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Abstract

The accessibility percolation model is investigated on random rooted labeled trees. More
precisely, the number of accessible leaves (i.e. increasing paths) Zn and the number of
accessible vertices Cn in a random rooted labeled tree of size n are jointly considered
in this work. As n → ∞, we prove that (Zn, Cn) converges in distribution to a random
vector whose probability generating function is given in an explicit form. In particular,
we obtain that the asymptotic distributions of Zn + 1 and Cn are geometric distributions
with parameters e/(1 + e) and 1/e, respectively. Much of our analysis is performed in
the context of local weak convergence of random rooted labeled trees.
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1. Introduction

Accessibility percolation models were inspired by some recent work in evolutionary biology
and were developed in order to answer questions of mathematical interest. Consider a rooted
graph G with a unique root o. To each vertex v ∈ G, a continuous random variable, denoted by
Xv, is assigned. We always assume that these random variables {Xv, v ∈ G} are independently
and identically distributed (i.i.d.). Let P = ov1v2 · · · vkv be a path from the root to vertex v in
G, where k ≥ 0 is an integer. If the assigned random variables form an increasing sequence, i.e.

Xo < Xv1 < · · · < Xvk < Xv,

we say that vertex v is accessible and the path P is increasing.
Interest in increasing paths and accessible vertices was motivated by the classical model

for the evolution of an organism involving genetic mutation and selection (see Weinreich et al.
(2006); Weinreich, Watson, and Chao (2005)). In evolutionary biology literature, the assigned
random variables are known as fitness values, and increasing paths as selectively accessible
paths (see, for example, Franke et al. (2011)). The existence of increasing paths is also
called accessibility percolation by Nowak and Krug (2013). For more details on biological
motivation, we refer to Roberts and Zhao (2013) and Berestycki, Brunet and Shi (2016).
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The phase transition of existence or the numbers of increasing paths in different determin-
istic graphs have been studied by several authors. For such problems in regular n-ary rooted
trees, where each vertex has exactly n children, see Roberts and Zhao (2013) and Chen (2014).
Recently, Coletti, Gava, and Rodríguez (2018) considered the existence problem of increasing
paths in infinite spherically symmetric trees, where the degrees of vertices grow exponentially
as their depth increases. And for the increasing paths from (0, 0, . . . , 0) to (1, 1, . . . , 1)
in an n-dimensional binary hypercube {0, 1}n under various assumptions, we refer to
Hegarty and Martinsson (2014), Berestycki, Brunet and Shi (2016), and Li (2017).

The purpose of this work is to establish several limiting theorems of the accessibility
percolation model on a class of rooted trees, not only for the number of increasing paths
but also the cluster size in this percolation. Furthermore, the underlying graphs we consider
here are random trees: random rooted labeled trees (or uniform rooted Cayley trees), which
are a classic combinatorial model. According to Cayley’s formula, the number of unrooted
labeled trees on n vertices is nn−2. Thus, the set of rooted labeled trees on n vertices has
cardinality nn−1. It is natural to assume a uniform model on the set of such trees of the same
size. That is, we always assume that all nn−1 rooted labeled trees on n vertices occur with equal
probability. Let Tn be a random rooted labeled tree on n vertices.

In a rooted tree, there is a unique path from the root to any non-root vertex. However, we
only consider the paths from the root to leaves when the increasing paths are counted. As a
result, the number of increasing paths is equal to that of accessible leaves in any rooted tree.
Moreover, it is easy to see that the cluster size in accessibility percolation is exactly the number
of accessible vertices in any rooted graph. We denote by Zn the number of accessible leaves
and Cn the number of accessible vertices in a random rooted labeled tree Tn. The asymptotic
distributions of these two random variables are our main concern.

Since we are only concerned with the order of the fitness values, under the assumption of
continuity of their distribution, changing the precise distribution will not influence the results.
Without loss of generality, we can assume throughout this work that all the fitness values of
vertices in a tree are mutually independent and uniformly distributed on the interval [0, 1]. It is
not hard to see that the probability that a path of length n is increasing (or a vertex with depth
n is accessible) is equal to 1/(n + 1)!.

