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ABSTRACT

In this article, we study the problem of optimal index insurance design under
an expected utility maximization framework. For general utility functions, we
formally prove the existence and uniqueness of optimal contract and develop
an effective numerical procedure to derive the optimal solution. For exponen-
tial utility and quadratic utility functions, we obtain analytical expression of
the optimal indemnity function. Our results show that the indemnity can be
a highly nonlinear and even non-monotonic function of the index variable in
order to align with the actual loss variable so as to achieve the best reduction in
basis risk. Due to the generality of model setup, our proposed method is readily
applicable to a variety of insurance applications including index-linked mortal-
ity securities, weather index agriculture insurance, and index-based catastrophe
insurance. Our method is illustrated by numerical examples where weather
index insurance is designed for protection against the adverse rice yield using
temperature and precipitation as the underlying indices. Numerical results
show that our optimal index insurance significantly outperforms linear-type
index insurance contracts in terms of basis risk reduction.
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1. INTRODUCTION

This paper is concerned with a class of insurance known as the index-
indemnifying insurance or simply the index insurance. As opposed to the
traditional loss-indemnifying insurance for which its payout (indemnity pay-
ment) is a function of the actual loss incurred by the policyholder, the payout
of an index insurance depends exclusively on a pre-determined index or
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some appropriately chosen indicators. Prominent applications of index insur-
ance can be found in insurance coverage provided to agricultural producers.
In fact, in recent years there is a surge of interest in piloting index insurance
for agricultural households in developing economies. In these applications, an
index may be an average county crop yield, the number of heating days, the
amount of rainfall received by a particular area during the growing season,
or based on remote sensing satellite vegetation data. For example, Barnett
and Mahul (2007) discuss the use of weather index insurance for agriculture
in rural areas of lower-income countries. Chantarat et al. (2007) demonstrate
that an index insurance with payout linked to some weather variables can
be effective in improving drought response for famine prevention. Chantarat
et al. (2013) describe an index-based livestock insurance by exploiting remote
sensing vegetation data. Bokushevaa et al. (2016) analyze the effectiveness of
the indices constructed based on the satellite-based vegetation health indices
for insuring against drought-related yield losses. See also International Fund
for Agricultural Development World Food Program (2010), Conradt et al.
(2015) and Carter et al. (2016) for recent advances in agricultural index
insurance.

Besides hedging agricultural and livestock risks, index-based securities that
are issued in the capital market can also be effective in securitizing catastrophic
risks. See, for example, the catastrophic-loss index options for hedging hurri-
cane risk (Cummins et al., 2004) and the Swiss Re mortality bonds for hedging
mortality risk.

The popularity of index insurance stems from a number of reasons. The
first and foremost reason lies in its potential of reducing or even eliminating
moral hazard and adverse selections since the indemnity payments are based
on an index that is transparent, well defined, and cannot be manipulated by
either the insured or the insurer. The second reason is its low operational cost
(such as the cost associated with the underwriting, administration, and loss
assessment). Because the indemnity payments are completely determined by an
index, there is no need to assess the losses actually incurred by the agricultural
producers. Hence the claim settlement can be processed more efficiently and
more timely whenever there is a claim from an index insurance. In contrast,
a loss-indemnifying insurance requires loss assessment for every single claim
arising. This procedure can be expensive and prohibitive, especially in rural
areas where accessibility can be problematic and/or to agricultural households
with small operation.

Despite all the aforementioned advantages, the challenge with the index
insurance is basis risk, which arises due to the discrepancy between the indem-
nity payments dictated by the index and the losses actually incurred by the
insured. The imperfect correlation between the adopted index and the loss ran-
dom variable casts doubt on the effectiveness of index insurance in hedging
agricultural production risk and as such leads to low demand in some pilot
index insurance programs. See, for example, Miranda and Farrin (2012) for
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a review of recent theoretical and empirical research on index insurance for
developing countries and a summary of lessons learned from index insurance
projects implemented in the developing countries since 2000. See also Elabeda
et al. (2013) and Jensen et al. (2016) for additional discussion on the basis risk
associated with agricultural and livestock productions, respectively.

The presence of basis risk implies that the index must be chosen meticu-
lously. This is typically achieved by formulating it as an optimization problem
and seeking an index that optimally reduces the basis risk. In other words, this
leads to a line of research inquiry on the optimal design of index insurance. The
optimal design of loss-indemnifying contract is a widely studied problem in the
actuarial literature. See, for example, Borch (1960) and Arrow (1963). It is,
however, important to point out some subtle differences between the formu-
lation of optimal loss-indemnifying contract and optimal index-indemnifying
contract. More specifically, the indemnity function in a loss-indemnifying
insurance contract needs to be non-decreasing, bounded from above by the
actual loss, and has a non-zero deductible, in order to reduce moral hazard. In
contrast, the indemnity function of an index insurance can have a very flexible
structure. The indemnity is not necessarily increasing in the underlying indices.
The indemnity payment can even exceed the loss incurred by the insured.

While index insurance is prevalent in agricultural production, its indem-
nity function in most cases is relatively simple and is of linear type (e.g., Giné
et al., 2007; Okhrin et al., 2013). While linear-type indemnity functions may
work well in certain contexts, the basis risk is generally high in most cases.
For example, in the context of agricultural insurance, the dependence structure
between crop yields and weather indices such as temperature and precipitation
are so complex that it cannot be accurately captured by a linear function. Thus,
innovative weather index insurance products need to be developed for farm-
ers to better protect against the decline in crop yields due to adverse weather
conditions.

In this article, we adopt a utility maximization framework for the design
of index insurance (Raviv, 1979) and define the optimal index insurance
as the one that maximizes the insureds’ expected utility. The variance min-
imization problem can be viewed as a special case in our general utility
maximization framework when a quadratic utility function is adopted. Mahul
(2000), Vercammen (2001) and Mahul and Wright (2003) are the three rel-
evant references. The mathematical models in these three references share
a similar structure as the present paper, and they considered the insurance
design problem in the presence of background risk under a utility maximiza-
tion framework. They derived some characterization results about the optimal
solution and presented certain interpretations on the shape of the optimal
indemnity function. None of these three articles or their follow-ups offered
a constructive procedure for the derivation of the optimal indemnity function
in a relatively general setup. For some special utility functions, closed-form
optimal solutions are obtained in these three articles, but the solutions hold
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only when the loss variable and the index variable have a linear relationship.
Therefore, their results are not sufficient for insurers to design effective index
based insurance products.

