow (i.e. compare
those seen in figures 8d–e and 11c–e). These are the same in terms of size and shape as
before (being due to transverse variation close to the SHS), therefore, their characteristics
whilst varying critical parameters will remain the same. Hence, we return to our discussion
of the inviscidly unstable class of disturbances, and observe that an increase in streamwise
wavenumber causes the mode to concentrate in the channel centre, whereas, a decrease
results in local maxima at both the channel centre and on the boundary – see figure 11(a).
The same effect can then be seen to occur when the Reynolds number is varied, however, in
the opposite manner. At this stage, it is not entirely clear why one of these disturbances is
more unstable than the other, and why this configuration can sustain an inviscid instability,
whilst the other cannot.

A more complete set of stability characteristics covering the three important parameters:
h, δ and Re are included in figures 12(a) and 12(b) for SHSP flows. This is an analogous
construction to SHSC flow given in figure 9 but the results are richer due to the presence
of the first two competing unstable modes. Figures 12(a) and 12(b) show the variation of
the critical Reynolds number and corresponding phase velocity of the disturbance, with
the channel height h for the range 0.1 � δ � 0.9. As outlined above, for small h, mode
I becomes unstable first as Re increases. However, at a certain height of hstab, mode II
switches to become unstable first. Figure 12(a) summarises these results and the general
trends are similar for the values of δ considered. To fix things, consider first the case
δ = 0.9 (purple curves in figure 12(a,c,e). Starting at small h = 1 the flow is unstable at a
critical Re that increases linearly with h until the height h ≈ 1.7 where there is a crossing
with mode II; as seen in the figure by the corner in the curve. As h increases further, mode
II remains dominant with the critical Reynolds number decreasing with h. This decrease
with h is due to our non-dimensionalisation that used the SH pitch as the unit of length
rather than the channel height – analogous behaviour is encountered in the stability of duct
flows as the height of the duct increases – see Theofilis et al. (2004). Recall that is is easy
to switch between the two definitions, in this case, by multiplying by h. This behaviour
is supported for other δ as seen in figure 12(a), with the main quantitative difference
being that the critical Reynolds number at the mode crossing increases significantly with
a decrease in δ. The value of hstab for different δ is found to vary marginally. Table 3
records the computed values of Rec and hstab for all δ values considered here. This result
could have implications in micro-channels, where laminar flow is required for optimised
drag reduction. For example, as it is the region where the flow is most resilient to linear
modal growth (Park, Sun & Kim 2013). Here, we observe that the height at which we
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Figure 11. Contours of constant streamwise velocity for the most unstable mode in the SHSP problem, with
(a) h = 1, δ = 0.3 and (k, Re) = (1.4, 2000) (mode I), (b) h = 1, δ = 0.5 and (k, Re) = (1.4, 500) (mode I),
(c) h = 2, δ = 0.5 and (k, Re) = (1.4, 1400) (mode I), (d) h = 2, δ = 0.5 and (k, Re) = (0.7, 1300) (mode II)
and (e) h = 10, δ = 0.7 and (k, Re) = (0.7, 60) (mode II). Here, the arrows represent the cross-plane velocity
field such that all values are normalised, and lastly, the thick lines on the boundary represent the solid wall
regions.
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Figure 12. Critical (a) Reynolds numbers, and (b) phase speeds, for the SHSP problem.

transition from mode I to II being the most unstable decreases with increasing slip fraction.
Furthermore, the critical Reynolds number for this configuration increases as the amount
of gas phase exposed grows. Also presented in figure 12(b) is the real part of the phase
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δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

hstab — — 2.17 2.16 2.12 2.05 1.96 1.82 1.74
Rec — — 3641 2125 1006 698 381 262 142

Table 3. A summary of the channel height and critical Reynolds number, at which, the mode II becomes more
unstable than mode I. One could not detect the latter disturbance for δ = 0.1 to 0.2 within the range of Reynolds
numbers considered, hence why these are denoted with —.
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Figure 13. Convergence of the viscous to the inviscid eigenvalue for the SHSP problem, where (a) contains
the growth rates (the dashed lines are those found by solving the inviscid EVP), and (b) the difference between
values at a given Reynolds number, with: h = 1 and k = 1.

speed for the most unstable disturbance. For both inviscid and viscously unstable modes,
its value can be observed to increase with both h and δ.

