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In this paper, we consider the monotone travelling wave solutions of a reaction—diffusion epidemic
system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by
applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed
system and choosing suitable small positive constants to define a pair of new upper and lower
solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of
monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone trav-
elling wave solutions will be established with the help of the upper and lower solution method and
the exponential asymptotic stability.
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1 Introduction

The environmental pollution by an infective human population can lead to the spread of infec-
tious diseases, which is regarded as one of the main factors of relevant epidemics, such as
cholera and malaria [6]. In [8, 12], the authors proposed a model to describe the spread of cholera
epidemic which happened in the European Mediterranean regions in 1973

d_ual’t(t) = —anui(t) + anuy(?),
(1.1)
dujt(t) = —axnuy(t) + g(ui (1)),

where a11, a2, axy > 0, u;(¢) and u, (), respectively, are the densities of infectious agents and the
infective human population at the time ¢# > 0, a;; is the natural death rate of the agents, a;, is the
natural diminishing rate of the infective human, a,; is the contribution of infectious population
to the density of infectious agents and g(x) denotes the infection rate of the human population
due to the concentration of the agents.
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Existence and stability of bistable wavefronts 147

If it only considers the mobility of the bacteria and neglect the mobility of the infectious
population, Capasso and Maddalena [8] gave the following system (see also [13])

8u1a(;€s n_ d 82”5%’ D _ anui(x, £) + apua(x, ),
X (1.2)

% = —anuy(x, 1) + gui(x, 1)),
where u;(x, t),i =1, 2, are the spatial densities of two species at the position x and at the time
t > 0. The existence, uniqueness and regularity of (1.2) were considered in [7, §]. In [36], the
authors considered the minimal wave speed of System (1.2). In 2004, Xu and Zhao [41] con-
sidered the existence, uniqueness and global exponential stability of monotone travelling wave
solutions of System (1.2) with bistable case.

To make the model be more realistic, taking into account the infective population too moving
randomly, System (1.2) was modified as follows

8u1(X, t) =d azul(xa t)
ar 1T g2

2
8u28()tc, Pt ng D — s, ) + glar (x,),

—anui(x, 1) + apu(x, 1),

(1.3)

where d; > 0 and d;, > 0. Under the homogeneous Neumann boundary conditions, the authors
[9,10] studied System (1.3) using the contracting rectangle technique [28] and obtained the same
threshold results for (1.1). For d;, d; > 0, the authors [8] considered the convergence problem of
the equilibrium states of System (1.3).

Generally speaking, some infectious agents u;, such as bacteria or viruses at position x, depend
on u; at position x or neighbour position of x, and even all the position in space. For example,
an important factor of the spread of typhoid fever, malaria, and so on, is the mobility of the
infectious population, and in order to effectively control indirect transmission diseases, it should
adopt different approach to control the production of the pollutants. Based on this idea, a possible
model is the one proposed in [5]. For more details, we refer to [2]. Xu and Zhao [42] studied the
spreading speed and monostable travelling wave solutions of the following system

duy (x, t 3%uy(x, t
miut) _ g, ”g(g" ) (e, )+ / G(x — Yus(y, B)dy,
x 2 (1.4)

V) (e, 1)+ gl (v, ),

where Q2 C R, G(x — y) is a kernel function. By taking into account the latent period of bacteria,
the authors [34] investigated the asymptotic speed of spread and travelling waves of system with
distributed delay

duy(x, t 9%u X, t
la(t )=d1 1(2 )

—anui(x, ) + apuy(x, t),
ax

~ (1.5)
% = —anuy(x,t) + /0 g(uy(x, t — s))P(ds),
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where P is a probability measure on R, . As its generalisation, Wu and Liu [39] considered the
spreading speed and the minimal wave speed of the following system

2

3u18(;5, 1) =d18 ua])g, 1) —anui(x, t)—i—/ G(x — y)ua(y, f)dy,
Q

(1.6)

8“28();» H_ —anuy(x, ) + foo g(uy(x, t — 5))P(ds).
0

More generally, the infective human population and the concentration of the infectious agents
in the environment have a direct effect on each other, which depends not simply on population
density at one point in space and time, but on a weighted average involving values at all previous
times and at all points in space. On one hand, changes in human population will result in a change
of the bacteria population some time later, such as some recover population who is immune to
bacteria in some time (immune period); on the other hand, due to the human and bacteria moving
(by diffusion), they may not stay at the same position and at previous times. In order to describe
this model reasonably, we introduce the spatiotemporal delays or nonlocal delays into System
(1.3), which is modified as the following system

2
P = D — )+ (<)),

(1.7)
2
D000 — iy 12D — run 1)+ (25 g0, ),
where (g * u2)(x, ¢) and (g» * g(u1))(x, ¢) are defined by
(g1 *up)(x, 1) = f / Gi(x =y, t = 5)ki(t — $)ur(y, s)dyds,
(1.8)

(g2 % gu))(x, 1) = [ [ Ga(x =y, 1 = )ko(t — 5)g(u1 (v, 5))dyds,

where G and G, are chosen as

_a2 _a2
e ' and Gy(x, )= e Mt

Gi(x, 1) =
: A dyt Vamwdt

and the kernel functions are

1 _1g 1 _1g
ki(s)=—e T and k(s)=—e 27,
T 15)
71 and 7, denote the immune period of the recover population and the latent period of the bacteria,
respectively. Obviously, G| and G, satisfy

G 9°G G %G
a—t1=ar2 Dand 22—, 22

e o = G0)=50), i=12,

where §(x) is the general Dirac function.
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By variable transformation 6 = ¢ — s and z = x — y, we have

_; 1 _ 2
(g1 *up)(x, 1) = / / 7? e 0 uy(x — z,t — 0)dzd0,
47Td2

1 _ 2
(g2 x gu))(x, 1) = / / 7 e 0 g(uy (x — z, t — 0))dzdb.
47Td1

In this paper, we investigate the existence, uniqueness (up to translation) and global expo-
nential stability (with phase shift) of travelling wave solutions of Systems (1.3) and (1.7).
We note that many authors investigated the existence of travelling wave solutions of systems
with discrete or nonlocal delays by Schauder’s fixed point theorem and the iterative tech-
nique [18-22,24,33,37,40], and that the uniqueness of the wave speeds by usually using the
upper and lower solution method [14,23,26,31], and that the stability of travelling waves with
the help of the contraction technique [14,31,38], spectral theory [4,30,35] and weighted energy
method [44]. Since the delay in System (1.7) is infinite, the above methods are difficult in apply-
ing to (1.7) and the method in [41] does not apply to System (1.7) as well. By introducing new
variables, Lin and Li [23] transformed the nonlocal delayed system to non-delayed system, and
this method was also used in [17]. They established the existence, uniqueness of the wave speeds
by means of the upper and lower solution method and the asymptotic stability of bistable travel-
ling waves by spectral methods. In this paper, we will adopt these methods in [14,23,31] to deal
with (1.3) and (1.7).

This paper is organised as follows. In Section 2, we first study ODE System (1.1). In Sections 3
and 4, we investigate the existence of bistable travelling waves and discuss the existence and
regularity of mild solutions of Systems (1.3) and (1.7), respectively. In Section 5, motivated
by [14,31], by choosing suitable small positive constants, we will define a pair of new upper and
lower solutions of the system without delays, which is different from that in [14, 31], and use
the contraction technique to obtain the stable results. Moreover, the uniqueness and Lyapunov
stability of travelling wave fronts of System (1.7) are also obtained in this section. In a similar
argument, we also obtain similar properties for System (1.3).

2 ODE system

We first investigate ODE System (1.1). For simplicity, we study the following rescaled system
of (1.1)

B0 — 1y () + (),
. @.1)
”2(’) —Bus(t) + g (1),
where u} = uy, u5 = ayjup, t* = ay1t, and drop the stars, o = aTZ: B= %
11

We need the following hypothesis about g:

(A) ge C*(R*,R"),g(0)=0,g'(0)>0,g'(x)>0,Vx >0, lim g(x)=1, and there exists
X—> 00

xo > 0 such that g”(x) > 0 for 0 <x < x and g"(x) < 0 for x > xo.

https://doi.org/10.1017/50956792520000078 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000078

150 K Liand X. Li

To analyse the globally asymptotical behavior of System (2.1), we need the well-known
Bendixson criterion. For the reader’s convenience, we list it as the following lemma.

Lemma 2.1 (Bendixson criterion) For system

& = M,y),
J (2.2)
G =N,

OM(x,y)  ON(x,y)
+
ox ay

keeps the same sign in some simply connected domain D, then the domain D does not contain
any closed orbits of System (2.2).

By Lemma 2.1, we get the following result.
Lemma 2.2 System (2.1) has no any closed orbits in R?.

We give some known results for the asymptotical behavior of the equilibria of System (2.1),
see [6,11,13].

zZ
and Yepip 7= SUp éﬂ > 0. Then
z€[0,4+00) Z

_B _anan

Lemma 2.3 Lety =4 an

(1) wheny > Yo, (2.1) has a unique equilibrium (0, 0), which is globally asymptotically stable
in the first quadrant of R?;
(i) when y = Yo or 0 <y < g'(0), (2.1) has a unique nontrivial equilibrium besides (0, 0);
(i) when

g0) <y < Verirs (2.3)
(2.1) admits three equilibria in the first quadrant of R*:E~ =(0,0),E’ =(a, %), E* =

o
(b, g), where 0 < a < b are the three roots of g(x) = gx, E is a saddle point, E~ and E*
are stable nodes. Moreover, the first quadrant of R? is the union of the domain of attraction

E~ and E* and the stable manifold of E°.

