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ON NON-COMPACT p-ADIC DEFINABLE GROUPS

WILL JOHNSON AND NINGYUAN YAO

Abstract. In [16], Peterzil and Steinhorn proved that if a group G definable in an o-minimal structure
is not definably compact, then G contains a definable torsion-free subgroup of dimension 1. We prove here
a p-adic analogue of the Peterzil–Steinhorn theorem, in the special case of abelian groups. Let G be an
abelian group definable in a p-adically closed field M. If G is not definably compact then there is a definable
subgroup H of dimension 1 which is not definably compact. In a future paper we will generalize this to
non-abelian G.

§1. Introduction. In [16], Peterzil and Steinhorn prove that if G is a definable
group in an o-minimal structure M, and G is not definably compact, then G has a
definable one-dimensional subgroup H that is not definably compact. To prove this,
they take a continuous unbounded definable curve I : [0,+∞) → G and take H to be
the “tangent line at ∞.” This can be made precise using the language of �-types and
�-stabilizers developed later by Peterzil and Starchenko [15]. Say that two complete
types q, r ∈ SG(M ) are “infinitesimally close” if there are realizations a |= q and
b |= r such that ab–1 is infinitesimally close to idG (that is, ab–1 is contained in every
M-definable neighborhood of idG). This is an equivalence relation on SG(M ), and
equivalence classes are called “�-types.” The “�-stabilizer” stab�(q) of q ∈ SG(M )
is the stabilizer of the �-type of q.

With these definitions, the “tangent line of I at ∞” is simply the �-stabilizer of
the type on I at infinity, an unbounded one-dimensional definable type. (Here, we
say that a type q ∈ SG(M ) is “unbounded” if no formula in q defines a definably
compact subset of G.) Peterzil and Steinhorn essentially show that the �-stabilizer
of an unbounded one-dimensional definable type is a torsion-free non-compact
definable subgroup of dimension 1. More generally, in [15], Peterzil and Starchenko
consider a general definable type q ∈ SG(M ), showing that stab�(q) is a torsion-free
definable group of a certain dimension.

It is natural to ask whether analogous results hold in the theory pCF (p-adically
closed fields). There are many formal similarities between pCF and o-minimal
theories, especially RCF (real closed fields). In both settings, definable groups can
be regarded as real or p-adic Lie groups [17, 18], and are locally isomorphic to
real or p-adic algebraic groups [8]. In both the real and p-adic contexts, definable
sets have a dimension which has a topological description as well as an algebraic
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description (the algebro-geometric dimension of the Zariski closure). On the other
hand, definable connectedness behaves very differently in the two settings.

In this paper, we restrict our attention to one-dimensional definable types, as in
the original work of Peterzil and Steinhorn [16]. Unfortunately, we must also assume
that G is “nearly abelian” for most of our theorems.

Definition 1.1. Let G be a definable group in a model of pCF. G is nearly abelian
if there is a definably compact definable normal subgroupK ⊆ G withG/K abelian.

See Definition 2.1 for a precise definition of “definable compactness,” and
Propositions 2.16 and 2.24 for some equivalent conditions.

Our main results are as follows:

Theorem 1.2. Let G be a definable group over a p-adically closed field M. If G is
not definably compact and G is nearly abelian, then there is a one-dimensional definable
subgroup H ⊆ G that is not definably compact.

We plan to generalize Theorem 1.2 to non-abelian groups in a future paper.

Theorem 1.3. Suppose that G is a definable group over an ℵ1-saturated p-adically
closed field M. Then for any definable unbounded one-dimensional type r ∈ SG(M ),
the �-stabilizer stab�(r) is a one-dimensional type-definable subgroup of G. If G is
abelian (or nearly abelian), then stab�(r) is unbounded.

Here, a set or type is “bounded” if it is contained in a definably compact set, and
“unbounded” otherwise (Definition 2.9). The assumption on saturation is necessary.
For example, suppose M = Qp, G is the multiplicative group, and r ∈ SG(Qp) is
one of the definable types consistent with {x | v(x) < Z}. Then stab�(r) is the
intersection of all n-th powers Pn = {x | x �= 0 ∧ ∃(x = yn)}, which is the trivial
group {1}.

We can also say something when M is not saturated, but we will need a few more
definitions from [15]. Fix a group G definable in a p-adically closed field M. For any
partial type Σ(x) in G, and any L-formula φ(x; y), let stabφ(Σ) denote⋂

b∈Mk
stab{g ∈ G(M ) | Σ 
 φ(gx; b)}.

(This can be understood as the stabilizer of the φ(z · x; y)-type generated by Σ(x).)
It turns out that stab(Σ) =

⋂
φ∈L stabφ(Σ). Now suppose that r is a type in SG(M ).

Let � be the partial type of “infinitesimals,” that is, the set of LM -formulas defining
neighborhoods of idG . Let � · r be the partial type such that (� · r)(N ) = �(N ) ·
r(N ) for sufficiently saturated N �M . It turns out that

stab�(r) = stab(� · r) =
⋂
φ∈L

stabφ(� · r).

Moreover, when r is definable, the groups stabφ(� · r) are definable, and stab(� · r)
is type-definable. (This is the reason why stab�(r) is type-definable in Theorem 1.3.
In the o-minimal case, there is a descending chain condition on definable groups,
which ensures that stab�(r) is definable in [15].)

Theorem 1.4. Suppose that G is a definable group over a p-adically closed field
M. Let r ∈ SG(M ) be a definable unbounded one-dimensional type. Then there is a

https://doi.org/10.1017/jsl.2021.93 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.93


190 WILL JOHNSON AND NINGYUAN YAO

formula φ ∈ L such that stabφ(� · r) is a one-dimensional definable subgroup of G.
When G is abelian (or nearly abelian ), stabφ(� · r) is unbounded.

Our proofs of these theorems are based on the original proofs of Peterzil and
Steinhorn [16], though several important changes are necessary. First of all, the
�-stabilizer stab�(r) is no longer definable, but merely type-definable, as mentioned
above. For this reason, it is necessary to compute the stabilizers in an |M |+-saturated
elementary extension N �M .

A more serious problem arises when trying to generalize [16, Lemma 3.8]. This
lemma, which is used to show that stab�(p) �= {idG}, roughly says the following: if
I is a curve tending to infinity and B is an annulus around idG , then g · B ∩ I �= ∅
for all g ∈ I . This follows by a simple connectedness argument (I is connected, so
it must cut across the annulus g · B on its way from g to infinity). This argument
fails critically in the totally disconnected p-adic context. In Section 4 we develop an
alternative argument to replace [16, Lemma 3.8]. Unfortunately, the argument only
works properly in the abelian (or near-abelian) case.

1.1. Notation and conventions. We shall assume a basic knowledge of model
theory, including basic notions such as definable types, saturation, heirs, and so
on. Good references are [12, 21]. We refer to the excellent survey [1] as well as [8, 13]
for the model theory of the p-adic field (Qp,+,×, 0, 1). In fact, [8, 13] are also good
references for the model-theoretic background required for the current paper.

Let T be a theory in some language L. We write M for a monster model of T,
in which every type over a small subset A ⊆ M is realized, where “small” means
|A| < κ for some big enough cardinal κ. The lettersM,N,M ′, and N ′ will denote
small elementary submodels of M. We will use x, y, z to mean arbitrary n-tuples of
variables and a, b, c ∈ M to denote n-tuples in Mn with n ∈ N. Every formula is an
LM-formula. For an LM -formula φ(x), φ(M ) denotes the definable subset ofM |x|

defined by φ, and a setX ⊆Mn is definable if there is an LM -formula φ(x) such that
X = φ(M ). IfM ≺ N ≺ M, andX ⊆ Nn is defined by a formula�with parameters
from M, thenX (M ) andX (M) will denote�(M ) and�(M), respectively; these are
clearly definable subsets ofMn and Mn, respectively.

Following [15, Definition 2.12], we say that a partial type Σ is A-definable or
definable over A if for every formula φ(x; y), there is an LA-formula �(y) such that

Σ(x) 
 φ(x; b) ⇐⇒ M |= �(b),

for all b ∈M . We will denote the formula �(y) by (dΣx)φ(x, y), thinking of dΣ as a
quantifier. The map φ(x; y) �→ (dΣx)φ(x, y) is called the definition schema of Σ(x).

If Σ(x) is a definable partial type over M, and N �M , then ΣN will denote the
canonical extension of Σ by definitions, i.e., the following partial type over N:

ΣN = {φ(x; a) ∈ LN | N |= (dΣx)φ(x, a)}.

When p is a complete definable type over M, the canonical extension pN is the same
thing as the unique heir of p over N.

For a definable set D ⊆Mn, and φ(x) an LM-formula, we say that φ(x) is a
D-formula if M |= φ(x) =⇒ x ∈ D(M). A partial type q(x) (over a small subset)
is a D-type if q(x) 
 x ∈ D(M). We write SD(M ) for the space of complete D-types
over M.
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We consider Qp as a structure in the language of rings L = Lr = {+,×, –, 0, 1}.
The valuation ring Zp is definable in Qp. The valuation group (Z,+, <) and the
valuation v : Qp → Z ∪ {∞} are interpretable. A p-adically closed field is a model
of pCF := Th(Qp). For anyM |= pCF, R(M ) will denote the valuation ring, and
ΓM will denote the value group. By [11], pCF admits quantifier elimination after
adjoining predicatesPn for the n-th power of the multiplicative group for all n ∈ N+.
The theory pCF also has definable Skolem functions [3].

