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In this paper, we consider the monotone travelling wave solutions of a reaction–diffusion epidemic
system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by
applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed
system and choosing suitable small positive constants to define a pair of new upper and lower
solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of
monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone trav-
elling wave solutions will be established with the help of the upper and lower solution method and
the exponential asymptotic stability.
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1 Introduction

The environmental pollution by an infective human population can lead to the spread of infec-
tious diseases, which is regarded as one of the main factors of relevant epidemics, such as
cholera and malaria [6]. In [8,12], the authors proposed a model to describe the spread of cholera
epidemic which happened in the European Mediterranean regions in 1973⎧⎪⎨

⎪⎩
du1(t)

dt = −a11u1(t) + a12u2(t),

du2(t)
dt = −a22u2(t) + g(u1(t)),

(1.1)

where a11, a12, a22 > 0, u1(t) and u2(t), respectively, are the densities of infectious agents and the
infective human population at the time t ≥ 0, a11 is the natural death rate of the agents, a22 is the
natural diminishing rate of the infective human, a12 is the contribution of infectious population
to the density of infectious agents and g(x) denotes the infection rate of the human population
due to the concentration of the agents.
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Existence and stability of bistable wavefronts 147

If it only considers the mobility of the bacteria and neglect the mobility of the infectious
population, Capasso and Maddalena [8] gave the following system (see also [13])

⎧⎪⎨
⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − a11u1(x, t) + a12u2(x, t),

∂u2(x, t)
∂t = −a22u2(x, t) + g(u1(x, t)),

(1.2)

where ui(x, t), i = 1, 2, are the spatial densities of two species at the position x and at the time
t ≥ 0. The existence, uniqueness and regularity of (1.2) were considered in [7, 8]. In [36], the
authors considered the minimal wave speed of System (1.2). In 2004, Xu and Zhao [41] con-
sidered the existence, uniqueness and global exponential stability of monotone travelling wave
solutions of System (1.2) with bistable case.

To make the model be more realistic, taking into account the infective population too moving
randomly, System (1.2) was modified as follows

⎧⎪⎨
⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − a11u1(x, t) + a12u2(x, t),

∂u2(x, t)
∂t = d2

∂2u2(x, t)
∂x2 − a22u2(x, t) + g(u1(x, t)),

(1.3)

where d1 > 0 and d2 ≥ 0. Under the homogeneous Neumann boundary conditions, the authors
[9,10] studied System (1.3) using the contracting rectangle technique [28] and obtained the same
threshold results for (1.1). For d1, d2 > 0, the authors [8] considered the convergence problem of
the equilibrium states of System (1.3).

Generally speaking, some infectious agents u1, such as bacteria or viruses at position x, depend
on u2 at position x or neighbour position of x, and even all the position in space. For example,
an important factor of the spread of typhoid fever, malaria, and so on, is the mobility of the
infectious population, and in order to effectively control indirect transmission diseases, it should
adopt different approach to control the production of the pollutants. Based on this idea, a possible
model is the one proposed in [5]. For more details, we refer to [2]. Xu and Zhao [42] studied the
spreading speed and monostable travelling wave solutions of the following system

⎧⎪⎨
⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − a11u1(x, t) +

∫
�

G(x − y)u2(y, t)dy,

∂u2(x, t)
∂t = −a22u2(x, t) + g(u1(x, t)),

(1.4)

where �⊂R, G(x − y) is a kernel function. By taking into account the latent period of bacteria,
the authors [34] investigated the asymptotic speed of spread and travelling waves of system with
distributed delay

⎧⎪⎪⎨
⎪⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − a11u1(x, t) + a12u2(x, t),

∂u2(x, t)
∂t = −a22u2(x, t) +

∫ ∞

0
g(u1(x, t − s))P(ds),

(1.5)
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where P is a probability measure on R+. As its generalisation, Wu and Liu [39] considered the
spreading speed and the minimal wave speed of the following system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − a11u1(x, t) +

∫
�

G(x − y)u2(y, t)dy,

∂u2(x, t)
∂t = −a22u2(x, t) +

∫ ∞

0
g(u1(x, t − s))P(ds).

(1.6)

More generally, the infective human population and the concentration of the infectious agents
in the environment have a direct effect on each other, which depends not simply on population
density at one point in space and time, but on a weighted average involving values at all previous
times and at all points in space. On one hand, changes in human population will result in a change
of the bacteria population some time later, such as some recover population who is immune to
bacteria in some time (immune period); on the other hand, due to the human and bacteria moving
(by diffusion), they may not stay at the same position and at previous times. In order to describe
this model reasonably, we introduce the spatiotemporal delays or nonlocal delays into System
(1.3), which is modified as the following system

⎧⎪⎪⎨
⎪⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − a11u1(x, t) + (g1 ∗ u2)(x, t),

∂u2(x, t)
∂t = d2

∂2u2(x, t)
∂x2 − a22u2(x, t) + (g2 ∗ g(u1))(x, t),

(1.7)

where (g1 ∗ u2)(x, t) and (g2 ∗ g(u1))(x, t) are defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(g1 ∗ u2)(x, t) =
∫ t

−∞

∫ ∞

−∞
G1(x − y, t − s)k1(t − s)u2(y, s)dyds,

(g2 ∗ g(u1))(x, t) =
∫ t

−∞

∫ ∞

−∞
G2(x − y, t − s)k2(t − s)g(u1(y, s))dyds,

(1.8)

where G1 and G2 are chosen as

G1(x, t) = 1√
4πd2t

e
− x2

4d2 t and G2(x, t) = 1√
4πd1t

e
− x2

4d1t ,

and the kernel functions are

k1(s) = 1

τ1
e
− 1
τ1

s
and k2(s) = 1

τ2
e
− 1
τ2

s
,

τ1 and τ2 denote the immune period of the recover population and the latent period of the bacteria,
respectively. Obviously, G1 and G2 satisfy

∂G1

∂t
= d2

∂2G1

∂x2
and

∂G2

∂t
= d1

∂2G2

∂x2
, Gi(x, 0) = δ(x), i = 1, 2,

where δ(x) is the general Dirac function.
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By variable transformation θ = t − s and z = x − y, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(g1 ∗ u2)(x, t) =
∫ ∞

0

∫ ∞

−∞
1

τ1
e
− 1
τ1
θ 1√

4πd2θ
e
− z2

4d2θ u2(x − z, t − θ )dzdθ ,

(g2 ∗ g(u1))(x, t) =
∫ ∞

0

∫ ∞

−∞
1

τ2
e
− 1
τ2
θ 1√

4πd1θ
e
− z2

4d1θ g(u1(x − z, t − θ ))dzdθ .

In this paper, we investigate the existence, uniqueness (up to translation) and global expo-
nential stability (with phase shift) of travelling wave solutions of Systems (1.3) and (1.7).
We note that many authors investigated the existence of travelling wave solutions of systems
with discrete or nonlocal delays by Schauder’s fixed point theorem and the iterative tech-
nique [18–22, 24, 33, 37, 40], and that the uniqueness of the wave speeds by usually using the
upper and lower solution method [14, 23, 26, 31], and that the stability of travelling waves with
the help of the contraction technique [14,31,38], spectral theory [4,30,35] and weighted energy
method [44]. Since the delay in System (1.7) is infinite, the above methods are difficult in apply-
ing to (1.7) and the method in [41] does not apply to System (1.7) as well. By introducing new
variables, Lin and Li [23] transformed the nonlocal delayed system to non-delayed system, and
this method was also used in [17]. They established the existence, uniqueness of the wave speeds
by means of the upper and lower solution method and the asymptotic stability of bistable travel-
ling waves by spectral methods. In this paper, we will adopt these methods in [14,23,31] to deal
with (1.3) and (1.7).

This paper is organised as follows. In Section 2, we first study ODE System (1.1). In Sections 3
and 4, we investigate the existence of bistable travelling waves and discuss the existence and
regularity of mild solutions of Systems (1.3) and (1.7), respectively. In Section 5, motivated
by [14,31], by choosing suitable small positive constants, we will define a pair of new upper and
lower solutions of the system without delays, which is different from that in [14, 31], and use
the contraction technique to obtain the stable results. Moreover, the uniqueness and Lyapunov
stability of travelling wave fronts of System (1.7) are also obtained in this section. In a similar
argument, we also obtain similar properties for System (1.3).

2 ODE system

We first investigate ODE System (1.1). For simplicity, we study the following rescaled system
of (1.1)

⎧⎪⎨
⎪⎩

du1(t)
dt = −u1(t) + αu2(t),

du2(t)
dt = −βu2(t) + g(u1(t)),

(2.1)

where u∗
1 = u1, u∗

2 = a11u2, t∗ = a11t, and drop the stars, α = a12
a2

11
, β = a22

a11
.

We need the following hypothesis about g:

(A) g ∈ C2(R+, R+), g(0) = 0, g′(0) ≥ 0, g′(x)> 0, ∀x> 0, lim
x→∞ g(x) = 1, and there exists

x0 > 0 such that g′′(x)> 0 for 0< x< x0 and g′′(x)< 0 for x> x0.
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To analyse the globally asymptotical behavior of System (2.1), we need the well-known
Bendixson criterion. For the reader’s convenience, we list it as the following lemma.

Lemma 2.1 (Bendixson criterion) For system⎧⎨
⎩

dx
∂t = M(x, y),

dy
∂t = N(x, y),

(2.2)

if

∂M(x, y)

∂x
+ ∂N(x, y)

∂y

keeps the same sign in some simply connected domain D, then the domain D does not contain
any closed orbits of System (2.2).

By Lemma 2.1, we get the following result.

Lemma 2.2 System (2.1) has no any closed orbits in R
2.

We give some known results for the asymptotical behavior of the equilibria of System (2.1),
see [6, 11, 13].

Lemma 2.3 Let γ = β
α = a11a22

a12
and γcrit := sup

z∈[0,+∞)

g(z)

z
> 0. Then

(i) when γ > γcrit, (2.1) has a unique equilibrium (0, 0), which is globally asymptotically stable
in the first quadrant of R2;

(ii) when γ = γcrit or 0< γ ≤ g′(0), (2.1) has a unique nontrivial equilibrium besides (0, 0);
(iii) when

g′(0)< γ < γcrit, (2.3)

(2.1) admits three equilibria in the first quadrant of R
2 : E− = (0, 0), E0 = (a, a

α
), E+ =

(b, b
α

), where 0< a< b are the three roots of g(x) = β

α
x, E0 is a saddle point, E− and E+

are stable nodes. Moreover, the first quadrant of R2 is the union of the domain of attraction
E− and E+ and the stable manifold of E0.

Proof This lemma may be proved by simple mathematical knowledge, and we only sketch an
outline of the proof. The equilibrium of System (2.1) is the intersection of the line L : u2 = 1

α
u1

and the curve � : u2 = 1
β

g(u1). The number of the intersections is determined by the slope of the
curve �. The maximum slope of the curve � is γcrit := supx∈[0,+∞) g(x)/x> 0.