We contribute to the literature in the following aspects. First, we provide
a rigorous mathematical examination on the existence and uniqueness of the
optimal index insurance arrangement, while none of those aforementioned lit-
erature and their follow-ups made any conclusion in this aspect. Second, the
explicit form of the optimal index insurance is derived for utility functions
commonly adopted in insurance economics including quadratic and exponen-
tial utility functions. For a general strictly concave utility function, the optimal
solution is characterized by an implicit ordinary differential equation (ODE),
for which the solution can be easily obtained numerically, for example, by
the Runge–Kutta method (Burden and Faires, 2011). Third, our results allow
a general relationship between the loss variable and the index variable, as
opposed to a linear one assumed in those aforementioned literature. Our model
is not exactly a generalization ofMahul andWright (2003) because they studied
crop revenue insurance based on bivariate indices, while our paper focuses on
the case with a univariate index, but the potential of generalizing our results to
bivariate indices is demonstrated in Section 4.6. Fourth, an empirical agricul-
tural index insurance is conducted and it shows that the index based contract
from our results significantly outperforms those existing index contracts from
the literature. Choosing the average temperature as the underlying index, we
find that the optimal indemnity function generally follows a “first decreas-
ing and then increasing” pattern and its specific shape relies on the premium
level charged by the insurance contract, the maximum indemnity paid and the
form of utility function. For quadratic utility function, the design is equivalent
to minimizing the variance of insured’s resulting position, and our numerical
results show that the effectiveness in terms of variance deduction does not con-
tinue to improve with the premium level after the premium exceeds certain
threshold. This observation provides important and useful insights for govern-
ment agency in making agricultural insurance premium subsidiaries. Further,
our results also show that the proposed optimal contract generally outper-
forms the linear-type insurance contracts, and that the multi-index contracts
can further reduce basis risk, when compared to the single-index ones.

The rest of this article is organized as follows. Section 2 describes the prob-
lem formulation of index insurance we will study in the paper and discusses
the existence and uniqueness of the optimal index insurance contract for our
formulation. Section 3 provides an ODE-based method for the computation of
the optimal solution and applies this method to derive explicit optimal solution
for quadratic and exponential utility functions, respectively. Section 4 provides
an empirical study on the viability of our proposed optimal index insurance to
weather index insurance. Section 5 concludes the paper. Mathematical proofs
to all theorems, lemmas, and propositions, as well as a numerical procedure for
solving the ODE arising from Section 3 are provided in the appendix.

https://doi.org/10.1017/asb.2019.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.5


INDEX INSURANCE DESIGN 495

2. PROBLEM SETUP AND EXISTENCE OF SOLUTION

2.1. Problem setup

Suppose that a potential loss, which can hardly be insured or well hedged by
any existing insurance of financial program on the market, is modeled by a ran-
dom variable Y . Throughout this paper, all the random variables are defined
on a probability space (�,F , Pr). Our objective is to design an index based
insurance which is linked to an index X to protect an insured from such a
risk. Let [c, d] and [a, b] with c< d and a< b be the supports of X and Y ,
respectively. Further, we assume that X and Y have a joint probability density
function f (x, y) for (x, y) ∈ [c, d]× [a, b], so that

∫ d
c

∫ b
a f (x, y) dy dx= 1. In this

article, we assume that f (x, y) is continuous on [c, d]× [a, b] and we write the
marginal density functions for X and Y , respectively, as follows:

h(x) :=
∫ b

a
f (x, y) dy for x ∈ [c, d] and g(y) :=

∫ d

c
f (x, y) dx for y ∈ [a, b].

Obviously, g(y) and h(x) are continuous on [a, b] and [c, d], respectively.
Additionally, we assume that f (x, y)> 0 on [c, d]× [a, b] a.e., and thus h(x)> 0
a.e. on [c, d] and g(y)> 0 a.e. on [a, b].

Let I(X ) be the indemnity function of the index insurance. This means that
the actual payoff of the insurance is completely determined by the realization of
the index X . We further assume that 0≤ I(X )≤M for a constantM > 0 which
represents the maximum amount paid by the insurer. The maximum payout,
M, is assumed to be exogenous. It is possible to haveM ≥ b because the insured
may want to over-insure its underlying for large losses in an incomplete market
(Doherty and Schlesinger, 1983). Mathematically, we consider the following
feasible set for the indemnity function in the design of index insurance:

I := {I |I : [c, d]→ [0,M] is measurable }.
For loss-indemnifying insurance where the payoff of the insurance contract
depends on the actual loss occurred on the insured, the indemnity function
is typically non-decreasing and bounded from above by the actual loss, and
has a non-zero deductible, in order to preclude severe moral hazard from the
insurance contract (e.g., Chi and Tan, 2011; Chi and Weng, 2013). For the
design of index insurance, however, we do not need to impose these restrictions
on the indemnity function because the index can hardly be manipulated by
either the insured or the insurer, and thus no moral hazard is involved.

In the article, we assume that the price of this insurance product is
determined by the expected value premium principle:

P= γE [I(X )]= γ

∫ d

c
I(x)h(x) dx,
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where γ − 1≥ 0 is the safety loading factor. For a given insurance premium
level P ∈ (0, γM), the insurer aims to design an optimal insurance that maxi-
mizes its clients’ expected utility. In other words, we are interested in solving
the following optimization problem:{

sup
I∈I

J(I) :=E{U(w+ I(X )−Y − (1− θ)P)}
s.t. P= γ

∫ d
c I(x)h(x) dx,

(1)

whereU is a strictly concave and non-decreasing utility function for the insured
with U ′(x)≥ 0 and U ′′(x)< 0 for x in the domain of the utility function U ,
U ′′(x) is a continuous function, 0≤ θ ≤ 1 denotes any possible subsidy to the
insured by a third party (which is usually a government agency in practice), w
is the initial wealth of the insured, and thus, w+ I(X )−Y − (1− θ)P denotes
the terminal wealth of the insured in the presence of an index insurance. The
constraint P= γ

∫ d
c I(x)h(x) dx may also be interpreted as the participation

constraint for risk-neutral insurers when the insurance costs are proportional
to the insurance payments (Raviv, 1979). In this paper, we assume that P is
exogenously given because, in practice, the amount of insurance in transac-
tion is usually determined by the buyer (policyholder) instead of the seller
(insurer). For the case in which the constraint has an inequality form P≥
γ

∫ d
c I(x)h(x) dx, the problem can be viewed as a two-step optimization prob-

lem with an additional step to select the optimal premium level P. We also
assume 0<P< γM to ensure that the problem is well defined, and to exclude
the trivial cases of P= 0 or P= γM, where the optimal indemnity is either
zero or the upper bound M. We note that it is very common among most
countries for a government to subsidize farmers for purchasing agricultural
insurance. The inclusion of θ in model (1) is to reflect such a practice. In
the special case of θ = 0, no subsidy is assumed for the insured in the above
model.

2.2. Uniqueness and Existence of the optimal solution

Before discussing how to solve for the optimal solution, we first investigate
the existence and uniqueness of the optimal solution. In fact, due to the strict
convexity of the utility function, we have the following proposition regarding
the uniqueness of optimal solution to the insurance design problem (1).

Proposition 1 (Uniqueness of optimal solution). The optimal solution to problem
(1) is unique up to the equality almost everywhere if it exists.

Then, in order to discuss the existence of optimal solution as well as to solve
problem (1), we introduce the Lagrange multiplier λ and define:
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K(I , λ)

:= J(I)+ λ

(
P− γ

∫ d

c
I(x)h(x) dx

)
=E [U (w+ I(X )−Y − (1− θ)P)]+ λ

∫ d

c
[P− γ I(x)]h(x) dx

=
∫ d

c

∫ b

a
U (w+ I(x)− y− (1− θ)P) f (x, y) dy dx+

∫ d

c
λ(P− γ I(x))h(x) dx

=
∫ d

c

{∫ b

a
U (w+ I(x)− y− (1− θ)P) f (y|x) dy+ λ(P− γ I(x))

}
h(x) dx,

(2)

where f (y|x)= f (x, y)/h(x) is the conditional density function of Y given
X = x. By the continuity and positiveness of f (x, y) and h(x), f (y|x) is also
continuous and positive for x ∈ [c, d] and y ∈ [a, b]. The optimal solution to
problem (1) can be recovered by the maximizer of K(I , λ) defined in (2), as
stated in the following lemma.