Proof This lemma may be proved by simple mathematical knowledge, and we only sketch an
outline of the proof. The equilibrium of System (2.1) is the intersection of the line L : u, = éul
and the curve ' : up = % g(u1). The number of the intersections is determined by the slope of the
curve I'. The maximum slope of the curve I IS Yepir = SUP,¢[g 400) (X)/X > 0.

(i) By g(0) =0 in (A), it is obvious that (0, 0) is an equilibrium of System (2.1). If y > y,
then the curve I is below the straight line L except (0, 0) in the first quadrant of R2. That is, (0, 0)
is only equilibrium of System (2.1). The characteristic equation of System (2.1) at (0, 0) is

—1-x o
gy —p—x

I
k=)

(2.4)
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then the eigenvalues A;, = —IhEy (1+,32)274(,3 —2O) _ ) since ¥ > yeir. Hence, (0, 0) is locally
asymptotical stable. By Lemma 2.2, System (2.1) has no any closed orbits in R2. Therefore, (0, 0)
is globally asymptotical stable.

(i1) Using similar analysis as in (i), one easily obtain that (2.1) has a unique nontrivial
equilibrium besides (0, 0) when 0 < y < g’(0) or y = y,,4,. By calculating directly the eigenvalues
of the characteristic equation of System (2.1) at (0, 0) and nontrivial equilibrium, respectively,
we can obtain that (0, 0) is a saddle point for 0 < y < g/(0), and nontrivial equilibrium is an
asymptotical stable node for 0 < y < g/(0). But when y = ¢/(0) and y = y,,, there exists a zero
eigenvalue of the characteristic equation of System (2.1) at both (0, 0) and nontrivial equilibria,
respectively. In this case, linear analysis may be invalid and the behavior of the equilibrium will
become more complicated.

(iii) The eigenvalues of the characteristic equation of System (2.1) at both (0, 0) and (b, g)
are both negative. Hence, they are stable nodes. But the characteristic equation of System (2.1)
at (a, 77) has one negative eigenvalue and one positive eigenvalue. Hence, it is a saddle point.
For the first quadrant of R? being union of the domain of attraction £~ and E* and the stable
manifold of £, one can refer to [6]. The proof is completed. O

3 Travelling wave fronts and mild solutions of System (1.3)

In this section, we investigate the existence of monotone travelling wave solutions and mild
solutions of (1.3).

A travelling wave solution of (1.3) has the special form (u;(x, t), u2(x, 1)) = (¢1(€), 2(§)), & =
x + ct, where ¢ is the wave speed and (¢1(€), ¢2(§) is the wave profile. If (¢1(€), $2(€) is
monotone in £ € R, then it is called the travelling wave front.

For simplicity, we study the rescaled system of (1.3)

2
D) =y SHCD 1)+ s, 1),
3.1)

2
8uza(;c, ) =dza uz(;c, 1) — B, 1) + gl . 1),
ox

where u} = uy, u5 = ayjup, t* = ayt, x* = Japx, and drop the stars, o = %, B= %
We want to find the travelling wave fronts of (1.3) connecting £~ with E* provided that (2.3)
holds. Then, denoting x + ct by ¢, (3.1) has a travelling wave front ®(f) = (¢(¢), ¢»(¢)) which

connects E~ with £ if and only if the wave system
di19](t) — cd((1) — h1 (1) + oo (1) = 0,
oy () — cy(1) — Bpa(t) + g(d1(1)) =0

(3.2)

satisfying

b
Jim @1(0.:(0)=(0,0:=_,  lim @10, 60)= (b2 ) =0 (33)

has a monotone solution (¢ (), ¢2(¢)) on R.
By Theorem 3.3.2 in [35], it easily follows the existence theorem.
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Theorem 3.1 Assume that (2.3) holds. Then there exists a monotone function (¢\(t), ¢,(t)) €
C*(R, R?) satisfying (3.2) and (3.3).

Now we investigate the mild solutions of (3.1). Consider the Cauchy problem of (3.1) with the
initial values

i (x,0)= Y1 (x), 1(x,0)=Yr(x), x€R, (3.4)
where
(0,0) < (Y10, Y20 = (b, g) with ¥(x) € C(R,R), i = 1,2. (3.5)
Let
Bi=1, B=8. (3.6)

For (0,0) < (1 (x, 1), s (x, 1)) < (b, g), (x,7) € R x R*, define F = (Fy, F>) by

{ Fl (ul, u2)(xa t) = ﬂlul(xa t) - ul(xn t) + OH/Q(X, t)a
(3.7)

Fa(ur, up)(x, 1) = Baua(x, 1) — Bua(x, 1) + g(ur (x, 1))

Then, for any (0, 0) < (v (x, 1), v2(x, 1)) < (U1 (x, 1), ur(x, 1)) < (b, g),x € R, it is easy to see that

(0,0)=F(0,0) < F(vy, v2)(x, ) < F(uy, up)(x, t) < F(b, g) (3.8)

From (3.6) and (3.7), (3.1) can be rewritten as

dui(x, 1) —d 82u1(x, ?)
or 1T g2
8u2(x H_ 8 uz(x 1)

= Brur(x, ©) + Fi(u1, uo)(x, 1),
(3.9)

— Baua(x, 1) + Fa(u1, ua)(x, 7).

Let X = BUC(R, R?) be a Banach space of bounded and uniformly continuous vector-valued
function from R to R? with the general super norm || - || and

X, = {u(x) eX: (0,0) <u(x) < (b, g) forxeR}.

Define
u(x, 1) = \/M N 4"” O()’)d)’ = Tl(f)ul(x)
1
,<x—
w0 =L [ B0y = T
h

and 7(¢) = (T1(9), T»(¢)). It is easy to see that T(f) : X — X is a Cy semigroup. Furthermore, by
[15,16,27,32], it is easy to see that 7'(¢) is a positive and analytic semigroup. Furthermore, with
the help of upper and lower solution method and the theory for integral equations, see Theorems
1, 2 and Proposition 1 in Martin and Smith [25], and Theorems 4.1 and 5.1 in Ruan and Wu [29],
we have the following result.
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Theorem 3.2 Assume that (Y1(x), ¥,(x)) satisfies (3.5). Then (u\(x, t), uz(x, t)) defined by

i, 1) = Ty(OY () + /0 Tt — $)F (s, 1) (x, $)ds,
(3.10)

s, 1) = To(O0a(x) + /0 Tt — $)Fa(uur, 1) (x, )ds

forall x e R, t > 0 is a unique mild solution of (3.9) and (3.4) (also (3.1) and (3.4)). Moreover,
(w1 (-, 1), ua (-, 1)) € X for all t > 0.

It is clear that u; and u, are C* in x e R and C' in 7> 0. So the smoothness of u)(x, ) and
uy(x, t) implies that the mild solution (u;(x, #), u»(x, ¢)) described by Theorem 3.2 is a classical
solution of (3.1) with initial value (3.4) for all (x, #) € R x (0, +00). The asymptotic stability of
bistable travelling waves and uniqueness of wave speed of (1.3) will be given in Section 5, which
is based on a similar method used to System (1.7).

4 Travelling wave fronts and mild solutions of System (1.7)

As the above, we also study the rescaled system of (1.7)

2
aulég)tc’ 0 di Om(x1) ui(x, 1) + (g1 * up)(x, 1),

ax’
ouy(x, t) —d azuz(x, 1)

4.1)

= Bua(x, 1) + (82 * g(un))(x, 1),

where fo :ul,uj =anuy, t* =at,x* =.Janx,0* =a10,z* = J/az, ‘L'i* =ant,i=1,2, and

drop the stars, o = ; ,,B:Z%.
a

Let y = 5 =ajjay. Lemma 2.3 is still valid with «, y replaced by new «, y. In order to
investigate the existence of monotone travelling wave solutions of (1.7) connecting £~ with
E*, we will assume that (2.3) holds. Then (4.1) has a travelling wave front ®(¢) = (¢ (?), ¢2(2))
connecting E~ with ET if and only if the wave system

d19] (1) — cdi(1) — P1(1) + (g1 * $2)(1) =0,

4.2)
oy (1) — ey (1) — Bepa(1) + (g2 % g(P1))(1) =0
with
b
lim (¢1(0),62(0) = (0,0, lim (¢1(0).2(e) = (b. > (43)
t——00 t——+00 o
has a monotone solution on R, where (g; * ¢;)(¢) and (g, * g(¢1))(¢) are defined by
(g1 % P2)(t) = / f L %@(t — c0 — z)dzdb,
00 Tl 4]Td29
4.4

_L 1 _ 2
(g2 * g(d))() —/ / 2’ e W0 (¢ (t — cO — z))dzdo.
47Td1
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If we introduce other two functions as

Ll3(x, t) = (gl * u2)(xa t)a u4(x, t) = (g2 * g(ul))(xa t)’

then (4.1) with the nonlocal delays is transformed into the non-delayed system

Auy(x, t 0%uy(x, t
0 = TG ) + (e ),

2
3”28(;@ ) - > ? 132(;(’ I Bus(x, 1) + ua(x, 1),
x
4.5)

dus(x, t 9’ us(x, t
u3a(';c ) :dz u;)g? ) — .L,Llug,(x, t) + -L—lluZ(xs t))

2

g l) — g D) _ Lo+ L),
This is a well-known method which has been often used, for example, in [17, 23]. We
give the relation between (4.1) and (4.5). If (ui(x,?), us(x,t)) is a solution of (4.1), then
(ui1(x, 1), up(x, 1), us(x, 1), us(x, t)) is a solution of (4.5); conversely, if (u)(x, t), us(x, 1), uz(x, t),
u4(x, 1)) is a solution of (4.5), then (u; (x, t), u2(x, 7)) is a solution of (4.1).

