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A shadow-test approach to the calibration of field-test items embedded in adaptive testing is presented.
The objective function used in the shadow-test model selects both the operational and field-test items
adaptively using a Bayesian version of the criterion of Ds-optimality. The constraint set for the model can
be used to hide the field-test items completely in the content of the test as well as to deal with such practical
issues as random control of their exposure rates. The approach runs on efficient implementations of the
Gibbs sampler for the real-time updating of the ability and field-test parameters. Optimal settings for the
proposed algorithms were found and used to demonstrate item calibration with smaller than traditional
sample sizes in runtimes fully comparable with conventional adaptive testing.
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1. Introduction

The current focus of adaptive testing programs typically is on the selection of items from
an operational pool with optimization of the estimates of the examinees’ ability parameters as
statistical objective. As for the item pool, it is not uncommon for it to be calibrated with response
data collected in separate field-test studies with the items organized as sets of linked test forms
administered to volunteering examinees. This type of field-test studies requires considerable
resources. It may also run into such problems as less representative data due to lack of the
operational testing conditions, danger of early security breaches, detection of misfitting items
only after all data have been collected, and drifting of the item parameters from the scales for the
current item pool due to accumulated linking errors.

An alternative approach is to embed a few field-test items directly in the operational adaptive
tests for each of the examinees. A unique advantage possible for this approach is adaptive selection
of the items capitalizing on the real-time updates of the examinees’ ability parameters during
testing. Just as adaptive selection of the operational items leads to a considerable reduction of
the test length necessary to score the examinees, similar selection of the field-test items can be
expected to lead to substantial reduction of the sample size necessary to calibrate new items, an
advantage already demonstrated in a few recent item calibration studies (Ren et al. 2017; van der
Linden and Ren 2015). Other possible advantages of embedded field-testing of new items are
more practical and include saving the time and expenses necessary to run separate calibration
studies, collection of responses from motivated examinees answering the items under operational
conditions, possibility of real-timemonitoring of item fit and early withdrawal of items that appear
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to be malfunctioning, and estimation of all item parameters directly on the scales in use for the
item pool.

These advantages are only possible when we have algorithms that manage the processes of
parameter updating and optimal item selection both for the operational and field-test items in real
time. Also, some additional practical issues need to be resolved. For example, the identity of the
field-test items should be hidden from the examinees. If they would be able to find out which
items do and do not add to their scores, they may take the latter less seriously and even decide
to answer them just randomly to save time for the items that do count. Also, as field-test items
are now exposed to their future population of examinees prior to operational testing, it may be
necessary to prevent their possible compromise due to this extra exposure. An obvious option is to
subject them to the same type of shadow-test-based exposure control as for the operational items
in the pool (van der Linden and Choi 2019) but with adjusted values for their target exposure
rates.

The goal of the research in this report was to design and optimize the algorithms required
for real-time adaptive testing with embedded item calibration. The approach is derived from a
more general description of adaptive testing programs as multiple, statistical and non-statistical
processes with real-time updating of all intentional statistical parameters in van der Linden (2018).
The tools available to run these processes are sequential Bayesian parameter updating, application
of statistical optimal design theory to plan each next data collection step, and use of the shadow-test
approach to manage all processes simultaneously and keep each of the non-statistical parameters
of the program within their required bounds.

The basic setup of the testing program considered in the current research was an adaptive test
with a few field-test items administered to each of the examinees in positions randomly selected
near the end of the test (for example, three of the last five). The choice of setup was motivated by
the necessity to compromise between the ideal of selecting the field-test items capitalizing on the
statistical information offered by the posterior distributions of the examinees’ ability parameters
and the requirement to hide their identity to have them taken equally seriously as the operational
items in the test. As explained below, the identity of the field-test items can further be hidden by
embedding them fully in the test content. The compromise between the wish to have maximum
statistical information and to hide the identity of the field-test items may need to be extended to
account for the effects of possible fatigue or speededness of the test as well, an issue reserved for
future research.

The following sections introduce the response model used as an example in the research,
explain each of the three tools referred to above in more detail, and present results from studies
conducted to optimize the settings of the algorithms and demonstrate their application to a real-
world adaptive testing program. All results point at item calibration with smaller sample sizes
than for separate calibration studies obtained in runtimes fully comparable with those for current
maximum-information adaptive testing without any field testing of new items.