Our main result in this work is stated in the following.

Theorem 1. Let Zn and Cn be the numbers of accessible leaves and accessible vertices in a
random rooted labeled tree Tn, respectively. Then the probability generating function of the
random vector (Zn, Cn) satisfies that, for any 0 ≤ s, t ≤ 1,

lim
n→∞ E[sZn tCn ] = 1

s1
+ t − 1

te−s1 + s1 − t
, (1)

where s1 = e−1(1 − s)t + 1. Consequently, the asymptotic distributions of Zn + 1 and Cn are
geometric distributions with parameters e/(1 + e) and 1/e, respectively. That is,

lim
n→∞ P(Zn = k) = e

(1 + e)k+1
, k = 0, 1, 2, . . .

and

lim
n→∞ P(Cn = k) = (e − 1)k−1

e k
, k = 1, 2, . . .

Throughout, we shall use the following notation. We denote by |T| the size of a tree T ,
i.e. the number of vertices in T . Let 1(E) denote the indicator of the event E. For probabilistic
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convergence we use
D−→ and

P−→ to denote convergence in distribution and in probability,
respectively.

The rest of the paper is organized as follows. In Section 2 we introduce several definitions
and state some basic results. In addition, the numbers of accessible leaves and accessible
vertices in two related random trees are also discussed. Section 3 is devoted to the proof of
our main theorem stated above.

2. Preliminaries

In order to obtain the asymptotic distributions of the number of accessible leaves Zn and the
number of accessible vertices Cn in a random rooted labeled tree Tn, our analysis is performed
in the context of the local weak convergence of such random trees as the size n → ∞. We shall
first introduce the basic concept of local weak convergence, and then precisely describe the
limiting distribution of random rooted labeled trees.

We also consider in this section the probability measure under the condition that the fitness
value of the root Xo = x ∈ [0, 1] is given, i.e.,

Px( · ) = P(· | Xo = x),

and denote by Ex the expectation with respect to Px.

2.1. Local weak convergence

We now formally introduce the definition of local weak convergence of random rooted trees.
Let T denote the set of locally finite rooted trees, considered up to rooted isomor-

phism. Here, the terminology rooted isomorphism means that there exists an isomorphism
φ : (T1, o1) → (T2, o2) for the two rooted trees T1 and T2. Then, each vertex in any tree T ∈ T
has finite degree, and for any two trees T1, T2 ∈ T , we regard them as an identical element in
T if T1 ∼= T2, where ‘∼=’ denotes rooted isomorphism. For any tree T ∈ T and integer m ≥ 0,
let T (m) denoted the subgraph induced by all vertices whose depths are at most m. That is, T (m)

contains all the vertices which are at a distance of at most m from the root, and all edges of
T that join these vertices. Then we can make T into a metric space by endowing it with the
distance dloc defined by

dloc(T1, T2) = 2− sup{m≥0:T(m)
1

∼=T(m)
2 }, T1, T2 ∈ T .

Now let T and Tn(n = 1, 2, . . . ) be random rooted locally finite trees. Then, following

Benjamini and Schramm (2001) and Aldous and Steele (2004), if Tn
D−→ T as n → ∞ with

respect to this topology, we say T is the local weak limit of Tn, or Tn converges weakly
in T to T .

The concept of local weak convergence can be easily extended to random rooted locally
finite graphs. For more information on this field, we refer to Aldous and Steele (2004).
We shall precisely describe the local weak limit of random rooted labeled trees in the following
subsections.

2.2. The branching Poisson tree

The family of branching Poisson trees is a subset of Galton–Watson trees (see, for example,
Drmota (2009)), where the common offspring distribution is a Poisson distribution. Let λ > 0
be a given real number. A branching Poisson tree with parameter λ can be generated in a
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plane as follows. Start with a single vertex (the root); each vertex independently has a number
of children distributed as a Poisson distribution with parameter λ. Let PGW(λ) denote the
distribution law of the family of branching Poisson trees with parameter λ.