Obviously, (4.5) has a travelling wave solution ®(¢) = (¢;(¢), $2(¢), P3(t), P4(¢)) connecting
®_=(0,0,0,0) with ®, = (b, 5, g, %b) if and only if the wave system

d1¢] (1) — coi(t) — P1(t) + ap3(t) =0,
dr5 (1) — cdy(t) — Ba(t) + (1) =0,

(1) = cpy(1) — b3 + (1) =0, ()
di (1) — ct(1) — L da() + L e(@1(0) =0
with
Jim o=@, lim &)=, 4.7

has a solution on R.
To obtain the existence result of (4.1), we need the well-known Hurwitz criterion applied to
(4.6). For the reader’s convenience, we list it as the following lemma.

Lemma 4.1 (Hurwitz criterion) Consider the following polynomial equation
M4 a4t a, A +a, =0, (4.8)

all the roots of Equation (4.8) have negative real parts if and only if

a az das --- dy—1
a a4 - Azk-2
0 a a3 - ax-3
H, = >
k 0 I a - axy4 0,
o o o --. ay

wherek=1,2,--- ,nand a;=0 forj> n.
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Theorem 4.1 Assume that (2.3) holds. Then there exists a monotone function
(#1(0), $2(1), $3(1), Pa(1) € C*(R, R*) satisfying (4.6) and (4.7)

Proof It is clear that

0 —B 0 1
f /(A) = 1 1 )
0 T 7 0
low o o -1
[2) 1%

where A = ®_, ®!, ®_ corresponding to w = 0, a, b, respectively, and d'! ( s G a , %a)
We first check that f/(®_) and f'(®,) only have eigenvalues with negative real parts. By
direct calculation, we have

A+1 0 —a 0
p 0 A+B 0 -1
AL —f (Do) = 1 1
0 + Atg
~1gO 0 0 A+g
1 1 1
= O+ DA+ ;3)(/\ n —) (/\ n —) g (0)
T1 T %)

=x4+(1+ﬂ+%+%)/\3+[ﬂ+< )
[(G+)poor)

By Lemma 4.1, we only need to verify that H; > 0,k =1, 2, 3, 4. It is obvious that

(1+B)+ L]ﬁ

1Ty

1
—(ﬁ —ag/(0)).
172

11
Hi=1+p+_—+—>0,
1

T
1 1 1 1
I+b+e+g (T1+T2)'B+flfz
Hz: > 0.
1 B (2 +L)a+p+ 55
By (A), we have 8 > ag’(0), hence
1 1 1 1 1
1+'B+‘E_1+‘L'_2 (T_1+‘E_2)'3+ﬁ'3 0
Hy = 1 Bt (E+5)01+h+55  agB—agO)
0

1 1 1 1 1
I+b+4a+g (% + %)B + g
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(+pt+ B+ )asn+ (5 +0)p+ 28]
T R ) B | C e LR
R e || e LR R || C e L]
(1) - [(m 4 )p ]

. (1+ﬂ+Tl+l)[(l+l)2ﬂ2+L(%+%)ﬁ(”ﬂ)+(%)zﬁ]

G e =0

Furthermore, we have

Hy=
1+p+ 4+ 4 (% %)ﬁerZﬂ 0 0
1 B+ (,11 )(1 +B)+ 7 (B — g (0)) 0
0 1+p+4+1 <%+1)ﬂ+m2ﬂ 0

0 1 B+ (% - %2)(1 +B)+ o i (B —ag(0)

= %(,3 — ag/(0))Hs > 0.

Similarly, by 8 > ag/(b), we can prove that f(P.) only have eigenvalues with negative real

parts.
Next, we choose v = (vy, v, v3, v4)(v; > 0,i = 1,2, 3,4) such that vf’(®') > 0. Notice that
1 1 1 1
Vf (@) > 0= —g'(a)vs >vi, —v3> Py, av; > —v3, V> —uy. (4.9)
1%) 71 71 %)
Since B < ag'(a), it is easy to find v; > 0,i =1, 2, 3, 4, such that (4.9) holds.
Hence, the conclusion is obtained by Theorem 3.3.2 in [35]. The proof is completed. O

Remark 4.1 (4.1) can be rewritten as (4.5) because travelling wave fronts of (4.1) are twice
continuous differentiable. By [1, 3, 17], the regularity of us and uy is obvious.

Now we consider the mild solutions of (4.1). Motivated by Lin and Li [23], in this subsection
we adopt the same idea to talk about the mild solutions of (4.1).

Firstly, we study the existence and uniqueness of mild solutions of (4.1). Consider the Cauchy
problem of (4.1):

https://doi.org/10.1017/50956792520000078 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000078

Existence and stability of bistable wavefronts 157
wix,5) = Yix, s),  (6,5) €R x (—00,0], i=1,2, (4.10)
where
(0,0) < (¥1(x, 5), V2, 5)) < (b, g) with ¥i(x,5) € C(R x (—00,0, R),i=1,2.  (4.11)
Let
Bi=1, B.=8. (4.12)

For (0,0) < (u1(x, 1), ta(x, 1)) < (b, g), (x,7) € R x R, define F = (Fy, F) by

Fr(uy, wo)(x, ) = Brur(x, £) — ur(x, t) + a(g1 * uz)(x, 1),

4.13)
Fanr, 12)(x, 1) = Botia(x,0) = Bra(, ) + (2 % gun) (v, 1)
Then, for any (0, 0) < (u;(x, 1), uz(x, 1)) < (v1(x, ), va(x, 1)) < (b, 2),x € R, > 0, we have
b
(0,0) = F(0,0) < Fluy, u2)(x, ) < F(vy, v2)(x, ) < F(b, —). (4.14)
o
Together with (4.12) and (4.13), (4.1) can be rewritten as
2
81/{18(;C, t) =d el Maljgcg t) — 1311,{1()6, t) + Fl(”l, uz)(x’ [),
(4.15)

2
3u2§;€, ) = a : uz(;c, S Baua(x, 1) + Fo(ur, u2)(x, 7).
0x

Using the same notations and discussion as in Section 3, we get the following theorem by [25,29].
Theorem 4.2 Assume that (Y1(-, ), ¥2(-, 5)) satisfies (4.11). Then (ui(x, t), uy(x, t)) defined by

un(x, 1) = T (¥ (x, 0) + fo Tt — $)F 1y, 1) (x, 5)ds,
(4.16)

r(x, 1) = Th(HYa(x, 0) + / To(t — s)Fo(uy, up)(x, s)ds
0

for (x,1) € R x (0,00) is a unique mild solution of (4.15) and (4.10) (also (4.1) and (4.10)).
Moreover, (ui(-, 1), us(-, 1)) € X; for all t > 0.

Secondly, we study the regularity of mild solution obtained in Theorem 4.2. Consider the
Cauchy problem

2
Bvla(JtC, 1) —d, 0 valg H o1(x 1) + w3 (. £),

vp(x, 1) _ 82v,(x, 1)

Jf d2 8)6'2 - ﬁvz(X, t) + U4(x9 t)a
dvs(x, t 9%vs(x, t 4.17
Bl =, 000 - Lo+ Funen, -17)

vy (x, 32 vy(x, t
e — o S50 L0+ Leuin o)

(v1(x, 0), va2(x;, 0), v3(x, 0), V4(x, 0)) = (V1(x), V2(X), V3(x), V4(x)),
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for (us, ug) € X. If we define (75(), T4(t)) : X — X by

o0 _ ,)2
T3(u3(x) := \/4—6“ B Y(y)dy,
2
o0 _ ,)2
T4(t)u4(x) \/m @ ug(y)dy,
1

then (4.17) has a unique classical solution (v (x, 1), v2(x, £), v3(x, £), v4(x, t)) defined by

vi(x, 1) =Ti(Hvi(x) + /0 Ti(t = 9)[Bivi(x, 5) — v1(x, 5) + av3(x, 5)]ds
0206, 1) = To()vale) + / Tt — $)[Brva(r, ) — Puals s) + vacx, 9)1ds,
0
1 t
N O /0 Tt — s)uax, s)ds,

1 t
v4(x, 1) = T4(H)va(x) + = / Ty(t — s)g(vi(x, 5))ds.
2 Jo

Now we choose the initial values in (4.17)

vi(x, 0) =¥i(x,0), i=1,2,3,4, (4.18)
where ¥ (x, 0), ¥»(x, 0) are given by (4.10) and y3(x, 0), Ya(x, 0) are defined by

I | I
¥3(x, 0) = o / T3(0) ¥ (x, —0)db, Va(x, 0) = o / T4(0)g(Y1 (x, —0))d6.
0 0

Then, by T5(t + 5) = T5(£)T5(s) for any ¢, s > 0, we get

_t o0 y2
v3(x, 1) = —&2L / e Miyn(x —y,0)d
3(x, 1) \/4szt . Y3 (. ¥, 0)dy

4f‘2(’ D vy(x — y, 8)dyds

/0 rlw/4nd2(t—s /
=L | TOwax.1—0)db,
0

and similarly,

1 o0
()= = /0 T4(0)g(v1 (v, £ — 0))d6.

By expressions of vz, v4 and the relation between (4.1) and (4.5), it is clear that v; and v, are
independent of vs and vy.

Motivated by Lin and Li [23], and together with the relation between (4.1) and (4.5), we have
the following result.
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Lemma 4.2 Assume that (4.17) with the initial values given by (4.18), then (u;(x, t), ux(x, t)) =
(v1(x, 1), v2(x, 1)) holds for (x, ) € R x (0, 00).

Proof On one hand, from the expression of v3, we have that for all # > 0,

v, 1) = Th ()i (x, 0) + /0 Tyt — s)[ﬁlvl(x, ) — v1(x,5) + /OOO Tlln(e)uz(x,s — e)de]ds.

On the other hand, it follows from Theorem 4.2 that

u(x, 1) = Ty (D (x, 0) +/0 Tl(t—s)[ﬂlul(x, §) — (%, 5) + /OOQ %}Tg(@)uz(x,s - e)de]ds.