2. Response Model

Let i = 1, . . . , I denote the operational items and f = 1, . . . , F the field-test items in the
pool. Both categories of items are scored by response variables Ui ∈ {0, 1} and Uf ∈ {0, 1},
respectively. As an example, the operational items are assumed to be calibrated and their fit
checked under the three-parameter logistic (3PL) model, which explains the probability of a
correct response on each of the items as

Pr{Ui = 1|θ, ai , bi , ci } ≡ p(θ; ai , bi , ci ) ≡ ci + (1 − ci )
exp[ai (θ − bi )]

1 + exp[ai (θ − bi )] , (1)
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where bi ∈ R and ai ∈ R
+ can be interpreted as parameters for the difficulty and discriminating

power of item i , respectively, and ci ∈ (0, 1] as the probability of a correct response to the item
resulting from purely random guessing. The model allows us to write the probability function of
the response distribution for each examinee–item combination as

f (ui |θ, ξ i ) ≡ p(θ, ξ i )
ui [1 − p(θ, ξ i )]1−ui , (2)

where ξ i ≡ (ai , bi , ci ). The field-test items are calibrated under the same model. It is prudent to
monitor their fit to the response model permanently during the calibration process to prevent the
examinees from having to spend unnecessary time on malfunctioning items. The question of how
to adjust goodness-of-fit statistics for application in real-timemonitoring is currently investigated.

One of the novel aspects of the approach outlined below is that, rather than storing fixed point
estimates for all parameter in the adaptive testing system, each of them is permanently represented
by a short vector of draws from its most recent posterior distribution. Due to this decision, all
calculations during operational testing simplify with results that automatically account for the
uncertainty about any of the parameters. The bestway to collect these draws during initial itempool
calibration is through Bayesian estimation with Markov chain Monte Carlo (MCMC) sampling
of the posterior distributions of the parameters. Alternatively, for an existing item pool, we could
use an asymptotic argument sampling normal distributions with the point estimates and standard
errors of the item parameters as mean and standard derivation. This is a one-time requirement
only, though. Once the process of embedded item calibration begins, the system automatically
generates new items ready for operational use along with appropriate vectors of posterior draws
for each of them.

3. Sequential Bayesian Parameter Updating

During testing, two distinct processes of parameter updating are to be managed, one for the
ability parameters of the examinees and the other for the parameters of the field-test items. These
parameters are the intentional parameters of the two processes. In addition, both processes have
nuisance parameters. At the update of an ability parameter after a response to an operational item,
the parameters of the item are nuisance parameters. But when the parameters of a field-test item
are updated, the ability parameter of the examinee that produced the response changes its status
from intentional to nuisance parameter. The status of parameters as nuisance parameters does not
mean that we can ignore them; just as for the intentional parameters, we need to fully account for
their impact on the responses that are collected. Neither is it correct to substitute point estimates
for them; doing so would lead to loss of optimality of the criteria for the selection of the next
operational and field-test items, especially early on in the two processes when the uncertainty
about the ability and field-test parameters is maximal (for an example of the initial uncertainty
about latter, see the first lines in Figs. 2, 3, 4).

The appropriate way to update intentional parameters in a continuous processes of response
collection is through sequential use of Bayes theorem integrating out each of nuisance param-
eters. In the current context, after the kth operational item in the test and response vector
uk = (u1, . . . , uk), the theorem is used to update the marginal posterior distribution of the
ability parameter from f (θ |uk−1) to f (θ |uk). The prior distributions for the operational parame-
ters ξ k during the update are their posterior distributions obtained during item pool calibration.
As these distributions do not depend on any data collected during testing, we have prior indepen-
dence of f (θ | uk−1) and f (ξ k). Besides, the standard assumption of local independence implies
f (uk | θ, uk−1) = f (uk | θ). Hence, the application of Bayes theorem, in its regular form equal
to
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f (θ | uk) =
∫

f (uk | θ, ξ k) f (θ, ξ k | uk−1)dξ k∫ ∫
f (uk | θ, ξ k) f (θ, ξ k | uk−1)dθdξ k

,

simplifies to

f (θ |uk) = f (uk |θ)

f (uk)
f (θ |uk−1), (3)

where
f (uk |θ)

f (uk)
=

∫
f (uk |θ, ξ k) f (ξ k)dξ k∫ ∫

f (uk |θ, ξ k) f (ξ k) f (θ |uk−1)dθdξ k−1
. (4)

and f (uk |θ, ξ k) is the examinee’s response probabilities in (2) for the kth item in the test. Observe
how nicely (3) factors the posterior density of θ into the product of one factor depending on the
new response and a second summarizing the information about it contained in all earlier responses.

Likewise, the update of the joint posterior distribution of field-test parameter ξ f upon the lth
administration of the item is

f (ξ f |ul) = f (ul |ξ f )

f (ul)
f (ξ f |ul−1), (5)

where
f (ul |ξ f )

f (ul)
=

∫
f (ul |θl , ξ f ) f (θl |uk′)dθl

∫ ∫
f (ul |θl , ξ f ) f (ξ f |ul−1) f (θl |uk′)dθldξ f

, (6)

k′ is the number of operational items already answered by the current examinee, and f (ul |θl , ξ f )

now is the response probability of the examinee in (2) for field-test item f.
For both processes of parameter updating we thus have a simple recurrence relation between

the new and previous posterior density, with the latter serving as the new prior. In spite of their
apparent simplicity, because of the presence of multiple integrals in (4) and (6), both relations may
seem computational demanding. However, as is well known now, use of Monte Carlo sampling
from the joint posterior distribution of all parameters avoids having to calculate any of these
integrals (e.g., Gelman et al. 2014, Part 3; Gilks et al. 1996). Particularly attractive is the use
of the Gibbs sampler which, without any further assumptions, allows for an extremely efficient
implementation in the current context of adaptive testing.