6.5. Connection with the inviscid problem
It was claimed in the results above that at smaller values of h the instabilities found at finite
Reynolds numbers are due to modes that are unstable in the infinite Reynolds number
limit – we termed such modes as inviscid of type I. In what follows we consider a
configuration with h = 1 and solve the stability problem based on the viscous equations
(4.2)–(4.5), and the inviscid stability equation (4.6), and compare results of the former as
Re → ∞ with those of the latter. We do this for all δ in the range 0.1 � δ � 0.9, and in
addition select k = 1 as a suitable perturbation wavelength that can capture the instability
as Re increases – see figure 10(a) for example. The results are given in figures 13(a)
and 13(b). Figure 13(a) depicts the computed growth rate as Re varies for the viscous
problem (solid curves), along with the growth rate found from the inviscid problem which
is represented by a dashed line of uniform value. It can be seen that viscosity always
reduces the growth rate and the curves asymptote to the inviscid values as Re becomes
large. We note that both instabilities must exist to make a meaningful comparison, and this
is why there is no inviscid curve for the case δ = 0.1 – the flow, in this case, is becoming
neutrally stable as Re → ∞. In figure 13(b) we extract numerically the rate of convergence
of the viscous growth rate to the inviscid one as Re increases. The log-log plot shows that
the convergence is algebraic and of the form |c − c∞| ∼ Re−α , where α ∈ [0.97, 1.07]
depending on the slip fraction. Thus, we approximately recover the scaling, Re−1, which
is present in the governing system (4.2)–(4.5).
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6.6. Comparison with experiment
In § 3.4 we discussed the experiments of Ou et al. (2004) and Ou & Rothstein (2005)
that were mostly concerned with laminar drag reduction. In a later study, Daniello et al.
(2009) studied the turbulent states and provide us with some qualitative intervals in which
transition to a nonlinear or turbulent state is believed to take place. Their experiments
examine ridged geometries like the ones modelled here, with an equal solid to gas ratio
δ = 0.5 – more precisely the case we compare with has SHSs with a pitch of 120 μm
and ridge with 60 μm – and considered one or both walls being superhydrophobic.
The channel width was W = 38 mm and the height h∗ = 5.5 mm. Reynolds numbers are
defined by Redan = h∗U∗

dan/ν
∗ where U∗

dan is the mean fluid velocity measured from the
experiments. Of particular interest is figure 6 of Daniello et al. (2009) that displays the
measured pressure drop per unit length as a function of Reynolds number – the channel
had two identical SH bounding walls not just a bottom SH one that was studied separately.
Converting these scales to our dimensionless channel height gives h = 5500/60 ≈ 92.
The pressure drop data superimpose smooth channel ones with the SH data. For a smooth
channel a laminar result is reported, but in the presence of SHSs a laminar to turbulent flow
transition is observed in the interval 2000 < Redan < 3000. The transition manifests itself
into a reduction in the pressure drop and hence drag reduction is concluded. It remains
to evaluate these results with our linear stability formalism. We ran computations using
h = 92, δ = 0.5 to find the smallest critical Reynolds number (this occurred for symmetric
modes as discussed previously, with the additional symmetry at y = h/2 in this case due
to the presence of two SH walls). Noting that the ratio between our Reynolds number
based on the half-pitch and Redan based on the channel height is 1/h ≈ 1/92, we predict
instability at Redan ≈ 2044. This lies within the reported experimental interval and is in
very reasonable agreement when used instead of alternative predictions from duct flow
and the linear stability theory of PPF (Theofilis 2003; Schmid & Henningson 2012). In
the former, a sub-critical instability is known to be responsible for transition, however,
this may not be the case for the SHS bounded flow. It should also be noted, however, that
the rich difference in instability behaviour found by us as the slip fraction and channel
heights vary, cannot be evaluated against the results of Daniello et al. (2009), since the
experiments are restricted to an equal ratio of solid to gas and fixed channel height that is
considerably larger than those considered herein. Experimental work with an emphasis on
laminar–turbulent transition in SHS channels would be very interesting and of practical
value, and we believe that our results can guide parameter choices that can support such
phenomena.