In a rooted tree T , let Wi(T) denote the number of vertices of depth i for any i ≥ 0. Several
properties of PGW(λ) trees are listed in the following.

Lemma 1. In a random rooted labeled tree Tn, the sequence {Wi(Tn), 1 ≤ i ≤ n − 1} has the
same joint distribution as {Wi(PGW(λ)):1 ≤ i ≤ n − 1} conditioned on |PGW(λ)| = n. That is,
for any sequence of nonnegative integers a1, a2, . . . , an−1 such that

∑n−1
i=1 ai = n − 1, we have

P(Wi(Tn) = ai, 1 ≤ i ≤ n − 1) = P(Wi(PGW(λ)) = ai, 1 ≤ i ≤ n − 1 | |PGW(λ)| = n).

Proof. See Kolchin (1977), or Theorem 1 in Grimmett (1980). �
Lemma 2. For all n and i ≥ 1, we have

E[Wr
i (PGW(λ)) | |PGW(λ)| = n] ≤ c ir, r = 1, 2, . . . ,

where c is a constant depending on r only.

Proof. This is an immediate consequence of Theorem 1.13 in Janson (2006). �
We point out that the known results in the above two lemmas are independent of λ, and they

are applied in the next section only in the critical case λ = 1.
For the numbers of accessible leaves and accessible vertices in a PGW(λ) tree, we have the

following results, which are of interest in their own right.

Lemma 3. Let Zλ and Cλ be the numbers of accessible leaves and accessible vertices in a
PGW(λ) tree, respectively. If the fitness value of the root x ∈ [0, 1] is given, then the conditional
probability generating function of (Zλ, Cλ) is

fλ(x, s, t) = Ex[sZλ tCλ ] = sλte−λ(1−x)sλ

te−λ(1−x)sλ + sλ − t
, 0 ≤ s, t ≤ 1, (2)

where sλ := e−λ(1 − s)t + 1.

Proof. Without loss of generality, we may assume that the children of the root o are labeled
by v1, . . . , vN , where N is a random variable, Poisson distributed with parameter λ. If a graph
only contains a single vertex, there does not exist a path. Therefore, we always define Zλ = 0
(and Cλ = 1) if N = 0. However, it is more convenient to work with a modified version of
Zλ that does not get affected if N ≥ 1, but rather only requires to replace its value by 1 if
N = 0. Denote the modified version of Zλ by Z̃λ. We also define Z̃vi as the modified number of
accessible leaves in the subtree rooted at vi. Recall that the fitness values Xo, Xv1 , Xv2, . . . are
i.i.d. random variables uniformly distributed on [0, 1]. Then, it is not hard to see that

Zλ =
N∑

i=1

Z̃vi 1(Xvi > Xo)

and

Z̃λ =
N∑

i=1

Z̃vi1(Xvi > Xo) + 1(N = 0). (3)
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Similarly, we can see that

Cλ =
N∑

i=1

Cvi1(Xvi > Xo) + 1, (4)

where Cvi is the number of accessible vertices in the subtree rooted at vi. Conditioning on
the fitness value of the root Xo = x, it then follows that the relation between fλ(x, s, t) and
f̃ λ(x, s, t) := Ex[sZ̃λ tCλ ], the probability generating function of (̃Zλ, Cλ), is given by

fλ(x, s, t) = f̃ λ(x, s, t) + P(N = 0)(1 − s)t = f̃ λ(x, s, t) + sλ − 1, (5)

where sλ = e−λ(1 − s)t + 1. If N = n ≥ 1 is given, it is easy to see that {(̃Zvi , Cvi , Xvi ),
i = 1, . . . , n} are i.i.d. random vectors, and have the same distribution as (̃Zλ, Cλ, Xo). Hence,
by (3) and (4),

f̃ λ(x, s, t) = e−λst + t
∞∑

n=1

(E[sZ̃λ1(Xo>x)tCλ1(Xo>x)])n λn

n! e−λ

= e−λt
∞∑

n=0

( ∫ 1

x
f̃ λ( y, s, t) dy + x

)n
λn

n! − e−λ(1 − s)t

= t exp

{
λ

∫ 1

x
f̃ λ( y, s, t) dy + λ(x − 1)

}
− (sλ − 1). (6)

We now fix s and t, and regard f̃ λ(x, s, t) as a univariate function of x and (6) as a functional
equation for it. Taking the common logarithm of both sides of (6) yields that

ln ( f̃ λ(x, s, t) + sλ − 1) − ln t = λ

∫ 1

x
f̃ λ( y, s, t) dy + λ(x − 1).