The p-adic field Qp is a locally compact topological field, with basis given by the
sets

B(a, n) = {x ∈ Qp | x �= a ∧ v(x – a) ≥ n},
for a ∈ Qp and n ∈ Z. The valuation ring Zp is compact. The topology is definable
(as in Section 2.1 below), so it extends to any p-adically closed field M, making M
a topological field (usually not locally compact). Any definable set X ⊆Mn has a
topological dimension, denoted by dim(X ), which is the maximal k ≤ n such that
the image of the projection � : X →Mn; (x1, ... , xn) �→ (xr1 , ... , xrk ) has interior,
for suitable 1 ≤ r1 < ··· < rk ≤ n. As model-theoretic algebraic closure coincides
with the field-theoretic algebraic closure, algebraic closure gives a pregeometry on
M, and the algebraic dimension dimalg(X ) of X can be calculated in the usual way.
The topological dimension coincides with the algebraic dimension.

1.2. Outline. In Section 2, we review the notion of definable compactness, and
how it behaves in definable manifolds and definable groups in pCF. In Section 3 we
review the theory of dp-rank, which is used in Section 4. In Section 4, we prove
a technical statement about “gaps” in unbounded sets, which replaces the use of
connectedness in Peterzil–Steinhorn [16, Lemma 3.8]. In Section 5, we review the
theory of stabilizers and �-stabilizers from [15]. Finally, we prove the main theorems
in Section 6.

§2. Definable compactness. In this section, we review the notion of definable
compactness for definable manifolds and definable groups in p-adically closed fields.
The treatment of (p-adic) definable compactness in the literature is questionable, so
we build up the theory from scratch, out of an abundance of caution.

In Section 2.1 we recall an abstract definition of definable compactness, which
behaves well in any definable topological space. In the next two sections, we restrict
our attention to p-adic definable manifolds. In Section 2.2 we show that our definition
agrees with the definition in the literature in terms of curve completion. In Section 2.3
we give another characterization using specialization of definable types. Finally, in
Section 2.4 we list some consequences for definable groups.

2.1. Abstract definable compactness. Let M be an arbitrary structure. A definable
topology on a definable setX ⊆Mn is a topology with a (uniformly) definable basis
of opens. A definable topological space is a definable set with a definable topology.

Recall that a topological space is compact if any filtered intersection of non-empty
closed sets is non-empty.

Definition 2.1. Let X be a definable topological space in a structure M. Say that X
is definably compact if the following holds: for any definable familyF = {Yt : t ∈ T}
of non-empty closed sets Yt ⊆ X , if F is downwards directed, then

⋂
F �= ∅.
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More generally, say that a definable set Y ⊆ X is definably compact if it is
definably compact with respect to the induced subspace topology.

Definable compactness has many of the expected properties:

Fact 2.2.

1. If X is a compact definable topological space, then X is definably compact.
2. If X,Y are definably compact, then X × Y is definably compact.
3. If f : X → Y is definable and continuous, and X is definably compact, then the

image f(X ) ⊆ Y is definably compact.
4. If X is a Hausdorff definable topological space and Y ⊆ X is definably compact,

then Y is closed.
5. If X is definably compact and Y ⊆ X is closed and definable, then Y is definably

compact.
6. If X is a definable topological space and Y1, Y2 ⊆ X are definably compact, then
Y1 ∪ Y2 is definably compact.

Definition 2.1 and Fact 2.2 are due independently to Fornasiero [4] and the first
author [9, Section 3.1].

Remark 2.3. Suppose X is a definable topological space in a structure M, and
N �M . Then X (N ) is naturally a definable topological space in the structure N,
andX (N ) is definably compact if and only if X is definably compact. In other words,
definable compactness is invariant in elementary extensions.

2.2. Definable compactness and definable manifolds in pCF. Let M be a p-adically
closed field with valuation group ΓM . Each power Mn is a definable topological
space. We first characterize definable compactness for subsets ofMn.

Lemma 2.4. If X ⊆Mn is definably compact, then X is closed and bounded.

Proof. For t ∈M\{0}, let Ot be the n-dimensional ball B(0, v(t))n. Each Ot is
clopen in Mn. Therefore {X\Ot : t ∈M\{0}} is a downwards-directed definable
family of closed subsets of X, with empty intersection. By definable compactness,
there is some t such that X\Ot = ∅, or equivalently, X ⊆ Ot . Then X is bounded.

Closedness follows similarly, or by Fact 2.2(4). �
Lemma 2.5. If X ⊆Mn is closed and bounded, then X is definably compact.

Proof. Equivalently, if {Yt} is a downwards-directed definable family of non-
empty, closed, bounded sets, then

⋂
t Yt �= ∅. This claim can be expressed as a

countable conjunction of L-sentences. (We need infinitely many sentences because
there is no bound on the complexity of the definable family {Yt}.) As a countable
conjunction of L-sentences, the claim holds in M if and only if it holds in Qp.
Therefore, we may assume that M = Qp. In this case, the set X will be compact,
and hence definably compact by Fact 2.2(1). �

Definition 2.6. Let X be a definable topological space. A Γ-exhaustion is a
definable family {W� | � ∈ ΓM} such that

• EachW� is an open, definably compact subset of X. In particular,W� is clopen.
• If � ≤ � ′, thenW� ⊆W�′ .
• X =

⋃
�∈ΓM W� .
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Lemma 2.7. If U ⊆Mn is definable and open, then U has a Γ-exhaustion.

Proof. For any x̄ = (x1, ... , xn) ∈Mn and � ∈ ΓM , let B(x̄, �) denote the ball
of valuative radius � around x̄, i.e.,

∏n
i=1 B(xi , �).

Let W� be the set of x ∈ U such that B(x, �) ⊆ U and 0̄ ∈ B(x, – �). We claim
that the familyW� is a Γ-exhaustion.

First of all, for all x′ sufficiently close to x, we have B(x, �) = B(x′, �) and
B(x, – �) = B(x′, – �), and so x ∈W� ⇐⇒ x′ ∈W� . Therefore W� is clopen.
Additionally,

x ∈W� =⇒ 0̄ ∈ B(x, – �) ⇐⇒ x ∈ B(0̄, – �).

ThereforeW� is bounded. By Lemma 2.5,W� is definably compact.
If � ′ ≥ �, then B(x, � ′) ⊆ B(x, �) and B(x, – � ′) ⊇ B(x, – �). Therefore

x ∈W� =⇒ x ∈W�′ ,
and the family {W�} is monotone.

Lastly, if x ∈ U , then for sufficiently large �, we have B(x, �) ⊆ U , because U
is open. Also, 0̄ ∈ B(x, – �) for sufficiently large �. Thus x ∈W� for all sufficiently
large �. This shows U =

⋃
� W� . �

An n-dimensional definable manifold over M is a Hausdorff definable topological
space X with a covering by finitely many open subsets U1,..., Um, and a definable
homeomorphism from Ui to an open set Vi ⊆Mn for each i.

Proposition 2.8. Let X be a definable manifold in M. Then X has a Γ-exhaustion.

Proof. Cover X with finitely many open setsUi homeomorphic to open subsets
ofMn. For each i, let {Wi,�}�∈ΓM be a Γ-exhaustion of Ui . Let V� =

⋃
i Wi,� . Then

the family {V�} is a Γ-exhaustion of X. �
Definition 2.9. Let X be a definable manifold. An arbitrary subset Y ⊆ X is

bounded if Y ⊆ D for some definably compact subset D ⊆ X .

Proposition 2.10(1) gives a more concrete definition of “bounded” in terms of
Γ-exhaustions.

Proposition 2.10. Let X be a definable manifold andY ⊆ X be an arbitrary subset.
1. Let {W�} be a Γ-exhaustion of X. Then Y is bounded if and only if there is � ∈ Γ

such that Y ⊆W� .
2. Suppose Y is definable. Then Y is definably compact if and only if Y is closed and

bounded.
3. Suppose Y is definable. Then Y is bounded if and only if the closureY is definably

compact.

Proof.

1. If Y ⊆W� , then Y is contained in the definably compact setW� . Conversely,
suppose Y is bounded, witnessed by a definably compact set Z ⊆ X with
Y ⊆ Z. The filtered intersection ⋂

�

(Z\W�)

is empty, so there is some � such thatW� ⊇ Z ⊇ Y .
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2. If Y is definably compact, then Y is closed (Fact 2.2(4)), and Y is bounded
because Y ⊆ Y . Conversely, suppose that Y is closed and bounded. Then Y is
a definable closed subset of a definably compact set, so Y is definably compact
by Fact 2.2(5).

3. If Y is definably compact, then Y is bounded because Y ⊆ Y . Conversely,
suppose that Y is bounded. Then Y ⊆ Z for some definably compact set
Z ⊆ X . The closure Y is a definable closed subset of Z, so Y is definably
compact by Fact 2.2(5). �

Remark 2.11. Definable compactness is a definable property: Let Xt be a
definable manifold depending definably on some parameter t ∈ T . Then

{t ∈ T : Xt is definably compact}
is definable. This can be proved from Proposition 2.10(1,2) by compactness, using
Remark 2.3 to reduce to the case where M is highly saturated.