7. Conclusions and extensions

An investigation has been carried out into the stability characteristics of flows in channels,
which have one wall structured with longitudinal grooves so that it is a SHS. This geometry
was selected to compare with existing experiments, but the results can readily be extended
to channels with both walls being structured. Such SHSs are manufactured by etching
parallel grooves within a solid wall, which then allows for the fluid to be suspended over
a large number of gas cavities that are aligned in the direction of flow – see figure 1. Two
canonical flows have been considered here, which are either driven by a uni-directional
pressure gradient or a moving lid. There is considerable evidence in the literature that
supports drag reduction, and hence the forcing required to drive the flow in SH structured
channels is less than the solid-walled counterpart. The drag reduction efficiency, however,
depends on both the height of the channel and the amount of gas exposed to the liquid
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(we refer to the latter measure as the slip fraction δ). The fully developed undisturbed flow
is unidirectional in the streamwise direction but is two-dimensional and dependent on
the cross-stream variables y and z. Such states are first computed using accurate spectral
methods, incorporating triple-point singularity removal. Their global linear stability is
formulated and studied via a GEVP formalism. The presence of ensuing instabilities
is important to know as design parameters vary, and the drag reducing capabilities of
SHS technologies change significantly between laminar and turbulent states. In general,
numerical convergence is limited by integrable contact line singularities (triple points
where solid, liquid and gas meet). We have shown that when these are removed from the
governing equations and coupled with domain decomposition, the computational demand
is reduced dramatically for a given accuracy. The technique developed here accurately
determines critical values of the Reynolds number in physically relevant systems.

For the SHSC flow, as the size of the gas region becomes smaller, the stable
Orr–Sommerfeld and Squire modes are attained. Our results show that there exists a
critical value of the slip fraction (δc say), such that if δ < δc the stability of the parallel flow
is recovered, whereas if δ � δc new unstable modes are supported. This is in contrast to
smooth-walled duct flow, which is found to be stable under all conditions (Theofilis et al.
2004). Therefore, the physical origin of the instabilities is directly linked to the presence of
the longitudinal grooves. The neutral stability curves demonstrate that the flow is the most
unstable for large values of the slip fraction and small channel heights. The perturbation
streamwise velocity consists of a high-intensity streak in the longitudinal direction, with
a left to right advection in the cross-plane, which is caused by the secondary perturbation
velocity field there. The qualitative features of this structure (if instability is present for
a given set of parameters) are relatively independent of h and δ. Regarding the onset of
instability, our results show that the critical Reynolds number increases as the channel
height becomes larger and the slip fraction reduces from δ = 0.9 to δ = 0.3. Hence, the
flow is the most unstable when the channel height is small and the amount of exposed gas
region is large. In particular, for k = 1, δ = 0.9 and h = 1, the critical Reynolds number
can reach a value as low as Rec ≈ 200. Then, as h → ∞ and δ → 0 the flow stabilises,
until it becomes equivalent to the parallel Couette flow.