Lemma 1. Let Iλ denote the maximizer of K(I , λ) defined by Equation (2)
for every λ ∈R. If there exists λ∗ such that E[Iλ∗ ]=P/γ , then I∗ := Iλ∗ solves
problem (1).

By virtue of Lemma 1, we first investigate the maximizer of the function
K(I , λ) with respect to I for a given λ ∈R. In view of Equation (2), a sufficient
condition is to pointwise maximize its integrand:

H(I(x), x, λ) :=
∫ b

a
U (w+ I(x)− y− (1− θ)P) f (y|x) dy

+ λ(P− γ I(x)), x ∈ [c, d]. (3)

The derivative of H(I(x), x, λ) with respect to I(x) is given by

Ḣ(I(x), x, λ) :=G(I(x), x)− λγ , (4)

where

G(ξ , x) :=
∫ b

a
U ′ (w+ ξ − y− (1− θ)P) f (y|x) dy

= E
[
U ′ (w+ ξ −Y − (1− θ)P) |X = x

]
. (5)

We note that G(ξ , x) is strictly decreasing in ξ for any fixed x, sinceU is strictly
concave. Accordingly, G(ξ , x) attains its maximum value at ξ = 0 and its min-
imum value at ξ =M for a given x. Based on this fact, we define the following
three sets:
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Sλ
1 :=

{
x ∈ [c, d]

∣∣∣∣G(0, x)< λγ

}
, (6)

Sλ
2 :=

{
x ∈ [c, d]

∣∣∣∣G(M, x)> λγ

}
, (7)

Sλ
3 :=

{
x ∈ [c, d]

∣∣∣∣G(M, x)≤ λγ ≤G(0, x)
}
. (8)

Since G(ξ , x) is strictly decreasing in ξ for a fixed x, we must have Sλ
1 ∩

Sλ
2 = ∅, and thus Sλ

1 , S
λ
2 and Sλ

3 constitute a partition of the interval [c, d].
Consequently, it is obvious to have

Iλ(x) := argmax
I(x)∈[0,M]

H(I(x), x, λ)=

⎧⎪⎨⎪⎩
0, for x ∈ Sλ

1 ,
M, for x ∈ Sλ

2 ,

Îλ(x), for x ∈ Sλ
3 ,

(9)

where Îλ(x) satisfies Ḣ( Îλ(x), x, λ)= 0, that is,

G( Îλ(x), x)= λγ . (10)

Obviously, Ḣ(0, x, λ)≥ 0 and Ḣ(M, x, λ)≤ 0 for x ∈ Sλ
3 . Thus, the continuity

and strictly increasing property of Ḣ(I(x), x, λ) as a function of I(x) implies
that there exists a unique solution Îλ(x) ∈ [0,M] to Equation (10) for every
x ∈ Sλ

3 .

Remark 1. The partition by the three sets Sλ
1 , S

λ
2 , and Sλ

3 for the index X
represents different levels of insurance coverage for the insured. The expression
of H(I(x), x, λ) given in (3) implies that its maximizer strives to keep a balance
between the marginal utility gained and the marginal expense on insurance
premium from an increase of insurance coverage. When the index value lies in
the set Sλ

1 , the marginal utility gained from each unit of insurance coverage is
less than the marginal cost of premium, and thus a zero insurance coverage is
optimal. For the index value on Sλ

2 , the marginal utility for each unit of insurance
coverage is larger than the marginal cost of insurance premium, and thus the
maximum coverage is optimal. On Sλ

3 , the optimal coverage makes the marginal
benefit of utility equal to the marginal cost of insurance premium. The insurance
coverage for index on the set Sλ

3 is between 0 and M, and thus Sλ
3 represents the

relatively medium coverage region.

In the rest of this section, we use Lemma 1 to show the existence of a solu-
tion to problem (1). We need to verify the existence of λ∗ such that E[Iλ∗ ]=
P/γ for Iλ in Equation (9). To this end, we impose the following technical
conditions:

H1: μ ({x ∈ [c, d]|G(0, x)= k1}) = μ ({x ∈ [c, d]|G(M, x)= k2}) = 0 for any k1,
k2 ∈R,

where μ( · ) denotes the Lebesgue measure.
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The above condition means that the level sets have a zero Lebesgue mea-
sure at any level for both functions G(0, x) and G(M, x). This condition is
quite mild from a practical point of view. For example, when the function
G(M, x) is piecewise strictly monotonic over [c, d], then condition H1 is sat-
isfied. In the context of optimal insurance or risk sharing with background
risk, the concept of stochastic monotonicity is commonly used to describe the
dependence structure between two random variables (e.g., Dana and Scarsini,
2007). A random variable Z1 is (strictly) stochastically monotonic in Z2, if the
map z �→E[ f (Z1)|Z2 = z] is (strictly) monotonic for every (strictly) monotonic
function f . Obviously, condition H1 is satisfied when the actual loss variable
Y is strictly stochastically monotonic in the index variable X . For index insur-
ance design, the stochastic monotonicity is generally too strong to apply, but
condition H1 is general enough for most applications.

Finally, armed with conditionH1, we are ready to establish the existence of
the optimal solution to problem (1). This is given by the following proposition.

Proposition 2 (Existence of optimal solution). Assume that condition H1 holds
and P ∈ (0, γM). Then, there exists λ∗ to satisfy E[Iλ∗ ]=P/γ for Iλ defined by
Equations (9) and (10). In this case, Iλ∗ is the optimal solution to problem (1).

3. COMPUTING THE OPTIMAL SOLUTION

In the previous section, we have demonstrated the existence and uniqueness of
the optimal insurance contract for problem (1). In order to derive a closed-form
expression for the optimal solution, one may invoke Proposition 2. However,
this involves the determination of the specific forms of the sets Sλ∗

2 and Sλ∗
3 , as

well as solving Equation (10) for Îλ∗(x), where λ∗ is given in Proposition 2.
Recall that Îλ∗(x) is defined on the set Sλ∗

3 only and it is solved from
Equation (10) as the unique solution. In this section, we consider the case where
the analytical form of Îλ∗(x) derived from Equation (10) can be extended to the
whole interval [c, d], that is, Îλ∗(x) is well defined for x ∈ [c, d]. As to be dis-
cussed in Section 3.1, we develop an ODE method which is more convenient
for the derivation of the optimal solution. This ODE method will be demon-
strated for quadratic and exponential utility functions in Sections 3.2 and 3.3,
respectively. For other strictly concave utility functions, a numerical procedure
is attached in the appendix for the derivation of optimal contract.