Remark 2.12. WhenM = Qp, a definable manifold X is definably compact if and
only if it is compact. One direction is Fact 2.2(1). Conversely, suppose X is definably
compact. Cover X by definable open subsets U1, ... , Un, each homeomorphic to
an open subset of Mn. As in the proof of Proposition 2.8, let {Wi,�}�∈Z be a
Γ-exhaustion ofUi , and letV� =

⋃n
i=1Wi,� , so that {V�}�∈Z is a Γ-exhaustion of X.

By Proposition 2.10, there is some � ∈ Z such that X = V� . Then X =
⋃n
i=1Wi,� ,

where each Wi,� is definably compact. Lemmas 2.4 and 2.5 imply that definable
compactness is equivalent to compactness for definable subsets of Mn. Therefore
each Wi,� is compact. As X is covered by finitely many compact sets, X itself is
compact.

We now try to relate our notion of definable compactness to the more familiar
notions appearing in [13].

Definition 2.13. Let X be a definable manifold. Let D be a definable subset of
M\{0} with 0 ∈ D. Let f : D → X be a definable function. Then a ∈ X is a cluster
point of f if (0, a) is in the closure of the graph of f. In other words, for every
neighborhood U1 of 0 and every neighborhood U2 of a, there is x ∈ U1 ∩D such
that f(x) ∈ U2.

Lemma 2.14. Let X be a definable manifold. Letf : R(M )\{0} → X be a definable
function. Then f is continuous at all but finitely many points of R(M ).

Proof. An exercise using the fact that any definable function M →Mn is
continuous off a finite set. �

Lemma 2.15. Let X be a definable manifold. Let Y be a definable subset. The
following are equivalent :

1. Y is definably compact.
2. If D is a definable subset of M\{0} with 0 ∈ D, then every definable function
f : D → Y has a cluster point.

3. Any definable continuous function f : R(M )\{0} → Y has a cluster point in Y.
4. Any definable continuous function f : B(0, �)\{0} → Y has a cluster point in Y.
5. Let {Z�}�∈ΓM be a definable family of non-empty closed subsets of Y, such that
� ≤ � ′ =⇒ Z� ⊇ Z�′ . Then

⋂
�∈ΓM

Z� �= ∅.
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Proof. (1)⇒(2): The set of cluster points is the intersection⋂
�∈ΓM

f(B(0, �) ∩D).

This is non-empty by definable compactness of Y.
(2)⇒(3) is trivial, and (3)⇒(4) follows by rescaling.
(4)⇒(5): By definable Skolem functions, there is some definable function f :

M\{0} → Y such that f(x) ∈ Zv(x) for all x ∈M\{0}. By Lemma 2.14, there is
some � ∈ ΓM such that f is continuous on B(0, �)\{0}. By (4), f has a cluster point
a ∈ Y . Then a ∈

⋂
� Z� . Otherwise, take � large enough that a /∈ Z� . Because a is

a cluster point and Z� is closed in Y, there is some x �= 0 such that v(x) ≥ � and
f(x) /∈ Z� . By choice of f, f(x) ∈ Zv(x) ⊆ Z� , a contradiction.

(5)⇒(1): We first claim that Y is closed. Take p ∈ Y . Because X is a definable
manifold, we can identify a neighborhood of p in X with the closed ball R(M )n in
Mn. For � ≥ 0, let B� be the closed ball of radius � around p. For � ≤ 0 let B� = B0.
Then B� ∩ Y is a non-empty closed subset of Y for any �, because p ∈ Y . By (4),
the intersection

⋂
�(B� ∩ Y ) is non-empty, and so p ∈ Y . Therefore Y is closed.

Similarly, Y is bounded. Take a Γ-exhaustion {U�}�∈ΓM of the definable
manifold X. If Y is unbounded, then Y\U� is a closed non-empty subset of Y
for each �. Applying (5) to the family of sets Y\U� , we see that Y �⊆

⋃
� U� = X ,

a contradiction. Therefore Y is closed and bounded. By Proposition 2.10(2), Y is
definably compact. �

Therefore, we could alternatively define definable compactness as follows:

Proposition 2.16. Let Y be a definable subset of a definable manifold X. Then Y is
definably compact if and only if every definable continuous function f : R(M )\{0} →
Y has a cluster point.

This is essentially the definition of “definable compactness” appearing in [13]
(with the mistake fixed).

2.3. Definable compactness and definable one-dimensional types. Suppose that
N �M . Let X be a definable manifold in M.

Definition 2.17. For a ∈ X (M ) and b ∈ X (N ), say that a and b are infinitesi-
mally close over M if b is contained in every M-definable neighborhood of a.

Suppose that X,Y are M-definable manifolds and f : X → Y is an M-definable
continuous function. If a ∈ X (M ) is infinitesimally close to b ∈ X (N ), then f(a)
is infinitesimally close to f(b).

Definition 2.18.

• We let OX (M )(N ) denote the set of b ∈ X (N ) such that b is infinitesimally
close to at least one a ∈ X (M ).

• There is a function stNM : OX (M )(N ) → X (M ) sending each b to the unique
a ∈ X (M ) such that b and a are infinitesimally close. This is well defined
because X is Hausdorff.

The map stNM is the “standard part” map from OX (M )(N ) to X (M ).
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Definition 2.19. If p is a complete X -type over M, we say that p specializes to
a ∈ X (M ) if p(x) 
 x ∈ U for every M-definable neighborhood U � a.

If b ∈ X (N ) is a realization of p, then p specializes to a if and only if stNM (b) = a.

Fact 2.20. If a′ ∈ N\M is infinitesimally close to a ∈M over M, then there is
a coset C ⊆ N\{0} of

⋂
n≥1 Pn(N ) such that tp(a′/M ) is determined by the partial

type

{v(x – a) > � | � ∈ ΓM} ∪ {x – a ∈ C},

and tp(a′/M ) is definable over M.

This follows by a similar argument to Lemma 2.1 in [14].

Lemma 2.21. Let C be a definable (i.e., interpretable) family of balls B ⊆M .
Suppose the following conditions hold :

1. C is non-empty.
2. C is a chain : it is linearly ordered by ⊆.
3. C is upwards-closed : if B ⊇ B ′ ∈ C for balls B,B ′, then B ∈ C.
4. C has no minimal element.

Then there is d ∈M such that C is the set of balls containing d.

Proof. We may assume M = Qp, in which case the lemma is an easy exercise
using spherical completeness of Qp. �

Lemma 2.22. Let X be an M-definable set, and p be a one-dimensional definable
type over M in X. Then there is an elementary extensionN �M and elements a ∈M ,
b ∈ X (M ), such that a is infinitesimally close to 0, b ∈ dcl(Ma), and p = tp(b/M ).

Proof. Take N �M containing a realization b of p. Because p is one-
dimensional, there is some singleton c ∈ N such that dcl(Mb) = dcl(Mc). (In fact,
we can take c to be a coordinate of the tuple b.) Replacing c with 1/c if necessary,
we may assume that v(c) ≥ 0. Then tp(c/M ) is definable and one-dimensional. Let
C be the family of M-definable balls which contain c. Then C is definable, because
tp(c/M ) is definable. Moreover, C satisfies the four conditions of Lemma 2.21:

1. C is non-empty, because it contains the ball R(M ) of radius 0.
2. C is a chain, because any two balls which intersect are comparable, and C

cannot contain two disjoint balls.
3. C is upwards-closed, trivially.
4. C has no least element. Otherwise, if B were the smallest M-definable ball

containing c, then we could write B as a disjoint union of smaller balls B =
B1 ∪ ··· ∪ Bp, and one of the Bi would belong to C.

By Lemma 2.21, C is the class of balls around some point d. So there is some
d ∈M such that c is contained in every M-definable ball around d. Therefore, c is
infinitesimally close to d over M. Take a = c – d . �

Lemma 2.23. Let X be a definable manifold over M. Let Y be a definably compact
definable subset of X. Let p be a definable one-dimensional complete Y-type over M.
Then p specializes to a point in Y.
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Proof. Let N be an ℵ1-saturated elementary extension of M, and let M be a
monster model extending N. Let pN be the heir of p over N. We first show that pN

specializes to a point in Y (N ). Take c ∈ Y (M) realizing pN . By Lemma 2.22, we
can write c as g(a) for some N-definable function g : M → Y (M) and some a ∈ M

infinitesimally close to 0 over N. Because N isℵ1-saturated, there is some u ∈ N such
that a/u ∈ Pn(M) for all n. Replacing a with a/u, we may assume that a ∈ Pn(M) for
all n. For each n, let Sn ⊆ Y (N ) be the definable set of cluster points of g � Pn(N ).
Each Sn is closed, and non-empty by Lemma 2.15(2). The intersection

⋂
n Sn is

filtered, and therefore non-empty by ℵ1-saturation. Take b ∈
⋂
n Sn. Let Σ(x) be the

partial type saying that x is infinitesimally close to 0, g(x) is infinitesimally close to
b, and x ∈ Pn for all n. Then Σ(x) is finitely satisfiable, by choice of b. Take a′ ∈ M

realizing Σ(x). By Fact 2.20, tp(a′/N ) = tp(a/N ). Therefore a satisfies Σ(x), and
so g(a) is infinitesimally close to b. It follows that pN (x) specializes to b.