When the flow is driven by a constant pressure gradient, i.e. the SHSP problem, the
behaviour is much richer than that for SHSC flows. It should also be emphasised that
in almost all practical applications we are aware of the flows are driven by pressure
gradients, and so the SHSC problem is of more fundamental interest. For moderate
Reynolds numbers and small channel heights, an inviscidly unstable mode dominates (we
term this mode I), and as h increases a second viscously unstable disturbance emerges
(we term this mode II) and attains comparable growth rates to mode I. The terminology
for modes I and II has been adopted to identify the fact that mode I that is unstable at
low Reynolds numbers and small channel heights, connects to an inviscid instability as
Re → ∞ as confirmed by the solution of the two-dimensional Rayleigh equation for these
flows – see figure 13. On the other hand, mode II is termed viscous because in the large Re
limit it converges to the two-branched asymptotically neutral modes of classical PPF. As h
is increased further, and assuming the Reynolds number is sufficiently large, we eventually
reach the stability characteristics of PPF. These are suitably perturbed by the SHS surface,
and have been calculated by Yu et al. (2016). This mode switching is observed in the
neutral stability curves, e.g. for h = 2 the two modes can be seen as two lobes (the upper
lobe is mode I and the lower one is mode II) – see figure 10. This exchange occurs first for
the highest slip fraction considered δ = 0.9, and persists to lower δ albeit at varying critical
Reynolds numbers. Key differences can also be seen in the disturbance velocity field for
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the inviscidly unstable mode. Here, the dominant contribution is at the liquid–gas interface
and channel centre, as opposed to on the wall, which it is for h � 2. Additionally, there
appears to be a larger cross-plane contribution. When h = 2 we may identify both modes
I and II, and compare their eigenfunctions. Mode I resembles that for h = 1 with only
one contribution and mode II is the same as that attained in the lid-driven configuration.
For large h, the disturbance fields for both the SHSC and SHSP problems are also very
similar, and therefore, more explanation of this mode’s behaviour can be found in the
previous paragraph. The critical Reynolds number is seen to increase for mode I, and then
decrease as mode II dominates. A significantly unstable configuration obtains when the
slip fraction is at its largest, in which case the critical Reynolds numbers can be less than
100. As δ decreases the critical Reynolds numbers from the two unstable modes become
similar as can be seen in figure 10(c), for example, see the cases where δ = 0.7, 0.6 and
0.5. Finally, an explanation has been proposed for the under-prediction of the reduction in
flow rate from laminar theory due to Philip (1972), in the experiments of Ou et al. (2004)
and Ou & Rothstein (2005). Additionally, a good agreement is achieved with the interval
of transition observed by Daniello et al. (2009).

Our computational framework is sufficiently versatile to enable the addition of many
of the effects mentioned in § 2. The first is the inclusion of the meniscus curvature at
the liquid–gas interface (Game et al. 2018), where the majority of the problem would
remain the same, however, the boundary conditions at the liquid–gas interface would differ.
Additionally, it is important to distinguish this from the case where the meniscus itself
is perturbed and interfacial as well as bulk modes could be supported. Next, one could
account for the temperature field in the stability problem by modifying the governing
equations to the incompressible Navier–Stokes plus a convection equation. Then, in the
stability analysis, one would have a basic state temperature field to perturb, along with
the other primitive variables (Schmid & Henningson 2012). Finally, the mathematical
method and numerical framework presented in this report are general, in the sense that
it would require few modifications to generate stability characteristics for different basic
flow profiles with discontinuous boundary conditions.
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Appendix A. Singular forms

A.1. Motivation
To improve the convergence of the numerical solution, we can remove the integrable
singular derivatives from the state variables, which arise due to the mixed boundary
conditions on the bottom surface (Peyret 2013). The evidence which justifies the
implementation of this technique is provided in § 6.1. A local solution must be sought for
the background flow which describes the streamwise velocity close to the triple contact
point. This then forces the solution to both the viscous and inviscid stability systems. Here
we will only present the removal of singular first derivatives, however, this process can be
generalised to deal with higher orders.
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A.2. Background flow
We start with the basic flow and introduce a local polar coordinate system fixed at the triple
contact point (r, θ) = ((z − δ)2 + y2)1/2, atan2( y, z − δ)), where atan2 is a variation of
the inverse tangent function. Additionally, one assumes that r � 1, i.e. we are close to the
integrable singularity (please refer back to figure 1b). Rewriting the field equations, (3.1)
and (3.5), in terms of r and θ , we have

∂2Us

∂r2 + 1
r

∂Us

∂r
+ 1

r2
∂2Us

∂θ2 = d, (A1)

where d is defined in § 4.3. This equation must be solved subject to the mixed no-shear
stress and no-slip boundary conditions on the SH bottom wall, such that

Us(r, 0) = ∂Us

∂θ
(r, π) = 0. (A2)

Note that, on physical grounds, the solution must remain bounded as r → 0. The symmetry
and lid boundary conditions for the basic flow are in the far field and are therefore
neglected from the rest of this local analysis.