Recall that the parameters of the operational items are represented in the system by vectors of
posterior draws collected during their calibration. The Gibbs sampler capitalizes on their presence
in the first of the following two updates:
Update of Ability Parameter θ

1. The sampler iterates between resampling of the vectors of draws for the parameters ξ k
of the last operational item administered to the examinee and a Metropolis–Hastings
(MH) step to sample from the new distribution of the θ parameter.

2. When the sampler is stopped, the current vector of draws for θ in the system is overwritten
with a selection of new draws collected from the stationary part of the Markov chain.

Update of Field-Test Parameters ξ f

1. The sampler now iterates between resampling of the last vectors of draws for the θ

parameter of the current examinee and an MH step to sample the new distribution of
field-test parameter ξ f .

2. When the sampler is stopped, the current vector of draws for ξ f in the system is over-
written with a selection of new draws collected from the stationary part of the Markov
chain.
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The sequential nature of both updates permits a natural choice of proposal and prior distributions
for their MH steps. For instance, for the update of the θ parameter, let (θ(1)

k−1, . . . , θ
(S)
k−1) be the

vector of S posterior draws currently present in the system, which has mean and variance

μk−1 = S−1
S∑

s=1

θ
(s)
k−1 (7)

and

σ 2
k−1 = S−1

S∑

s=1

(
θ

(s)
k−1 − μk−1

)2
, (8)

respectively. As the MH steps require specification of the prior density of each of the values of θ

drawn from the posterior distribution, which is known to converge to normality anyhow (Chang
and Ying 2009), an obvious choice is

fk−1(θ | uk−1) ≡ N (μk−1, σ
2
k−1). (9)

Likewise, for the proposal distribution at iteration steps r = 1, . . . , R, an effective choice is

qk(θ | θ(r−1)) ≡ N (θ(r−1), σ 2
k−1). (10)

Because of the symmetry of (10), upon the rth draw for ξ k , the draw for the θ parameter simplifies
to

(1) draw candidate value θ(c) for θ(r) from the proposal distribution in (10);
(2) accept θ(r) = θ(c) with probability

min

{
N (θ(c) | μk−1, σ

2
k−1) f (uk; θ(c), ξ

(r)
k )

N (θ(r−1) | μk−1, σ
2
k−1) f (uk; θ(r−1), ξ r−1

k )
, 1

}

; (11)

otherwise θ(r) ≡ θ(r−1).

As theMarkov chain is alreadyon target right from its start for eachof the nuisanceparameters,
convergence for the single intentional parameter is extremely fast. Also, the only quantity that
needs to be calculated to evaluate (11) is the product of a normal density and the response
probability for the last item in its numerator (the denominator was already calculated in the
previous step). Finally, it is not necessary to tune the proposal distribution, typically a time-
consuming task. The distribution automatically follows the posterior distribution with a somewhat
greater variance, known to be an efficient choice for low-dimensional parameters (Gelman et al.
2014, sect. 12.2). For further details, such as the optimal choice of burn-in length, autocorrelation
estimates, and control of Monte Carlo error, the reader should consult the optimization study of
the sampler for application in regular adaptive testing without any item calibration in van der
Linden and Ren (2020).

The sampler for the updates of each of the field-test parameters added in this research follows
the same setup as in (7)–(11). The only difference is a temporary change of their scale to support
the normality of (9) and (10). Prior to the update, the parameters are transformed to

b∗
f ≡ bf
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a∗
f ≡ ln(af )

c∗
f ≡ logit(cf )

with back transformation to the original scale immediately after the update. The authors are aware
of the fact that, for the multi-parameter case, direct sampling from the joint posterior distribution
is generally more efficient. But, given the already extremely fast convergence, the gains for the
current application have been found to be too small to justify the efforts.

4. Optimal Design Criteria

The ultimate goal of the two processes of adaptive testing and item calibration is maximum
information about their intentional parameters. To realize this, sequential updating of these param-
eters is not sufficient. The necessary additional step is selection of each next item to have the best
possible match between the intentional and nuisance parameters for the pertinent process.

Criteria for such matches can be derived from statistical optimal design theory. Among its
many criteria, the more favorable belong to the class of Ds-optimality; that is, the choice of a
minimum determinant of the covariance matrix of the estimators of the intentional parameters
given the nuisance parameters. For a general introduction to this class of criteria from a frequentist
perspective, refer to Holling and Schwabe (2018), while Berger (2018) should be consulted for a
general introduction to optimal item-calibration design. Alternative optimal design criteria for use
in adaptive item calibration have been studied by Ren et al. (2017) and van der Linden and Ren
(2015) but these authors also found the criterion of Ds-optimality to serve its purpose generally
best.Minimization of the determinant of the covariancematrix formaximum-likelihood estimators
is (asymptotically) equivalent to maximization of their Fisher information matrix. As the items
are selected in a continuous process of data collection, the proposed version of the Ds-criterion
is selection of items with the maximum marginal profit for either of these determinants.