(i) By g(0) = 0 in (A), it is obvious that (0, 0) is an equilibrium of System (2.1). If γ > γcrit,
then the curve � is below the straight line L except (0, 0) in the first quadrant of R2. That is, (0, 0)
is only equilibrium of System (2.1). The characteristic equation of System (2.1) at (0, 0) is∣∣∣∣∣

−1 − λ α

g′(0) −β − λ

∣∣∣∣∣ = 0, (2.4)
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then the eigenvalues λ1,2 = −1−β±
√

(1+β)2−4(β−αg′(0))
2 < 0 since γ > γcrit. Hence, (0, 0) is locally

asymptotical stable. By Lemma 2.2, System (2.1) has no any closed orbits in R
2. Therefore, (0, 0)

is globally asymptotical stable.
(ii) Using similar analysis as in (i), one easily obtain that (2.1) has a unique nontrivial

equilibrium besides (0, 0) when 0< γ ≤ g′(0) or γ = γcrit. By calculating directly the eigenvalues
of the characteristic equation of System (2.1) at (0, 0) and nontrivial equilibrium, respectively,
we can obtain that (0, 0) is a saddle point for 0< γ < g′(0), and nontrivial equilibrium is an
asymptotical stable node for 0< γ ≤ g′(0). But when γ = g′(0) and γ = γcrit, there exists a zero
eigenvalue of the characteristic equation of System (2.1) at both (0, 0) and nontrivial equilibria,
respectively. In this case, linear analysis may be invalid and the behavior of the equilibrium will
become more complicated.

(iii) The eigenvalues of the characteristic equation of System (2.1) at both (0, 0) and (b, b
α

)
are both negative. Hence, they are stable nodes. But the characteristic equation of System (2.1)
at (a, a

α
) has one negative eigenvalue and one positive eigenvalue. Hence, it is a saddle point.

For the first quadrant of R2 being union of the domain of attraction E− and E+ and the stable
manifold of E0, one can refer to [6]. The proof is completed.

3 Travelling wave fronts and mild solutions of System (1.3)

In this section, we investigate the existence of monotone travelling wave solutions and mild
solutions of (1.3).

A travelling wave solution of (1.3) has the special form (u1(x, t), u2(x, t)) = (φ1(ξ ), φ2(ξ )), ξ =
x + ct, where c is the wave speed and (φ1(ξ ), φ2(ξ ) is the wave profile. If (φ1(ξ ), φ2(ξ ) is
monotone in ξ ∈R, then it is called the travelling wave front.

For simplicity, we study the rescaled system of (1.3)⎧⎪⎪⎨
⎪⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − u1(x, t) + αu2(x, t),

∂u2(x, t)
∂t = d2

∂2u2(x, t)
∂x2 − βu2(x, t) + g(u1(x, t)),

(3.1)

where u∗
1 = u1, u∗

2 = a11u2, t∗ = a11t, x∗ = √
a11x, and drop the stars, α= a12

a2
11

, β = a22
a11

.

We want to find the travelling wave fronts of (1.3) connecting E− with E+ provided that (2.3)
holds. Then, denoting x + ct by t, (3.1) has a travelling wave front �(t) = (φ1(t), φ2(t)) which
connects E− with E+ if and only if the wave system⎧⎨

⎩
d1φ

′′
1 (t) − cφ′

1(t) − φ1(t) + αφ2(t) = 0,

d2φ
′′
2 (t) − cφ′

2(t) − βφ2(t) + g(φ1(t)) = 0
(3.2)

satisfying

lim
t→−∞(φ1(t), φ2(t)) = (0, 0) :=�−, lim

t→+∞(φ1(t), φ2(t)) =
(

b,
b

α

)
:=�+ (3.3)

has a monotone solution (φ1(t), φ2(t)) on R.
By Theorem 3.3.2 in [35], it easily follows the existence theorem.
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Theorem 3.1 Assume that (2.3) holds. Then there exists a monotone function (φ1(t), φ2(t)) ∈
C2(R, R2) satisfying (3.2) and (3.3).

Now we investigate the mild solutions of (3.1). Consider the Cauchy problem of (3.1) with the
initial values

u1(x, 0) =ψ1(x), u2(x, 0) =ψ2(x), x ∈R, (3.4)

where

(0, 0) ≤ (ψ1(x),ψ2(x)) ≤
(

b,
b

α

)
with ψi(x) ∈ C(R, R), i = 1, 2. (3.5)

Let

β1 = 1, β2 = β. (3.6)

For (0, 0) ≤ (u1(x, t), u2(x, t)) ≤
(

b, b
α

)
, (x, t) ∈R×R

+, define F = (F1, F2) by

{
F1(u1, u2)(x, t) = β1u1(x, t) − u1(x, t) + αu2(x, t),

F2(u1, u2)(x, t) = β2u2(x, t) − βu2(x, t) + g(u1(x, t)).
(3.7)

Then, for any (0, 0) ≤ (v1(x, t), v2(x, t)) ≤ (u1(x, t), u2(x, t)) ≤
(

b, b
α

)
, x ∈R, it is easy to see that

(0, 0) = F(0, 0) ≤ F(v1, v2)(x, t) ≤ F(u1, u2)(x, t) ≤ F
(

b,
b

α

)
. (3.8)

From (3.6) and (3.7), (3.1) can be rewritten as⎧⎪⎪⎨
⎪⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − β1u1(x, t) + F1(u1, u2)(x, t),

∂u2(x, t)
∂t = d2

∂2u2(x, t)
∂x2 − β2u2(x, t) + F2(u1, u2)(x, t).

(3.9)

Let X = BUC(R, R2) be a Banach space of bounded and uniformly continuous vector-valued
function from R to R

2 with the general super norm ‖ · ‖ and

XI =
{

u(x) ∈ X : (0, 0) ≤ u(x) ≤
(

b,
b

α

)
for x ∈R

}
.

Define ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1(x, t) = e−β1t√
4πd1t

∫ ∞

−∞
e
− (x−y)2

4d1t u0
1(y)dy := T1(t)u0

1(x),

u2(x, t) = e−β2t√
4πd2t

∫ ∞

−∞
e
− (x−y)2

4d2t u0
2(y)dy := T2(t)u0

2(x),

and T(t) = (T1(t), T2(t)). It is easy to see that T(t) : X → X is a C0 semigroup. Furthermore, by
[15, 16, 27, 32], it is easy to see that T(t) is a positive and analytic semigroup. Furthermore, with
the help of upper and lower solution method and the theory for integral equations, see Theorems
1, 2 and Proposition 1 in Martin and Smith [25], and Theorems 4.1 and 5.1 in Ruan and Wu [29],
we have the following result.
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Theorem 3.2 Assume that (ψ1(x),ψ2(x)) satisfies (3.5). Then (u1(x, t), u2(x, t)) defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1(x, t) = T1(t)ψ1(x) +
∫ t

0
T1(t − s)F1(u1, u2)(x, s)ds,

u2(x, t) = T2(t)ψ2(x) +
∫ t

0
T2(t − s)F2(u1, u2)(x, s)ds

(3.10)

for all x ∈R, t> 0 is a unique mild solution of (3.9) and (3.4) (also (3.1) and (3.4)). Moreover,
(u1(·, t), u2(·, t)) ∈ XI for all t> 0.

It is clear that u1 and u2 are C2 in x ∈R and C1 in t> 0. So the smoothness of u1(x, t) and
u2(x, t) implies that the mild solution (u1(x, t), u2(x, t)) described by Theorem 3.2 is a classical
solution of (3.1) with initial value (3.4) for all (x, t) ∈R× (0, +∞). The asymptotic stability of
bistable travelling waves and uniqueness of wave speed of (1.3) will be given in Section 5, which
is based on a similar method used to System (1.7).

4 Travelling wave fronts and mild solutions of System (1.7)

As the above, we also study the rescaled system of (1.7)⎧⎪⎪⎨
⎪⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − u1(x, t) + α(g1 ∗ u2)(x, t),

∂u2(x, t)
∂t = d2

∂2u2(x, t)
∂x2 − βu2(x, t) + (g2 ∗ g(u1))(x, t),

(4.1)

where u∗
1 = u1, u∗

2 = a11u2, t∗ = a11t, x∗ = √
a11x, θ∗ = a11θ , z∗ = √

a11z, τ ∗
i = a11τi, i = 1, 2, and

drop the stars, α = 1
a2

11
, β = a22

a11
.

Let γ = β

α
= a11a22. Lemma 2.3 is still valid with α, γ replaced by new α, γ . In order to

investigate the existence of monotone travelling wave solutions of (1.7) connecting E− with
E+, we will assume that (2.3) holds. Then (4.1) has a travelling wave front �(t) = (φ1(t), φ2(t))
connecting E− with E+ if and only if the wave system⎧⎨

⎩
d1φ

′′
1 (t) − cφ′

1(t) − φ1(t) + α(g1 ∗ φ2)(t) = 0,

d2φ
′′
2 (t) − cφ′

2(t) − βφ2(t) + (g2 ∗ g(φ1))(t) = 0
(4.2)

with

lim
t→−∞(φ1(t), φ2(t)) = (0, 0), lim

t→+∞(φ1(t), φ2(t)) =
(

b,
b

α

)
(4.3)

has a monotone solution on R, where (g1 ∗ φ2)(t) and (g2 ∗ g(φ1))(t) are defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(g1 ∗ φ2)(t) =
∫ ∞

0

∫ ∞

−∞
1

τ1
e
− 1
τ1
θ 1√

4πd2θ
e
− z2

4d2θ φ2(t − cθ − z)dzdθ ,

(g2 ∗ g(φ1))(t) =
∫ ∞

0

∫ ∞

−∞
1

τ2
e
− 1
τ2
θ 1√

4πd1θ
e
− z2

4d1θ g(φ1(t − cθ − z))dzdθ .

(4.4)
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If we introduce other two functions as

u3(x, t) = (g1 ∗ u2)(x, t), u4(x, t) = (g2 ∗ g(u1))(x, t),

then (4.1) with the nonlocal delays is transformed into the non-delayed system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − u1(x, t) + αu3(x, t),

∂u2(x, t)
∂t = d2

∂2u2(x, t)
∂x2 − βu2(x, t) + u4(x, t),

∂u3(x, t)
∂t = d2

∂2u3(x, t)
∂x2 − 1

τ1
u3(x, t) + 1

τ1
u2(x, t),

∂u4(x, t)
∂t = d1

∂2u4(x, t)
∂x2 − 1

τ2
u4(x, t) + 1

τ2
g(u1(x, t)).