Let Z be the set of b ∈ Y (N ) such that pN specializes to b. The set Z is M-
definable, because pN is definable over M. The above argument shows |Z| > 0. On
the other hand, |Z| ≤ 1 because Y (N ) is Hausdorff. Therefore Z is a singleton {b},
and the element b lies in Y (M ). Then p specializes to b. �

Proposition 2.24. Work in a model M. Let X be a definable manifold and Y be
a definable subset. Then Y is definably compact if and only if every one-dimensional
definable Y-type specializes to a point of Y.

Proof. One direction is Lemma 2.23. Conversely, suppose every one-dimensional
definable type in Y specializes to a point. We claim that Y is definably compact. We
use criterion (3) of Lemma 2.15. Let f : R(M )\{0} → Y be a definable continuous
function. Take a monster model M �M and a non-zero a ∈ M infinitesimally close
to 0 over M. Let b = f(a). By Fact 2.20, tp(a/M ) is definable. Therefore tp(b/M )
is one-dimensional and definable. Then tp(b/M ) specializes to a point c ∈ Y (M ).
We claim that c is a cluster point of f. For any M-definable neighborhoods U1 � 0
andU2 � c, we have (a,f(a)) = (a, b) ∈ U1 ×U2. AsM ≺ M, there must be some
(a′, f(a′)) ∈ U1(M ) ×U2(M ). This shows that c is a cluster point of f. �

Lemma 2.25. Let X be an M-definable manifold and {Ot}t∈ΓM be a Γ-exhaustion.
Let p be a definable one-dimensional type in X over M, such that p does not concentrate
onOt for any t ∈ ΓM . Suppose M � N �M . Suppose that b ∈ X (M) realizes p, and
b /∈ Ot(M) for any t ∈ ΓN . Then b realizes pN, the heir of p over N.

Proof. By Lemma 2.22, we have b = f(a) for some M-definable function f :
M → X and some a ∈ M infinitesimally close to 0 over M. By Lemma 2.14, f is
continuous on B(0, �0) for some sufficiently large �0 ∈ ΓM ; note that v(a) > �0. We
claim that a is infinitesimally close to 0 over N. Otherwise, there is some � ∈ ΓN such
that v(a) < �. Let A be the definable set of x ∈ M such that �0 < v(x) < �; note
that a ∈ A. The set A is definably compact and N-definable. Also, f is N-definable
and continuous on A. Therefore, the image f(A) is N-definable, and definably
compact. By Proposition 2.10, there is some t ∈ ΓN such that f(A) ⊆ Ot . Then
b = f(a) ∈ f(A) ⊆ Ot(M), contradicting the assumptions.

This shows that a is infinitesimally close to 0 over N. By Fact 2.20, tp(a/N )
is the heir of tp(a/M ), implying that tp(b/N ) = tp(f(a)/N ) is the heir of
tp(f(a)/M ) = p. �
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2.4. Definable groups in pCF. By a definable group over M, we mean a definable
set with a definable group operation. By [18], any group G definable in M admits a
unique definable manifold structure making the group operations be continuous.

Remark 2.26. In particular, there is a canonical notion of “definable compact-
ness” for abstract definable groups and their definable subsets. As in Remarks 2.3
and 2.11, one can show that these notions are definable in families and invariant in
elementary extensions.

Definition 2.27. A good neighborhood basis is a definable neighborhood basis of
the form {Ot : t ∈ ΓM} which is also a Γ-exhaustion, and such that Ot = O–1

t for
each t ∈ ΓM .

Proposition 2.28. Every definable group has a good neighborhood basis.

Proof. By Proposition 2.8, the group G admits a Γ-exhaustion {Wt : t ∈ ΓM}.
Replacing {Wt} with {Wt+�}, we may assume that W0 is non-empty. Replacing
{Wt} with {a ·Wt}, we may assume that idG ∈W0.

Because G is a definable manifold, there is some definable neighborhood basis
{Nt : t ∈ ΓM, t < 0} such that each Nt is clopen, and Nt depends monotonically
on t. Define

Bt =

{
Wt t ≥ 0,
W0 ∩Nt t < 0.

Then {Bt : t ∈ ΓM} is a definable neighborhood basis and a Γ-exhaustion. Lastly,
define Ot = Bt ∩ B–1

t . Then {Ot : t ∈ ΓM} has all the desired properties. �
Proposition 2.29. Let {Ot : t ∈ ΓM} be a good neighborhood basis of a definable

group G.

1. For any t ∈ ΓM , there is t′ ∈ ΓM such that Ot′ ·Ot′ ⊆ Ot .
2. For any t ∈ ΓM , there is t′′ ∈ ΓM such that Ot ·Ot ⊆ Ot′′ .
Proof. (1) is by continuity. For (2), note that the set Ot ·Ot is an image of

the definably compact space Ot ×Ot under the definable continuous map (x, y) �→
x · y. ThereforeOt ·Ot is definably compact. Then t′′ exists by Proposition 2.10. �

Lemma 2.30. Let {Ot : t ∈ ΓM} be a good neighborhood basis of a definable
group G. For every t, 	 ∈ ΓM , there is � ∈ ΓM such that if a ∈ O� and b ∈ Ot , then
b–1ab ∈ O	 .

Proof. Define S� = {(a, b) ∈ O� ×Ot : b–1ab /∈ O	}. Suppose for the sake of
contradiction that S� �= ∅ for all �. The family S� is definable, and depends
monotonically on �. Each set S� is closed, because O	,O� , and Ot are clopen. By
definable compactness of O� ×Ot , the intersection

⋂
� S� is non-empty. Therefore

there are a, b ∈ G such that

1. a ∈ O� for all �.
2. b ∈ Ot .
3. b–1ab /∈ O	 .

The first point implies a = idG , which then implies b–1ab = idG ∈ O	 , a contradic-
tion. �
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§3. Review of dp-rank. In Section 4 we will make extensive use of dp-rank, so we
review its basic properties here.

Definition 3.1. Let κ be a cardinal and Σ(x) be a partial type. An ict-pattern of
depth κ in Σ(x) consists of

• a family of formulas {φα(x, yα)}α<κ,
• an array of parameters {bα,i}α<κ, i<� with |bα,i | = |yα |,

such that for any function � : κ → �, the following type is consistent:

Σ(x) ∪ {φα(x, bα,i) : α < κ, i = �(α)} ∪ {¬φα(x, bα,i) : α < κ, i �= �(α)}.

Definition 3.2. The dp-rank of a partial type Σ(x) is the supremum of cardinals
κ such that, in some elementary extension N �M , there is an ict-pattern of depth
κ in Σ(x). When there is no supremum, the dp-rank is defined to be ∞, a formal
symbol greater than all cardinals.

We write the dp-rank of Σ(x) as dp-rk(Σ). When Σ(x) is a complete type tp(b/A),
we write the dp-rank as dp-rk(b/A).

The following facts can be found in [10], or alternatively [22, Chapter 4].

Fact 3.3. The following are equivalent in a structureM :

1. M is NIP.
2. dp-rk(x = x) <∞.
3. Every partial type has dp-rank <∞.

Fact 3.4. If Σ(x) is a partial type over A, and if the ambient model M is |A|+-
saturated, then dp-rk(Σ) is the supremum of dp-rk(b/A) as b ranges over realizations
of Σ(x).

Fact 3.5. If b ∈ acl(A), then dp-rk(b/A) = 0. If b /∈ acl(A), then
dp-rk(b/A) > 0.

Fact 3.6. For any b, c, A, we have

dp-rk(b/A) ≤ dp-rk(bc/A) ≤ dp-rk(b/cA) + dp-rk(c/A).

It is also helpful to view dp-rank as a property of definable sets:

Definition 3.7. If D is a definable set, then the dp-rank of D, written dp-rk(D),
is dp-rk(φ(x)) for any formula φ(x) defining D.

The following facts are easy exercises using Facts 3.3–3.6.

Fact 3.8. dp-rk(D) > 0 if and only if D is infinite.

Fact 3.9. If D1, D2 are definable sets, then dp-rk(D1 ×D2) = dp-rk(D1) +
dp-rk(D2).

Fact 3.10. If f : D1 → D2 is a definable injection, then dp-rk(D1) ≤ dp-rk(D2).
If f : D1 → D2 is a definable surjection, then dp-rk(D1) ≥ dp-rk(D2).

We will need the following about dp-rank in p-adically closed fields:

Fact 3.11 ([2, Theorem 6.6]). If M is a p-adically closed field, then dp-rk(M ) = 1.
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Corollary 3.12. If M is a p-adically closed field, then every n-type in M has
dp-rank at most n.

In fact, dp-rank in pCF agrees with the natural notion of dimension (topological
dimension or acl-dimension), by [22, Exercise 4.38]. We will not need this fact,
however.

§4. Large gaps. In order to apply the strategy of Peterzil and Steinhorn, we need
a technical statement about “gaps” in unbounded curves:

Conjecture 4.1. Let G be a definable group over a p-adically closed field M, with
a good neighborhood basis {Ot | t ∈ ΓM}. Let I be a one-dimensional unbounded
definable subset of G. Then for every t0 ∈ ΓM , there is t ∈ ΓM such that

{g ∈ I | g(Ot\Ot0) ∩ I = ∅}
is bounded.

The o-minimal analogue of Conjecture 4.1 holds by an easy connectedness
argument [16, Lemma 3.8]. But in a p-adically closed field, everything is totally
disconnected and we need a completely different approach. In the end, we will prove
Conjecture 4.1 only in a special case (Proposition 4.14), namely when G is nearly
abelian (Definition 1.1).