Let p(t) = p1(¢) + p2(?), where p;(¢) := sup |vi(x, 1) — u;(x, )|, i=1,2. Since || T(¢) |[< 1 fort > 0,
xeR
then

t
PO =pO -+ [ [ suppi(0)+ suppa(@)]as
0 <s <s
where

J=Bi+ B +(1+a)+(B+w) with @ =max{g'(¥)|x € [0, 5]} > 0 by (A).

By a similar argument as above, we have that for # > 0,

pa() <ps(O) -+ [ [ suppi(0)+ suppa(@)]as
0 O<s 0<s

So it follows from the above two inequalities that

t t
PO =pO)+2 [ [ supp10) + suppa)]ds =p0) +47 [ supp(oris.
0 <s <s 0 0<s

It is easy to see that for all £ > 0,
t
PO+ 5upp(0) = p(0) +5upp(6) +47 [ supp0)as
6<0 0<0 0 Oss

t
< p(0) + sup p(0) + 47 / [ sup p(6)+ sup p(©) ] ds.
0<0 0 0<6<s 0<0

t

Define g(t) := supyy{p(0) + sup,., p(r)} for t > 0. Note that | [ sup p(6)+ sup p(0)]ds is
- - 0 0<6<s 6<0

increasing in ¢ > 0, it follows from the above inequality that

q(t) <q(0)+4J /0 q(s)ds.

Therefore, together with the Gronwall’s inequality, we obtain that ¢(f)=0 for >0 when
q(0) = 0. The proof is completed. O
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It follows from Lemma 4.2 and the smoothness of v;(x, ¢) that (u(x, 1), u»(x, t)) is a classical
solution of (4.1). Define

(0= 4 /0 T3(0)ua(x, t — 0)d6,
(4.19)

wir, =1 fo T0)g(u1(x, 1 — 0))db.

Obviously, u3 and uy are C?> inx € R and C' in ¢ > 0. So from the smoothness of u; and u,, we
obtain the following result.

Theorem 4.3 (u(x, t), ux(x, 1)) given in Theorem 4.2 is a classical solution of (4.1) and (4.10) for
(x, 1) € R x (0, 00). Furthermore, u;(x,t),i=1,2,3,4, satisfy (4.5), where usz and u4 are given in
(4.19).

Hence, to obtain the asymptotic stability of solutions of (4.1) and (4.10), we only need to
investigate the corresponding non-delayed System (4.5).

5 Asymptotic stability and uniqueness of travelling wave fronts

In order to give the comparison principle, we first give the definition of upper and lower solutions
of (4.5) with the initial values (1 (x), ¥2(x), ¥3(x), ¥4(x)) as follows.

Definition 5.1 Assume that u(x, £) = (u1(x, £), up(x, 1), u3(x, £), ug(x, 1)) is C* in x € R and C!
int>0and ®_ <u(x, ) < d,. Then u(x, ¢) is called an upper (a lower) solution of (4.5) if it
satisfies

0%u; (x, 1)

P ui(x, 1) + aus(x, 1),

ouy(x, 1)
9 = (=) d

2
D)+ (<) dy D (e, )+, ),
ax
82u3(x, H
ox?

2
3”48(3;, 1) >(<)d; 9 ua(x, 1) Lg‘g’ B _ %m(x, )+ %g(ul(X, 1),

5 y 5.1
WD) > (<) dy TS0 1)+ i), o

(u1(x, 0), u2(x, 0), u3(x, 0), ua(x, 0)) = (Y1(x), Y2(x), Y3(x), Ya(x)).
Lemma 5.1 (Comparison principle) Let

u(x, 1) = (u(x, 1), uz(x, 1), u3(x, t), us(x, 1)) and v(x, t) = (v1(x, 1), V2(x, 1), v3(x, 1), Va(x, 1))
be two solutions of (4.5) with u(x, 0) = W, and v(x, 0) = W,, respectively, where

W) = (Y1), Ya(x), Y3(3), Ya(x)) and Ws(x) = (¢1(x), 92(x), 93(x), 9a(x)) € C(R, RY)
with @_ < Wy(x) < W (x) < Dy, x € R. Then for any (x,t) € R x (0, 00),

D_<vlx,t)<u(x,H) <P,
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and
y+1
ui(x, 1) — vi(x, 1) = Ji(L, t — to) / (ui(z, to) — vi(z, t0))dz > 0 (5.2)
y
for L=>0,x,y € Rsatisfying |x —y|<Landt>ty>0,i=1,2,3,4, where
e P1t=10) @412 e Palt—10) _@1)?
St —t)) = ———e 00 Jy(L,t —t)) = ——————e R0
VaAnd (t — ty) VArdy(t — t)
— 7y (t—10) wa1? e‘%("“’) _w1?
(Lot — 1) = ¢ BT | (Lt — fg) =~ T,

Varndy(t —ty) Vardi(t—ty)

Proof For the proof of ®_ < wv(x, ) <u(x, ) < ¥, it is very similar to these of Theorem 14.16
in Smoller [32], Theorem 5.5.5 in Volpert et al. [35] and Theorem 5.2.9 in Ye and Li [43], we
omit the details.

We only prove that (5.2) holds. Since the semigroup (7 (¢), 72(?), T5(), T4()) is positive, then
any solution ®_ < (u;(x, 1), ua(x, 1), us(x, t), us(x, t)) < ®, of (4.5) satisfies
t
)= 1= e )+ [ TG = ) s) = e 5) + a5l

s, 1) = Tt — P, 1) + / To(t — $){Bata(x, ) — Pua(x, s) + ua(r, )1ds,

uz(x, 1) = T3(t — ryuz(x, r) + Tll / T5(t — s)ua(x, s)ds,

o) = Tyt = st + & [ 7= shgtun )

for all 0 <r <t<a(a>0). For any two solutions ®_ <v(x,?) <u(x,t) < D, of (4.5) with
u(x,0)=W; and v(x,0) = W,, respectively, we only prove u;(x, t) > vi(x, f) since the others
are similar. Let w(x, t) =u(x, ) — vi(x, ). For any given 0 <fy <t and x,y € R satisfying
|x —y| <L, it easily follows that

w(x,t) = T1(t — to)w(x, to) + f T\(t — to)[Biw(x, s) — w(x, s) + aw(x, s)]ds

fo

> T1(t — to)w(x, to)

e P1i=10) 0 (x—z?
= — e M=) yw(z, ty)dz
Vard(t —ty) J-
e P1i=10) y+1 (x—2)

e M0 yw(z, ty)dz

>
\/47'[6111(1‘— l()) y

e P1t=10) _2+1)? y+1
e 4-1) / w(z, ty)dz.

>
\/47'[d1(l — l()) y

The proof is completed. 0
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Remark 5.1 From (5.2) we know that if u;(x, 0) % v;(x, 0), then for every t > 0,
y+1
wi(x, t) — vi(x, 1) > Ji(L, 1) / (ui(z,0) — vi(z,0))dz> 0, i=1,2,3,4.
v

Hence, every nontrivial travelling wave front of (4.5) is strictly monotone. Therefore, the bistable
travelling wave fronts of (4.1) are also strictly monotone.

In fact, Remark 5.1 is obvious. If the strict inequalities do not hold, then, by u;(x, 0) > v;(x, 0)
and the arbitrariness of x and L > 0, it yields that u;(x, 0) = v;(x, 0), x € R, which is a contradic-
tion. For every nontrivial travelling wave front (u;(x, t), u(x, 1), uz(x, t), ua(x, t)) of (4.5), where
ui(x,t)=ui(§),E =x+ct,i=1,2,3,4, since the travelling wave fronts of (4.5) are translation
invariant solutions, (¢, (& + h), ux(§ + h), u3(§ + h), us(& + h)) is also a travelling wave front of
(4.5) for any 4 € R. Note that ;(£) is monotone in £ € R by the definition of travelling wave front,
s0 u;(x + A, 0) > u;(x, 0) for any 4 > 0. It follows from the strict inequalities that u;(§ + &) > u;(§)
for any 4 > 0, which implies that u;(§),i =1, 2, 3, 4, are strictly monotone.

In what follows, we always denote ®, = (b, 2, 2, 82y .= (ky, ko, k3, k4). By (A) and the

o’ a’ o

continuity of g’(x) > 0, we can find sufficiently small constants p; > 0,i =1, 2, 3, 4, such that

p1>0ops, Ppr>ps, p3>pir, Ps> 0P, (5.3)

where 0 = max{g’'(x)|x € [0, p1]U [k1 — p1, k1]} > 0.
To use the contraction technique to prove the asymptotic stability, we give a pair of upper and
lower solutions.

Lemma 5.2 Assume that (A) holds and ®(x + ct) = (¢1(x + ct), Ppa(x + ct), P3(x + ct), Pa(x +
ct)) is a travelling wave fiont of (4.5). Define w*(x, t) = (wf(x, 1), wéc(x, 1), wgt(x, 1), wf‘t(x, t)) by

Wj(xa t) =min {¢i(n+(xa t)) + spie_ﬁ()ty ki}a W;(X, t) = max {¢i(n_(xs t)) - 3pie_ﬁ0t5 0}3
i=1,2,3,4,

where nF(x, t) =x + ct + & £ 008(1 — e P0Y). Then there exist oy > 0, By > 0, 8¢ > 0 such that
Jor every § € (0, 80] and any &, w*(x, f) and w™(x, t) are an upper solution and a lower solution
of (4.5) on RT, respectively.

Proof We only check that w*(x, ) is an upper solution of (4.5) because the proof of a lower
solution of (4.5) is similar. Since wi (x, /) = k; is an upper solution of (4.5), we only consider the
case w;”(x, HN<k,i=1,2,3,4.