For θ as intentional parameter, the information matrix reduces to a scalar (equal to its “deter-
minant”) widely used as item-selection criterion in conventional adaptive testing. For the 3PL
model, it is easily obtained as

I (θ; ξ i ) = a2i
1 − p(θ; ξ i )

p(θ; ξ i )

(
p(θ; ξ i ) − ci

1 − ci

)2

. (12)

Because of local independence, (12) is additive in the items and consequently all contributions
by the earlier items can be ignored when selecting the next. However, as both θ and ξ i are
known only through their posterior distributions, the proper way of using (12) is by first taking its
expectation across these distributions. The proposed Gibbs sampler simplifies the calculation of
the expectation considerably. In addition to the vector (θ(1), . . . , θ (S)) of draws from last update
of θ , let (ξ (1)

i , . . . , ξ
(S)
i ) be the vector for the parameters of operational item i permanently present

in the system. Using these draws, the posterior expected information for i as candidate item can
be calculated as

∫ ∫
I (θ; ξ i ) f (θ | uk) f (ξ i )dθdξ i ≈ S−1

S∑

s=1

I (θ(s), ξ
(s)
i ). (13)

The length of both vectors of draws is taken to be equal here for notational convenience only. For
vectors of different lengths, an efficient choice is to recycle the shorter against the longer. The
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length of the vectors directly controls the Monte Carlo error in (13), an issue further addresses
below.

As for the selection of the field-test items, the Fisher information matrix for field-test item f
is equal to

I (ξ f ; θ) =
(

− ∂2

∂ξ j∂ξ j ′
ln( f (u; θ, ξ f )

)

, j, j ′ ∈ {1, 2, 3}. (14)

Using

λf ≡ (1 − pf )

pf (1 − cf )2

with pf ≡ f (u; θ, ξ f ), the elements of (14) are easily obtained from

∂2

∂a2f
ln( f (u; θ, ξ f )) = −(pf − c f )

2(θ − bf )
2λf , (15)

∂2

∂b2f
ln( f (u; θ, ξ f )) = −a2f (pf − cf )

2λf , (16)

∂2

∂c2f
ln( f (u; θ, ξ f )) = −λf , (17)

∂2

∂af bf
ln( f (u; θ, ξ f )) = af (pf − cf )

2(θ − bf )λ f , (18)

∂2

∂af cf
ln( f (u; θ, ξ f )) = −(pf − c f )(θ − bf )λf , (19)

∂2

∂bf ∂cf
ln( f (u; θ, ξ f )) = af (pf − cf )λf . (20)

Though the matrix is still additive in the items, its determinant is not. As a result, the expected
contribution by the current examinee to each of the candidate items is no longer independent of its
history. This fact seems to complicate evaluation of the Ds-criterion for field-test item selection:
Using it for the information matrix would require calculation of the posterior expectation of the
determinant of the sum of these matrices for each candidate item across the ability parameters of
all examinees who have already seen it minus the determinant for the current examinee. On the
other hand, direct use of the posterior covariance matrix seems computationally challenging too.
It would require simulation of the adaptive test one item ahead for each of the candidate items,
running the Gibbs sampler, calculating the determinant of the covariance matrix from the new
posterior samples for the parameters of the items, and subtracting the determinant calculated from
their current samples. However, the equivalence of the two approaches allows us to capitalize on
the data about their key quantities already available in the system.

Let Cov(ξ f ) denote the covariance matrix calculated from the last update of the posterior
draws for field-test parameters ξ f and I (ξ f ; θ) the information matrix for the current examinee
and candidate item f as defined by (14)–(20). It is possible to write the criterion as

Ds(ξ f ) = det
(
Cov−1(ξf ) + I (ξ f ; θ)

)
− det

(
Cov−1(ξ f )

)
, (21)
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while its posterior expected value can be calculated using

Ds(ξf ) ≈ S−1
S∑

s=1

[
det

(
Cov−1(ξ f ) + I (ξ (s)

f ; θ(s))
)

− det
(
Cov−1(ξ f )

)]
. (22)

4.1. Shadow-Test Approach

In the shadow-test approach to adaptive testing (van der Linden and Reese 1998; van der
Linden 2005, chap. 9), a full-length shadow test is re-assembled prior to the selection of each item.
During each re-assembly, the testmust satisfy the following requirements: (i) its objective function
guarantees maximum information about the intentional parameters at their current update; (ii) the
constraint set covers all test specifications in force for the program; and (iii) all items already
administered to the examinee are included in the test. The next item administered to the examinee
is the most informative free item in the current shadow test. The examinee only sees these items;
all other items remain unknown (hence the name of “shadow test”). A distinct advantage of the
approach is optimality of item selection given the constraint set along with guaranteed satisfaction
of the latter. A flexible way of implementing the approach is through mixed integer programming
(MIP) modeling of the objective function and constraint set with submission of the optimization
model to a MIP solver prior to the selection of each item. The solver then returns the IDs of the
optimal selection of items, fromwhich the testing algorithm picks the best item for administration.
Powerful MIP solvers, fully up to their use in real-time shadow-test assembly, are available as
open-source or commercial software programs; information about the runtimes in the empirical
studies for the solver used in this research is given below.