(4.5)

This is a well-known method which has been often used, for example, in [17, 23]. We
give the relation between (4.1) and (4.5). If (u1(x, t), u2(x, t)) is a solution of (4.1), then
(u1(x, t), u2(x, t), u3(x, t), u4(x, t)) is a solution of (4.5); conversely, if (u1(x, t), u2(x, t), u3(x, t),
u4(x, t)) is a solution of (4.5), then (u1(x, t), u2(x, t)) is a solution of (4.1).

Obviously, (4.5) has a travelling wave solution �(t) = (φ1(t), φ2(t), φ3(t), φ4(t)) connecting

�− = (0, 0, 0, 0) with �+ =
(

b, b
α

, b
α

, βb
α

)
if and only if the wave system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d1φ
′′
1 (t) − cφ′

1(t) − φ1(t) + αφ3(t) = 0,

d2φ
′′
2 (t) − cφ′

2(t) − βφ2(t) + φ4(t) = 0,

d2φ
′′
3 (t) − cφ′

3(t) − 1
τ1
φ3(t) + 1

τ1
φ2(t) = 0,

d1φ
′′
4 (t) − cφ′

4(t) − 1
τ2
φ4(t) + 1

τ2
g(φ1(t)) = 0

(4.6)

with

lim
t→−∞�(t) =�−, lim

t→+∞�(t) =�+ (4.7)

has a solution on R.
To obtain the existence result of (4.1), we need the well-known Hurwitz criterion applied to

(4.6). For the reader’s convenience, we list it as the following lemma.

Lemma 4.1 (Hurwitz criterion) Consider the following polynomial equation

λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ+ an = 0, (4.8)

all the roots of Equation (4.8) have negative real parts if and only if

Hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · a2k−1

1 a2 a4 · · · a2k−2

0 a1 a3 · · · a2k−3

0 1 a2 · · · a2k−4

...
...

...
...

0 0 0 · · · ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

where k = 1, 2, · · · , n and aj = 0 for j> n.
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Theorem 4.1 Assume that (2.3) holds. Then there exists a monotone function
(φ1(t), φ2(t), φ3(t), φ4(t)) ∈ C2(R, R4) satisfying (4.6) and (4.7).

Proof It is clear that

f ′(�) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 α 0

0 −β 0 1

0 1
τ1

− 1
τ1

0

1
τ2

g′(ω) 0 0 − 1
τ2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where �=�−,�1,�+ corresponding to ω= 0, a, b, respectively, and �1 =
(

a, a
α , a
α , βa

α

)
.

We first check that f ′(�−) and f ′(�+) only have eigenvalues with negative real parts. By
direct calculation, we have

|λI − f ′(�−)| =

∣∣∣∣∣∣∣∣∣∣∣∣

λ+ 1 0 −α 0

0 λ+ β 0 −1

0 − 1
τ1

λ+ 1
τ1

0

− 1
τ2

g′(0) 0 0 λ+ 1
τ2

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ+ 1)(λ+ β)

(
λ+ 1

τ1

)(
λ+ 1

τ2

)
− 1

τ1τ2
αg′(0)

= λ4 +
(

1 + β + 1

τ1
+ 1

τ2

)
λ3 +

[
β +

( 1

τ1
+ 1

τ2

)
(1 + β) + 1

τ1τ2

]
λ2

[( 1

τ1
+ 1

τ2

)
β + 1

τ1τ2
β
]
λ+ 1

τ1τ2
(β − αg′(0)).

By Lemma 4.1, we only need to verify that Hk > 0, k = 1, 2, 3, 4. It is obvious that

H1 = 1 + β + 1

τ1
+ 1

τ2
> 0,

H2 =

∣∣∣∣∣∣∣
1 + β + 1

τ1
+ 1
τ2

(
1
τ1

+ 1
τ2

)
β + 1

τ1τ2
β

1 β +
(

1
τ1

+ 1
τ2

)
(1 + β) + 1

τ1τ2

∣∣∣∣∣∣∣> 0.

By (A), we have β > αg′(0), hence

H3 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + β + 1
τ1

+ 1
τ2

(
1
τ1

+ 1
τ2

)
β + 1

τ1τ2
β 0

1 β +
(

1
τ1

+ 1
τ2

)
(1 + β) + 1

τ1τ2
1
τ1τ2

(β − αg′(0))

0 1 + β + 1
τ1

+ 1
τ2

(
1
τ1

+ 1
τ2

)
β + 1

τ1τ2
β

∣∣∣∣∣∣∣∣∣∣∣∣
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=
(

1 + β + 1

τ1
+ 1

τ2

){[
β +

( 1

τ1
+ 1

τ2

)
(1 + β) + 1

τ1τ2

][( 1

τ1
+ 1

τ2

)
β + 1

τ1τ2
β
]

− 1

τ1τ2

(
1 + β + 1

τ1
+ 1

τ2

)
(β − αg′(0))

}
−

[( 1

τ1
+ 1

τ2

)
β + 1

τ1τ2
β
]2

>
(

1 + β + 1

τ1
+ 1

τ2

){[
β +

( 1

τ1
+ 1

τ2

)
(1 + β) + 1

τ1τ2

][( 1

τ1
+ 1

τ2

)
β + 1

τ1τ2
β
]

− 1

τ1τ2

(
1 + β + 1

τ1
+ 1

τ2

)
β
}

−
[( 1

τ1
+ 1

τ2

)
β + 1

τ1τ2
β
]2

>
(

1 + β + 1

τ1
+ 1

τ2

)[( 1

τ1
+ 1

τ2

)2
β2 + 1

τ1τ2

( 1

τ1
+ 1

τ2

)
β(1 + β) +

( 1

τ1τ2

)2
β
]

−
[( 1

τ1
+ 1

τ2

)
β + 1

τ1τ2
β
]2
> 0.

Furthermore, we have

H4 =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + β + 1
τ1

+ 1
τ2

(
1
τ1

+ 1
τ2

)
β + 1

τ1τ2
β 0 0

1 β +
(

1
τ1

+ 1
τ2

)
(1 + β) + 1

τ1τ2
1
τ1τ2

(β − αg′(0)) 0

0 1 + β + 1
τ1

+ 1
τ2

(
1
τ1

+ 1
τ2

)
β + 1

τ1τ2
β 0

0 1 β +
(

1
τ1

+ 1
τ2

)
(1 + β) + 1

τ1τ2
1
τ1τ2

(β − αg′(0))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1
τ1τ2

(β − αg′(0))H3 > 0.

Similarly, by β > αg′(b), we can prove that f ′(�+) only have eigenvalues with negative real
parts.

Next, we choose ν = (ν1, ν2, ν3, ν4)(νi ≥ 0, i = 1, 2, 3, 4) such that νf ′(�1)> 0. Notice that

νf ′(�1)> 0 ⇐⇒ 1

τ2
g′(a)ν4 > ν1,

1

τ1
ν3 >βν2, αν1 >

1

τ1
ν3, ν2 >

1

τ2
ν4. (4.9)

Since β < αg′(a), it is easy to find νi > 0, i = 1, 2, 3, 4, such that (4.9) holds.
Hence, the conclusion is obtained by Theorem 3.3.2 in [35]. The proof is completed.

Remark 4.1 (4.1) can be rewritten as (4.5) because travelling wave fronts of (4.1) are twice
continuous differentiable. By [1, 3, 17], the regularity of u3 and u4 is obvious.

Now we consider the mild solutions of (4.1). Motivated by Lin and Li [23], in this subsection
we adopt the same idea to talk about the mild solutions of (4.1).

Firstly, we study the existence and uniqueness of mild solutions of (4.1). Consider the Cauchy
problem of (4.1):
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ui(x, s) =ψi(x, s), (x, s) ∈R× (−∞, 0], i = 1, 2, (4.10)

where

(0, 0) ≤ (ψ1(x, s),ψ2(x, s)) ≤
(

b,
b

α

)
with ψi(x, s) ∈ C(R× (−∞, 0], R), i = 1, 2. (4.11)

Let

β1 = 1, β2 = β. (4.12)

For (0, 0) ≤ (u1(x, t), u2(x, t)) ≤
(

b, b
α

)
, (x, t) ∈R×R

+, define F = (F1, F2) by⎧⎨
⎩

F1(u1, u2)(x, t) = β1u1(x, t) − u1(x, t) + α(g1 ∗ u2)(x, t),

F2(u1, u2)(x, t) = β2u2(x, t) − βu2(x, t) + (g2 ∗ g(u1))(x, t).
(4.13)

Then, for any (0, 0) ≤ (u1(x, t), u2(x, t)) ≤ (v1(x, t), v2(x, t)) ≤ (b, b
α

), x ∈R, t> 0, we have

(0, 0) = F(0, 0) ≤ F(u1, u2)(x, t) ≤ F(v1, v2)(x, t) ≤ F
(

b,
b

α

)
. (4.14)

Together with (4.12) and (4.13), (4.1) can be rewritten as⎧⎪⎪⎨
⎪⎪⎩
∂u1(x, t)
∂t = d1

∂2u1(x, t)
∂x2 − β1u1(x, t) + F1(u1, u2)(x, t),

∂u2(x, t)
∂t = d2

∂2u2(x, t)
∂x2 − β2u2(x, t) + F2(u1, u2)(x, t).

(4.15)

Using the same notations and discussion as in Section 3, we get the following theorem by [25,29].

Theorem 4.2 Assume that (ψ1(·, s),ψ2(·, s)) satisfies (4.11). Then (u1(x, t), u2(x, t)) defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1(x, t) = T1(t)ψ1(x, 0) +
∫ t

0
T1(t − s)F1(u1, u2)(x, s)ds,

u2(x, t) = T2(t)ψ2(x, 0) +
∫ t

0
T2(t − s)F2(u1, u2)(x, s)ds

(4.16)

for (x, t) ∈R× (0, ∞) is a unique mild solution of (4.15) and (4.10) (also (4.1) and (4.10)).
Moreover, (u1(·, t), u2(·, t)) ∈ XI for all t> 0.