This boundary value problem can be solved using separation of variables, to find

Us(r, θ) = Bs
1r1/2 sin (θ/2) + O(r3/2) ≡ Bs

1Us
1 + O(r3/2). (A3)

From this, it can be seen that the first derivative (and indeed all higher-order
derivatives) become infinite at the triple contact point: ( y, z) = (0, δ). We may neglect
the inhomogeneous component in (A1), as its contribution to the particular solution is
O(r2).

A.3. Inviscid eigenvalue problem
To calculate the singular expression for the inviscid problem, we again assume that r � 1,
and we also have U ∼ Us (calculated in Appendix A.2), and k and c are O(1) quantities.
Then, converting to polar coordinates, we find

Us
(

∂2p̃s

∂r2 + 1
r

∂ p̃s

∂r
+ 1

r2
∂2p̃s

∂θ2 − k2p̃s
)

− 2
∂Us

∂y

(
sin(θ)

∂ p̃s

∂r
+ cos(θ)

r
∂ p̃s

∂θ

)
− 2

∂Us

∂z

(
cos(θ)

∂ p̃s

∂r
− sin(θ)

r
∂ p̃s

∂θ

)

= c
(

∂2p̃s

∂r2 + 1
r

∂ p̃s

∂r
+ 1

r2
∂2p̃s

∂θ2 − k2p̃s
)

. (A4)

This must then be solved subject to uniform impermeability along the bottom boundary,
which takes the form

∂ p̃s

∂θ
(r, 0) = ∂ p̃s

∂θ
(r, π) = 0. (A5)

Performing a scaling analysis, and with (A3) known, it follows that the pressure
eigenmode mode must expand as

p̃s = r1/2S1(θ) + O(r). (A6)
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Substituting (A6) and (A3) into (A4), we get a hierarchy of equations in ascending powers
of r. We only require the first term in this expansion, however, and at O(r−3/2):

d2S1

dθ2 + S1

4
= 0, subject to

dS1

dθ
(0) = dS1

dθ
(π) = 0. (A7)

This implies that S1(θ) = 0 and the inviscid eigenmode does not have singular first-order
derivatives that require removing. To attain the appropriate convergence, we still must
remove those unbounded derivatives which belong to the background flow.

A.4. Viscous eigenvalue problem
For the viscous EVP we proceed by assuming that c, k and 1/Re, are all O(1) quantities.
For small r the background flow expands as in (A3), therefore the governing local stability
equations for the viscous problem are given by

ikũs + sin(θ)
∂ṽs

∂r
+ cos(θ)

r
∂ṽs

∂θ
+ cos(θ)

∂w̃s

∂r
− sin(θ)

r
∂w̃s

∂θ
= 0, (A8)

S ũs + ∂Us

∂y
ṽs + ∂Us

∂z
w̃s + ikp̃s = ikũs c, (A9)

S ṽs + sin(θ)
∂ p̃s

∂r
+ cos(θ)

r
∂ p̃s

∂θ
= ikṽs c, (A10)

Sw̃s + cos(θ)
∂ p̃s

∂r
− sin(θ)

r
∂ p̃s

∂θ
= ikw̃s c, (A11)

where S is defined in § 4.3. Similar to Appendix A.3, the symmetry and lid boundary
conditions are in the far field so that we only apply the mixed conditions

∂ ũs

∂y
(0, zs) = ṽs(0, zs) = ∂w̃s

∂y
(0, zs) = ũs(0, zns) = ṽs(0, zns) = w̃s(0, zns) = 0. (A12)

Taking a dominant balance of the terms in the above equations, it follows that

ũs = r1/2ũs
1(θ) + rũs

2(θ) + O(r3/2), ṽs = r3/2ṽs
3(θ) + O(r2),

w̃s = r3/2w̃s
3(θ) + O(r2), p̃s = r1/2p̃s

1(θ) + rp̃s
2(θ) + O(r3/2).