Though the approach has only been used for conventional adaptive testing so far, it is actually
much more powerful. The objective function and constraint set in the shadow test model can be
chosen to manage almost every combination of processes involved in adaptive testing. To do so,
we just need to consult the rich body of knowledge and experience present in the field of MIP
modeling, especially in its applications to problems of multi-objective decision-making (e.g.,
Chen et al. 2010; Williams 2013). The remainder of this section illustrates the power of the
approach for the simultaneous processes of adaptive testing and item calibration.

Each shadow test is assumed to have no operational and nf field-test items. Binary vari-
ables xi = 0, 1 and xf = 0, 1 are used to select the two categories of items from the pool. In
addition, we use Sk−1 to denote the set of indices of the k − 1 operational and field-test items
already administered to the examinee when assembling the kth shadow test. Examples of con-
straints available to deal with possible specifications of the required distributions of quantitative
and categorical attributes of the items in the adaptive test are given. Quantitative attributes are
attributes with numerical values q that represent such features as their response model parameters,
expected response times, exposure rates, etc. The distributions of these attributes are required to
be constrained by upper and/or lower bounds bq . Categorical attributes partition the item pool into
subsets Vc with common features c = 1, . . . ,C . The number of items selected from these subsets
are to be constrained by upper and/or lower bounds nc. A prime example of a categorical attribute
is a (possibly multi-level) classification of the content of the items in the pool; other examples
are item type, format, answer keys, etc. Our last example of a possible constraint is a set of items
Ve that have to be excluded from the test. One possible use of such sets is item-exposure control
through random exclusion of items from the shadow tests for the examinees with probabilities
controlled by the empirical exposure rates of the items in the pool.

All these bounds and sets are instances of what we have referred to earlier as non-statistical
parameters of an adaptive testing program that need to be maintained during testing. From the
point of view of test validity, they are more important than its statistical parameters. An example
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of a shadow-test model for the optimal selection of the kth item in the test that does maintain the
desired values of these parameters is

maximize
I∑

i=1

Ii (θ)xi +
F∑

f =1

Ds(ξ f )xf (objective function) (23)

subject to

I∑

i=1

xi = no, (# of operational items) (24)

F∑

f =1

xf = nf , (# of field-test items) (25)

∑

i, f ∈Sk−1

(xi + xf ) = k − 1, (items already administered) (26)

I∑

i=1

qi xi � boq , (quantitative constraint) (27)

F∑

f =1

qf xf � b f q , (quantitative constraint) (28)

∑

i∈Vc
xi � noc, c = 1, . . . ,C, (categorical constraints) (29)

∑

f ∈Vc
xf � n f c, c = 1, . . . ,C, (categorical constraints) (30)

∑

i, f ∈Ve
(xi + xf ) = 0, (exclusion constraint) (31)

xi = 0, 1, i = 1, . . . , I, (binary decision variables) (32)

xf = 0, 1, f = 1, . . . , F. (binary decision variables) (33)

The objective function simultaneously maximizes the posterior expected information in the
shadow test about the examinee’s ability parameter and the field-test parameters in the pool as
calculated by the two criteria in (13) and (22). The first two constraints control the numbers of
items to be administered. The constraint in (26) effectively sets the decision variables of the k−1
operational and field-test items already answered by the examinee equal to one. The next two
types of constraints are to maintain bounds on quantitative item attributes. Typically, multiple
versions of these constraints are necessary both with upper and/or lower bounds. The same holds
for the constraints on the categorical item attributes in (29) and (30). Obviously, the zero bound in
(31) prevents the items in set Ve in the pool from being administered to the examinee, for instance,
because they contain clues to each other (“enemy items”). The last two sets of constraints are
necessary to define the decision variables as binary.

The model only serves as an example and does not exhaust all possibilities. A major missing
type of constraint are those for logical item selection. These constraints are necessary, for instance,
to select set-based items along with their stimuli or prevent the selection of items with an enemy
relationship. For these and other modeling options, refer to van der Linden (2005). Also, it is
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Figure 1.
Distributions of parameters of operational items in the pool

Figure 2.
Trace plots of Markov chains for field test parameters af of five arbitrary items after N = 1, 50, 10, 50, 150, 200, and
250 responses

important to note that the only required update of this model prior to moving to the next item is
addition of the index of the item just administered to set Sk−1 in the left-hand side of (26) along
with an increase of item count k in its right-hand side by one.