Secondly, we study the regularity of mild solution obtained in Theorem 4.2. Consider the
Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v1(x, t)
∂t = d1

∂2v1(x, t)
∂x2 − v1(x, t) + αv3(x, t),

∂v2(x, t)
∂t = d2

∂2v2(x, t)
∂x2 − βv2(x, t) + v4(x, t),

∂v3(x, t)
∂t = d2

∂2v3(x, t)
∂x2 − 1

τ1
v3(x, t) + 1

τ1
v2(x, t),

∂v4(x, t)
∂t = d1

∂2v4(x, t)
∂x2 − 1

τ2
v4(x, t) + 1

τ2
g(v1(x, t)),

(v1(x, 0), v2(x, 0), v3(x, 0), v4(x, 0)) = (v1(x), v2(x), v3(x), v4(x)),

(4.17)
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for (u3, u4) ∈ X . If we define (T3(t), T4(t)) : X → X by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T3(t)u0
3(x) := e

− 1
τ1

t√
4πd2t

∫ ∞

−∞
e
− (x−y)2

4d2t u0
3(y)dy,

T4(t)u0
4(x) := e

− 1
τ2

t√
4πd1t

∫ ∞

−∞
e
− (x−y)2

4d1t u0
4(y)dy,

then (4.17) has a unique classical solution (v1(x, t), v2(x, t), v3(x, t), v4(x, t)) defined by

v1(x, t) = T1(t)v1(x) +
∫ t

0
T1(t − s)[β1v1(x, s) − v1(x, s) + αv3(x, s)]ds,

v2(x, t) = T2(t)v2(x) +
∫ t

0
T2(t − s)[β2v2(x, s) − βv2(x, s) + v4(x, s)]ds,

v3(x, t) = T3(t)v3(x) + 1

τ1

∫ t

0
T3(t − s)v2(x, s)ds,

v4(x, t) = T4(t)v4(x) + 1

τ2

∫ t

0
T4(t − s)g(v1(x, s))ds.

Now we choose the initial values in (4.17)

vi(x, 0) =ψi(x, 0), i = 1, 2, 3, 4, (4.18)

where ψ1(x, 0),ψ2(x, 0) are given by (4.10) and ψ3(x, 0),ψ4(x, 0) are defined by

ψ3(x, 0) = 1

τ1

∫ ∞

0
T3(θ )ψ2(x, −θ )dθ , ψ4(x, 0) = 1

τ2

∫ ∞

0
T4(θ )g(ψ1(x, −θ ))dθ .

Then, by T3(t + s) = T3(t)T3(s) for any t, s ≥ 0, we get

v3(x, t) = e
− t
τ1√

4πd2t

∫ ∞

−∞
e
− y2

4d2 tψ3(x − y, 0)dy

+
∫ t

0

e
− t−s
τ1

τ1

√
4πd2(t − s)

∫ ∞

−∞
e
− y2

4d2(t−s) v2(x − y, s)dyds

= 1
τ1

∫ ∞

0
T3(θ )v2(x, t − θ )dθ ,

and similarly,

v4(x, t) = 1

τ2

∫ ∞

0
T4(θ )g(v1(x, t − θ ))dθ .

By expressions of v3, v4 and the relation between (4.1) and (4.5), it is clear that v1 and v2 are
independent of v3 and v4.

Motivated by Lin and Li [23], and together with the relation between (4.1) and (4.5), we have
the following result.
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Lemma 4.2 Assume that (4.17) with the initial values given by (4.18), then (u1(x, t), u2(x, t)) =
(v1(x, t), v2(x, t)) holds for (x, t) ∈R× (0, ∞).

Proof On one hand, from the expression of v3, we have that for all t> 0,

v1(x, t) = T1(t)v1(x, 0) +
∫ t

0
T1(t − s)

[
β1v1(x, s) − v1(x, s) + α

∫ ∞

0

1

τ1
T3(θ )v2(x, s − θ )dθ

]
ds.

On the other hand, it follows from Theorem 4.2 that

u1(x, t) = T1(t)u1(x, 0) +
∫ t

0
T1(t − s)

[
β1u1(x, s) − u1(x, s) + α

∫ ∞

0

1

τ1
T3(θ )u2(x, s − θ )dθ

]
ds.

Let p(t) = p1(t) + p2(t), where pi(t) := sup
x∈R

|vi(x, t) − ui(x, t)|, i = 1, 2. Since ‖ T(t) ‖≤ 1 for t> 0,

then

p1(t) ≤ p1(0) + J

∫ t

0

[
sup
θ≤s

p1(θ ) + sup
θ≤s

p2(θ )
]
ds,

where

J = β1 + β2 + (1 + α) + (β +� ) with � = max{g′(x)|x ∈ [0, b]}> 0 by (A).

By a similar argument as above, we have that for t> 0,

p2(t) ≤ p2(0) + J

∫ t

0

[
sup
θ≤s

p1(θ ) + sup
θ≤s

p2(θ )
]
ds.

So it follows from the above two inequalities that

p(t) ≤ p(0) + 2J

∫ t

0

[
sup
θ≤s

p1(θ ) + sup
θ≤s

p2(θ )
]
ds ≤ p(0) + 4J

∫ t

0
sup
θ≤s

p(θ )ds.

It is easy to see that for all t> 0,

p(t) + sup
θ≤0

p(θ ) ≤ p(0) + sup
θ≤0

p(θ ) + 4J

∫ t

0
sup
θ≤s

p(θ )ds

≤ p(0) + sup
θ≤0

p(θ ) + 4J

∫ t

0

[
sup

0≤θ≤s
p(θ ) + sup

θ≤0
p(θ )

]
ds.

Define q(t) := sup0≤θ≤t{p(θ ) + supr≤0 p(r)} for t> 0. Note that
∫ t

0
[ sup
0≤θ≤s

p(θ ) + sup
θ≤0

p(θ )]ds is

increasing in t> 0, it follows from the above inequality that

q(t) ≤ q(0) + 4J

∫ t

0
q(s)ds.

Therefore, together with the Gronwall’s inequality, we obtain that q(t) ≡ 0 for t ≥ 0 when
q(0) = 0. The proof is completed.

https://doi.org/10.1017/S0956792520000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000078


160 K. Li and X. Li

It follows from Lemma 4.2 and the smoothness of vi(x, t) that (u1(x, t), u2(x, t)) is a classical
solution of (4.1). Define ⎧⎪⎪⎨

⎪⎪⎩
u3(x, t) = 1

τ1

∫ ∞

0
T3(θ )u2(x, t − θ )dθ ,

u4(x, t) = 1
τ2

∫ ∞

0
T4(θ )g(u1(x, t − θ ))dθ .

(4.19)

Obviously, u3 and u4 are C2 in x ∈R and C1 in t> 0. So from the smoothness of u1 and u2, we
obtain the following result.

Theorem 4.3 (u1(x, t), u2(x, t)) given in Theorem 4.2 is a classical solution of (4.1) and (4.10) for
(x, t) ∈R× (0, ∞). Furthermore, ui(x, t), i = 1, 2, 3, 4, satisfy (4.5), where u3 and u4 are given in
(4.19).

Hence, to obtain the asymptotic stability of solutions of (4.1) and (4.10), we only need to
investigate the corresponding non-delayed System (4.5).

5 Asymptotic stability and uniqueness of travelling wave fronts

In order to give the comparison principle, we first give the definition of upper and lower solutions
of (4.5) with the initial values (ψ1(x),ψ2(x),ψ3(x),ψ4(x)) as follows.

Definition 5.1 Assume that u(x, t) = (u1(x, t), u2(x, t), u3(x, t), u4(x, t)) is C2 in x ∈R and C1

in t> 0 and �− ≤ u(x, t) ≤�+. Then u(x, t) is called an upper (a lower) solution of (4.5) if it
satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(x, t)
∂t ≥ (≤) d1

∂2u1(x, t)
∂x2 − u1(x, t) + αu3(x, t),

∂u2(x, t)
∂t ≥ (≤) d2

∂2u2(x, t)
∂x2 − βu2(x, t) + u4(x, t),

∂u3(x, t)
∂t ≥ (≤) d2

∂2u3(x, t)
∂x2 − 1

τ1
u3(x, t) + 1

τ1
u2(x, t),

∂u4(x, t)
∂t ≥ (≤) d1

∂2u4(x, t)
∂x2 − 1

τ2
u4(x, t) + 1

τ2
g(u1(x, t)),

(u1(x, 0), u2(x, 0), u3(x, 0), u4(x, 0)) ≥ (ψ1(x),ψ2(x),ψ3(x),ψ4(x)).

(5.1)

Lemma 5.1 (Comparison principle) Let

u(x, t) = (u1(x, t), u2(x, t), u3(x, t), u4(x, t)) and v(x, t) = (v1(x, t), v2(x, t), v3(x, t), v4(x, t))

be two solutions of (4.5) with u(x, 0) =�1 and v(x, 0) =�2, respectively, where

�1(x) = (ψ1(x),ψ2(x),ψ3(x),ψ4(x)) and �2(x) = (ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x)) ∈ C(R, R4)

with �− ≤�2(x) ≤�1(x) ≤�+, x ∈R. Then for any (x, t) ∈R× (0, ∞),

�− ≤ v(x, t) ≤ u(x, t) ≤�+
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and

ui(x, t) − vi(x, t) ≥ Ji(L, t − t0)
∫ y+1

y
(ui(z, t0) − vi(z, t0))dz ≥ 0 (5.2)

for L ≥ 0, x, y ∈R satisfying |x − y| ≤ L and t> t0 ≥ 0, i = 1, 2, 3, 4, where

J1(L, t − t0) = e−β1(t−t0)√
4πd1(t − t0)

e
− (L+1)2

4d1(t−t0) , J2(L, t − t0) = e−β2(t−t0)√
4πd2(t − t0)

e
− (L+1)2

4d2(t−t0) ,

J3(L, t − t0) = e
− 1
τ1

(t−t0)√
4πd2(t − t0)

e
− (L+1)2

4d2(t−t0) , J4(L, t − t0) = e
− 1
τ2

(t−t0)√
4πd1(t − t0)

e
− (L+1)2

4d1(t−t0) .

Proof For the proof of �− ≤ v(x, t) ≤ u(x, t) ≤�+, it is very similar to these of Theorem 14.16
in Smoller [32], Theorem 5.5.5 in Volpert et al. [35] and Theorem 5.2.9 in Ye and Li [43], we
omit the details.

We only prove that (5.2) holds. Since the semigroup (T1(t), T2(t), T3(t), T4(t)) is positive, then
any solution �− ≤ (u1(x, t), u2(x, t), u3(x, t), u4(x, t)) ≤�+ of (4.5) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x, t) = T1(t − r)u1(x, r) +
∫ t

r
T1(t − s)[β1u1(x, s) − u1(x, s) + αu3(x, s)]ds,

u2(x, t) = T2(t − r)u2(x, r) +
∫ t

r
T2(t − s)[β2u2(x, s) − βu2(x, s) + u4(x, s)]ds,

u3(x, t) = T3(t − r)u3(x, r) + 1
τ1

∫ t

r
T3(t − s)u2(x, s)ds,

u4(x, t) = T4(t − r)u4(x, r) + 1
τ2

∫ t

r
T4(t − s)g(u1(x, s))ds

for all 0 ≤ r< t< a(a> 0). For any two solutions �− ≤ v(x, t) ≤ u(x, t) ≤�+ of (4.5) with
u(x, 0) =�1 and v(x, 0) =�2, respectively, we only prove u1(x, t) ≥ v1(x, t) since the others
are similar. Let w(x, t) = u1(x, t) − v1(x, t). For any given 0 ≤ t0 < t and x, y ∈R satisfying
|x − y| ≤ L, it easily follows that

w(x, t) = T1(t − t0)w(x, t0) +
∫ t

t0

T1(t − t0)[β1w(x, s) − w(x, s) + αw(x, s)]ds

≥ T1(t − t0)w(x, t0)

= e−β1(t−t0)√
4πd1(t − t0)

∫ ∞

−∞
e
− (x−z)2

4d1(t−t0) w(z, t0)dz

≥ e−β1(t−t0)√
4πd1(t − t0)

∫ y+1

y
e
− (x−z)2

4d1(t−t0) w(z, t0)dz

≥ e−β1(t−t0)√
4πd1(t − t0)

e
− (L+1)2

4d1(t−t0)

∫ y+1

y
w(z, t0)dz.