3.1. The ODE method

Lemma 2 below provides an equivalent but more computationally friendly way
for deriving Iλ to maximizeK(I , λ) in (2) when Îλ(x) derived fromEquation (10)
can be extended to the interval [c, d]. Note that Îλ(x) may no longer confine to
the interval [0,M] for x outside the set Sλ

3 .
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Lemma 2. Let λ be a constant such that Sλ
3 �= ∅, and assume that Îλ(x) solved

from (10) exists on [c, d]. Then, the optimal solution to maximize K(I , λ) in (2) is
given by

Iλ(x)=
[(
Îλ(x)

) ∨ 0
] ∧M, (11)

where “∨” and “∧” denote max (·, ·) and min (·, ·), respectively.
The advantage of Lemma 2 lies in the fact that we do not need to determine

the sets Sλ
2 and S

λ
3 for the determination of the optimal solution Iλ(x). Once we

derive an analytical form of Îλ(x) by solving Equation (10) for x ∈ [c, d], the
optimal solution Iλ(x) can be derived via Equation (11).

We can apply Lemma 2 to transform problem (1) into an ODE problem
under certain smoothness conditions for f (x, y) as shown in Theorem 1 in the
sequel. The ODE method relies on the analytical continuation of Îλ∗(x) from
Sλ∗
3 to [c, d], and thus, we need to make sure that Sλ∗

3 is non-empty so as to
make the ODE method valid, where λ∗ is given in Proposition 2. The following
proposition confirms the non-emptiness of Sλ∗

3 .

Proposition 3. Assume that condition H1 is satisfied. Then, Sλ∗
3 is a non-empty

subset of [c, d], where λ∗ is any constant such that E[Iλ∗(X )]=P/γ with the
existence guaranteed by Proposition 2.

The following theorem states that the index insurance design problem (1)
can be solved by the ODE approach:

Theorem 1. Suppose that the derivative ∂

∂x f (y|x) exists and is continuous on
[c, d]× [a, b], and a function L̂ : [c, d] �→R solves the following ODE problem:⎧⎨⎩

dL
dx

= F(x,L),

P= γE [(L(X )∨ 0) ∧M] ,
(12)

where the function F : [c, d]×R �→R is defined by

F(x,L) := −
∫ b
a U

′ (w+L− y− (1− θ)P)
∂

∂x
f (y|x) dy∫ b

a U
′′ (w+L− y− (1− θ)P) f (y|x) dy

.

Then, L∗ := (
L̂(x)∨ 0

) ∧M is the optimal solution to problem (1).

Theorem 1 provides us a sufficient condition to find the optimal indemnity
function. The system of Equation (12) is an ODE with a general boundary con-
dition, with the first equation determining the shape of the optimal solution
and the second equation controlling the initial value of the optimal solution
within its domain [c, d]. The optimal indemnity, L∗, which is non-negative and
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subject to a maximum coverage M, can be viewed as the truncated version
of function L̂ by two straight lines I = 0 and I =M. In the next two sections,
we will demonstrate the applications of Theorem 1 for the derivation of opti-
mal index insurance solutions for quadratic and exponential utility functions,
respectively.

Remark 2. It is interesting to consider the special case when X and Y are inde-
pendent. Independence between X and Y implies that f (y|x)= f (y) and further
F(x,L)= 0 by Theorem 1. Therefore, for any utility function, the optimal indem-
nity function I∗(x) is always a constant which is independent of x. Interpretation
for this is that index insurance runs on the idea that the insurer could use the
information of Y conveyed in X to design the indemnity scheme. When X con-
veys more information of Y, that is, X and Y are more statistically correlated,
the performance of the index insurance is generally better; on the contrary, when
X and Y are independent, the selected index X is completely useless to predict Y,
and thus we would expect that the contract will be highly ineffective.

3.2. Quadratic utility

We suppose that the insured’s utility function has a quadratic form, that
is, U(x)= αx− βx2, x≤ α

2β , where the parameters α > 0 and β > 0. We also
assume that w+M − a− (1− θ)P≤ α

2β , so that the insured’s maximum possi-
ble wealth will not exceed the domain of the utility function, and U ′(x)≥ 0,
U ′′(x)< 0 and continuity of U ′′(x) hold for every x in its domain. Using
Theorem 1, we can derive a closed-form solution of optimal index insurance
as shown in the following proposition.

Proposition 4. Suppose that ∂

∂x f (y|x) exists and is continuous on [c, d]× [a, b]. If
the policyholder’s utility function U(x)= αx− βx2, x≤ α

2β , where the parameters
α > 0 and β > 0, then the optimal index insurance is given by

I∗(x)= [(E [Y |X = x]+ η∗) ∨ 0]∧M, (13)

where η∗ is determined by the equation

E[I∗(X )]=E {[(E [Y |X ]+ η∗) ∨ 0]∧M} = P
γ
.

Under the quadratic utility assumption, we can see from Proposition 4 that
the shape of optimal solution is determined by the conditional expectation
E [Y |X = x]. This result is consistent with Equations (11) and (12) in Mahul
and Wright (2003), which means d

dx I
∗(x)= d

dxE[Y |X = x] using the notation of
the present paper. Moreover, Proposition 4 also indicates that how much cov-
erage the policyholders get from the insurance contract is represented by η∗,
which is a real number determined by the premium constraint E[I∗(X )]=P/γ .

https://doi.org/10.1017/asb.2019.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.5


502 J. ZHANG, K.S. TAN AND C. WENG

Obviously, η∗ is non-decreasing with premium P: the higher the insurance pre-
mium paid by the policyholders, the higher the indemnity payoffs back to them
in general. Under quadratic utility, the value of η∗ only affects the ground
level of optimal indemnity but not the shape of optimal indemnity before trun-
cation. In other words, L̂ defined by Equation (12) with different premium
levels are parallel curves on the x-I-plane. We will empirically illustrate this in
Section 4.2.

Remark 3. It is well known that the one-period quadratic utility maximization
problem is equivalent to the one-period mean-variance problem. It is trivial to
show that the optimal indemnity function is still given by Proposition 4 if the
insurer aims at minimizing the variance of the insured’s terminal wealth.

Remark 4.

(a) As one can infer from Proposition 4, the optimal contract is independent of
the parameters α and β under the quadratic utility.

(b) Proposition 4 also shows that, under quadratic utility function, the optimal
indemnity function is irrelevant to both the insured’s initial wealth w and the
subsidy level θ .

Remark 5. When the quadratic utility is adopted as the criterion, computation
of the optimal index insurance is substantially simplified because it does not
involve estimating the joint density function f (x, y), (x, y) ∈ [c, d]× [a, b], but
only the conditional expectation function E [Y |X = x], x ∈ [c, d]. In practice, it
is sometimes possible to obtain a much quicker and more convenient estimation
on E [Y |X = x] directly without estimating f (x, y).

3.3. Exponential utility

In this section, we consider the case when U is an exponential utility func-
tion, that is, U(x)= − 1

α
e−αx, where the parameter α > 0. It is easy to verify

that U ′(x)≥ 0 and U ′′(x)< 0 for all x ∈R. We use Theorem 1 to derive a
closed-form solution of optimal index insurance as shown in the following
proposition.