For simplicity, denote n*(x,7) by n. Fix By € (0, ) and &* €(0,p;), then there exists
M =M(D, By, §*) large enough such that

d1(n) + 8p1 > ky — 8* forall § € (0,8*] and for all n > M,
¢1(n) — dp; < 8" forall § € (0,8%] and for all n < —M,

where

p1—aps Bpy—ps p3—pr ps—Opi
P1 ’ P2 ’ T1p3 ’ T2P4

= min{ } > 0.
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Since ¢;(n) > 0, [n| <M,i=1,2,3,4, we can take

~polco + Bo)
oy =—2 >

. 1
0, & :=m1n{8*, —},
Bomo

0o

where
1
o = min{g] ()ln] < M) > 0, po:=maxpr. pa), co=max| —Ig @)l [0, k1]

By direct calculation, we have

ow;(x, 1)
at

, B , B Bzw;r X, t ”
= cj(n) + Pooode P ¢ () — PoSpie ™" and % =¢; (n).

For w;r(x, t) <k, i=1,2,3, we only need to prove that

o0Bod1(n) — Bop1 = —p1 + aps,

00Bod3(n) — Bop2 = —Bp2 + pas

1 1
o0Pods(n) — Bops = ——p3 + —pa,
7] T]

respectively. Obviously, the above three inequalities hold by ¢;(17) > 0, =1, 2, 3, and the choice
of By > 0.
For wj (x, £) < ks, we only need to prove that

1 1 1 1
00Bops(n) — Bopa = ——pa+ —8 P [gwf (x, 1) — g(p1(M)] = ——pa + —£'O)p1, (5.4)
(%) T T T

where 6 € [¢1(n), wf(x, 1)]. For |n| > M, by the choice of M, it is sufficient to show

1 1
00Bod4(n) — Bopa = ——ps + —op:. (5.5)
1) T2

For |n| < M, by the choice of oy, we have
; 1 1 ,
00Bod4(n) — Bopa + Pt e max{lg'(n)lIn € [0, k11}p1
1 /
= mooofiy = po(fo + - max(lg()lin € [0, k1)) =0.

For |n| > M, (5.5) holds by ¢;(n) > 0 and the choice of By > 0. This completes the proof. O

Now we define another pair of upper and lower solutions. Fix a function ¢(-) € C*°(R) with
the following properties:

{()=0o0n(-00,0]; ¢(x)=1on[4,00); ¢'(x)e(0,1); [¢"(x)|=1on(0,4).

Lemma 5.3 Assume that (A) holds. Then, for every § € (0, %], there exist € = €(§) > 0 and C =
C(8) > 0 such that, for any & € R, vt(x, t) and v~ (x, f) are an upper solution and a lower solution
of (4.5) on R, respectively, where v:(x, t) = (vfﬁ(x, 1), Uzi(x, 1), vf(x, 1), vf(x, 1)) defined by
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v (x, 1) = min{k; + 8p; — [k — (1 = 28)pie™ 16 (s o(x, 1)), ki),
v; (x, 1) = max{—dp; + [k — (1 = 28)pie™ ¢ (s (x, 1)), O},
Soolx, i) =Fe(x—E+Cr), i=1,2,3,4.

Proof It suffices to prove v'(x, ) is an upper solution of (4.5) because the proof of a lower
solution of (4.5) is analogous. Since w"(x, f) = k; is an upper solution of (4.5), we only consider
the case v} (x, 1) < ki,i=1,2,3,4.

We can directly calculate that fori =1, 2, 3, 4,

9 +
LDl — (1= 29018 (e, 1) — (1 20)pie 2 (57, ),
> €Clk =PIt (s} (. 1) — ki
2+
T k- (- 29y (e 1) <

Choose € = €(§) sufficiently small satisfying

—kie —dikie® + 8(p1 —ap3) > 0, —koe — dakre® +8(Bpr — ps) > 0,

(5.6)
—kse — doks€ + E8(p3 —p2) > 0. —kue — dikae® + 5(ps — op1) > 0.

By pi,ps small enough (‘S‘”l ‘Sp“ < 1) and ¢'(s) > 0 for ¢(s) € (0, 1), we can take C = C(8)
satisfying

mm{eC(k4 —POE(s) — kae — diks€® + L v (e, 1)
(5.7)

—Laf I e = 1— ot €lopr, kv € [Bpa kal| > 0.
For v (x,7) < ki, by ki = aks and (5.6),
8vf'(x, 1) J 82vfr(x, 1)
—d]
ot ax?

> eClky — p)' (61 c(x, 1) — ke — dyky €
+8(p1 — ap3) + (1 = 28)(p1 — ap3)e™ "¢ (s o(x, 1)
> —kie —dyki€* +8(py — aps) > 0.

+ 0] (x, 1) — avi (x, 1)

For v} (x, 1) < k2, by Bka = k4 and (5.6),

av;r(x, 1) 82v;(x, ?)
—d,
ot ox?
> eC(k —pz)C’(g:C(x, 1) — koe — dokr€®
+ 8(Bp2 — pa) + (1 = 28)(Bp2 — pa)e™ 't (s (x, 1))
> —kye — drkye® + 8(Bpa — pa) > 0.

+ ﬂv;(x, 1) — v4+(x, 1)
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For vy F(x, 1) < ks, by ky = k3 and (5.6),

Bv;“(x, t) (x t)
a %" x>
X

> eC(ks — p3)¢ (sl (x, 1) — ke — dokz €

+( t)——v (x,0)
‘L'] T1

1 _
+ T—I[S(m —p2)+ (1 = 28)(p3 — p2)e” "¢ (s o (x, 1))]
, 1
> —kze — drkze” + —5([73 —pz) > 0.
71

For vj(x, 1) < k4, we have two cases (since v, F(x,t)=ky for f(S} o, t)) < 2k
Case (i): when ;“(gj,c(x, 1))>1-— g‘zl , we have 8p; < v] (x,1) <p; — 2 . Hence, by the mean
value theorem, k4 — ok| = g(ﬂ —ap) > 0and (5.6),

8vjf(x, ?) d (x t)
at ax?

i) - e o)

> €Clhks — pa)t (61 c(x, 1) — kye — dikge® + —v4 1) — —g "(O)vy (x, 1)

> €Clls = g (57 ) ~ kae — dikae” + (ks = k)1 = £(57 . )
3001 0p1) + (1= 25)p4 — ap)e 25 0)

1
> —kye — d1k462 + r—25(p4 —op1) >0,

where 6 € [0, v} (x, £)].
Case (ii): when gi“ < g(g:C(x, N<1- gT’ it follows from (5.7) that

vy (x, 1) —d vy (x, t)
ot ax?

) - —e(w (0)
> min{e C(ky —P4)§,(§:c(xa 1)) — kse — dikse?
—U4 0 — —g(vf(x, 0) | v € [8p1, ki, vi € [8pa, kal} > 0.
The proof is completed. O

Remark 5.2 Obviously, v (x,t) and v; (x,1),i=1,2,3,4 in Lemma 5.3, imply that:

(P1) v;“(x, 0)=k; on [§,00); vl-+(x, 0)> (1 —8)p; on (—00, 00); v;“(x, £) <ép;i+ (1 —28)p;e™
on (—o0,& — Ct — 4~ '] x RT.

(P2) v (x,0)=0o0n(—00,&];v; (x,0) <k; — (1 — §)p; on (—o0, 00); v; (x, 1) > ki — dp; — (1 —
28)pie " on [£ + Ct+4e !, 00) x RT.
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The following result is similar to Lemma 2.5 in [31] and we omit the proof here.

Lemma 5.4 Let (&)= (¢1(§), p2(§), $3(§), d4(§)) of (4.5) be any travelling wave front
satisfying 0 < ¢;(§) < k;, E =x+ct € R, then ‘él‘im D'(E)=0.

Next, we prove the global asymptotic stability and uniqueness of travelling wave front. To do
this, we first give the following two lemmas.

Let ®(x + ct) = (¢ (x + ct), p2(x + ct), p3(x + ct), pa(x + ct)) be a travelling wave front of
(4.5). From Lemma 5.2, we define w*(x, 1, &, 8) = (Wi (x, , &, 8), wy (x, 1, &, 8), w3 (x, £, &,
8), Wy (x, 1, €, 8)) by

wi(x, 1, &9, 8) 1= min{g;(x + ct + & + 0p(1 — e 7)) + Spie P, ki3,
w; (x, 1, &, 8) := max{¢;(x + ct + & — 0¢8(1 — e ")) — 8pe 0", 0},
xeR,t€[0,00),& R, and § €[0,00),i=1,2,3,4,

and & and B are as in Lemma 5.2.