The proof is completed.
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Remark 5.1 From (5.2) we know that if ui(x, 0) �≡ vi(x, 0), then for every t> 0,

ui(x, t) − vi(x, t) ≥ Ji(L, t)
∫ y+1

y
(ui(z, 0) − vi(z, 0))dz> 0, i = 1, 2, 3, 4.

Hence, every nontrivial travelling wave front of (4.5) is strictly monotone. Therefore, the bistable
travelling wave fronts of (4.1) are also strictly monotone.

In fact, Remark 5.1 is obvious. If the strict inequalities do not hold, then, by ui(x, 0) ≥ vi(x, 0)
and the arbitrariness of x and L> 0, it yields that ui(x, 0) ≡ vi(x, 0), x ∈R, which is a contradic-
tion. For every nontrivial travelling wave front (u1(x, t), u2(x, t), u3(x, t), u4(x, t)) of (4.5), where
ui(x, t) = ui(ξ ), ξ = x + ct, i = 1, 2, 3, 4, since the travelling wave fronts of (4.5) are translation
invariant solutions, (u1(ξ + h), u2(ξ + h), u3(ξ + h), u4(ξ + h)) is also a travelling wave front of
(4.5) for any h ∈R. Note that ui(ξ ) is monotone in ξ ∈R by the definition of travelling wave front,
so ui(x + h, 0) ≥ ui(x, 0) for any h> 0. It follows from the strict inequalities that ui(ξ + h)> ui(ξ )
for any h> 0, which implies that ui(ξ ), i = 1, 2, 3, 4, are strictly monotone.

In what follows, we always denote �+ = (b, b
α

, b
α

, βb
α

) := (k1, k2, k3, k4). By (A) and the
continuity of g′(x)> 0, we can find sufficiently small constants pi > 0, i = 1, 2, 3, 4, such that

p1 >αp3, βp2 > p4, p3 > p2, p4 >�p1, (5.3)

where �= max{g′(x)|x ∈ [0, p1] ∪ [k1 − p1, k1]}> 0.
To use the contraction technique to prove the asymptotic stability, we give a pair of upper and

lower solutions.

Lemma 5.2 Assume that (A) holds and �(x + ct) = (φ1(x + ct), φ2(x + ct), φ3(x + ct), φ4(x +
ct)) is a travelling wave front of (4.5). Define w±(x, t) = (w±

1 (x, t), w±
2 (x, t), w±

3 (x, t), w±
4 (x, t)) by

w+
i (x, t) = min

{
φi(η

+(x, t)) + δpie
−β0t, ki

}
, w−

i (x, t) = max
{
φi(η

−(x, t)) − δpie
−β0t, 0

}
,

i = 1, 2, 3, 4,

where η±(x, t) = x + ct + ξ0 ± σ0δ(1 − e−β0t). Then there exist σ0 > 0, β0 > 0, δ0 > 0 such that
for every δ ∈ (0, δ0] and any ξ0, w+(x, t) and w−(x, t) are an upper solution and a lower solution
of (4.5) on R

+, respectively.

Proof We only check that w+(x, t) is an upper solution of (4.5) because the proof of a lower
solution of (4.5) is similar. Since w+

i (x, t) = ki is an upper solution of (4.5), we only consider the
case w+

i (x, t)< ki, i = 1, 2, 3, 4.
For simplicity, denote η+(x, t) by η. Fix β0 ∈ (0,μ) and δ∗ ∈ (0, p1), then there exists

M = M(�, β0, δ∗) large enough such that

φ1(η) + δp1 ≥ k1 − δ∗ for all δ ∈ (0, δ∗] and for all η≥ M ,

φ1(η) − δp1 ≤ δ∗ for all δ ∈ (0, δ∗] and for all η≤ −M ,

where

μ := min
{p1 − αp3

p1
,
βp2 − p4

p2
,

p3 − p2

τ1p3
,

p4 − �p1

τ2p4

}
> 0.
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Since φ′
i(η)> 0, |η| ≤ M , i = 1, 2, 3, 4, we can take

σ0 := p0(c0 + β0)

β0m0
> 0, δ0 := min

{
δ∗,

1

σ0

}
,

where

m0 := min{φ′
1(η)||η| ≤ M}> 0, p0 := max{p1, p4}, c0 := max

{ 1

τ2
|g′(ξ )||ξ ∈ [0, k1]

}
.

By direct calculation, we have

∂w+
i (x, t)

∂t
= cφ′

i(η) + β0σ0δe
−β0tφ′

i(η) − β0δpie
−β0t and

∂2w+
i (x, t)

∂x2
= φ′′

i (η).

For w+
i (x, t)< ki, i = 1, 2, 3, we only need to prove that

σ0β0φ
′
1(η) − β0p1 ≥ −p1 + αp3,

σ0β0φ
′
2(η) − β0p2 ≥ −βp2 + p4,

σ0β0φ
′
3(η) − β0p3 ≥ − 1

τ1
p3 + 1

τ1
p2,

respectively. Obviously, the above three inequalities hold by φ′
i(η) ≥ 0, i = 1, 2, 3, and the choice

of β0 > 0.
For w+

4 (x, t)< k4, we only need to prove that

σ0β0φ
′
4(η) − β0p4 ≥ − 1

τ2
p4 + 1

τ2
δ−1eβ0t[g(w+

1 (x, t)) − g(φ1(η))] = − 1

τ2
p4 + 1

τ2
g′(θ )p1, (5.4)

where θ ∈ [φ1(η), w+
1 (x, t)]. For |η|>M , by the choice of M , it is sufficient to show

σ0β0φ
′
4(η) − β0p4 ≥ − 1

τ2
p4 + 1

τ2
�p1. (5.5)

For |η| ≤ M , by the choice of σ0, we have

σ0β0φ
′
4(η) − β0p4 + 1

τ2
p4 − 1

τ2
max{|g′(η)||η ∈ [0, k1]}p1

≥ m0σ0β0 − p0

(
β0 + 1

τ2
max{|g′(η)||η ∈ [0, k1]}

)
≥ 0.

For |η|>M , (5.5) holds by φ′
4(η) ≥ 0 and the choice of β0 > 0. This completes the proof.

Now we define another pair of upper and lower solutions. Fix a function ζ (·) ∈ C∞(R) with
the following properties:

ζ (x) = 0 on (−∞, 0]; ζ (x) = 1 on [4, ∞); ζ ′(x) ∈ (0, 1); |ζ ′′(x)| ≤ 1 on (0, 4).

Lemma 5.3 Assume that (A) holds. Then, for every δ ∈ (0, 1
2 ], there exist ε = ε(δ)> 0 and C =

C(δ)> 0 such that, for any ξ ∈R, v+(x, t) and v−(x, t) are an upper solution and a lower solution
of (4.5) on R

+, respectively, where v±(x, t) = (v±
1 (x, t), v±

2 (x, t), v±
3 (x, t), v±

4 (x, t)) defined by
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v+
i (x, t) = min{ki + δpi − [ki − (1 − 2δ)pie

−εt]ζ (ς+
ε,C(x, t)), ki},

v−
i (x, t) = max{−δpi + [ki − (1 − 2δ)pie

−εt]ζ (ς−
ε,C(x, t)), 0},

ς±
ε,C(x, t) = ∓ε(x − ξ ± Ct), i = 1, 2, 3, 4.

Proof It suffices to prove v+(x, t) is an upper solution of (4.5) because the proof of a lower
solution of (4.5) is analogous. Since w+

i (x, t) = ki is an upper solution of (4.5), we only consider
the case v+

i (x, t)< ki, i = 1, 2, 3, 4.
We can directly calculate that for i = 1, 2, 3, 4,

∂v+
i (x, t)

∂t
= εC[ki − (1 − 2δ)pie

−εt]ζ ′(ς+
ε,C(x, t)) − ε(1 − 2δ)pie

−εtζ (ς+
ε,C(x, t)),

≥ εC(ki − pi)ζ
′(ς+

ε,C(x, t)) − kiε,

∂2v+
i (x, t)

∂x2
= −ε2[ki − (1 − 2δ)pie

−εt]ζ ′′(ς+
ε,C(x, t)) ≤ kiε

2.

Choose ε = ε(δ) sufficiently small satisfying

−k1ε − d1k1ε
2 + δ(p1 − αp3)> 0, −k2ε − d2k2ε

2 + δ(βp2 − p4)> 0,

−k3ε − d2k3ε
2 + 1

τ1
δ(p3 − p2)> 0, −k4ε − d1k4ε

2 + 1
τ2
δ(p4 − �p1)> 0.

(5.6)

By p1, p4 small enough ( δp1
2k1

+ δp4
2k4
< 1) and ζ ′(s)> 0 for ζ (s) ∈ (0, 1), we can take C = C(δ)

satisfying

min
{
εC(k4 − p4)ζ ′(s) − k4ε − d1k4ε

2 + 1
τ2
v+

4 (x, t)

− 1
τ2

g(v+
1 (x, t))|δp4

2k4
≤ ζ (s) ≤ 1 − δp1

2k1
, v+

1 ∈ [δp1, k1], v+
4 ∈ [δp4, k4]

}
> 0.

(5.7)

For v+
1 (x, t)< k1, by k1 = αk3 and (5.6),

∂v+
1 (x, t)

∂t
− d1

∂2v+
1 (x, t)

∂x2
+ v+

1 (x, t) − αv+
3 (x, t)

≥ εC(k1 − p1)ζ ′(ς+
ε,C(x, t)) − k1ε − d1k1ε

2

+ δ(p1 − αp3) + (1 − 2δ)(p1 − αp3)e−εtζ (ς+
ε,C(x, t))

≥ −k1ε − d1k1ε
2 + δ(p1 − αp3)> 0.

For v+
2 (x, t)< k2, by βk2 = k4 and (5.6),

∂v+
2 (x, t)

∂t
− d2

∂2v+
2 (x, t)

∂x2
+ βv+

2 (x, t) − v+
4 (x, t)

≥ εC(k2 − p2)ζ ′(ς+
ε,C(x, t)) − k2ε − d2k2ε

2

+ δ(βp2 − p4) + (1 − 2δ)(βp2 − p4)e−εtζ (ς+
ε,C(x, t))

≥ −k2ε − d2k2ε
2 + δ(βp2 − p4)> 0.
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For v+
3 (x, t)< k3, by k2 = k3 and (5.6),

∂v+
3 (x, t)

∂t
− d2

∂2v+
3 (x, t)

∂x2
+ 1

τ1
v+

3 (x, t) − 1

τ1
v+

2 (x, t)

≥ εC(k3 − p3)ζ ′(ς+
ε,C(x, t)) − k3ε − d2k3ε

2

+ 1

τ1
[δ(p3 − p2) + (1 − 2δ)(p3 − p2)e−εtζ (ς+

ε,C(x, t))]

≥ −k3ε − d2k3ε
2 + 1

τ1
δ(p3 − p2)> 0.