Remark 4.2. It is useful to consider what a counterexample to Conjecture 4.1
would look like. For each t � t0, there would be unboundedly many g ∈ I such that

g(Ot\Ot0) ∩ I = ∅,
or equivalently gOt ∩ I = gOt0 ∩ I . Around g, the set I looks like an “island”
gOt0 ∩ I surrounded by a very large empty space g(Ot\Ot0). Since I is unbounded,
there must be infinitely many of these “islands.” Because this holds for any t, the
gaps between the islands must become greater and greater as we move towards “∞.”

The behavior described above is reminiscent of the behavior of the set 2Z in the
group (R,+, <). The structure (R,+, <, 2Z) is NIP [5, Theorem 6.5] but it does not
have finite dp-rank, and this is a direct consequence of the “large gaps” in 2Z. In a
non-standard elementary extension, by choosing a1 < b1 < a2 < b2 < ··· < an < bn
carefully, one can ensure that the map

n∏
i=1

(2Z ∩ [ai , bi ]) → R

(x1, ... , xn) �→
n∑
i=1

xi

is injective and each set 2Z ∩ [ai , bi ] is infinite, showing that the model has dp-rank
at least n (for arbitrary finite n).

Our approach for attacking Conjecture 4.1 is based on this line of argument: take
a set I with large gaps and obtain infinite dp-rank. Unfortunately, the argument
only works in the nearly abelian case (Proposition 4.14), though we can salvage a
much weaker statement in the non-abelian case (Proposition 4.15).
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4.1. Notation. Let G be a group. If H is a subgroup of G, we let G/H denote
the set of left cosets of H. If A ⊆ G , we will write A/H to indicate the image of
A in G/H . If A,B ⊆ G , we let AB indicate {b–1ab : a ∈ A, b ∈ B}. Notation like
“X\Y” will always mean set subtraction, rather than quotienting by a group action
on the left.

Definition 4.3. Let X,Y be subsets of a group G. Define

X � Y = {g ∈ X : gY ∩ X = ∅}.

Note that X � Y depends negatively on Y. We will write “A � B\C” to mean
“A � (B\C ).”

Remark 4.4. Suppose X,Y are subgroups of G, S ⊆ G , and a, b ∈ S � X\Y .
Then

aX = bX =⇒ aY = bY.

Otherwise, b = a� for some � ∈ X\Y , and so b ∈ a(X\Y ) ∩ S, contradicting the
fact that a(X\Y ) ∩ S = ∅.

4.2. The bad gap configuration. Recall that an externally definable set X in a
structure M is a set of the form Y ∩Mn for some elementary extension N �M
and definable set Y ⊆ Nn. The Shelah expansionMSh is the expansion of M by all
externally definable sets. When M is NIP, the Shelah expansionMSh has elimination
of quantifiers [22, Proposition 3.23]. Using this, it is easy to see that MSh has the
same dp-rank as M.

Remark 4.5. Let F be a collection of definable subsets of Mn. If the sets in F
are uniformly definable, and F is linearly ordered by inclusion, then the sets

⋃
F

and
⋂

F are externally definable [6, Kaplan’s Lemma 3.4].

Later, we will use Remark 4.5 in conjunction with Proposition 2.29 to construct
externally definable subgroups of definable groups.

Definition 4.6. Let G be a definable group in a structure M. A bad gap
configuration in G consists of the following:

• a finite subgroup F ⊆ G ,
• externally definable subgroups,

··· ⊆ Y2 ⊆ Y1 ⊆ Y0 ⊆ X0 ⊆ X1 ⊆ ··· ⊆ G,

• an externally definable subset I ⊆ G ,

such that the following conditions hold:

• YFi ⊆ Yi , for all i.
• YXii ⊆ Yi–1, for i > 0.
• (Xi ∩ (I � Xi–1\FYi–1))/Xi–1 is infinite, for i > 0.

We say that a bad gap configuration is (A- )definable if all of F, the Xi , Yi , and I are
(A-)definable.

Lemma 4.7. If G has finite dp-rank, then there is no bad gap configuration in G.

https://doi.org/10.1017/jsl.2021.93 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.93


202 WILL JOHNSON AND NINGYUAN YAO

Proof. Let (F, {Yi}, {Xi}, I ) be a bad gap configuration. Replacing M with the
Shelah expansionMSh , we may assume that the bad gap configuration is definable.
Passing to an elementary extension and naming parameters, we may assume that M
is ℵ1-saturated and the bad gap configuration is ∅-definable.

Note that FYi = YiF is a subgroup of G, and that the index of Yi if FYi is finite,
no more than |F |. LetDi be the definable setXi ∩ (I � Xi–1\FYi–1). By assumption,
Di/Xi–1 is infinite.

Claim 1. Suppose ai , a′i ∈ Di for i = 1, ... , n, and suppose

Ynanan–1 ··· a1 = Yna′na
′
n–1 ··· a′1. (1)

Then anFYn–1 = a′nFYn–1. If moreover anYn–1 = a′nYn–1, then

Yn–1an–1 ··· a1 = Yn–1a
′
n–1 ··· a′1. (2)

Proof. Note that ai , a′i ∈ Xi . Equation (1) implies that

a′na
′
n–1 ··· a′1 = 	anan–1 ··· a1 = an	anan–1 ··· a1, (3)

for some 	 ∈ Yn. Then 	an ∈ YXnn ⊆ Yn–1 ⊆ Xn–1. For i < n, we have ai , a′i ∈
Xi ⊆ Xn–1. Therefore (3) implies that a′nXn–1 = anXn–1. Both a′n and an are in
I � Xn–1\FYn–1, so by Remark 4.4 we have a′nFYn–1 = anFYn–1 as desired. Now
suppose that anYn–1 = a′nYn–1. Then a′n = an� for some � ∈ Yn–1. Then Equation
(3) implies

an	
anan–1 ··· a1 = an�a′n–1a

′
n–2 ··· a′1,

	anan–1 ··· a1 = �a′n–1a
′
n–2 ··· a′1.

Both 	an and � are in Yn–1, so Equation (2) holds. �

For any n ∈ N, we claim that dp-rk(G) ≥ n. By assumption, the interpretable set
Di/Xi–1 is infinite. The interpretable setDi/Yi–1 is even bigger, becauseYi–1 ⊆ Xi–1.
By the properties of dp-rank in Section 3,

∏n
i=1Di/Yi–1 has dp-rank at least n. Take

a tuple b̄ ∈
∏n
i=1Di/Yi–1 such that dp-rk(b̄/∅) ≥ n. Each bi is a coset aiYi–1 for

some ai ∈ Di . Let c = anan–1 ··· a1 ∈ G .

Claim 2. For each i, we have bi ∈ acl(c, bi+1, ... , bn).

Proof. Let S be the set of (a′1, ... , a
′
n) ∈

∏
j Dj such that

• a′na′n–1 ··· a′1 = c.
• a′jYj–1 = bj = ajYj–1, for j > i .

Then (a1, ... , an) ∈ S and S is definable over c, bi+1, ... , bn. If (a′1, ... , a
′
n) ∈ S, then

Yna
′
na

′
n–1 ··· a′1 = Ync = Ynanan–1 ··· a1.

By Claim 1 applied (n – i + 1) times, we see that aiFYi–1 = a′i FYi–1. We have shown

{a′i FYi–1 : (a′1, ... , a
′
n) ∈ S} = {aiFYi–1}.

It follows thataiFYi–1 is definable over c, bi+1, ... , bn. The fibers of the mapG/Yi–1 →
G/(FYi–1) are finite, and so aiYi–1 = bi is algebraic over c, bi+1, ... , bn. �
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By Claim 2 and induction, b̄ ∈ acl(c). Therefore

n ≤ dp-rk(b̄/∅) ≤ dp-rk(c/∅) ≤ dp-rk(G).

As n was arbitrary, G has infinite dp-rank, a contradiction. �

4.3. The saturated case. Until Section 4.4, we will work in a monster model M |=
pCF. Fix a definable group G, not definably compact, and fix a good neighborhood
basis {Ot : t ∈ ΓM} in the sense of Definition 2.27.

Lemma 4.8. There is no bad gap configuration in G.

Proof. For definable sets in pCF, dp-rank agrees with dimension. In particular,
dp-rank is finite. Therefore Lemma 4.7 applies to G. �

Recall from Definition 2.9 and Proposition 2.10(1) that a subset S ⊆ G(M) is
bounded if S ⊆ Ot for some t ∈ ΓM.

Lemma 4.9. If S ⊆ G(M) is bounded, then S ⊆ X for some bounded externally
definable subgroup X ⊆ G(M).

Proof. Take t0 ∈ ΓM such that S ⊆ Ot0 . By Proposition 2.29, we can build an
ascending sequence

t0 < t1 < t2 < ···

in ΓM such that Oti ·Oti ⊆ Oti+1 for each i. By saturation, we can also find some
t� > ti for all finite i. Set X =

⋃
i<� Oti . The set X is externally definable (Remark

4.5). The set X is bounded, because X ⊆ Ot� . We have X = X –1 becauseOti = O–1
ti

for each i. Lastly, X is closed under the group operation by choice of the ti ’s. �

Lemma 4.10. Let I be an unbounded subset of G. Let X ⊆ G(M) be a bounded
subgroup. Then there is an externally definable bounded subgroup X ′ ⊇ X such that
(X ′ ∩ I )/X is infinite.