A key feature of the model in (23)–(33) is complete separation of the optimization of the
selection of the operational and field-test items. Though the two problems are controlled by a
single model for the shadow test, both have their own objective of maximum information and are
subjected to their own bounds. The only difference between the two types of items emerges when
an item is selected for administration. When the system arrives at a position in the test reserved
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Figure 3.
Trace plots of Markov chains for field test parameters bf of five arbitrary items after N = 1, 50, 10, 50, 150, 200, and
250 responses

for item calibration, it is the currently best field-test item in the shadow test that is administered;
otherwise, it is the best operational item. It is possible to combine pairs of constraints as in (27)–
(30) replacing them with single versions running across both types of items in the pool. The effect
is less specific control of the composition of the shadow test, which may be a disadvantage if
there exists a shortage of items with certain combinations of attributes and their calibration has to
be accelerated. Also, as operational and field-test items then become exchangeable with respect
to the attribute in their common constraint, the system may select an item with the attribute from
one of these two categories whereas it may have picked one from the other in case of separate
constraints (subject to all other constraints, of course).

5. Simulation Study

The goal of the study was to explore optimal settings for the proposed shadow-test approach
to embedded item calibration and demonstrate its feasibility for real-world application. More
specifically, our goal was to address such issues as the best burn-in length of the Markov chain for
the updates of the field-test parameters, estimation of its autocorrelation, selection of the sample
size of the post burn-in draws for operational use, as well as the recording of the runtimes for our
best combination of settings. In order to demonstrate practical feasibility, the combination was
evaluated both for its speed of item calibration and the statistical qualities of the item parameter
estimates.

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 08:34:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


312 PSYCHOMETRIKA

Figure 4.
Trace plots of Markov chains for field test parameters cf of five arbitrary items after N = 1, 50, 10, 50, 150, 200, and
250 responses

5.1. Item Pool

The item pool consisted of a random sample of 250 retired items from a real-world testing
program calibrated under the 3PL model. In addition, 50 items were sampled to serve as field-test
items. Figure 1 shows the distribution of the operational item parameters in the pool. The plot for
the bi parameters reveals a pool that was slightly on the more difficult side with a mean equal to
0.260 and a standard deviation of 1.267. As the items were originally calibrated using the method
of maximum marginal likelihood (MML) estimation, their posterior distributions were taken to
be normals with the MML estimates and their standard errors as mean and standard deviation,
respectively. From each of the distributions, 500 values were randomly drawn and stored in the
system to represent the parameters of the operational items during testing.

5.2. Simulated Adaptive Testing

The adaptive test consisted of a total of 25 items, 22 of which were operational and three field-
test items. As it was unnecessary to hide field-test items from simulated examinees in this study,
for practical purposes their position was chosen to be the 21st, 23rd and 25th in the test for each
examinee. The test had eight different content specifications modeled as categorical constraints.
No quantitative constraints were required, but otherwise the shadow-test model was entirely
similar to (23)–(33). The simulated examinees had ability parameter values randomly sampled
from the population served by the testing program, which was estimated to be N (0.26, 1.42).
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Figure 5.
Percentage of replications required tomeet the convergence criterion of

√
R̂ < 1.1 as a function of the number of iterations

for field test parameters af of five arbitrary items after N = 1, 50, 10, 50, 150, 200, and 250 responses

The Gibbs sampler for the ability parameter updates consisted of resampling of the 500
posterior draws for the operational item parameters in the system and the MH step in (7)–(11).
Burn-in was for 250 iterations, while 500 independent post burn-in draws were saved for the next
steps. The sample of 500 was obtained by thinning the post burn-in part of the chain by a factor
of ten. These choices have been shown to be conservative for adaptive testing under the 3PL
model (van der Linden and Ren 2020). The algorithm started with an initial prior distribution of
N (0.26, 1.682) for the ability parameter for each of the simulated examinees.

5.3. Item-Calibration Algorithm

The algorithm for item calibrationwas exactly the version of theGibbs sampler abovewith the
temporary reparameterization of thefield-test parameters and subsequent use of the criterion of Ds-
optimality in (22). The initial prior distributions of the field-test parameters were normals for bi ,
ln(ai ), and logit(ci ). As their parameters, themeans andSDs for these quantities for the operational
item pool were chosen, which were equal to 0.260 (1.520), −0.396 (0.582), and −1.414 (0.528),
respectively. Because the Ds-criterion does not discriminate between items with a common initial
prior distribution for their parameters, the simulation started with random assignment of each of
the items to five examinees. The calibration process for an item was stopped as soon as it reached
the criterion of N = 250, 500 or 1,000 examinees. For the 3PL model, these calibration sample
sizes are low relative to those typically used for off-line item calibration, especially the two sizes
of 250 and 500. Once an item was calibrated, it was treated as an operational item but with a large
penalty as weight for its decision variable in the objective function in the shadow-test model. As a
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Figure 6.
Percentage of replications required tomeet the convergence criterion of

√
R̂ < 1.1 as a function of the number of iterations

for field test parameters bf of five arbitrary items after N = 1, 50, 10, 50, 150, 200, and 250 responses

consequence, the model tried to avoid selecting the item but at the same time kept the impact of its
presence on the relative severeness of the constraints in the model constant during the simulation.