Further, differentiating both sides of the above equation on x, we obtain

f̃
′
λ(x, s, t)

f̃ λ(x, s, t) + sλ − 1
= λ[1 − f̃ λ(x, s, t)]. (7)

Note that for any 0 < y < 1,

∫ 1

y

f̃
′
λ(x, s, t)

( f̃ λ(x, s, t) + sλ − 1)(1 − f̃ λ(x, s, t))
dx

= 1

sλ

∫ 1

y

(
f̃

′
λ(x, s, t)

f̃ λ(x, s, t) + sλ − 1
+ f̃

′
λ(x, s, t)

1 − f̃ λ(x, s, t)

)
dx

= 1

sλ

(
ln

f̃ λ(1, s, t) + sλ − 1

1 − f̃ λ(1, s, t)
− ln

f̃ λ( y, s, t) + sλ − 1

1 − f̃ λ( y, s, t)

)
,

and (6) also indicates the boundary condition f̃ λ(1, s, t) = 1 + t − sλ. Thus, by (7), we have

ln t − ln (sλ − t) − ln
f̃ λ( y, s, t) + sλ − 1

1 − f̃ λ( y, s, t)
= λ(1 − y)sλ,
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from which it follows that, for any x, s, t ∈ [0, 1],

f̃ λ(x, s, t) + sλ − 1

1 − f̃ λ(x, s, t)
= t

sλ − t
e−λ(1−x)sλ .

After simple calculations, one can get

f̃ λ(x, s, t) = te−λ(1−x)sλ − (sλ − 1)(sλ − t)

te−λ(1−x)sλ + sλ − t
,

from which (2) follows by (5). �

Applying Lemma 3, we can get the probability generating functions of random variables
Zλ and Cλ by setting t = 1 or s = 1 in the function fλ(x, s, t), and also their distributional
properties.

Proposition 1. Let Zλ be the number of accessible leaves in a PGW(λ) tree. Then the
probability generating function of Zλ is given by

E[sZλ] = 1

λ
ln

s∗
λ

e−λs∗λ + s∗
λ − 1

, 0 ≤ s ≤ 1, (8)

where s∗
λ = e−λ(1 − s) + 1.

Proof. Letting t = 1 in (2) gives that the conditional probability generating function of Zλ

is

Ex[sZλ] = s∗
λe−λ(1−x)s∗λ

e−λ(1−x)s∗λ + s∗
λ − 1

, 0 ≤ s ≤ 1.

Since the fitness value of the root is uniformly distributed on [0, 1], the integral of this
conditional probability generating function over x from 0 to 1 gives the desired result, (8). �

Theoretically, one can get the exact distribution law of Zλ from Proposition 1. However, we
only give the probability of a special event in what follows, since the probability mass function
of Zλ cannot be expressed in a simple form.

Corollary 1. In a PGW(λ) tree, we have

P(there exists an accessible leaf in a PGW(λ) tree) = 1 − 1

λ
ln

eλ + 1

e−λe−λ + 1
.

Proof. It follows by Proposition 1 and the fact that the desired probability is 1 − E[sZλ]|s=0.
�

The probability that there exists an accessible leaf in a PGW(λ) tree is, of course, a
function of λ. Figure 1 illustrates that this probability trends to 0 when λ → 0 or λ → ∞.
Using Mathematica R©, we find that it achieves the maximum value 0.22558725 . . . when
λ = 1.53366758 . . .

For the number of accessible vertices in a PGW(λ) tree, we can derive the exact distribution
law of Cλ from its probability generating function.
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FIGURE 1: The probability that there exists an accessible leaf in a PGW(λ) tree.