Proof. We claim that I/X is infinite. Otherwise, I is contained in a finite union
of cosets: I ⊆

⋃n
i=1 aiX . Take t ∈ ΓM such that X ⊆ Ot . Then I is a subset of the

definably compact set
⋃n
i=1 aiOt , so I is bounded, a contradiction.

Now take a1, a2, a3, ... ∈ I such that the cosets aiX are pairwise distinct. By
saturation, there is some t ∈ Γ such that {a1, a2, ...} ⊆ Ot . Then {a1, a2, ...} and X
are bounded. By Lemma 4.9, there is an externally definable bounded subgroup X ′

containing {a1, a2, ...} ∪ X . Then (X ′ ∩ I )/X is infinite, witnessed by the aiX . �

Recall from Definition 1.1 that G is nearly abelian if there is a definably compact
definable normal subgroup K ⊆ G with G/K abelian. Equivalently, G is nearly
abelian if there is a definably compact subgroup K containing the derived group
[G,G ].

Lemma 4.11. Suppose that G is nearly abelian. Let I be an unbounded definable
subset ofG(M). For any bounded set A, there is t ∈ ΓM such that I �Ot\A is bounded.

Proof. Suppose not.

Claim. For any bounded sets C ⊇ B ⊇ A, the set I � C\B is unbounded.
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Proof. Take t ∈ ΓM such that C ⊆ Ot . Then I � C\B contains the unbounded
set I �Ot\A, because Ot\A ⊇ C\B . �

Let K be the normal subgroup witnessing near-abelianity. By Lemma 4.9, there
is a bounded externally definable subgroup X0 ⊇ A ∪K . By Lemma 4.10 we can
recursively build an increasing chain of bounded externally definable subgroups

X0 ⊆ X1 ⊆ X2 ⊆ ···

such that

• (X1 ∩ I )/X0 is infinite.
• For n > 1, (Xn ∩ (I � Xn–1\X0))/Xn–1 is infinite. This is possible because I �
Xn–1\X0 is unbounded by the claim.

Let Yi = X0 for all i, and let F = {idG}. Note X0 is normal, because it contains
K which contains [G,G ]. We have constructed a bad gap configuration in G,
contradicting Lemma 4.8. �

Lemma 4.12. If S ⊆ G(M) is a neighborhood of idG , then S ⊇ X for some
externally definable open subgroupX ⊆ G(M). If, in addition,B ⊆ G(M) is a bounded
set, then we can choose the group X to ensure XB ⊆ X .

Proof. Take t0 ∈ ΓM such that S ⊇ Ot0 . By Proposition 2.29 and Lemma 2.30,
there is a descending sequence

t0 > t1 > t2 > ···

in ΓM such thatOti+1 ·Oti+1 ⊆ Oti and alsoOBti+1
⊆ Oti . TakeX =

⋂∞
i=1Oti . Then X

is an externally definable subgroup with XB ⊆ X . We can take some t� less than all
the ti ’s, and then Ot� ⊆ X . Therefore X has interior, and is an open subgroup. �

Lemma 4.13. Let I be an unbounded definable subset of G(M). Let F be a finite
subgroup of G(M). Then there exist t, t′ ∈ ΓM such that I �Ot\(F ·Ot′) is bounded.

Proof. Suppose not.

Claim. For any neighborhood A � idG and any bounded set B ⊆ G , the set I �
B\FA is unbounded.

Proof. Take t, t′ such that

Ot′ ⊆ A and B ⊆ Ot,
Ot\(F ·Ot′) ⊇ B\(F · A),

I �Ot\(F ·Ot′) ⊆ I � B\(F · A). �

Take any bounded open externally definable subgroup X0 ⊆ G . By Lemma
4.12 there is an externally definable open subgroup Y0 ⊆ X0 such that YF0 ⊆ Y0.
Recursively build chains

X0 ⊆ X1 ⊆ ··· ,
Y0 ⊇ Y1 ⊇ ··· ,

where
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• Xi is a bounded externally definable subgroup, chosen large enough to ensure
that (Xi ∩ (I � Xi–1\FYi–1))/Xi–1 is infinite (Lemma 4.10).

• Yi is an open externally definable subgroup with YFi = Yi , chosen small
enough that YXii ⊆ Yi–1 (Lemma 4.12).

This gives a bad gap configuration in G, contradicting Lemma 4.8. �

4.4. The general case.

Proposition 4.14. Let M be any model of pCF. Let G be a definable non-compact
group and {Ot : t ∈ ΓM} be a good neighborhood basis. Suppose that G is nearly
abelian. Let I be an unbounded definable set. Then for any t ∈ ΓM , there is t′ ∈ ΓM
such that I �Ot′\Ot is bounded.

Proof. We may replace M with a monster model, and then apply Lemma
4.11. �

Proposition 4.15. Let M be any model of pCF. Let G be a definable non-compact
group. Let I be an unbounded definable set. Let F be a finite subgroup of G. Then for
any sufficiently small s and sufficiently large t, the set I �Ot\(FOs) is bounded.

Proof. We may replace M with a monster model, and then apply Lemma
4.13. �

§5. Stabilizers and �-stabilizers. In this section we review some notation and
facts from [15].

5.1. Stabilizers. Let G be a group definable in a structure M.

Notation 5.1. (1) If φ(x) and �(x) are G-formulas then φ · � denotes the
G-formula

(φ · �)(x) := ∃u∃v(φ(u) ∧ �(v) ∧ x = u · v).

Thus (φ · �)(M ) = φ(M ) · �(M ).
(2) More generally, if q(x) and r(x) are partial G-types then q · r denotes the

G-type

(q · r)(x) := {φ · �(x) | q(x) 
 φ(x), r(x) 
 �(x)}.

Thus (q · r)(N ) = q(N ) · r(N ) for an |M |+-saturated elementary extension
N �M .

(3) If g ∈ G(M ) and φ(x) is a G-formula, then g · φ denotes the G-formula

(g · φ)(x) := ∃u(φ(u) ∧ x = g · u).

Thus (g · φ)(M ) = g · φ(M ).
(4) If g ∈ G(M ) and p(x) is a partial G-type then g · p denotes the G-type

(g · p)(x) := {g · φ(x) | p(x) 
 φ(x)}.

Thus (g · p)(N ) = g · p(N ) for an |M |+-saturated N �M .
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Note that for partial G-types q1, q2, q3 over M, we have

(q1 · q2) · q3 = q1 · (q2 · q3),

as ((q1 · q2) · q3)(N ) = q1(N ) · q2(N ) · q3(N ) = (q1 · (q2 · q3))(N ) for |M |+-
saturated N �M .

Definition 5.2. Given a partial type Σ(x) over M, define stab(Σ) to be the
stabilizer, i.e.,

stab(Σ) := {g ∈ G(M ) | gΣ ≡ Σ},

where Σ ≡ Σ′ if Σ(x) 
 Σ′(x) and Σ′(x) 
 Σ(x). Equivalently, stab(Σ) is {g ∈
G(M ) | gΣ(N ) = Σ(N )} for |M |+-saturated N �M .

Definition 5.3. Given a partial type Σ(x) over M and an L-formula φ(x, y), we
define

stabφ(Σ) =
⋂
b∈Mk

Xφ,b,

where each Xφ,b is the stabilizer of {g ∈ G(M ) | Σ 
 (gφ)(x, b)}.

Remark 5.4. Given φ(x; y), let φ′(x; y, z) be the formula φ(z · x; y). Then G
acts on φ′-types by left translation, and stabφ(Σ) is the stabilizer of the φ′-type
generated by Σ.

Remark 5.5. Note that our stabφ is slightly different from the Stabφ considered
in [15], which is more like the set Xφ,b appearing in Definition 5.3 above.

The following two facts are easy exercises.

Fact 5.6. stabφ(Σ) is a definable subgroup of G if Σ is definable.

Fact 5.7. For every partial type Σ over M,

stab(Σ) =
⋂
φ∈L

stabφ(Σ).

In particular, if Σ is definable then stab(Σ) is an intersection of definable subgroups.

Recall the notation ΣN for the canonical extension of a definable type Σ to an
elementary extension N �M , and the notation (dΣx)φ(x; y) for the φ-definition
of Σ.

Lemma 5.8. If Σ is definable and N �M , then stabφ(ΣN ) = stabφ(Σ)(N ), and so

stab(ΣN ) =
⋂
φ∈L

stabφ(Σ)(N ).

Proof. Indeed, stabφ(Σ)(M ) is defined by the formula

∀y∀g : ((dΣz)φ(g · z; y)) ↔ ((dΣz)φ(x · g · z; y)),

and stabφ(ΣN ) is defined by the same formula, because ΣN and Σ have the same
definition schema. �
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5.2. �-types and �-stabilizers. In this section we assume that G is a Hausdorff
topological group definable in M with a uniformly definable basis {Ot | t ∈ T} of
open neighborhoods of the identity. For each N �M , the group G(N ) is again a
topological group and the definable family {Ot(N ) | t ∈ T (N )} again forms a basis
for the open neighborhoods of idG .

Definition 5.9. The infinitesimal type of G, denoted �(x), is the partial type
consisting of all formulas x ∈ U with U an M-definable neighborhood of idG .