Proposition 5. Suppose that ∂

∂x f (y|x) exists and is continuous on [c, d]× [a, b].
If U(x)= − 1

α
e−αx, x ∈R, with the utility parameter α > 0, then the optimal

indemnity function is given by

I∗(x)=
[(

1
α
ln

(
E

[
eαY |X = x

]) + η∗
)

∨ 0
]

∧M,

where η∗ is a constant determined by P= γE [I∗(X )].
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Under the exponential utility assumption, the shape of optimal indemnity
function is determined by conditional expectation E

[
eαY |X = x

]
. Similar to the

case under quadratic utility, the overall size of indemnity payoffs is controlled
by a constant η∗ which is determined by the premium constraint E[I∗(X )]=
P/γ and is non-decreasing with premium P. Under both exponential utility
and quadratic utility, η∗ reflects the premium level P, and it only affects the
ground level of optimal indemnity, but not the shape of optimal indemnity
before truncation. This is not necessarily true for other utility functions. From
Equation (12), we can see that the shape of L̂ generally depends on the value of
L̂ itself, and thus optimal solutions with different premium levels may not be
obtained by such a parallel shift η∗.

Remark 6. Similar to the quadratic utility case as we commented in Remark 5,
we only need to estimate the conditional expectation E

[
eαY |X = x

]
, x ∈ [c, d],

in order to determine the optimal index insurance under the exponential utility
function. We do not have to estimate the joint density function f (x, y) in practical
applications.

Remark 7. Proposition 5 also indicates that the optimal indemnity function under
the exponential utility is irrelevant to both the insureds’ initial wealth w and
the subsidy level θ . This phenomenon is similarly observed for optimal index
insurance under the quadratic utility function (recall Remark 4).

4. APPLICATIONS IN WEATHER INDEX INSURANCE DESIGN

In this section, we apply our theoretical results to an example of weather
index insurance contract design, where basis risk is a primary concern for
policyholders. For Sections 4.1–4.5, we choose the temperature as the under-
lying index to protect insured’s position from adverse weather conditions. We
investigate the optimal index insurance under the quadratic, exponential, and
logarithmic utility functions, respectively. We also benchmark our optimal
index design against linear-type contracts. Finally, in Section 4.6, we extend
the optimal index design to the bivariate case where the indemnity depends on
two indices, the temperature and the precipitation.

4.1. Dependence modeling

We choose the average temperature of the whole product growing cycle as the
underlying index to protect insured’s position from adverse weather condi-
tions. For a certain kind of agricultural product, both too high and too low
temperatures would normally have an adverse impact on the product yield.
As a result, the indemnity function of a well-designed contract should take
larger values at both ends of the interval at temperature axis but smaller values
in the middle area. In our study, we use county-level data of rice yield and
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FIGURE 1: Calibrated joint density f (x, y) of the actual loss and the average temperature.

temperature data in Jiangsu Province, China for the period from 1992 to 2011.
The same data set has been studied by Shi and Jiang (2016). We first remove
the trend in the historical yield which represents production improvement fac-
tors over time such as technology, and then define the actual loss variable to
the insured Y as the highest detrended yield during the last 20 years less the
detrended yield. We apply kernel smoothing method to calibrate the joint den-
sity between the average temperature and the actual loss variables. The graph
of the joint density function f (x, y) is illustrated in Figure 1.

4.2. Quadratic utility

We begin with investigation into the shape of the optimal index insurance con-
tract when the insured’s risk preference is represented by a quadratic utility
function. As discussed in Remark 3, the optimal indemnity function is indepen-
dent of the parameter values under a quadratic utility function, and therefore it
is unnecessary to specify the parameter values for the investigation of the opti-
mal index insurance. There are two major exogenous factors that determine the
shape and the scale of the optimal contract: the premium level P and the max-
imum indemnity level M. Weather index agricultural insurance is often subsi-
dized by the government, and the premium level P also reflects the subsidy level
because the latter is usually proportional to P. The maximum indemnity level
M is also very important factor for index insurance design, because the insurer
can prevent itself from extreme large losses by imposing such an upper limit.

4.2.1. Optimal contracts with different premium levels
We fix the maximum indemnity level at M = 300 and use Proposition 4 to
construct the optimal indemnity functions for four different premium levels
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FIGURE 2: Optimal indemnity functions for different premium levels and under quadratic utility.

P varying from 20 to 80 in multiples of 20. The resulting optimal indemnity
functions are illustrated in Figure 2. The optimal indemnity function follows
a “first decreasing and then increasing” pattern, confirming that the farmers
are more concerned with extreme weathers, and hence higher indemnities are
to be expected for the extremes. However, the risk exposure triggered by the
high extreme weather or low extreme weather is not necessarily symmetric. The
slope of right half of the indemnity function is steeper than the left half, indi-
cating high temperatures have a more severe adverse impact on the crop yield
than low temperatures do. Finally, as we discussed in Section 3.2, curves shown
in Figure 2 representing optimal indemnity functions under different premium
levels are actually parallel to each other before being truncated by straight lines
I = 0 and I =M.

Recall from Equation (9) that the indemnity from the optimal index insur-
ance is zero over the set Sλ∗

1 , attains the maximum amountM over Sλ∗
2 , and lies

between 0 andM over Sλ∗
3 . Figure 2 indicates that, as the premium level P goes

larger, simultaneously, the set Sλ∗
1 diminishes and Sλ∗

2 expands. When P= 20,
Sλ∗
2 = ∅. This means that the premium level is too small to cover the maximum

indemnity level M = 300 over any region. When P= 80, Sλ∗
1 = ∅ which means

that the premium level is large enough in this case to cover the whole range of
the index variable.

4.2.2. The impact of maximum indemnity on the optimal contracts
In this subsection, we fix the premium level P= 50 and investigate the impact
of maximum indemnity on the optimal optimal indemnity function. Figure 3
depicts the optimal indemnity functions for different levels of maximum indem-
nityM. The graph similarly shows that the optimal indemnity function exhibits
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FIGURE 3: Optimal indemnity for different maximum indemnity levels and under quadratic utility.

the “first decreasing and then increasing” pattern for all the different maxi-
mum indemnity levels we considered. As the maximum indemnityM increases,
the more coverage is provided to both extremes, and thus the set Sλ∗

1 becomes
larger. In the meanwhile, the set Sλ∗

2 becomes smaller as the indemnity payment
on this set has been increased. From the perspective of the insured, whenM is
too small, the indemnity function does not sufficiently reflect the impact of the
weather index on the insured’s actual loss, and thus the index insurance con-
tract is ineffective in this case; on the other hand, from the perspective of the
insurance company, an increase in M also increases its own tail risk and thus
potentially high capital cost. Therefore, in practice, the choice ofM should be
determined by the bargaining power between these two parties.

4.2.3. Risk mitigation performance
In this section, we are interested in the effectiveness of our proposed index
insurance in reducing basis risk, which is measured by the standard deviation
of the residual risk after the indemnity payment, that is, square root of the
variance of the residual risk [Y − I∗(X )]. If the standard deviation of the resid-
ual risk is large, it means that policyholders’ risk is not effectively mitigated
and the basis risk is high, and vice versa. Figure 4 reports the standard devia-
tion of the residual risk for P andM vary over intervals [0, 100] and [200, 600],
respectively.