Proposition 2. Let Cλ be the number of accessible vertices in a PGW(λ) tree. Then the random
variable Cλ follows the logarithmic series distribution with parameter 1 − e−λ. That is, the
probability mass function of Cλ is given by

P(Cλ = k) = (1 − e−λ)k

λk
, k = 1, 2, . . . (9)

Proof. Similar to the proof of Proposition 1, we can get the probability generating function
of Cλ via its conditional probability generating function, and then we can further derive its
exact distribution law in a simple form. In fact, letting s = 1 in the probability generating
function (2) gives that

Ex[tCλ ] = te−λ(1−x)

1 − t + te−λ(1−x)
, 0 ≤ t ≤ 1.

Therefore, the probability generating function of Cλ is given by

E[tCλ ] =
∫ 1

0
Ex[tCλ] dx

=
∫ 1

0

te−λ(1−x)

1 − t + te−λ(1−x)
dx

= −1

λ
ln (1 − t + te−λ), 0 ≤ t ≤ 1. (10)

It follows from the Maclaurin series expansion

ln (1 + z) =
∞∑

k=1

(−1)k−1

k
zk
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o u1 u2 u3 u4

FIGURE 2: An illustration for the infinite random tree with distribution law PGW∞(1).

for any |z| < 1 that

−1

λ
ln (1 − t + te−λ) =

∞∑
k=1

(1 − e−λ)k

λk
tk,

since |t(e−λ − 1)| < 1 for 0 ≤ t ≤ 1 and λ > 0. Then (9) follows from the definition of the
probability generating function and (10). �

2.3. The limiting tree

We now describe an infinite random tree model as follows. Let P = ov1v2 · · · be an infinite
path with root o. To every vertex in P, an independent PGW(λ) tree is attached as a subtree
rooted at it. And we still keep vertex o as the unique root of the whole tree (see Figure 2).
Let PGW∞(λ) be the distribution law of the family of these infinite random trees; we call such
a random tree a PGW∞(λ) tree.

The relation between PGW∞(λ) trees with the special case λ = 1 and random rooted labeled
trees is given in the following lemma, which plays an essential role in the proof of our
main result. Recall that T is the set of locally finite rooted trees, considered up to rooted
isomorphism.

Lemma 4. The random rooted labeled tree Tn on n vertices converges weakly in T to the
PGW∞(1) tree as n → ∞.

Proof. This result was first formalized and proved in Grimmett (1980). See also Lemma 2.3
in Aldous and Steele (2004). �

We now state the result analogous to Lemma 3 for the numbers of accessible leaves and
accessible vertices in a PGW∞(λ) tree.

Lemma 5. Let Z∞ and C∞ be the numbers of accessible leaves and accessible vertices in a
PGW∞(λ) tree, respectively. If the fitness value of root Xo = x ∈ [0, 1] is given, then gλ(x, s, t),
the conditional probability generating function of (Z∞, C∞), satisfies the equation

gλ(x, s, t) = Ex[sZ∞ tC∞ ] = fλ(x, s, t)

( ∫ 1

x
gλ(y, s, t) dy + x

)
, 0 ≤ s, t ≤ 1,

where fλ(x, s, t) is defined in (2).

Proof. First, we introduce some notation in a PGW∞(λ) tree. Let Xv be the fitness value
of vertex v. We also denote by Zv1 and Cv1 the numbers of accessible leaves and accessible
vertices in the (sub)tree rooted at v1, respectively. Then it is easy to see that

Z∞ = Zo + Zv1 1(Xv1 > Xo), C∞ = Co + Cv1 1(Xv1 > Xo), (11)

https://doi.org/10.1017/jpr.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.29


Accessibility percolation on random rooted labeled trees 541

where Zo (Co) denotes the number of accessible leaves (accessible vertices) only in the
PGW(λ) tree rooted at o. It is obvious that the random vector (Zo, Co) defined in a PGW∞(λ)
tree has the same distribution as (Zλ, Cλ) defined in Lemma 3, and that the random vector
(Zv1 , Cv1 , Xv1 ) also has the same distribution as (Z∞, C∞, Xo).