Thus, ifN �M , then�(N ) is the set of elements ofG(N ) which are infinitesimally
close to idG :

�(N ) =
⋂

{U (N ) | U is anM -definable neighborhood of idG}

=
⋂

t∈T (M )

Ot(N ).

Fact 5.10 ([15, Corollary 2.5 and Claim 2.15]).

1. If N �M , then �(N ) is a subgroup of G(N ) normalized by G(M ).
2. For any definable q ∈ SG(M ), the partial type � · q is definable.

Partial types of the form � · q for q ∈ SG(M ) are called �-types. The �-stabilizer
of q ∈ SG(M ) is the stabilizer of the associated �-type:

stab�(q) := stab(� · q).
Note that if� is the infinitesimal type ofG = G(M ), andN �M , then the canonical
extension �N is the infinitesimal type of G(N ).

Fact 5.11 ([15, Remark 2.16]). If p is a definable type over M and N �M , then
the product of the canonical extensions is equal to the canonical extension of the
product:

�N · pN = (� · p)N .

Remark 5.12. Let N be an |M |+-saturated extension of M, and �N and pN be
the canonical extensions of � and p. Then

stab(�N · pN ) = stab((� · p)N ) =
⋂
φ∈L

stabφ(� · p)(N ),

by Lemma 5.8 and Fact 5.11.

By Fact 5.10,�(N ) ·G(M ) is a subgroup ofG(N ) as�(N ) ⊆ G(N ) is normalized
by G(M ). This subgroup is the OG(M )(N ) of Definition 2.18. Because �(N ) ∩
G(M ) = {idG}, the group�(N ) ·G(M ) is a semidirect product of�(N ) andG(M ),
and there is a natural homomorphism

OG(M )(N ) = �(N ) ·G(M ) → G(M ).

This map is exactly the “standard part” map stNM of Definition 2.18. ForY ⊆ G(N ),
we will write stNM (Y ) as a shorthand for stNM (Y ∩ OG(M )(N )), following [15].

Lemma 5.13. Let p ∈ SG(M ) be a definable type and let  ∈ G(M) realize pN .
Then
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1. stab(�N · pN ) = stMN (pN (M)–1);
2. stab(�N · pN ) =

⋂
�∈pN stMN (�(M)–1).

Proof. Clause (1) is by Claim 2.22 in [15].
For (2), we must show

stMN (pN (M)–1) =
⋂
�∈pN

stMN (�(M)–1).

The ⊆ direction is clear. For ⊇, suppose that g ∈
⋂
�∈pN stMN (�(M)–1).

Then for any � ∈ pN , there is h� ∈ �(M) such that h� · –1 · g–1 satisfies �N .
By compactness there is h ∈ pN (M) such that h · –1 · g–1 satisfies �N . Then
g ∈ stMN (pN (M)–1). �

§6. Proof of main theorems. From now on M is a p-adically closed field, M �M
is the monster model, G ⊆Mn denotes a group definable in M, and � denotes
the infinitesimal type of G over M. All formulas and types will be G-formulas and
G-types. We assume G is not definably compact. Fix a good neighborhood basis
{Ot : t ∈ ΓM} of G.

Fix a one-dimensional definable type p ∈ SG(M ) which does not specialize to any
point ofG(M ). Such a type p exists by Proposition 2.24. Fix a small |M |+-saturated
model N withM ≺ N ≺ M. As usual, pN and �N denote the canonical extensions
to N. Fix an element  ∈ G(M) realizing pN .

Remark 6.1. The types p and pN are “unbounded” in the following sense:
1. If t ∈ ΓM , then Ot /∈ p.
2. If t ∈ ΓN , then Ot /∈ pN .
3. If X is a bounded M-definable subset of G(M ), then X /∈ p.
4. If X is a bounded N-definable subset of G(N ), then X /∈ pN .

Point (1) follows by Proposition 2.24: if Ot ∈ p then p specializes to a point in
Ot(M ), because Ot is definably compact. Point (2) then follows because pN is the
heir of p. Points (3) and (4) reduce to (1) and (2), respectively.

Lemma 6.2. stab(�N · pN ) =
⋂
φ∈p stMN (φ(N )–1).

Proof. By Lemma 5.13, it suffices to show⋂
φ∈p

stMN (φ(M)–1) ⊆
⋂
φ∈pN

stMN (φ(M)–1).

Suppose g belongs to the left-hand side. In particular, g ∈ G(N ). By a compactness
argument similar to Lemma 5.13, we see that g = 	b–1 for some 	 ∈ �N (M) and
b ∈ p(M). It suffices to show b ∈ pN (M). By Lemma 2.25, it suffices to show b /∈
Ot(M) for any t ∈ ΓN . Suppose b ∈ Ot(M). Since g ∈ N , there is some t′ ∈ ΓN
such that g–1 ·O0(M) ·Ot(M) ⊆ Ot′(M). Then

 = g–1	b ∈ g–1O0(M)Ot(M) ⊆ Ot′(M),

contradicting the fact that tp(/N ) is unbounded. �
Note that a similar argument to the proof of Lemma 2.31 of [23] shows the

following:
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Fact 6.3. Suppose that b ∈ Mk and tp(b/N ) is definable. IfY ⊆ G(M) is definable
over b then stMN (Y ) ⊆ G(N ) is definable and

dim(stMN (Y )) ≤ dim(Y ).

Lemma 6.4. There is an L-formula φ such that dim(stabφ(� · p)) ≤ 1.

Proof. Take� ∈ p such that dim(�(M)) = 1. Then dim(stMN (�(M)–1)) ≤ 1 by
Fact 6.3. By Remark 5.12 and Lemma 5.13,⋂

φ∈L
stabφ(� · p)(N ) = stab(�N · pN ) ⊆ stMN (�(M)–1).

The intersection on the left is directed, and the set on the right is definable, so by
|M |+-saturation of N there is some φ ∈ L such that

stabφ(� · p)(N ) ⊆ stMN (�(M)–1).

Then dim(stabφ(� · p)) ≤ dim(stMN (�(M)–1)) ≤ 1. �

To finish our main result, we now show that each stabφ(� · p) is not definably
compact.

Lemma 6.5. Assume G is nearly abelian (Definition 1.1). For any N-definable set I
containing  , the set stMN (I (M)–1) is unbounded.

Proof. Suppose stMN (I (M)–1) is bounded. Then stMN (I (M)–1) ⊆ Ot(N ) for
some t ∈ ΓN . By Remark 6.1, I is unbounded. By Proposition 4.14, there is some
t′ ∈ ΓN such that the set I –1 �Ot′\Ot is bounded. Then

–1 /∈ (I –1 �Ot′\Ot)(M)

by Remark 6.1. This means that –1(Ot′(M)\Ot(M)) ∩ I (M)–1 �= ∅. Therefore there
is a ∈ Ot′(M)\Ot(M) such that a ∈ I (M). By definable Skolem functions, we
can take a ∈ dcl(N). Note a ∈ I (M)–1. By Lemma 2.23, stMN (a) exists. Because
Ot′\Ot is closed, we see that stMN (a) ∈ Ot′(N )\Ot(N ). This contradicts the fact that

stMN (a) ∈ stMN (I (M)–1) ⊆ Ot(N ). �

Lemma 6.6. If G is nearly abelian, then the type-definable group stab(�N · pN ) ⊆
G(N ) is one-dimensional and unbounded.

Proof. The dimension of stab(�N · pN ) is at most 1 by Lemma 6.4 and Remark
5.12. If stab(�N · pN ) is bounded, then stab(�N · pN ) ⊆ Ot(N ) for some t ∈ ΓN .
By Lemma 6.2, we have⋂

�∈p
stMN (�(N )–1) = stab(�N · pN ) ⊆ Ot(N ).

The intersection on the left is a filtered intersection of definable sets. There are
at most |M | sets in the intersection, and N is |M |+-saturated. Therefore there is
some� ∈ p such that stMN (�(N )–1) ⊆ Ot(N ), contradicting Lemma 6.5. Therefore
stab(�N · pN ) is unbounded. In particular, it is infinite, so it has dimension at
least 1. �
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Lemma 6.7. Suppose G is nearly abelian. Then there is φ ∈ L such that the
M-definable group stabφ(� · p) is not definably compact and has dimension 1.

Proof. By Lemma 6.4 there is an L-formula φ such that dim(stabφ(� · p)) ≤ 1.
By Remark 5.12, we have

stabφ(� · p)(N ) ⊇ stab(�N · pN ),

and therefore stabφ(� · p) is unbounded by Lemma 6.6. In particular, stabφ(� · p)
is infinite, and dim(stabφ(� · p)) ≥ 1. �

Theorem 6.8. Let G be a definable group in a p-adically closed field M. Suppose
G is nearly abelian, and not definably compact.

1. G has a one-dimensional definable subgroup which is not definably compact.
2. Ifp ∈ SG(M ) is a definable unbounded one-dimensional type, then there is φ ∈ L

such that stabφ(� · p) is a one-dimensional definable subgroup of G which is not
definably compact.

3. Suppose in addition that M is ℵ1-saturated. If p ∈ SG(M ) is a definable
unbounded one-dimensional type, then stab�(p) is a one-dimensional type-
definable subgroup of G which is unbounded.