The straight line intersected by the surface and plane P= 0 in Figure 4 rep-
resents the uninsured position of the policyholder and the standard deviation of
the actual loss variable is about 443 in this case. The whole surface in the figure
is lower than 443, which means a positive impact from our proposed index
insurance on reducing the basis risk. The shape of the surface also indicates
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FIGURE 4: Basis risk (i.e., the standard deviation of residual risk) for different levels of premium and
maximum indemnity.

that the basis risk can be reduced by increasing premium level P and maximum
indemnity level M. The exception occurs when P becomes too large relatively
toM. This phenomenon can be explained by the curve on the top (correspond-
ing to P= 80) in Figure 2, which says that, when P is large relatively to M,
any additional premium goes to cover the actual losses in the middle area, in
other words, the coverage for small losses increases while coverage for large
ones remains unchanged; as a result, basis risk increases rather than decreases.

Since the premium level also indicates how much subsidy the government
is paying for the policyholders, Figure 4 also provides some suggestions for the
government in determining the subsidy amount according toM. This example
shows that a wise choice for the subsidy amount needs to comply with the
maximum indemnity levelM.

4.3. Exponential utility

Risk preference of the insured is essential in index insurance contract design,
and one advantage of our method is its capability to take into account the
insured’s utility function. In the present and the next subsection, we will
investigate the optimal index insurance designs under the exponential and the
logarithmic utility functions.

First we consider the shape of the optimal indemnity function under an
exponential utility in the form of U(x)= − 1

α
e−αx, where the parameter α > 0.

By Equation (14), the optimal indemnity function depends on the parameter α,
which measures the degree of risk preference of the policyholder. Risk averse
policyholders always have α > 0, and a higher α means a higher degree of risk
aversion. In order to see how α affects the shape of the optimal index insurance
contract, we illustrate the optimal indemnity functions for four different values
of α in Figure 5. In this example, we fix P= 50 andM = 300.
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FIGURE 5: Optimal indemnity under exponential utility.

Figure 5 shows that the shape of the optimal indemnity function depends
heavily on the choice of α. For an α as small as 0.001, the indemnity function
also shows the “first decreasing and then increasing” pattern which has been
previously observed under the quadratic utility. As α becomes larger, that is,
the insured becomes more risk averse, the coverage on the low-temperature
region decreases and more premium is spent on the high-temperature region.
When the parameter α is as large as 0.01, the optimal index insurance contract
only indemnifies losses occurred in the high-temperature region, but not those
in the low-temperature region. This phenomenon can be explained from two
perspectives. First, policyholders with larger α are generally more risk averse
than those using “quadratic utility” as their risk preferences. As a result, they
would like to have more coverage on the most severe losses, which occur in the
high-temperature region. Second, it can be explained by the asymmetric effects
of temperature on the loss in rice yield. The adverse effect is more severe from
the high temperatures than the low temperatures.

4.4. Logarithmic utility

The logarithmic utility function takes a form of U(x)= ln x for x> 0. There
is no closed-form for the optimal index insurance contract under the loga-
rithmic utility. We use Theorem 1 and apply a numerical scheme to solve the
ODE in (12) for the optimal solution. The numerical scheme is specified in
the appendix. We fix the maximum indemnity levelM = 300 and compute the
optimal indemnity functions for a set of different premium levels P. The result-
ing optimal indemnity functions are illustrated in Figure 6. The figure shows
that the optimal indemnity function takes a similar shape as the one under
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FIGURE 6: Optimal indemnity under logarithmic utility.

the quadratic utility function. It also generally follows the “first decreasing
and then increasing” pattern and the coverage increases throughout the whole
region as the premium increases. Additionally, as we mentioned earlier in
Section 3.3, indemnity functions under different premium levels are not paral-
lel to each other, and this is quite different from what we have under quadratic
and exponential utilities.

In order to make a close comparison of the optimal index insurance among
the three utility functions (i.e., quadratic, exponential, and logarithmic), we fix
P= 50 and M = 300 and demonstrate the resulting optimal indemnity func-
tions in Figure 7, where α = 0.005 is set for the exponential utility function.
Clearly, the contract under the logarithmic utility is quite similar to the one
under the quadratic utility. The left parts of the two curves almost coincide
with each other and the right part of optimal indemnity function under the
logarithmic utility is slightly steeper. In contrast, the optimal indemnity func-
tion under the exponential utility function is quite different from the other two,
with less coverage on the left half but more coverage on the right half.

4.5. Comparison with linear contracts

In this section, we compare the effectiveness of our optimally designed index
insurance contracts with the linear-type contract (e.g., Giné et al.,, 2007;
Okhrin et al.,, 2013), which is based on a linear regression procedure and widely
applied in both practice and academia as a benchmark. The effectiveness is
measured by the standard deviation of the residual risk after the indemnity
payment for the policyholders, which we also call basis risk. The comparison
is conducted for a set of premium levels and two maximum indemnity pay-
ments at M = 250 and M = 300, respectively. The results are demonstrated in
Figure 8.
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FIGURE 7: Comparison of optimal indemnity functions under three different utilities.
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FIGURE 8: Effectiveness: our optimal index insurance versus the linear-type contract.

Maximizing the expected quadratic utility is the same as minimizing the
variance of the residual risk for the insured in our index insurance design
model. In theory, our proposed indemnity function achieves the smallest stan-
dard deviation reduction of the residual risk for the insured, as guaranteed by
Proposition 4. Figure 8 shows the superiority of our proposed insurance con-
tract compared with the linear-type contract. The basis risk measured by the
standard deviation of the insured’s residual risk is smaller under our optimally
design index insurance than the linear-type contract. Our index insurance
performs equally well as the linear-type contract for small premium level
(say, P< 40). It substantially outperforms the linear-type contract for larger
premium levels, and the advantage becomes more obvious as P increases.
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FIGURE 9: Indemnity function of a bivariate-index insurance: temperature and precipitation.

While the linear-type contract suffers from not being able to benefit from
an increase in P and M, we can generally enhance the performance of our
proposed contract by increasing the premium level P and enlarging the
maximum coverage levelM.

4.6. An example of bivariate-index insurance

In the previous sections, we focus on the single-index case, where the insur-
ance indemnity is determined by a single index. In this section, we incorporate
a second index to the design of the insurance contract and derive an optimal
bivariate-index insurance. In principle, introducing more indices to the insur-
ance payoff function is always helpful in reducing basis risk. We will illustrate
this empirically based on an bivariate-index insurance involving two weather
indices: temperature and precipitation.We use the average temperature and the
total amount of precipitation during the whole growing season as the under-
lying indices to construct the index insurance contract. In this example, we
assume that the policyholders’ utility function has a quadratic form, and results
under other utility functions can be analyzed similarly. Mathematically, it is
straightforward to show that Proposition 4 still holds for the multi-dimensional
case and the optimal indemnity function takes a similar form as I∗(x) in (13).
Let X1 and X2, respectively, denote the two indices under our consideration.
Then the optimal indemnity function is given by

I∗(x1, x2)= [(E [Y |X1 = x1,X2 = x2]+ η∗) ∨ 0]∧M,

where η∗ is determined by E[I∗(X )]=P/γ . The optimal indemnity function of
this bivariate-index insurance contract is illustrated in Figure 9.
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The indemnity function similarly shows the “first decreasing and then
increasing” pattern with respect to the increase in the temperature index.
Further, the precipitation index also plays an important role in the opti-
mal indemnity function. Indemnity amount is higher in the “low-temperature
and high-precipitation” region than in the “low-temperature and low-
precipitation” region. Within the “high-temperature” region, a “medium
precipitation” corresponds to the largest amount of indemnity and a “low pre-
cipitation” leads to a larger indemnity amount than a “high precipitation.”
Further, there is no indemnity payment when both temperature and precipita-
tion are moderate, which corresponds to a good harvest and negligible actual
loss.