5.4. Simulation Environment

All simulations were run on an i5-6300U 2.4GHz CPU with 16GB of RAM. The simulation
framework was written in R with the Gibbs samplers coded in Java. The shadow tests were
assembled making calls to a MIP solver installed on the same machine. Various open-source and
commercial solvers are available. Open-source solvers as lpSolve and CBC (Forrest and Lougee-
Heimer 2015) are free to use and can be easily integrated into most simulation frameworks. But
commercial solvers as FICO Xpress and IBM CPLEX allow for significant reduction of solving
time without any sacrifice of solution quality. For instance, the FICO Xpress solver used in the
current simulations has built-in pre-solve algorithms and cut strategies producing solutions to
typical problems 10 to 20 times faster than open-source solvers (Meindl and Templ 2012). The
following settings were used for the main parameters of this solver: MIPRELSTOP = 1.0E−04,
MIPABSSTOP=0.0,MIPTOL=5.0E−06, and FEASTOL: 1.0E−06. For a full list of parameters,
including their definitions and default values, see theFICOXPRESSOptimizer ReferenceManual.

5.5. Results

Convergence of theMarkov chains for the updates of the field-test parameters is illustrated by
the trace plots in Figs. 2, 3 and 4. The plots are for five arbitrary itemswith different true parameter
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Figure 7.
Percentage of replications required tomeet the convergence criterion of

√
R̂ < 1.1 as a function of the number of iterations

for field test parameters cf of five arbitrary items after N = 1, 50, 10, 50, 150, 200, and 250 responses

values after the responses by N = 1, 50, 100, 150, 200, and 250 examinees. Of course, after a
single examinee the behavior of the chains was rather wild. But with increasing numbers, just as
required, they quickly became regular with smaller and smaller posterior uncertainty located at
the true values of the parameters.

Convergence of the chains was assessed more analytically using the well-known Gelman-
Rubin (1992) diagnostic. In a separate set of simulations, four parallel chains were started from
values randomly sampled from the tails of the initial prior distribution for each of the parameters,
two from below its mean minus 2SD and the other two from above the mean plus 2SD. The chains

were considered to be mixed once a potential scale reduction factor of
√
R̂ < 1.1 was reached.

The percentages of replications required to meet the criterion as a function of burn-in length for
the same five items and numbers of examinees are displayed in Figs. 5, 6 and 7. The results are
quite robust. With the exception of the update after N = 1 examinee, all plots are remarkably
similar, even across the three different types of parameters. Just to remain on the safe side, it was
decided to run the main simulations with a burn-in length of 800 iterations for the updates of each
of the field-test parameters.

A second set of simulations was run to estimate the autocorrelation of the Markov chains as a
function of the lag size during the updates of the field-test parameters. Its results were necessary
to obtain samples of independent post burn-in draws. Figures 8, 9 and 10 illustrate the functions
estimated from 1,000 replications for the same items and numbers of examinees as in the previous
figures. The choice of a lag size of l = 20 iterations was large enough to meet the criterion of
autocorrelation of ρl < 0.1 for all simulated conditions. The lag size was then used to thin the

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 08:34:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


316 PSYCHOMETRIKA

Figure 8.
Autocorrelation in the Markov chains as a function of the lag size for field test parameter af of five arbitrary items after
N = 1, 50, 10, 50, 150, 200, and 250 responses

post burn-in chain to obtain samples of S = 500 independent draws for the selection of the next
item and parameter update. The Monte Carlo error added to standard error of the posterior mean
is known to be equal to a factor of

√
1 + 1/S × 100% (Gelman et al. 2014, Sect. 11.5), which for

our choice of S = 500 amounts to a relative error as small as 0.1%.
The main simulation conducted to evaluate the complete shadow-test approach was for

12, 000 simulated examinees with ability parameters sampled from N (0.26, 1.42) and the choice
of burn-in length and number of independent post burn-in draws equal to 250 and 500 for the
update of the ability parameters and 800 and 500 for the update of the field-test parameters,
respectively. Figures 11, 12 and 13 show the EAP estimates of the field-test parameters when the
three different calibration sample sizes were reached plotted against their true values. The results
for the bf and cf parameters for a sample size of N = 250 were already close to those typically
seen in fixed-form item calibration for the 3PL model. In fact, the increase in sample size from
N = 250 to N = 1, 000 did hardly have any impact on the accuracy of the estimates for these two
parameters. The increase was welcome for the af parameters, however. The larger biases for the
smallest sample size for these parameters disappeared with the increase of it, with the exception
of a few items with higher true values for the parameter for which the decrease was only minor.
The authors checked the simulated runs for these items carefully but have been unable to detect
any irregularities or factors that could explain the exceptions. They may just have been the result
of the randomness inherent in the procedure.