Lemma 5.5 Assume that ®(x + ct) = (¢1(x + ct), pa(x + ct), P3(x + ct), pa(x + ct)) is a trav-
elling wave front of (4.5). Then there exists €* >0 such that, if u(x,t)= (u(x,?),us(x, 1),
us(x, 1), us(x, t)) is a solution of (4.5) on [0, 00) with the initial data u(x,0), 0 < u;(x, 0) < k; for
allxeR,i=1,2,3,4, and the following is true:

w(x,0,cT+&,8) <ux,T) <w'(x,0,cT + & + h,5)

S 1

on R provided that for some € eR,T>0,h>0 and § € (0, min{j, 50

t>T + 1, there exist € (0, S(t) and il(l) satisfying

D), then for every

W (x, 0, et + £(1), 8(0)) < u(x, £) < wh(x, 0, ct + E(t) + (1), (1)),
where £(1), h(t) and 8(t) are as follows
E(t) € [€ — 008, € + h+ 008],
h(t) € [0, h — ope* min{h, 1} + 2005],
5(f) = (8¢ P + * min{h, 1})e Pot=T+D),

Proof The result of Lemma 5.2 shows that w'(x,t,cT +& +h,8) and w™(x,t,cT +£,9),
respectively, are upper and lower solutions of (4.5). Obviously, u(x, ) =u(x, T +t)(t>0) is a
solution of (4.5) with initial value #(x, 0) = u(x, T') for x € R. From comparison principle, we
have

wo(x, t,cT+E,8)<u(x, T+1)<wh(x,t,cT+£&+h,8) for (x,H) e R x RT.
Thatis, fori=1,2, 3, 4,

max{¢;(n”(x, 2, T)) — 8pie "', 0} < uy(x, T + ¢) < min{¢y(n" (x, 1, T) + h) + Spe "', k;)
(5.8)
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for all (x, ) e R x R, where n¥(x, 1, T) =x 4 (T + 1) + £ £ 0¢8(1 — e 7). Set y=—cT — £.
By comparison principle, it follows that for every nonnegative constant L, any x € R satisfying
[x—y|<Landeveryt>0,i=1,2,3,4,

y+1
ui(x, T+10) —w; (x,t,cT +§,8) > Ji(L, 1) / (ui(z, T) = w; (z,0,cT +§,8))dz. (5.9)
y

By Lemma 5.4, lim_¢/(1)=0,i=1,2,3,4. Fix M > 0 such that ¢/(x) < m‘nlszfo“{p} for all
X|—> 00
W= M,i=1,2,3,4 Let

_ 1
L=M+|c|+1, h=min{h, 1} and 61=§1m'in4{¢{(x):|x|§2}>0.

Since
Wi (2,0, —,8) < iz —y), Wi (z0,—y+h8)>diz—y+h), i=1,2,3,4,

it follows that

y+1 _
f [w;’(z, 0,cT+&E+h,8)—w; (z,0,cT +&,6)]dz
y

Y+l _ Y+l _ _
> [ erre i ot von= [ e+ h-s@l: =2k
v v
Therefore, either (i) or (ii) is true, where (i) and (ii) are as follows:
y+1 B
(i) / [ui(z, T) —w; (z,0,cT +&,6)]dz > € h;
yy+1 _ _
(i1) / W (z,0,cT +& + h,8) — uiz, T)ldz > € h.
y

We only need to consider the case (i) since the other is similar. For any |x — y| < L, letting t = 1
in (5.9), it holds

ui(xa T+ 1) = W;(xy 1>CT+$53) +JI(L)61}_Z
> ¢i(x —y+c—0p8(1 — e P0))y — 8pie™ + Jo(L)erh, i=1,2,3,4,

where Jy(L) = min;<;<4{Ji(L, 1)}. Let

(in 209 L b0

Li=L+|c|+2, € =min{mn_——F—/,—, .
! el k=L 2000;(x) 200 2

1<i<4
Using the mean value theorem, we have that for all |x — y| <L,

$ix —y + ¢+ 200" h — 008(1 — e 7)) — pi(x — y + ¢ — 0p8(1 — e 7))
=¢(x—y+c+ 26;00€*h — 08(1 — e’ﬂo))2ooe*}_l <Jo(L)erh, 6;€(0,1), i=1,2,3,4.

Hence,

wi(x, T+ 1) > ¢i(n~(x, 1, T) + 200€*h) — Spie P0,i=1,2,3,4. (5.10)
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Together with the mean value theorem and the definitions of M, L, we have that for any
x—yl= L,

(]5,'(7’]_()(, 19 T)) - ¢i(n_(x9 19 T) + 20—06*;1) = ¢,{(77_(xa 1’ T)
— 20,00€*h)(—200€*h) > —e*hp;,  6;€(0, 1), (5.11)

i=1,2,3,4. Thatis, forall x —y| > L,

¢i(n~(x, 1, 1) = ¢i(n~(x, 1, T) + 200€*h) — *hpy, i=1,2,3,4, (5.12)
and therefore, by (5.8) with # = 1, it holds

ui(x, T+ 1) > max{g:(n~(x, 1, T) + 200€*h) — €*hp; — 3p;e 7, 0} (5.13)
forall x —y|>L,i=1,2,3,4. By (5.10) and (5.13), it follows that forallx e R,i=1, 2, 3, 4,

ui(x, T+ 1) > max{¢i(n~(x, 1, T) + 200 *h) — (8% + e*h)p;, 0)

= max{¢;(x + 1) — (8eP0 + e*h)p;, 0}, (5.14)

where
t=c(T+ 1)+ 200 h+ & +E, E=0pd(e P —1). (5.15)

Then
ux, T+ 1)=w (x,0,t, 1), xeR, (5.16)

where i = 8e 0 4 €*h < 8, then, by comparison principle and the choice of €*, it yields
w(x,ft, ) <u(x, T+ 147 forf>0. (5.17)
Then forall > T + 1, letting 7=t — (T + 1) in (5.17), we have
ui(x, t) =w; (x,t — (T +1),¢, 1)
=¢i(x+ct—c(T+ 1)+t — opi(l — e PU=T+)y _ fipe=Polt=(T+1) (5.18)
> @i(x+ct — (T + 1)+t — opit) — 8Os, i=1,2,3,4,

where §(7) = jie~Po—(T+1)_ Since ¢;(-) is monotone, together with the choice of 5 and (5.15), it
holds

ui(x, 1) = w; (x, 0, ct + (£), 8(t)), xeR,i=1,2,3,4, (5.19)
where
é(t) =200 h+ & — 0p8(1 — e P0) — oyji = ope*h + & — 0y8.
Hence, we have
E(t)= & — 000, (5.20)
and, from the definition of €*,

E(t) <& +o0e*h <&+ h+0pd. (5.21)
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For every ¢t > T, by the first inequality of (5.8), it follows that

ui(x, 1) < minfg(n*(x, £ = T, T) + h) + 5pie P01, )

<min{¢;(x +ct+&+h+0pd) + g(t)p,-, k}, xeR,i=1,2,3,4. (:22)
Hence, for any ¢ > T + 1, we have
ui(x, 1) < wi(x, 0, ct + E(O) + h(1), 8(1)), xeR,i=1,2,3,4,
that is, for x € R,
u(x, £) < w(x, 0, ct + E() + h(t), §(1)), (5.23)
where
W) =& + h+ 008 — E(f) = h — o9 h + 2003. (5.24)
From the definition of €*, it holds # — age*h > h — gpe*h > 0, and so
h(t) € (0, h — ooe*h + 2048]. (5.25)
Combining (5.19) and (5.23), now we complete the proof. O

Lemma 5.6 Let ®(x + ct) = (¢ (x + ct), pa(x + ct), P3(x + cf), pa(x + ct)) be a travelling wave
front of (4.5), and W (x) = (Y1 (x), Y2(x), ¥3(x), Ya(x)) with ; € [0, k;] be such that

lim ¥i(x) >k —p;,  lim ¢i(x) <p;, i=1,2,3,4
X—> 00 X—>—00
Then, for every § > 0, thereexist T =T(V,8) > 0,£ =&V, ) e Rand h= (¥, §) > 0 such that

w(x,0,cT+£,8) <ux, T,¥)<wh(x,0,cT + £ +h,8), xeR.

Proof By comparison principle, u(x, 1, V) = (ui(x, t, Y1), ua(x, £, ¥2), u3(x, t, ¥3), ua(x, £, Ya))
exists on R* and 0 < u;(x, ¢, ¥;) < ki, (x,£) e R x R*,i=1,2, 3, 4. For every § > 0, one can take
81 =61(8, V) € (0, min{4, &y}) satisfying

lim ¥;(x) > ki — (1 =8)pi,  lim ¥y(x) <(1 =81)pi, i=1,2,3,4.
X—>00 X—>—0Q
So we can choose M = M(W¥, §;) > 0 such that, fori=1,2, 3,4,
Yi(x) < (1 — 8))p; forall x < —M,  i(x) > k; — (1 — 8;)p; for all x > M. (5.26)

Let € =€(8;), C=C(8;) and v*(x, 1) be described by Lemma 5.3 with § replaced by §; and
£ = &%, where £* = M. Together with (5.26) and Remark 5.2, we have that for i = 1,2, 3, 4,

Yi(x) < (1 =8)p; <v'(x,0) forx<—-M,
Vix) <ki=v;"(x,0) forx>&t=-M

and

Yix) >k —(1—=56)p;i=v; (x,0) forx>M, ¢;i(x)>0=v;(x,0) forx=<M.
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Then
v (x,0) < W) <v(x,0), xeR. (5.27)
By Lemma 5.3 and comparison principle, we have
v (x,t) <u(x,t,¥)<vt(x,t) forallxeR,t>0. (5.28)
In view of §; < 8, we take T > 0 sufficiently large such that, for any ¢ > T,
S1pi+ (1 —28))pie” <8p;and k; — 81p; + (1 — 281 )pie " > ki — 8p;,i=1,2,3,4
and hence, again by Remark 5.2, fori =1, 2, 3, 4,
ui(x, t, ;) < vt (x, 1) < 8p; when x <x™(¢) (5.29)
and
ui(x, t, ¥;) > v; (x, 1) > k; — 8p; when x > x7"(¢), (5.30)
where x*(f) = £ + Ct & 4e~!. Together with (5.29) and (5.30), we have

wi(x, T, y;) < 8p; foranyx <x (T), wu;i(x,T,¥;)>k —8p; foranyx>x"(T), i=1,2,3,4.
(5.31)

By lim ¢;(x)=0and lim ¢;(x)=k;,i=1,2,3,4, we can choose H > 0 large enough such that
X—>—00 X—>00
% > xT(T), —%’ <x(T), and
H H
¢i(x)+8p; > k; for x> > and ¢;(x) — dp; <0 for x < —7 (5.32)

Since 0 < ¢i(x) < k; and 0 < u;(x, ¢, ¥;) < k; forany x € R and ¢ € [0, 00), and together with (5.31)
and (5.32), we have that fori =1, 2, 3, 4,

max{¢;(—H + x) — dp;, 0} wi(x, T, ¥;) < min{¢:(H + x) + dp;, k;} for x € R. (5.33)
Let&=—H —cT,hy=2H > 0. It is clear that (5.33) implies that, fori = 1,2, 3,4,

max{g;(x + cT + &) — 6p;, 0} <ui(x, T, ¥;) < min{;(x + cT + & + ho) + pi, ki}, x€R.