For v+
4 (x, t)< k4, we have two cases (since v+

4 (x, t) = k4 for ζ (ς+
ε,C(x, t)) ≤ δp4

2k4
):

Case (i): when ζ (ς+
ε,C(x, t))> 1 − δp1

2k1
, we have δp1 < v

+
1 (x, t)< p1 − δp1

2 . Hence, by the mean

value theorem, k4 − �k1 = b
α

(β − α�)> 0 and (5.6),

∂v+
4 (x, t)

∂t
− d1

∂2v+
4 (x, t)

∂x2
+ 1

τ2
v+

4 (x, t) − 1

τ2
g(v+

1 (x, t))

≥ εC(k4 − p4)ζ ′(ς+
ε,C(x, t)) − k4ε − d1k4ε

2 + 1

τ2
v+

4 (x, t) − 1

τ2
g′(θ )v+

1 (x, t)

≥ εC(k4 − p4)ζ ′(ς+
ε,C(x, t)) − k4ε − d1k4ε

2 + 1

τ2
(k4 − �k1)[1 − ζ (ς+

ε,C(x, t))]

+ 1

τ2
δ(p4 − �p1) + 1

τ2
(1 − 2δ)(p4 − �p1)e−εtζ (ς+

ε,C(x, t))

≥ −k4ε − d1k4ε
2 + 1

τ2
δ(p4 − �p1)> 0,

where θ ∈ [0, v+
1 (x, t)].

Case (ii): when δp4
2k4

≤ ζ (ς+
ε,C(x, t)) ≤ 1 − δp1

2k1
, it follows from (5.7) that

∂v+
4 (x, t)

∂t
− d1

∂2v+
4 (x, t)

∂x2
+ 1

τ2
v+

4 (x, t) − 1

τ2
g(v+

1 (x, t))

≥ min{εC(k4 − p4)ζ ′(ς+
ε,C(x, t)) − k4ε − d1k4ε

2

+ 1

τ2
v+

4 (x, t) − 1

τ2
g(v+

1 (x, t)) | v+
1 ∈ [δp1, k1], v+

4 ∈ [δp4, k4]}> 0.

The proof is completed.

Remark 5.2 Obviously, v+
i (x, t) and v−

i (x, t), i = 1, 2, 3, 4 in Lemma 5.3, imply that:

(P1) v+
i (x, 0) = ki on [ξ , ∞); v+

i (x, 0) ≥ (1 − δ)pi on (−∞, ∞); v+
i (x, t) ≤ δpi + (1 − 2δ)pie−εt

on (−∞, ξ − Ct − 4ε−1] ×R
+.

(P2) v−
i (x, 0) = 0 on (−∞, ξ ]; v−

i (x, 0) ≤ ki − (1 − δ)pi on (−∞, ∞); v−
i (x, t) ≥ ki − δpi − (1 −

2δ)pie−εt on [ξ + Ct + 4ε−1, ∞) ×R
+.
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The following result is similar to Lemma 2.5 in [31] and we omit the proof here.

Lemma 5.4 Let �(ξ ) = (φ1(ξ ), φ2(ξ ), φ3(ξ ), φ4(ξ )) of (4.5) be any travelling wave front
satisfying 0 ≤ φi(ξ ) ≤ ki, ξ = x + ct ∈R, then lim|ξ |→∞�

′(ξ ) = 0.

Next, we prove the global asymptotic stability and uniqueness of travelling wave front. To do
this, we first give the following two lemmas.

Let �(x + ct) = (φ1(x + ct), φ2(x + ct), φ3(x + ct), φ4(x + ct)) be a travelling wave front of
(4.5). From Lemma 5.2, we define w±(x, t, ξ0, δ) = (w±

1 (x, t, ξ0, δ), w±
2 (x, t, ξ0, δ), w±

3 (x, t, ξ0,
δ), w±

4 (x, t, ξ0, δ)) by

w+
i (x, t, ξ0, δ) := min{φi(x + ct + ξ0 + σ0δ(1 − e−β0t)) + δpie

−β0t, ki},
w−

i (x, t, ξ0, δ) := max{φi(x + ct + ξ0 − σ0δ(1 − e−β0t)) − δpie
−β0t, 0},

x ∈R, t ∈ [0, ∞), ξ0 ∈R, and δ ∈ [0, ∞), i = 1, 2, 3, 4,

and ξ0 and β0 are as in Lemma 5.2.

Lemma 5.5 Assume that �(x + ct) = (φ1(x + ct), φ2(x + ct), φ3(x + ct), φ4(x + ct)) is a trav-
elling wave front of (4.5). Then there exists ε∗ > 0 such that, if u(x, t) = (u1(x, t), u2(x, t),
u3(x, t), u4(x, t)) is a solution of (4.5) on [0, ∞) with the initial data u(x, 0), 0 ≤ ui(x, 0) ≤ ki for
all x ∈R, i = 1, 2, 3, 4, and the following is true:

w−(x, 0, cT + ξ , δ) ≤ u(x, T) ≤ w+(x, 0, cT + ξ + h, δ)

on R provided that for some ξ ∈R, T ≥ 0, h> 0 and δ ∈ (0, min{δ0
2 , 1
σ0

}), then for every

t ≥ T + 1, there exist ξ̂ (t), δ̂(t) and ĥ(t) satisfying

w−(x, 0, ct + ξ̂ (t), δ̂(t)) ≤ u(x, t) ≤ w+(x, 0, ct + ξ̂ (t) + ĥ(t), δ̂(t)),

where ξ̂ (t), ĥ(t) and δ̂(t) are as follows

ξ̂ (t) ∈ [ξ − σ0δ, ξ + h + σ0δ],

ĥ(t) ∈ [0, h − σ0ε
∗ min{h, 1} + 2σ0δ],

δ̂(t) = (δe−β0 + ε∗ min{h, 1})e−β0(t−(T+1)).

Proof The result of Lemma 5.2 shows that w+(x, t, cT + ξ + h, δ) and w−(x, t, cT + ξ , δ),
respectively, are upper and lower solutions of (4.5). Obviously, ũ(x, t) = u(x, T + t)(t ≥ 0) is a
solution of (4.5) with initial value ũ(x, 0) = u(x, T) for x ∈R. From comparison principle, we
have

w−(x, t, cT + ξ , δ) ≤ u(x, T + t) ≤ w+(x, t, cT + ξ + h, δ) for (x, t) ∈R×R
+.

That is, for i = 1, 2, 3, 4,

max{φi(η
−(x, t, T)) − δpie

−β0t, 0} ≤ ui(x, T + t) ≤ min{φi(η
+(x, t, T) + h) + δpie

−β0t, ki}
(5.8)
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for all (x, t) ∈R×R
+, where η±(x, t, T) = x + c(T + t) + ξ ± σ0δ(1 − e−β0t). Set y = −cT − ξ .

By comparison principle, it follows that for every nonnegative constant L, any x ∈R satisfying
|x − y| ≤ L and every t> 0, i = 1, 2, 3, 4,

ui(x, T + t) − w−
i (x, t, cT + ξ , δ) ≥ Ji(L, t)

∫ y+1

y
(ui(z, T) − w−

i (z, 0, cT + ξ , δ))dz. (5.9)

By Lemma 5.4, lim|x|→∞ φ
′
i(x) = 0, i = 1, 2, 3, 4. Fix M > 0 such that φ′

i(x) ≤ min1≤i≤4{pi}
2σ0

for all

|x| ≥ M , i = 1, 2, 3, 4. Let

L = M + |c| + 1, h̄ = min{h, 1} and ε1 = 1

2
min

1≤i≤4
{φ′

i(x) : |x| ≤ 2}> 0.

Since

w−
i (z, 0, −y, δ)<φi(z − y), w+

i (z, 0, −y + h̄, δ)>φi(z − y + h̄), i = 1, 2, 3, 4,

it follows that∫ y+1

y
[w+

i (z, 0, cT + ξ + h̄, δ) − w−
i (z, 0, cT + ξ , δ)]dz

>

∫ y+1

y
[φi(z + cT + ξ + h̄) − φi(z + cT + ξ )]dz =

∫ y+1

y
[φi(z + h̄) − φi(z)]dz ≥ 2ε1h̄.

Therefore, either (i) or (ii) is true, where (i) and (ii) are as follows:

(i)
∫ y+1

y
[ui(z, T) − w−

i (z, 0, cT + ξ , δ)]dz ≥ ε1h̄;

(ii)
∫ y+1

y
[w+

i (z, 0, cT + ξ + h̄, δ) − ui(z, T)]dz ≥ ε1h̄.

We only need to consider the case (i) since the other is similar. For any |x − y| ≤ L, letting t = 1
in (5.9), it holds

ui(x, T + 1) ≥ w−
i (x, 1, cT + ξ , δ) + Ji(L)ε1h̄

≥ φi(x − y + c − σ0δ(1 − e−β0 )) − δpie
−β0 + J0(L)ε1h̄, i = 1, 2, 3, 4,

where J0(L) = min1≤i≤4{Ji(L, 1)}. Let

L1 = L + |c| + 2, ε∗ = min
1≤i≤4

{
min|x|≤L1

J0(L)ε1

2σ0φ
′
i(x)

,
1

2σ0
,
δ0

2

}
.

Using the mean value theorem, we have that for all |x − y| ≤ L,

φi(x − y + c + 2σ0ε
∗h̄ − σ0δ(1 − e−β0 )) − φi(x − y + c − σ0δ(1 − e−β0 ))

= φ′
i(x − y + c + 2θiσ0ε

∗h̄ − σ0δ(1 − e−β0 ))2σ0ε
∗h̄ ≤ J0(L)ε1h̄, θi ∈ (0, 1), i = 1, 2, 3, 4.