To demonstrate the benefit of including the precipitation variable as the
additional index in the optimal insurance contract, we compare the basis risk
(measured by the standard deviation of residual risk) between the bivariate-
index contract and the single-index contract under a set of different premium
levels. The maximum indemnity amount payment is fixed at M = 400. The
comparison results are illustrated in Figure 10. Obviously, the inclusion of the
precipitation index significantly reduces basis risk. The residual risk is consis-
tently lower for the bivariate-index contract than the single-index contract. As
the premium level P increases, the gap in residual risk between the two con-
tracts becomes larger. In particular, the basis risk is reduced from 370 down to
340, which means a reduction rate of 8.1%, when the premium level P= 120.
This suggests that more relevant indices should be included into the optimal
insurance design if estimation of the joint distribution between the actual loss
variable and indices is not an issue.
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5. CONCLUSION

In this article, we investigate the optimal index insurance design problem
under a utility maximization framework. Under quite general and practical
assumptions, we show that the optimal index insurance contract exists and is
uniquely determined by the policyholder’s utility function, the premium level,
and the maximum indemnity covered by the insurance contract. The optimal
index insurance contract is obtained by solving an implicit ODE problem.
Additionally, when the insured has a quadratic utility or an exponential utility,
the optimal indemnity functions have explicit forms which are computationally
friendly for real applications.

Our theoretical results are applied to a real data example, in which the tem-
perature and precipitation variables are used as the underlying indices of the
insurance contract to protect rice yield in Jiangsu, China. The shape of the opti-
mal indemnity functions under different utility functions, premium levels, and
maximum indemnity amounts generally follow the “first decreasing and then
increasing” pattern. The risk mitigation performancemeasured by the standard
deviation reduction of the insured’s residual risk is also discussed. Our results
confirm that our optimally designed index insurance significantly outperforms
the linear-type contract, which is a popular solution applied both in practice
and in the literature for reducing farmers’ basis risk. Finally, an example of a
bivariate-index insurance contract based on the temperature and precipitation
variables is introduced to show the benefit of incorporating multiple indices
into the insurance contract design for mitigating basis risk.

ACKNOWLEDGMENTS

Zhang acknowledges the research funding support from the Nanyang
Technological University Start-up Grant (M4082276.010) and financial sup-
port from the Society of Actuaries (SOA) Hickman Scholarship and the
Department of Statistics and Actuarial Science, University of Waterloo. Tan
thanks the financial support from the NSERC-CRD 494062-16, 111 Project
(B17050), and the SOA Centers of Actuarial Excellence Research Grant. Weng
acknowledges the financial support from the NSERC (RGPIN-2016-04001)
and the SOA Centers of Actuarial Excellence Research Grant.

REFERENCES

ARROW, K.J. (1963) Uncertainty and the welfare economics of medical care. American Economic
Review, 53(5), 941–973.

BARNETT, B. J. and MAHUL, O. (2007) Weather index insurance for agriculture and rural areas
in lower-income countries. American Journal of Agricultural Economics, 89(5), 1241–1247.

BOKUSHEVAA, B., KOGANB, F., VITKOVSKAYAC, I., CONRADTA, S. and
BATYRBAYEVACAA M. (2016) Satellite-based vegetation health indices as a criteria for

https://doi.org/10.1017/asb.2019.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.5


514 J. ZHANG, K.S. TAN AND C. WENG

insuring against drought-related yield losses. Agricultural and Forest Meteorology, 220,
200-206.

BORCH, K. (1960) An attempt to determine the optimum amount of stop loss reinsurance.
Transactions of the 16th International Congress of Actuaries, I, 597-610.

BURDEN, R.L. and FAIRES, J.D. (2011) Numerical Analysis. 9th edition. Brooks/Cole, Boston,
USA.

CARTER, M.R., CHENG, L. and SARRIS, A. (2016) Where and how index insurance can boost
the adoption of improved agricultural technologies. Journal of Development Economics, 118,
59-71.

CARTER, M.R., DE JANVRY, A., SADOULET, E. and SARRIS, A. (2014) Index-based weather
insurance for developing countries: A review of evidence and a set of propositions for up-scaling.
FERDI Working Paper 112.

CHANTARAT, S., BARRETT, C.B., MUDE, A.G. and TURVEY, C.G. (2007) Using weather
index insurance to improve drought response for famine prevention. American Journal of
Agricultural Economics, 89(5), 1262–1268.

CHANTARAT, S., MUDE, A.G., BARRETT, C.B. and CARTER, M.R. (2013) Designing
indexbased livestock insurance for managing asset risk in northern Kenya. Journal of Risk
and Insurance, 80(1), 205–237.

CHI, Y. and TAN, K.S. (2011) Optimal reinsurance under VaR and CVaR risk measures: A
simplified approach. ASTIN Bulletin, 41(2), 487–509.

CHI, Y. and WENG, C. (2013) Optimal reinsurance subject to Vajda condition. Insurance:
Mathematics and Economics, 53(1), 179–189.

CONRADT, S., FINGER, R. and SPORRI, M. (2015) Flexible weather index-based insurance
design. Climate Risk Management, 10, 106–117.

CUMMINS, J.D., LALONDE, D. and PHILLIPS, R.D. (2004) The basis risk of catastrophic-loss
index securities. Journal of Financial Economics, 71(1), 77-111.

DANA, R.A. and SCARSINI, M. (2007) Optimal risk sharing with background risk. Journal of
Economic Theory, 133(1), 152–176.

DOHERTY, N.A. and SCHLESINGER, H. (1983) Optimal insurance in incomplete markets.
Journal of Political Economy, 91(6), 1045–1054.

ELABEDA, G., BELLEMAREB, M.F., CARTER, M.R. and Guirkinger, C. (2013) Managing basis
risk with multiscale index insurance. Agricultural Economics, 44, 419–431.

GINÉ, X., TOWNSEND, R. and VICKERY, J. (2007) Statistical analysis of rainfall insurance
payouts in Southern India. American Journal of Agricultural Economics, 89(5), 1248–1254.

INTERNATIONAL FUND FOR AGRICULTURAL DEVELOPMENT WORLD FOOD PROGRAM
(2010) The potential for scale and sustainability in weather index insurance for agriculture and
rural livelihoods. Technical Report.

JENSEN, N.D., BARRETT, C.B. and MUDE, A.G. (2016) Index insurance quality and basis
risk: Evidence from northern Kenya. American Journal of Agricultural Economics, 98(5),
1450–1469.