(5.34)
Let &£ =&y and & = hy > 0. Then it follows from (5.34) that for any x € R,
Wi_(xa 0: CT+ Ea (S) = Wi_(x9 09 cT + “;:03 8) =< ui(xa Ta wl)
wi(x,0,cT+& +h,8) = wi(x,0,cT + & + ho, 8) > ui(x, T, ¥), i=1,2,3,4.
Hence, we prove the conclusion of this lemma. This completes the proof. O

Theorem 5.1 Assume that (4) holds and (4.5) is a travelling wave front ®(x + ct) = (¢1(x +
ct), g2 (x + ct), p3(x + ct), pa(x + ct)). Then P(x+ct) is globally asymptotically stable with
phase shift in the sense that there exists a positive constant k such that for every ; € [0, k;]

satisfying

lim ¥;(x) > k; — p;, lim ¥i(x)<p;, i=1,2,3,4,
X—>00 X—>—00
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the solution u(x, t, V) = (u1(x, t, Y1), uz(x, t, ¥2), uz(x, t, ¥3), us(x, t, ¥4)) of (4.5) satisfies
lu(, 2, W) — (- +ct+&) [<Ke ™, >0

forsome K =K(WV) > 0and & =&(WV) € R, W(x) = (¥1(x), ¥2(x), ¥3(x), Ya(x)), where || - || is the
general super norm in R*,

Proof Let By, 09, 8y be described by Lemma 5.2, and then let €* be described by Lemma 5.5
with €* satisfying ope™ < 1. Take 0 < §* < min{%, ﬁ} such that
1>k*:=0p€™ — 2008 >0,

and fix * > 1 satisfying
e D (14 §_> <1-K.

We need to prove two conclusions.
Conclusion 1. There exist two constants 7% = 7*(WV) > 0, £* = £*(¥) € R satisfying

W (x, 0, cT* +£*, 8% <u(x, T*, W) <wh(x,0,cT* +&* + 1, 6%) for any x e R. (5.35)

In fact, by Lemma 5.6, there exist three constants 7T = T(V) > 0, =&(W) e Rand A= A(¥) > 0
satisfying

w(x,0,cT +£,8% <ux, T, W) <wh(x,0,cT + & +h,8*), xeR. (5.36)
When /& < 1, (5.35) holds since ¢;(+),i =1, 2, 3, 4, are monotone. Then when % > 1, denote
N =max{m| m € Z* and mk* < h}.

In view of k* € (0,1) and 2> 1, then N > 1, h € (Nk*, (N + 1)k*], and furthermore, 2 — Nk* €
(0, 1). Note that 4 :=min{1, 1} = 1. Together with (5.36), Lemma 5.5 and the definitions of ¢*
and &*, it holds
WX, 0,c(T + )+ E(T + 1), 8(T + 1)
<u(x, T+, V) (5.37)
<wh(x, 0,c(T + %)+ E(T + 1) + (T + 1), 8(T + *)), x€R,

where

S

E(T+1") €[ — 008", & +h+ 0¢8],
0 < (T +1*) < h— ooe* + 2008",
S(T + )= (8¢ P 4 e*)e Pl™=D < (1 — k*)s* < 5*.
Using the similar argument N times, then for some &* :é eR,be (0,6*1,0< h<h—Nk* <1,
(5.37) still holds when T + ¢* is replaced by 7* = T + Nt* Since ®(-) is monotone, it follows
that (5.35) holds.
Conclusion 2. Let p =2006*+ 1, T, =T* +nt*,§; =(1 — k*)"6* and h,=(1 —k*)",n>0.

So we can choose a sequence {£,}°2 ) C R with §, = &* satisfying

|€nr1 — &nl <ph, foranyn=>0 (5.38)
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and
w(x,0,cT, +&,8)) <ulx, T,, ¥) < wt(x,0,cT, + &, + hy, 8r), foranyxeR,n>0. (5.39)

Indeed, Conclusion 1 implies that (5.39) holds when n = 0. Now we assume that (5.39) holds for
some n =m > 0. From Lemma 5.5 with T =T,,,§ =&, h=h,, 6 =6, and t =T,, + t* = T,
(since ¢ > 1), it follows that

WX, 0, Tt + &, 8) <ulx, Tpr1, ¥) <wH(x, 0, cTpsy + & + h,8), xR, (5.40)

where

A

‘i: € [Em - 0'08;;, Sm + hm + 0'08:1]9

§ = ((Sme—ﬁo + E*hm)e—ﬁo(TmH—Tm—l)
NI € —Bo(r*— F\M 0k * *
< (1—k)"s [(1+5_*>e ACD] < (1= kY8 (=K =8,

h < hy — 00 hm + 2008m = (1 — K*)"[1 — 6oe* + 2008*] = himos 1.
Take &,,41 = é We have

|‘§m+1 - Sml < |$m + hm + 008; - (Em - UOS;)' :phm

So (5.38) holds when n = m and (5.39) holds when n =m + 1. (5.38) and (5.39) hold for all # > 0
by means of induction.
For each n > 0, by (5.39) and comparison principle, we have that for any > 7,, and x € R,

max{e; (1, (x, 1)) — 81pie T 0} <u(x, 1, v) < min{ei(n, (x, 1) + hy) + S5pie 0 ki),
(5.41)
i=1,2,3,4, where nE(x,t)=x+ct+&, £0¢85(1 — e PU-T) For every t>T* set n=
[’;3 ] >0 and denote 8(f)=05",&(1) =& — 008", and h(f)=h,+ 20057, we have fe
[T, Tyt1), T, =T 4+ nt*. Together with (5.41), we obtain that for every t>T*xeR,
i=1,2,3,4,

Gi(x + ct + (1)) — pid(1) < ui(x, £, i) < i(x + ct + §(2) + h(1)) + pid (D). (5:42)

Furthermore, for ¢ > T*,

8(t) =6, = 8"q(0), (5:43)

h(t) = (2008* + 1)(1 — k)" < (2008* + 1)q(f), (5.44)

=T 1) In(1—k*)

where q(7) := e , and by (5.38), we have that for every s > ¢ > T*,

5(s) = E(O] = |&n — 008, — (§x — 005,))]

m—1 m—1

<Y & — &l +2008; <Y phi+2008; (5.45)
I=n I=n
Py * _
S 1 _ (1 _ k*) + 2003,, - V(S(t),
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where m = [’}T *] >n and v = £ 4 20y. Clearly, (5.45) implies that £(7) is finite at positive

infinity and
|&(00) — &(1) <vé(t), =T
Then, we have
|§(00) — E(1) < v8¥q(r), t>T. (5.46)

Hence, by letting £ = —tl* In(1 — £*) > 0 and together with (5.42), (5.43), (5.44) and (5.46), we
prove the conclusion of this theorem. The proof is completed. O

Together with Lemma 5.2 and comparison principle, we can get the Lyapunov stability of
travelling wave front of (4.5).

Theorem 5.2 Each travelling wave front of (4.5) is Lyapunov stable.

Proof Since the uniform continuity of ¢;(-) on R,i=1, 2, 3, 4, we have that for every positive
constant €, there exists a positive constant §; = §,(¢) satisfying

9+ = 0] < 2. (547)

for any [y| < §;. We can further take § = 6(¢) € (0, min{m, i—:), 80}), Bo, 0 and § are

described by Lemma 5.2. Then for every W with || W — ® ||< §, we have that fori= 1,2, 3,4,
max{p;(x) — §p;, 0} < ¥i(x) < min{¢;(x) + ép;, ki}, xe€R. (5.48)
Combining Lemma 5.2 with comparison principle, we have
max{gi(n” (x, 1)) — 8pie” ™", 0} < wilwx, 1, ¥)) < min{gy(n” (v, 1) + 8pie™ ™', ki), x€R, (5.49)
i=1,2,3,4, where n*(x, ) := x + ct & 0¢8(1 — e~$0%). Hence, for any ¢ > 0,
| £ 008(1 — e P < 008 < 81 (€).

Together with (5.47) and (5.49), we have ¢;(x +ct) — § <ui(x,t,¥;) < pi(x +ct) + 3, (x, 1) €
R xRt,i=1,2,3,4, thatis, || u(-, t, ¥) — ®(- +ct) || < €, € RT. The proof is completed. I

By Theorem 5.1, we can obtain the uniqueness result of travelling wave fronts of system (4.5).

Theorem 5.3 Let O(x + ct) = (¢1(x + ct), Ppa(x + ct), P3(x + ct), pa(x + ct)) be a travelling wave

front of (4.5). Then for every travelling wave front ®(x + ¢t) = (¢1(x + ¢t), po(x + &), P3(x +
ct), pa(x + ¢t)) with 0 < ¢i(x + &) < k;, it must be ¢ = ¢ and there exists & = &y(P) € R such that
D) = D(- + &)

Proof Note that

lim (;Si(x) >k;—p; and lim (;Si(x) <pi, i=1,2,3,4. (5.50)
X—>00 X——00
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Using the results of Theorem 5.1, it follows that there exist Ky = Ko(®) > 0 and & = &y(P) e R
satisfying

| D(- + ct + &) — D(- + ¢t) || < Koe ™™ for any 1> 0. (5.51)

Set & € R satisfying 0 < ¢i(&) < k;, i =1,2,3, 4, and denote I(£) := {(x, 1) e R x R*; x + ct = £}.
From (5.51), we have that for any (x, 1) € I(£),

¢i(i1) — Koe™ < ¢i(&) < ¢i(i1) + Koe ™, i=1,2,3,4. (5.52)

where 7 := & + £ + (c — ¢)t. Since lim ¢;(x) =k; and lim ¢;(x)=0,i=1,2, 3,4, by letting
X—> 00 X—>—00

t— oo in (5.52), it follows that ¢ > ¢ and ¢ < ¢ by the left- and right-hand side inequalities,

respectively. So ¢ = ¢. By (5.51), it follows that for any (x, #) € I(£),

| @(- + &) — P() |< Koe ™. (5.53)

Hence, it follows from (5.53) that ®(-) = ®(- + &) as t — oo. The proof is completed. O

Remark 5.3 By adopting a similar method, with only some slight modifications, we also obtain
the stable results of bistable travelling waves for (1.3).