Proof. Part (2) is Lemma 6.7. Part (1) then follows because there is at least
one unbounded one-dimensional definable type by Proposition 2.24. For Part (3),
take a countable model M0 �M such that G and p are M0-definable. Then apply
Lemma 6.6 to M andM0 in place of N and M (respectively), to see that stab(� · p)
is one-dimensional and unbounded. Type-definability is by Fact 5.7. �

Recall from [19] that in an NIP context, a global type p ∈ SG(M) is said to be
a definable f -generic, abbreviated as dfg, if there is a small submodelM0 such that
every left G-translate of p is definable overM0. In [19], Pillay and the second author
showed that:

Fact 6.9. A group G definable over Qp has dfg iff there is a normal sequence of
definable subgroups

G0 � ···Gi �Gi+1 ···�Gn
such that G0 is finite, Gn is a finite index subgroup of G, and each Gi+1/Gi is
definably isomorphic to either the additive group Ga , or a finite index subgroup of
the multiplicative group Gm.

The intuition is that “dfg” means “totally non-compact” in the p-adic context.

Lemma 6.10. Let G be a one-dimensional definable group. If G is not definably
compact, then G has dfg.

Proof. Recall from [7, Section 4] that G has finitely satisfiable generics ( fsg)
if there is a small model M0 and a global type p(x) in G such that every left
G-translate of p is finitely satisfiable inM0. By [19, Lemma 2.9], G has fsg or dfg.1

It suffices to show that G does not have fsg. Suppose otherwise, witnessed by p

1In [19] this is stated only for groups definable over Qp . The assumption is used in order to apply [20,
Theorem 2.4]. However, [20, Remark 2.5] shows that this assumption is unnecessary.
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andM0. Recall that a definable set X ⊆ G is generic if finitely many left translates
cover G. By [7, Proposition 4.2], the complement of a non-generic set is generic, and
every generic set intersects G(M0). Let {W�}� be a Γ-exhaustion of G. By taking
� sufficiently large, we can arrange for G(M0) ⊆W� , because M0 is small. Then
G\W� does not intersect G(M0), so it is not generic. Therefore the complementW�
is generic. A finite union of left translates of W� will be definably compact, so it
cannot be all of G. We conclude that G does not have fsg, and instead has dfg. �

The following is then a corollary of Theorem 6.8.

Corollary 6.11. Let G ⊆Mk be a nearly abelian definable group. If G is not
definably compact, then G has a one-dimensional dfg subgroup.

Next, we consider the general non-abelian case. Let G,M,N,M, p,  be as in the
start of this section.

Lemma 6.12. For any N-definable set I containing  , and any finite N-definable
subgroup F ⊆ G , the set stMN (I (M)–1) contains a point outside of F.

Proof. As in Lemma 6.5, I is unbounded. Let J be the unbounded set I –1.
By Proposition 4.15, there are s, t ∈ ΓN such that J �Ot\FOs is bounded. Then
–1 /∈ J �Ot\FOs . Therefore

–1(Ot\FOs) ∩ J �= ∅,
or equivalently

(Ot\OsF ) ∩ I �= ∅.
Therefore there is a ∈ Ot(M)\Os(M)F (M) such that a ∈ I (M). By definable
Skolem functions, we can take a ∈ dcl(N). Note a ∈ I (M)–1. BecauseOt\OsF is
definably compact, Lemma 2.23 implies that stMN (a) exists and is in Ot\OsF . Then
stMN (a) is not in F, since F ⊆ OsF . �

Lemma 6.13. The group stab(�N · pN ) is one-dimensional. In particular, it is
infinite.

Proof. As in Lemma 6.6, the dimension is at most 1. If dim(stab(�N · pN )) = 0,
then stab(�N · pN ) is a finite subgroup F. By Lemma 6.2, we have⋂

φ∈p
stMN (φ(N )–1) = stab(�N · pN ) = F.

As in Lemma 6.6, there is someφ ∈ p such that stMN (φ(N )–1) ⊆ F . This contradicts
Lemma 6.12 �

By Lemma 6.4 and Remark 5.12, we obtain the following conclusion.

Lemma 6.14. There is φ ∈ L such that the M-definable group stabφ(� · p) has
dimension 1.

We summarize the non-abelian case in the following theorem.

Theorem 6.15. Let G be a definable group in a p-adically closed field M. Suppose
G is not definably compact. Let p ∈ SG(M ) be a definable unbounded one-dimensional
type.
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1. There is φ ∈ L such that stabφ(� · p) has dimension 1.
2. If M is ℵ1-saturated, then stab�(p) is a one-dimensional type-definable subgroup

of G.

Proof. Part (1) is Lemma 6.14. For Part (2), take a countable submodelM0 �M
such that G and p are M0-definable. Then apply Lemma 6.13 with M and M0 in
place of N and M. �
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vol. 36 (2012), no. 1, pp. 43–75.

[2] A. Dolich, J. Goodrick, and D. Lippel, Dp-minimality: Basic facts and examples. Notre Dame
Journal of Formal Logic, vol. 52 (2011), no. 3, pp. 267–288.

[3] L. van den Dries, Algebraic theories with definable Skolem functions, this Journal, vol. 49 (1984),
pp. 625–629.

[4] A. Fornasiero, Definable compactness for topological structures, in preparation, 2015.
[5] A. Günaydin and P. Hieronymi, Dependent pairs, this Journal, vol. 76 (2011), no. 2, pp. 377–390.
[6] Y. Halevi, A. Hasson, and F. Jahnke, Definable V-topologies, Henselianity and NIP. Journal of

Mathematical Logic, vol. 20 (2020), no. 2, p. 2050008.
[7] E. Hrushovski, Y. Peterzil, and A. Pillay, Groups, measures, and the NIP. Journal of the American

Mathematical Society, vol. 21 (2008), no. 2, pp. 563–596.
[8] E. Hrushovski and A. Pillay, Groups definable in local and pseudofinite fields. Israel Journal of

Mathematics, vol. 85 (1994), pp. 203–262.
[9] W. Johnson, Interpretable sets in dense o-minimal structures, this Journal, vol. 83 (2018),

pp. 1477–1500.
[10] I. Kaplan, A. Onshuus, and A. Usvyatsov, Additivity of the dp-rank. Transactions of the

American Mathematical Society, vol. 365 (2013), no. 11, pp. 5783–5804.
[11] A. Macintyre, On definable subsets of p-adic fields, this Journal, vol. 41 (1976), pp. 605–610.
[12] D. Marker, Model Theory: An Introduction, Springer, New York, 2002.
[13] A. Onshuus and A. Pillay, Definable groups and compact p-adic lie groups. Journal of the London

Mathematical Society, vol. 78 (2008), no. 1, pp. 233–247.
[14] D. Penazzi, A. Pillay, and N. Yao. Some model theory and topological dynamics of p-adic

algebraic groups. Fundamenta Mathematicae, vol. 247 (2019), pp. 191–216.
[15] Y. Peterzil and S. Starchenko, Topological groups, �-types and their stabilizers. Journal of the

European Mathematical Society (JEMS), vol. 19 (2017), no. 10, pp. 2965–2995.
[16] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal

groups. Journal of the London Mathematical Society, vol. 59 (1999), no. 3, pp. 769–786.
[17] A. Pillay, Groups and fields definable in o-minimal structures. Journal of Pure and Applied Algebra,

vol. 53 (1988), pp. 233–255.
[18] ———, On fields definable in Qp. Archive for Mathematical Logic, vol. 29 (1989), pp. 1–7.
[19] A. Pillay and N. Yao, Definable f-generic groups over p-adic numbers, preprint, 2019,

arXiv:1911.01833.
[20] ———, A note on groups definable in the p-adic field. Archive for Mathematical Logic, vol. 58

(2019), pp. 1029–1034.
[21] B. Poizat, A Course in Model Theory, Springer, New York, 2000.
[22] P. Simon, A Guide to NIP Theories, Lecture Notes in Logic, vol. 44, Cambridge University Press,

Cambridge, 2015.
[23] N. Yao, On dimensions, standard part maps, and p-adically closed fields. Studies in Logic, vol. 13

(2020), no. 6, pp. 41–62.

https://doi.org/10.1017/jsl.2021.93 Published online by Cambridge University Press

https://arxiv.org/abs/1911.01833
https://doi.org/10.1017/jsl.2021.93


ON NON-COMPACT P-ADIC DEFINABLE GROUPS 213

SCHOOL OF PHILOSOPHY
FUDAN UNIVERSITY

220 HANDAN ROAD, GUANGHUA WEST BUILDING, ROOM 2503
SHANGHAI 20043, CHINA

E-mail: willjohnson@fudan.edu.cn
E-mail: yaony@fudan.edu.cn

https://doi.org/10.1017/jsl.2021.93 Published online by Cambridge University Press

mailto:willjohnson@fudan.edu.cn
mailto:yaony@fudan.edu.cn
https://doi.org/10.1017/jsl.2021.93

	1 Introduction
	1.1 Notation and conventions
	1.2 Outline

	2 Definable compactness
	2.1 Abstract definable compactness
	2.2 Definable compactness and definable manifolds in pCF
	2.3 Definable compactness and definable one-dimensional types
	2.4 Definable groups in pCF

	3 Review of dp-rank
	4 Large gaps
	4.1 Notation
	4.2 The bad gap configuration
	4.3 The saturated case
	4.4 The general case

	5 Stabilizers and μ-stabilizers
	5.1 Stabilizers
	5.2 μ-types and μ-stabilizers

	6 Proof of main theorems