}
(A13)

Upon substitution of (A13) into (A8)–(A11), we again attain a hierarchy of equations in
ascending powers of r. From the x-momentum equation at O(r−3/2) we have

d2ũs
1

dθ2 + ũs
1

4
= 0, subject to ũs

1(0) = dũs
1

dθ
(π) = 0. (A14)

Integrating yields ũs
1 = Us

1 sin(θ/2). Converting back into Cartesian coordinates (the
reasons for this will become apparent shortly), the y-momentum equation reduces to

1
Re

(
∂2

∂y2 (r3/2ṽs
3) + ∂2

∂z2 (r3/2ṽs
3)

)
− ∂

∂y
(r1/2p̃s

1) = 0, (A15)

and is coupled to the z-momentum equation, which reads

1
Re

(
∂2

∂y2 (r3/2w̃s
3) + ∂2

∂z2 (r3/2w̃s
3)

)
− ∂

∂z
(r1/2p̃s

1) = 0. (A16)
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Finally, mass conservation links these two variables and is given by

ikr1/2ũs
1 + ∂

∂y
(r3/2ṽs

3) + ∂

∂z
(r3/2w̃s

3) = 0. (A17)

Taking the y derivative of (A15), adding to it the z derivative of (A16), commuting the
derivatives and then employing (A17), we arrive at

∂2

∂y2 (r1/2p̃s
1) + ∂2

∂z2 (r1/2p̃s
1) = 0. (A18)

As was the case for the leading-order streamwise velocity, converting to polar coordinates
and integrating this resulting local equation twice, gives p̃s

1 = Ps
1 sin(θ/2) + Ps∗

1 cos(θ/2).
Returning to the y-momentum equation, one must solve

2
d2ṽs

3
dθ2 + 9ṽs

3
2

= Re
(
Ps

1 cos (θ/2) + Ps∗
1 sin (θ/2)

)
, subject to ṽs

3(0) = ṽs
3(π) = 0.

(A19)

Integrating this boundary value problem by finding a particular solution and
complementary function, we have that ṽs

3 = Vs
3(cos(3θ/2) − cos(θ/2)) + Vs∗

3 (sin(3θ/2) +
sin(θ/2)), where Vs∗

3 = Ps∗
1 Re/4 and Vs

3 = −Ps
1Re/4 due to (A12). Next, for the

z-momentum equation, we instead require the solution to

2
d2w̃s

3
dθ2 + 9w̃s

3
2

= −Re
(
Ps

1 sin (θ/2) − Ps∗
1 cos (θ/2)

)
, subject to w̃s

3(0) = dw̃s
3

dθ
(π) = 0.

(A20)

Integration yields w̃s
3 = Ws

3 sin(3θ/2) + Vs
3 sin(θ/2), where this time (A12) implies that

Vs∗
3 = Ps∗

1 = 0. Therefore, the other singular functions reduce to p̃s
1 = Ps

1 sin(θ/2) and
ṽs

3 = Vs
3(cos(3θ/2) − cos(θ/2)), which are to be supplemented with the relation Vs

3 =
−Ps

1Re/4. Substituting ṽs
3, w̃s

3, and ũs
1 from the previous order into (A17), we arrive at an

equation relating the singular strengths of the velocities, given by 2ikUs
1 − 7Vs

3 + 3Ws
3 =

0. The singular streamwise velocity eigenmode has a first-order contribution given by

ũs = Us
1r1/2 sin (θ/2) + O(r3/2) ≡ Us

1ũs
1 + O(r3/2), (A21)

for which, we must determine what will be referred to as the singularity strength Us
1. The

wall-normal and spanwise velocity eigenmode only have O(r3/2) components, which are
not calculated as part of our solution. Identical to the streamwise velocity except in its
integration constant, the pressure eigenmode has a contribution given by

p̃s = Ps
1r1/2 sin (θ/2) + O(r3/2) ≡ Ps

1p̃s
1 + O(r3/2), (A22)

for which we must determine the singularity strength Ps
1.
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