Remark 5.4 Motivated by [23, 30, 35], we can also apply the idea of spectral analysis to obtain
the exponential stability of bistable travelling waves for (1.3) and (1.7). For more details, one
can refer to [23].

Acknowledgements

We would like to thank the anonymous referees for their careful reading and helpful suggestions
which led to an improvement of our original manuscript. Kun Li was supported by the National
Natural Science Foundation of China (Grant No. 11971160) and the Scientific Research Fund
of Hunan Provincial Education Department (Grant No. 18B472). Xiong Li was supported by
the National Natural Science Foundation of China (Grant No. 11971059) and the Fundamental
Research Funds for the Central Universities.

Conflicts of interest

None.

References

[1]1 Al S. (2007) Traveling wavefronts for generalized Fisher equations with spatio-temporal delays.
J. Diff. Equations 232, 104—133.

[2] ANITA, S. & CAPASSO, V. (2002) A stablizability problem for a reaction-diffusion system modelling
a class of spatially structured epidemic systems. Nonlinear Anal. RWA. 3, 453-464.

[3] ASHWIN, P., BARTUCCELLI, M. V., BRIDGES, T. J. & GOURLEY, S. A. (2002) Traveling fronts for
the KPP equation with spatio-temporal delay. Z. Angew. Math. Phys. 53, 103—122.

[4] BATES, P. W. & CHEN, F. (2006) Spectral analysis of traveling waves for nonlocal evolution
equations. SIAM J. Math. Anal. 38, 116-126.

https://doi.org/10.1017/50956792520000078 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000078

[19]

(28]

[29]

Existence and stability of bistable wavefronts 175

CAPASSO, V. (1984) Asymptotic stability for an integro-differential reaction-diffusion system.
J. Math. Anal. Appl. 103, 575-588.

CAPASSO, V. (1993) Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathe-
matics, Vol. 97, Springer-Verlag, Heidelberg. Second corrected printing, 2008.

CAPASSO, V. & KUNISCH, K. (1988) A reaction-diffusion system arising in modelling man-
environment diseases. Quart. Appl. Math. 46, 431-450.

CAPASSO, V. & MADDALENA, L. (1981) Convergence to equilibrium states for a reaction-diffusion
system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Bio. 13,
173-184.

CAPASSO, V. & MADDALENA, L. (1981) A nonlinear diffusion system modelling the spread of oro-
faecal diseases. In: V. Lakshmikantham (editor), Nonlinear Phenomena in Mathematical Sciences,
Academic Press, New York.

CAPASSO, V. & MADDALENA, L. (1981) Asymptotic behaviour for a system of nonlinear diffusion
equations modelling the spread of oro-faecal diseases. Rend. dell’Acc. Sc. Fis. Mat. in Napoli.

CAPASSO, V. & MADDALENA, L. (1982) Saddle point behavior for a reaction-diffusion system:
application to a class of epidemic region. Math. Comput. Simul. 24, 540-547.

CAPASSO, V. & PAVERI-FONTANA, S. L. (1979) A mathematical model for the 1973 cholera
epidemic in the European Mediterranean region. Revue d’Epidemiol. et de Santé Publique 27,
121-132.

CAPASSO, V. & WILSON, R. E. (1997) Analysis of reaction-diffusion system modeling man-
environment-man epidemics. SIAM. J. Appl. Math. 57, 327-346.

CHEN, X. (1997) Existence, uniqueness and asymptotic stability of traveling waves in non-local
evolution equation. Adv. Differ. Equations 2, 125-160.

DANERS, I. D. & MEDINA, P. K. (1992) Abstract Evolution Equation: Periodic Problems and
Application, Pitman Research Notes in Mathematics, Vol. 279, Longman Sci. & Tech.

EVANS, L. C. (1998) Partial Differential Equations, American Mathematical Society, Providence, RI.

GOURLEY, S. A. & RUAN, S. (2003) Convergence and traveling fronts in functional differential
equations with nonlocal terms: a competition model. SIAM J. Math. Anal. 35, 806-822.

HUANG, J. & Zou, X. (2002) Traveling wavefronts in diffusive and cooperative Lotka-Volterra
system with delays. J. Math. Anal. Appl. 271, 455-466.

HUANG, J. & Zou, X. (2003) Existence of traveling wavefronts of delayed reaction-diffusion systems
without monotonicity. Discrete. Cont. Dyn. Syst. 9, 925-936.

HUANG, J. & Zou, X. (2006) Travelling wave solutions in delayed reaction diffusion systems with
partial monotonicity. Acta Math. Appl. Sin. Engl. Ser. 22, 243-256.

L1, K. & L1, X. (2009) Travelling wave solutions in diffusive and competition-cooperation systems
with delays. IMA J. Appl. Math. 74, 604-621.

L, W, LIN, G. & RUAN, S. (2006) Existence of traveling wave solutions in delayed reaction-diffusion
systems with applications to diffusion-competition systems. Nonlinearity 19, 1253—-1273.

LiN, G. & L1, W. T. (2008) Bistable wavefronts in a diffusive and competitive Lotka-Volterra type
system with nonlocal delays. J. Differ. Equations 244, 487-513.

Ma, S. (2001) Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem.
J. Differential Equations 171, 294-314.

MARTIN, R. H. & SMITH, H. L. (1990) Abstract functional differential equations and reaction-
diffusion systems. Trans. Amer. Math. Soc. 321, 1-44.

MISCHAIKOW, K. & HUTSON, V. (1993) Traveling waves for mutualist species. SIAM J. Math. Anal.
24, 987-1008.

PAzY, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, New York.

RAuUCH, J. & SMOLLER, J. A. (1978) Qualitative theory of the Fitzhug-Nagumo equations. 4dv. Math.
27, 12-44.

RUAN, S. & WU, J. (1994) Reaction-diffsion systems with infite delay. Canad. Appl. Math. Quart. 2,
485-550.

https://doi.org/10.1017/50956792520000078 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000078

176 K Liand X. Li

[30] SATTINGER, D. H. (1976) On the stability of waves of nonlinear parabolic systems. Adv. Math. 22,
312-355.

[31] SMITH, H. L. & ZHAO, X. (2000) Global asymptotic stability of traveling waves in delayed reaction-
diffusion equations. SIAM J. Math. Anal. 31, 514-534.

[32] SMOLLER, J. (1994) Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York.

[33] So, J. W. H., Wu, J. & Zou, X. (2003) A reaction-diffusion model for a single species with
age structure. I, Travelling wavefronts on unbounded domains. Proc. R. Soc. Lond. Ser. A 457,
1841-1853.

[34] THIEME, H. R. & ZHAO, X. Q. (2003) Asymptotic speeds of spread and traveling waves for integral
equations and delayed reaction-diffusion models. J. Differential Equations 195, 430—470.

[35] VOLPERT, A. 1., VOLPERT, V. A. & VOLPERT, V. A. (1994) Traveling Wave Solutions of Parabolic
Systems, Translations of Mathematical Monographs, Vol. 140, American Mathematical Society,
Providence, RI.

[36] VOLPERT, V. A. & VOLPERT, A. L. (1997) Location of spectrum and stability of solutions for
monotone parabolic systems. Adv. Differ. Equations 2, 811-830.

[37] WANG, Z. C.,, L1, W. T. & RUAN, S. (2006) Traveling wave fronts in reaction-diffusion systems with
spatio-temporal delays. J. Differ. Equations 222, 185-232.

[38] WANG,Z.C.,LI, W.T. & RUAN, S. (2007) Existence and stability of traveling wavefronts in reaction
advection diffusion equations with nonlocal delay. J. Differ. Equations 238, 153-200.

[39] Wu,S.L.&Liu, S. Y. (2009) Asymptotic speed of spread and traveling fronts for a nonlocal reaction-
diffusion model with distributed delay. Appl. Math. Model. 33, 2757-2765.

[40] Wu,J. & Zou, X. (2001) Traveling wave fronts of reaction diffusion systems with delay. J. Dynam.
Differ. Equations 13, 651-687.

[41] Xu,D. & ZHAO, X. Q. (2004) Bistable waves in an epidemic model. J. Dynam. Differ. Equations 16,
679-707.

[42] XU, D. & ZHAO, X. Q. (2005) Asymptotic speed of spread and traveling waves for a nonlocal
epidemic model. Discrete Contin. Dyn. Sys. Ser B 5, 1043—-1056.

[43] YE, Q. & L1, Z. (1990) Introduction to Reaction-Diffusion Equations, Science Press, Beijing.

[44] YU, Z. X. & MEI, M. (2016) Uniqueness and stability of traveling waves for cellular neural networks
with multiple delays. J. Differ. Equations 260, 241-267.

https://doi.org/10.1017/50956792520000078 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000078

	Existence and stability of bistable wavefrontsin a nonlocal delayed reaction–diffusionepidemic system
	Introduction
	ODE system
	Travelling wave fronts and mild solutions of System (1.3)
	Travelling wave fronts and mild solutions of System (1.7)
	Asymptotic stability and uniqueness of travelling wave fronts