Hence,

ui(x, T + 1) ≥ φi(η
−(x, 1, T) + 2σ0ε

∗h̄) − δpie
−β0 , i = 1, 2, 3, 4. (5.10)
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Together with the mean value theorem and the definitions of M , L, we have that for any
|x − y| ≥ L,

φi(η
−(x, 1, T)) − φi(η

−(x, 1, T) + 2σ0ε
∗h̄) = φ′

i(η
−(x, 1, T)

− 2θiσ0ε
∗h̄)(−2σ0ε

∗h̄) ≥ −ε∗h̄pi, θi ∈ (0, 1), (5.11)

i = 1, 2, 3, 4. That is, for all |x − y| ≥ L,

φi(η
−(x, 1, T)) ≥ φi(η

−(x, 1, T) + 2σ0ε
∗h̄) − ε∗h̄pi, i = 1, 2, 3, 4, (5.12)

and therefore, by (5.8) with t = 1, it holds

ui(x, T + 1) ≥ max{φi(η
−(x, 1, T) + 2σ0ε

∗h̄) − ε∗h̄pi − δpie
−β0 , 0} (5.13)

for all |x − y| ≥ L, i = 1, 2, 3, 4. By (5.10) and (5.13), it follows that for all x ∈R, i = 1, 2, 3, 4,

ui(x, T + 1) ≥ max{φi(η−(x, 1, T) + 2σ0ε
∗h̄) − (δe−β0 + ε∗h̄)pi, 0}

= max{φi(x + ι) − (δe−β0 + ε∗h̄)pi, 0}, (5.14)

where

ι= c(T + 1) + 2σ0ε
∗h̄ + ξ + ξ̄ , ξ̄ = σ0δ(e

−β0 − 1). (5.15)

Then

u(x, T + 1) ≥ w−(x, 0, ι, μ̄), x ∈R, (5.16)

where μ̄= δe−β0 + ε∗h̄ ≤ δ0, then, by comparison principle and the choice of ε∗, it yields

w−(x, t̃, ι, μ̄) ≤ u(x, T + 1 + t̃) for t̃ ≥ 0. (5.17)

Then for all t ≥ T + 1, letting t̃ = t − (T + 1) in (5.17), we have

ui(x, t) ≥ w−
i (x, t − (T + 1), ι, μ̄)

= φi(x + ct − c(T + 1) + ι− σ0μ̄(1 − e−β0(t−(T+1)))) − μ̄pie−β0(t−(T+1))

≥ φi(x + ct − c(T + 1) + ι− σ0μ̄) − δ̂(t)pi, i = 1, 2, 3, 4,

(5.18)

where δ̂(t) = μ̄e−β0(t−(T+1)). Since φi(·) is monotone, together with the choice of η and (5.15), it
holds

ui(x, t) ≥ w−
i (x, 0, ct + ξ̂ (t), δ̂(t)), x ∈R, i = 1, 2, 3, 4, (5.19)

where

ξ̂ (t) = 2σ0ε
∗h̄ + ξ − σ0δ(1 − e−β0 ) − σ0μ̄= σ0ε

∗h̄ + ξ − σ0δ.

Hence, we have

ξ̂ (t) ≥ ξ − σ0δ, (5.20)

and, from the definition of ε∗,

ξ̂ (t) ≤ ξ + σ0ε
∗h̄ ≤ ξ + h + σ0δ. (5.21)
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For every t ≥ T , by the first inequality of (5.8), it follows that

ui(x, t) ≤ min{φi(η+(x, t − T , T) + h) + δpie−β0(t−T), ki}
≤ min{φi(x + ct + ξ + h + σ0δ) + δ̂(t)pi, ki}, x ∈R, i = 1, 2, 3, 4.

(5.22)

Hence, for any t ≥ T + 1, we have

ui(x, t) ≤ w+
i (x, 0, ct + ξ̂ (t) + ĥ(t), δ̂(t)), x ∈R, i = 1, 2, 3, 4,

that is, for x ∈R,

u(x, t) ≤ w+(x, 0, ct + ξ̂ (t) + ĥ(t), δ̂(t)), (5.23)

where

ĥ(t) = ξ + h + σ0δ− ξ̂ (t) = h − σ0ε
∗h̄ + 2σ0δ. (5.24)

From the definition of ε∗, it holds h − σ0ε
∗h̄ ≥ h − σ0ε

∗h> 0, and so

ĥ(t) ∈ (0, h − σ0ε
∗h̄ + 2σ0δ]. (5.25)

Combining (5.19) and (5.23), now we complete the proof.

Lemma 5.6 Let �(x + ct) = (φ1(x + ct), φ2(x + ct), φ3(x + ct), φ4(x + ct)) be a travelling wave
front of (4.5), and �(x) = (ψ1(x),ψ2(x),ψ3(x),ψ4(x)) with ψi ∈ [0, ki] be such that

lim
x→∞ψi(x)> ki − pi, lim

x→−∞ψi(x)< pi, i = 1, 2, 3, 4.

Then, for every δ > 0, there exist T = T(�, δ)> 0, ξ = ξ (�, δ) ∈R and h = h(�, δ)> 0 such that

w−(x, 0, cT + ξ , δ) ≤ u(x, T ,�) ≤ w+(x, 0, cT + ξ + h, δ), x ∈R.

Proof By comparison principle, u(x, t,�) = (u1(x, t,ψ1), u2(x, t,ψ2), u3(x, t,ψ3), u4(x, t,ψ4))
exists on R

+ and 0 ≤ ui(x, t,ψi) ≤ ki, (x, t) ∈R×R
+, i = 1, 2, 3, 4. For every δ > 0, one can take

δ1 = δ1(δ,�) ∈ (0, min{δ, δ0}) satisfying

lim
x→∞ψi(x)> ki − (1 − δ1)pi, lim

x→−∞ψi(x)< (1 − δ1)pi, i = 1, 2, 3, 4.

So we can choose M = M(�, δ1)> 0 such that, for i = 1, 2, 3, 4,

ψi(x) ≤ (1 − δ1)pi for all x ≤ −M , ψi(x) ≥ ki − (1 − δ1)pi for all x ≥ M . (5.26)

Let ε = ε(δ1), C = C(δ1) and v±(x, t) be described by Lemma 5.3 with δ replaced by δ1 and
ξ = ξ±, where ξ± = ∓M . Together with (5.26) and Remark 5.2, we have that for i = 1, 2, 3, 4,

ψi(x) ≤ (1 − δ1)pi ≤ v+
i (x, 0) for x ≤ −M ,

ψi(x) ≤ ki = v+
i (x, 0) for x ≥ ξ+ = −M

and

ψi(x) ≥ ki − (1 − δ1)pi ≥ v−
i (x, 0) for x ≥ M , ψi(x) ≥ 0 = v−

i (x, 0) for x ≤ M .
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Then

v−(x, 0) ≤�(x) ≤ v+(x, 0), x ∈R. (5.27)

By Lemma 5.3 and comparison principle, we have

v−(x, t) ≤ u(x, t,�) ≤ v+(x, t) for all x ∈R, t ≥ 0. (5.28)

In view of δ1 < δ, we take T > 0 sufficiently large such that, for any t ≥ T ,

δ1pi + (1 − 2δ1)pie
−εt < δpi and ki − δ1pi + (1 − 2δ1)pie

−εt > ki − δpi, i = 1, 2, 3, 4

and hence, again by Remark 5.2, for i = 1, 2, 3, 4,

ui(x, t,ψi) ≤ v+
i (x, t)< δpi when x ≤ x−(t) (5.29)

and

ui(x, t,ψi) ≥ v−
i (x, t)> ki − δpi when x ≥ x+(t), (5.30)

where x±(t) = ξ∓ ± Ct ± 4ε−1. Together with (5.29) and (5.30), we have

ui(x, T ,ψi)< δpi for any x ≤ x−(T), ui(x, T ,ψi)> ki − δpi for any x ≥ x+(T), i = 1, 2, 3, 4.
(5.31)

By lim
x→−∞ φi(x) = 0 and lim

x→∞ φi(x) = ki, i = 1, 2, 3, 4, we can choose H > 0 large enough such that
H
2 > x+(T), −H

2 < x−(T), and

φi(x) + δpi > ki for x ≥ H

2
and φi(x) − δpi < 0 for x ≤ −H

2
. (5.32)

Since 0 ≤ φi(x) ≤ ki and 0 ≤ ui(x, t,ψi) ≤ ki for any x ∈R and t ∈ [0, ∞), and together with (5.31)
and (5.32), we have that for i = 1, 2, 3, 4,

max{φi(−H + x) − δpi, 0} ≤ ui(x, T ,ψi) ≤ min{φi(H + x) + δpi, ki} for x ∈R. (5.33)

Let ξ0 = −H − cT , h0 = 2H > 0. It is clear that (5.33) implies that, for i = 1, 2, 3, 4,

max{φi(x + cT + ξ0) − δpi, 0} ≤ ui(x, T ,ψi) ≤ min{φi(x + cT + ξ0 + h0) + δpi, ki}, x ∈R.
(5.34)

Let ξ = ξ0 and h = h0 > 0. Then it follows from (5.34) that for any x ∈R,

w−
i (x, 0, cT + ξ , δ) = w−

i (x, 0, cT + ξ0, δ) ≤ ui(x, T ,ψi)

w+
i (x, 0, cT + ξ + h, δ) = w+

i (x, 0, cT + ξ0 + h0, δ) ≥ ui(x, T ,ψi), i = 1, 2, 3, 4.

Hence, we prove the conclusion of this lemma. This completes the proof.

Theorem 5.1 Assume that (A) holds and (4.5) is a travelling wave front �(x + ct) = (φ1(x +
ct), φ2(x + ct), φ3(x + ct), φ4(x + ct)). Then �(x + ct) is globally asymptotically stable with
phase shift in the sense that there exists a positive constant k such that for every ψi ∈ [0, ki]
satisfying

lim
x→∞ψi(x)> ki − pi, lim

x→−∞ψi(x)< pi, i = 1, 2, 3, 4,

https://doi.org/10.1017/S0956792520000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000078


Existence and stability of bistable wavefronts 171

the solution u(x, t,�) = (u1(x, t,ψ1), u2(x, t,ψ2), u3(x, t,ψ3), u4(x, t,ψ4)) of (4.5) satisfies

‖ u(·, t,�) −�(· + ct + ξ ) ‖≤ Ke−kt, t ≥ 0

for some K = K(�)> 0 and ξ = ξ (�) ∈R,�(x) = (ψ1(x),ψ2(x),ψ3(x),ψ4(x)), where ‖ · ‖ is the
general super norm in R

4.

Proof Let β0, σ0, δ0 be described by Lemma 5.2, and then let ε∗ be described by Lemma 5.5
with ε∗ satisfying σ0ε

∗ < 1. Take 0< δ∗ <min{ δ02 , 1
2σ0

} such that

1> k∗ := σ0ε
∗ − 2σ0δ

∗ > 0,

and fix t∗ ≥ 1 satisfying

e−β0(t∗−1)
(

1 + ε∗

δ∗
)
< 1 − k∗.

We need to prove two conclusions.
Conclusion 1. There exist two constants T∗ = T∗(�)> 0, ξ ∗ = ξ ∗(�) ∈R satisfying

w−(x, 0, cT∗ + ξ ∗, δ∗) ≤ u(x, T∗,�) ≤ w+(x, 0, cT∗ + ξ ∗ + 1, δ∗) for any x ∈R. (5.35)

In fact, by Lemma 5.6, there exist three constants T = T(�)> 0, ξ = ξ (�) ∈R and h = h(�)> 0
satisfying

w−(x, 0, cT + ξ , δ∗) ≤ u(x, T ,�) ≤ w+(x, 0, cT + ξ + h, δ∗), x ∈R. (5.36)

When h ≤ 1, (5.35) holds since φi(·), i = 1, 2, 3, 4, are monotone. Then when h> 1, denote

N = max{m| m ∈Z
+ and mk∗ < h}.