We next consider the situation under the condition that Xo = x ∈ [0, 1]. Note that the
random vectors (Zo, Co) and (Zv1 , Cv1 ) are now (conditionally) independent. Then it follows
by (11) that

gλ(x, s, t) = Ex[sZλ tCλ]E[sZ∞1(Xo>x)tC∞1(Xo>x)]

= f λ(x, s, t)

( ∫ 1

x
gλ(y, s, t) dy + x

)
,

which completes the proof. �
In principle, one can further derive the corresponding results on the numbers of accessible

leaves and accessible vertices for PGW∞(λ) trees from Lemma 5, as we have done in
Propositions 1 and 2. But now it becomes much more complicated, since neither of the
probability generating functions of Z∞ and C∞ has a closed form expression for general λ > 0.
Fortunately, as Lemma 4 has indicated, for our main purpose it is sufficient to treat the special
case λ = 1 only. We shall give the explicit results on PGW∞(1) trees in the next section.

3. Proof of main result

For the proof of our main result, we need the following auxiliary lemma.

Lemma 6. Let Xm, Xn,m, Y, Yn be random vectors in the k-dimensional real space R
k and

n, m ≥ 1. If Xn,m
D−→ Xm as n → ∞ for any fixed m, Xm

D−→ Y as m → ∞, and, for any ε > 0,

lim
m→∞ lim sup

n→∞
P(‖Xn,m − Yn‖ ≥ ε) = 0,

where ‖ · ‖ denotes the Euclidean norm on R
k, then Yn

D−→ Y.

Proof. See, for example, Theorem 4.28 in Kallenberg (2002). �
To apply Lemma 6, we introduce another piece of notation as follows. For any m ≥ 1, let

T (m)
n be the subgraph of the random rooted labeled tree Tn induced by all vertices whose depths

are at most m.

Proof of Theorem 1. For any rooted tree T , let Z(T) and C(T) denote the numbers of
accessible leaves and accessible vertices in it, respectively. Recall that Zn (Cn) denotes the
number of accessible leaves (accessible vertices) in a random rooted labeled tree Tn.

For the difference between Zn and Z(T (m)
n ), we have

|Z(T (m)
n ) − Zn| ≤

n−1∑
i=m

∑
ov1···vi∈A

1(Xo < Xv1 < · · · < Xvi),

where A denotes the set of all paths from the root in Tn. Thus,

E|Z(T (m)
n ) − Zn| ≤

n−1∑
i=m

E[Wi(Tn)] P(Xo < Xv1 < · · · < Xvi)

=
n−1∑
i=m

E[Wi(Tn)]

(i + 1)! , (12)
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where Wi(Tn) denotes the number of vertices of depth i in Tn. By Lemmas 1 and 2, we have

E[Wi(Tn)] = E[Wi(PGW(1)) | |PGW(1))| = n] ≤ ci, (13)

for some absolute constant c and 1 ≤ i ≤ n − 1. By (12) and (13), it follows from Markov’s
inequality that, for any ε > 0,

lim
m→∞ lim sup

n→∞
P(|Z(T (m)

n ) − Zn| ≥ ε) ≤ lim
m→∞ lim sup

n→∞
E|Z(T (m)

n ) − Zn|
ε

≤ lim
m→∞

∞∑
i=m

E[Wi(Tn)]

(i + 1)!ε

≤ lim
m→∞

∞∑
i=m

ci

(i + 1)!ε
= 0.

Similarly, it is also follows that

lim
m→∞ lim sup

n→∞
P(|C(T (m)

n ) − Cn| ≥ ε) = 0

holds for any ε > 0, so that

lim
m→∞ lim sup

n→∞
P(‖(Z(T (m)

n ), C(T (m)
n )) − (Zn, Cn)‖ ≥ ε) = 0. (14)

By Lemma 4, we can obtain that for any fixed integer m ≥ 1,

(Z(T (m)
n ), C(T (m)

n ))
D−→ (Z(PGW(m)∞ (1)), C(PGW(m)∞ (1)))

as n → ∞, where PGW(m)∞ (1) also denotes the subgraph of the PGW∞(1) tree induced by
all vertices whose depths are at most m. An analogous technique to (12)–(14) gives that, as
m → ∞,