The criterion of Ds-optimality is known to be discriminating with respect to the assignment
of items to examinees. Generally, it tends to prefer a few items in the pool, moving to the next
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Figure 9.
Autocorrelation in the Markov chains as a function of the lag size for field test parameter bf of five arbitrary items after
N = 1, 50, 10, 50, 150, 200, and 250 responses

few only when their calibration is completed (van der Linden and Ren 2015). The behavior was
observed in almost pure form in the current study. Figure 12 displays the number of items that
completed the calibration as a function of number of simulated examinees. The functions were
nearly perfectly linear for each of the three sample sizes until the maximum number of items was
reached. These results point at an item-calibration approach that produces a constant stream of
new items ready for operational use by the testing program right from its launch.

5.6. Runtimes

The distributions of the times for the Gibbs sampler to update the ability and field-test
parameters and for the calls to the MIP solver with subsequent selection of the next item in the
main studywith 12,000 examinees are shown in Fig. 13. Their averages (standard deviations) were
equal to 0.012 (0.003), 0.026 (0.003), and 0.053 (0.007) s, respectively. These results demonstrate
appropriateness of the approach for use in real-world testing.

6. Discussion

Key features of the proposed approach to real-time item calibration are embedding of the
field-test items in operational adaptive testing in random positions near the end of the test, repre-
sentation of each of the response model parameters by short vectors of draws from their posterior
distributions instead of fixed point estimates, sequential updating of these vector of posterior draws
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Figure 10.
Autocorrelation in the Markov chains as a function of the lag size for field test parameter cf of five arbitrary items after
N = 1, 50, 10, 50, 150, 200, and 250 responses

after each new response by two special versions of the Gibbs sampler, use of a well-known optimal
design criterion both for the selection of the operational and field-test items, and maintenance of
the integrity of the adaptive testing program through a shadow-test approach designed to keep all
non-statistical parameters of the program within their bounds. Even for the rather conservative
choice of settings for the two Gibbs samplers in our main study, the observed runtimes were fully
comparable with those for conventional adaptive testing without any item calibration.

The approach delivers a constant stream of new items ready to replace obsolete items in the
pool when their parameter updates have reached the desired degree of statistical precision. The
fact that the parameters of these items are estimated directly on the scales in use for the item pool
looks especially valuable. It prevents the necessity of separate parameter linking studies after item
calibration and promises the best possible scale maintenance through the use of the entire item
pool as anchor rather than a few selected items. The expected gains in item parameter stability
relative to conventional linking studies have not been evaluated yet and deserve further study.

The current study carefully optimized the settings of the twoGibbs samplers for their applica-
tion in the proposed shadow-test approach to adaptive testing. Though the settings for their main
application in the study reported above were chosen to be conservative and the same choice has
been found to work equally well in other applications, including adaptive testing from real-world
pools of items calibrated under different polytomous IRT models (Ren et al. 2020), the authors do
not claim universal validity. Critical factors not varied in the present study include the composition
of the item pool, distribution of the item parameters, the set of test specifications, as well as the
length of the test, each of which still has an unknown impact on the behavior of the proposed
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Figure 11.
Posterior means versus true values of all field test parameter after N = 250, 500, and 1,000 responses

algorithms. Testing programs interested in an application are recommended to run an additional
simulation for their specific environment using our settings as point of departure.

The authors also are aware of fact that the linear results for the speed of item calibration
demonstrated in Fig. 12 do not automatically hold for testing programs with continuous item
writing and calibration rather than one fully calibrated batch of new items at a time as in the current
study. As pointed out by Ren et al. (2017), it is not unlikely for a more continuous environment
to find items with less than optimal statistical features being permanently dominated by some of
the new items added to the pool. If so, they never complete their calibration, something especially
undesirable when they belong to categories in the item pool that have become scarce. The issue
brings us to the wider topic of item-pool management and its relation to field-testing of new
items. The proposed shadow-test approach offers unique tools that support active management.
One option to increase the speed of calibration of items in badly needed categories is using the
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Figure 12.
Number of field-test items calibrated as a function of the number of simulated examinees after N = 250, 500, and 1,000
responses

Figure 13.
Runtime distributions for the updates of ability parameter θ (left panel), updates of field-test parameters ξ f (middle panel),
and calls to the MIP solver with subsequent selection of the next item (right panel) in the main study (12,000 simulated
examinees)

constraints in (30) to set lower bounds on their presence in the shadow tests. If the reason for lower
than expected speed is less favorable statistical features of the field-test items, it is possible to put
extra weight on their coefficients in the objective function of the model in (23). Both options can
be exercised temporarily when monitoring the developments in the item pool in real time.

As stopping criterion, our study used fixed numbers of responses per item. An alternative
criterion is a fixed level of posterior accuracy for the items. As both criteria are monotonically
related for each item, we do not expect much different results for the latter. In fact, we expect
sensible testing programs to monitor the posterior behavior of the field-test items until a prespec-
ified level has been reached while capping their number of administrations to avoid occasional
overexposure. When in this monitoring mode, they may even wish to decide stopping the calibra-
tion process for items beginning to show less than satisfactory fit to the response model for their
program before either criterion is reached.
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