In view of k∗ ∈ (0, 1) and h> 1, then N ≥ 1, h ∈ (Nk∗, (N + 1)k∗], and furthermore, h − Nk∗ ∈
(0, 1). Note that h̄ := min{1, h} = 1. Together with (5.36), Lemma 5.5 and the definitions of t∗

and k∗, it holds

w−(x, 0, c(T + t∗) + ξ̂ (T + t∗), δ̂(T + t∗))

≤ u(x, T + t∗,�)

≤ w+(x, 0, c(T + t∗) + ξ̂ (T + t∗) + ĥ(T + t∗), δ̂(T + t∗)), x ∈R,

(5.37)

where

ξ̂ (T + t∗) ∈ [ξ − σ0δ
∗, ξ + h + σ0δ

∗],

0 ≤ ĥ(T + t∗) ≤ h − σ0ε
∗ + 2σ0δ

∗,

δ̂(T + t∗) = (δ∗e−β0 + ε∗)e−β0(t∗−1) ≤ (1 − k∗)δ∗ < δ∗.

Using the similar argument N times, then for some ξ ∗ = ξ̂ ∈R, δ̂ ∈ (0, δ∗], 0 ≤ ĥ ≤ h − Nk∗ < 1,
(5.37) still holds when T + t∗ is replaced by T∗ = T + Nt∗ Since �(·) is monotone, it follows
that (5.35) holds.

Conclusion 2. Let p = 2σ0δ
∗ + 1, Tn = T∗ + nt∗, δ∗

n = (1 − k∗)nδ∗ and hn = (1 − k∗)n, n ≥ 0.
So we can choose a sequence {ξn}∞n=0 ⊂R with ξ0 = ξ ∗ satisfying

|ξn+1 − ξn| ≤ phn for any n ≥ 0 (5.38)

https://doi.org/10.1017/S0956792520000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000078


172 K. Li and X. Li

and

w−(x, 0, cTn + ξn, δ∗
n ) ≤ u(x, Tn,�) ≤ w+(x, 0, cTn + ξn + hn, δ∗

n ), for any x ∈R, n ≥ 0. (5.39)

Indeed, Conclusion 1 implies that (5.39) holds when n = 0. Now we assume that (5.39) holds for
some n = m ≥ 0. From Lemma 5.5 with T = Tm, ξ = ξm, h = hm, δ = δ∗

m, and t = Tm + t∗ = Tm+1

(since t ≥ 1), it follows that

w−(x, 0, cTm+1 + ξ̂ , δ̂) ≤ u(x, Tm+1,�) ≤ w+(x, 0, cTm+1 + ξ̂ + ĥ, δ̂), x ∈R, (5.40)

where

ξ̂ ∈ [ξm − σ0δ
∗
m, ξm + hm + σ0δ

∗
m],

δ̂ = (δme−β0 + ε∗hm)e−β0(Tm+1−Tm−1)

≤ (1 − k∗)mδ∗
[(

1 + ε∗

δ∗
)

e−β0(t∗−1)
]
≤ (1 − k∗)mδ∗(1 − k∗) = δ∗

m+1,

ĥ ≤ hm − σ0ε
∗hm + 2σ0δm = (1 − k∗)m[1 − σ0ε

∗ + 2σ0δ
∗] = hm+1.

Take ξm+1 = ξ̂ . We have

|ξm+1 − ξm| ≤ |ξm + hm + σ0δ
∗
m − (ξm − σ0δ

∗
m)| = phm.

So (5.38) holds when n = m and (5.39) holds when n = m + 1. (5.38) and (5.39) hold for all n ≥ 0
by means of induction.

For each n ≥ 0, by (5.39) and comparison principle, we have that for any t ≥ Tn and x ∈R,

max{φ1(η−
n (x, t)) − δ∗

npie
−β0(t−Tn), 0} ≤ u(x, t,ψi) ≤ min{φi(η

+
n (x, t) + hn) + δ∗

npie
−β0(t−Tn), ki},

(5.41)

i = 1, 2, 3, 4, where η±
n (x, t) = x + ct + ξn ± σ0δ

∗
n (1 − e−β0(t−Tn)). For every t ≥ T∗, set n =[

t−T∗
t∗

]
≥ 0 and denote δ(t) = δ∗

n , ξ (t) = ξn − σ0δ
∗
n , and h(t) = hn + 2σ0δ

∗
n , we have t ∈

[Tn, Tn+1), Tn = T + nt∗. Together with (5.41), we obtain that for every t ≥ T∗, x ∈R,
i = 1, 2, 3, 4,

φi(x + ct + ξ (t)) − piδ(t) ≤ ui(x, t,ψi) ≤ φi(x + ct + ξ (t) + h(t)) + piδ(t). (5.42)

Furthermore, for t ≥ T∗,

δ(t) = δ∗
n ≤ δ∗q(t), (5.43)

h(t) = (2σ0δ
∗ + 1)(1 − k∗)n ≤ (2σ0δ

∗ + 1)q(t), (5.44)

where q(t) := e( t−T∗
t∗ −1) ln(1−k∗), and by (5.38), we have that for every s ≥ t ≥ T∗,

|ξ (s) − ξ (t)| = |ξm − σ0δ
∗
m − (ξn − σ0δ

∗
n )|

≤
m−1∑
l=n

|ξl+1 − ξl| + 2σ0δ
∗
n ≤

m−1∑
l=n

phl + 2σ0δ
∗
n

≤ phn
1 − (1 − k∗)

+ 2σ0δ
∗
n = νδ(t),

(5.45)

https://doi.org/10.1017/S0956792520000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000078


Existence and stability of bistable wavefronts 173

where m =
[

r−T∗
t∗

]
≥ n and ν = p

k∗δ∗ + 2σ0. Clearly, (5.45) implies that ξ (t) is finite at positive

infinity and

|ξ (∞) − ξ (t) ≤ νδ(t), t ≥ T∗.

Then, we have

|ξ (∞) − ξ (t) ≤ νδ∗q(t), t ≥ T∗. (5.46)

Hence, by letting k = − 1
t∗ ln(1 − k∗)> 0 and together with (5.42), (5.43), (5.44) and (5.46), we

prove the conclusion of this theorem. The proof is completed.

Together with Lemma 5.2 and comparison principle, we can get the Lyapunov stability of
travelling wave front of (4.5).

Theorem 5.2 Each travelling wave front of (4.5) is Lyapunov stable.

Proof Since the uniform continuity of φi(·) on R, i = 1, 2, 3, 4, we have that for every positive
constant ε, there exists a positive constant δ1 = δ1(ε) satisfying

|φi(· + y) − φi(·)|< ε

8
, (5.47)

for any |y| ≤ δ1. We can further take δ = δ(ε) ∈ (0, min{ ε
8(1+max1≤i≤4{pi}) ,

δ1
σ0

, δ0}), β0, σ0 and δ0 are
described by Lemma 5.2. Then for every � with ‖� −� ‖< δ, we have that for i = 1, 2, 3, 4,

max{φi(x) − δpi, 0} ≤ψi(x) ≤ min{φi(x) + δpi, ki}, x ∈R. (5.48)

Combining Lemma 5.2 with comparison principle, we have

max{φi(η
−(x, t)) − δpie

−β0t, 0} ≤ ui(x, t,ψi) ≤ min{φi(η
+(x, t)) + δpie

−β0t, ki}, x ∈R, (5.49)

i = 1, 2, 3, 4, where η±(x, t) := x + ct ± σ0δ(1 − e−β0t). Hence, for any t ≥ 0,

| ± σ0δ(1 − e−β0t)| ≤ σ0δ < δ1(ε).

Together with (5.47) and (5.49), we have φi(x + ct) − ε
4 ≤ ui(x, t,ψi) ≤ φi(x + ct) + ε

4 , (x, t) ∈
R×R

+, i = 1, 2, 3, 4, that is, ‖ u(·, t,�) −�(· + ct) ‖< ε, t ∈R
+. The proof is completed.

By Theorem 5.1, we can obtain the uniqueness result of travelling wave fronts of system (4.5).

Theorem 5.3 Let�(x + ct) = (φ1(x + ct), φ2(x + ct), φ3(x + ct), φ4(x + ct)) be a travelling wave
front of (4.5). Then for every travelling wave front �̄(x + c̄t) = (φ̄1(x + c̄t), φ̄2(x + c̄t), φ̄3(x +
c̄t), φ̄4(x + c̄t)) with 0 ≤ φ̄i(x + c̄t) ≤ ki, it must be c̄ = c and there exists ξ0 = ξ0(�̄) ∈R such that
�̄(·) =�(· + ξ0).

Proof Note that

lim
x→∞ φ̄i(x)> ki − pi and lim

x→−∞ φ̄i(x)< pi, i = 1, 2, 3, 4. (5.50)
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Using the results of Theorem 5.1, it follows that there exist K0 = K0(�̄)> 0 and ξ0 = ξ0(�̄) ∈R

satisfying

‖�(· + ct + ξ0) − �̄(· + c̄t) ‖≤ K0e−kt for any t ≥ 0. (5.51)

Set ξ̄ ∈R satisfying 0< φ̄i(ξ̄ )< ki, i = 1, 2, 3, 4, and denote I(ξ̄ ) := {(x, t) ∈R×R
+; x + ct = ξ̄}.

From (5.51), we have that for any (x, t) ∈ I(ξ̄ ),

φi(η̄) − K0e−kt ≤ φ̄i(ξ̄ ) ≤ φi(η̄) + K0e−kt, i = 1, 2, 3, 4. (5.52)

where η̄ := ξ̄ + ξ0 + (c − c̄)t. Since lim
x→∞ φi(x) = ki and lim

x→−∞ φi(x) = 0, i = 1, 2, 3, 4, by letting

t → ∞ in (5.52), it follows that c̄ ≥ c and c̄ ≤ c by the left- and right-hand side inequalities,
respectively. So c̄ = c. By (5.51), it follows that for any (x, t) ∈ I(ξ ),

‖�(· + ξ0) − �̄(·) ‖≤ K0e−kt. (5.53)

Hence, it follows from (5.53) that �̄(·) =�(· + ξ0) as t → ∞. The proof is completed.

Remark 5.3 By adopting a similar method, with only some slight modifications, we also obtain
the stable results of bistable travelling waves for (1.3).

Remark 5.4 Motivated by [23,30,35], we can also apply the idea of spectral analysis to obtain
the exponential stability of bistable travelling waves for (1.3) and (1.7). For more details, one
can refer to [23].
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