‖(Z(PGW(m)∞ (1)), C(PGW(m)∞ (1))) − (Z(PGW∞(1)), C(PGW∞(1)))‖ P−→ 0,

which implies that

(Z(PGW(m)∞ (1)), C(PGW(m)∞ (1)))
D−→ (Z(PGW∞(1)), C(PGW∞(1)))

as m → ∞. Collecting the above results and applying Lemma 6, we have

(Zn, Cn)
D−→ (Z(PGW∞(1)), C(PGW∞(1)))

as n → ∞. From Levy’s continuity theorem, the probability generating function of (Zn, Cn)
thus converges to that of (Z(PGW∞(1)), C(PGW∞(1))). That is, it follows that as n → ∞, for
any 0 ≤ s, t ≤ 1,

lim
n→∞ E[sZn tCn] = E[sZ(PGW∞(1))tC(PGW∞(1))]. (15)
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Letting λ = 1 and x = 0 in Lemma 5 yields that

E[sZ(PGW∞(1))tC(PGW∞(1))] =
∫ 1

0
Ex[sZ(PGW∞(1))tC(PGW∞(1))] dx

=
∫ 1

0
g(x, s, t) dx

= g(0, s, t)

f (0, s, t)
, (16)

where g(x, s, t) := g1(x, s, t) and

f (x, s, t) := f1(x, s, t) = s1t es1(x−1)

t es1(x−1) + s1 − t
, (17)

with s1 = e−1(1 − s)t + 1.
We next find the exact expression for the probability generating function of the random

vector (Z(PGW∞(1), C(PGW∞(1))). By Lemma 5, the relation between g(x, s, t) and f (x, s, t)
reduces to

g(x, s, t) = f (x, s, t)

( ∫ 1

x
g(y, s, t) dy + x

)
, 0 ≤ x, s, t ≤ 1. (18)

We can also fix s and t, and regard g(x, s, t) and f (x, s, t) as univariate functions of x. Taking
the derivative of both sides of (18) with respect to x yields

g′(x, s, t) + p(x, s, t)g(x, s, t) = f (x, s, t), (19)

which is a standard first-order differential equation for g(x, s, t) with

p(x, s, t) := f (x, s, t) − f ′(x, s, t)

f (x, s, t)
= 2f (x, s, t) − s1,

by (17). With the boundary condition g(1, s, t) = f (1, s, t) = t, it is well known that the solution
of (19) can be given as

g(x, s, t) = exp

{
−

∫ x

1
p( y, s, t) dy

}( ∫ x

1
f ( y, s, t) exp

{∫ y

1
p(z, s, t)dz

}
dy + t

)
.

After straightforward calculations, we get that

g(x, s, t) = tes1(x−1)(tes1(x−1) + s2
1x − t − s1t(x − 1))

(tes1(x−1) + s1 − t)2
. (20)

Inserting x = 0 into (17) and (20), it thus follows by (16) that, for 0 ≤ s, t ≤ 1,

E[sZ(PGW∞(1))tC(PGW∞(1))] = 1

s1
+ t − 1

te−s1 + s1 − t
,

which, together with (15), implies that (1) holds.
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One can immediately obtain the asymptotic distributions of Zn and Cn through (1). In fact,
letting t = 1 in (1) yields that the limiting probability generating function of Zn is given by

lim
n→∞ E[sZn ] = e

1 + e − s
=

∞∑
k=0

esk

(1 + e)k+1
,

which implies that

lim
n→∞ P(Zn = k) = e

(1 + e)k+1
, k = 0, 1, 2, . . .

For Cn, it also follows directly by (1) that

lim
n→∞ E[tCn ] = t/e

1 − t(1 − 1/e)
,

which is the probability generating function of the geometric distribution with parameter 1/e.
That is,

lim
n→∞ P(Cn = k) = (e − 1)k−1

e k
, k = 1, 2, . . .

The proof of Theorem 1 is complete. �
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