LIN, Y. and COX, S.H. (2008) Securitization of catastrophe mortality risks. Insurance:
Mathematics and Economics, 42(2), 628–637.

MAHUL, O. (2000) Optimum crop insurance under joint yield and price risk. Journal of Risk and
Insurance, 67(1), 109–122.

MAHUL, O. and WRIGHT, B.D. (2003) Designing optimal crop revenue insurance. American
Journal of Agricultural Economics, 85(3), 580–589.

MIRANDA, M.J. and FARRIN, K.M. (2012) Index insurance for developing countries. Applied
Economic Perspectives and Policy, 34(3), 391–427.

OKHRIN, O., ODENING, M. and XU, W. (2013) Systemic weather risk and crop insurance: The
case of China. Journal of Risk and Insurance, 80(2), 351–372.

RAVIV, A. (1979) The design of an optimal insurance policy. The American Economic Review,
69(1), 84–96.

SHI, H. and JIANG, Z. (2016) The efficiency of composite weather index insurance in hedging rice
yield risk: Evidence from China. Agricultural Economics, 47(3), 319–328.

VERCAMMEN, J. (2001) Optimal insurance with nonseparable background risk. Journal of Risk
and Insurance, 68(3), 437–447.

https://doi.org/10.1017/asb.2019.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.5


INDEX INSURANCE DESIGN 515

JINGGONG ZHANG
Division of Banking and Finance
Nanyang Technological University
50 Nanyang Ave
639798, Singapore
E-Mail: jgzhang@ntu.edu.sg

KEN SENG TAN
Department of Statistics and Actuarial Science
University of Waterloo
M3-200 University Avenue West, Waterloo
Ontario N2L 3G1, Canada
E-Mail: kstan@uwaterloo.ca

CHENGGUO WENG (Corresponding author)
Department of Statistics and Actuarial Science
University of Waterloo
M3-200 University Avenue West, Waterloo
Ontario N2L 3G1, Canada
E-Mail: c2weng@uwaterloo.ca

APPENDIX

A.1. Proof of Proposition 1

Proof. Let I1 and I2 be two optimal solutions to problem (1) with μ(D)> 0
where D := {x ∈ [c, d] |I1(x) �= I2(x) } and μ(D) denotes the Lebesgue measure
of the set D. Denote Iλ(x) := λI1(x)+ (1− λ)I2(x), x ∈ [c, d] for a constant λ ∈
(0, 1). Obviously, Iλ is a feasible indemnity function for problem (1) because
Iλ ∈ I and it satisfies the constraint in problem (1). We also note that X has a
positive density function on the interval [c, d]. Consequently, μ(D)> 0 implies
Pr(A)> 0 where A := {ω ∈ � |I1(X ) �= I2(X ) }.

Let v(P) denote the supremum value for problem (1). We must have
v(P)< ∞ because both I(X ) andY are bounded random variables. Thus, using
the strict concavity, we obtain

J(Iλ) = E
[
U

(
w+ λI1(X )+ (1− λ)I2(X )−Y − (1− θ)P

)]
> λE

[
U

(
w+ I1(X )−Y − (1− θ)P

)]
+(1− λ)E

[
U

(
w+ I2(X )−Y − (1− θ)P

)]
= λv(P)+ (1− λ)v(P)

= v(P),

which contradicts to the optimality of I1 and I2. Thus, the optimal solution to
problem (1) is unique up to the equality almost everywhere if it exists. �
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A.2. Proof of Lemma 1

Proof. Recall that v(P) denotes the supremum value of problem (1).
Therefore,

v(P) = sup
I∈I s.t. γE[I ]=P

E[J(I)]

= sup
I∈I s.t. γE[I ]=P

{E[J(I)]+ λ∗(P− γE[I ])}

≤ sup
I∈I

{E[J(I)]+ λ∗(P− γE[I ])}

= E[J(I∗)]+ λ∗(P− γE[I∗])

= E[J(I∗)]

≤ sup
I∈I s.t. γE[I ]=P

E[J(I)]

= v(P),

which implies that I∗ is the solution of problem (1). �

A.3. Proof of Proposition 2

Proof. We only need to show the existence of λ∗ to satisfy E[Iλ∗ ]=
P/γ , because this combined with Lemma 1 implies the optimality of Iλ∗ for
problem (1).

For x ∈ [c, d], define λU :=maxx∈[c,d] 1
γ
G(0, x) and λL :=minx∈[c,d] 1

γ
G(M, x).

Condition H1 implies that both SλU
1 and SλL

2 differ from the set [c, d] by only
a μ-null set. Thus, by (9), E[IλU (X )]= 0 and E[IλL(X )]=M. As a result, it is
sufficient to show that E[Iλ(X )] is continuous on [λL, λU ].

Below we only show the right continuity of E[Iλ(X )] on [λL, λU ], as its left
continuity follows in the same fashion. Define �λ

ε := |E[Iλ+ε(X )]−E[Iλ(X )]| for
λ ∈ [λL, λU − ε] and ε > 0. Then,

�λ
ε =

∣∣∣∣∣M · Pr(X ∈ Sλ+ε
2

) +
∫
Sλ+ε
3

Iλ+ε(x)h(x) dx

−M · Pr(X ∈ Sλ
2

) −
∫
Sλ
3

Iλ(x)h(x) dx

∣∣∣∣∣
≤M · ∣∣Pr(X ∈ Sλ+ε

2

) − Pr
(
X ∈ Sλ

2

)∣∣ +
∣∣∣∣∣
∫
Sλ+ε
3

Iλ+ε(x)h(x) dx−
∫
Sλ
3

Iλ(x)h(x) dx

∣∣∣∣∣
=:M|Jε

2 | + |Jε
3 |.

By definition of Sλ
2 in (7), Jε

2 = −Pr(λγ <G(M,X )≤ (λ + ε)γ )= Pr(G(M,X )
≤ λγ )− Pr(G(M,X )≤ (λ + ε)γ )→ 0 as ε → 0+.
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It remains to show Jε
3 → 0 as ε → 0+. Indeed,

Jε
3 =

∫
Sλ+ε
3 ∩Sλ

3

Iλ+ε(x)h(x) dx−
∫
Sλ
3∩Sλ+ε

3

Iλ(x)h(x) dx

+
∫
Sλ+ε
3 ∩Sλ

3

(Iλ+ε(x)− Iλ(x)) h(x) dx, (A.1)

where Ā denotes the complement of a set A. It is easy to verify

Sλ+ε
3 ∩ Sλ

3 = {x ∈ [c, d] |λγ <G(M, x)≤ (λ + ε)γ ≤G(0, x) }
and

Sλ
3 ∩ Sλ+ε

3 = {x ∈ [c, d] |G(M, x)≤ λγ ≤G(0, x)< (λ + ε)γ } .

ConditionH1 implies bothμ
(
Sλ+ε
3 ∩ Sλ

3

)
→ 0 andμ

(
Sλ
3 ∩ Sλ+ε

3

)
→ 0 as ε → 0+.

Further noting Iλ+η(x) ∈ [0,M] for any η ≥ 0 and x ∈ [c, d], the first two items
in (A.1) converge to 0 as ε → 0+.

For x ∈ Sλ+ε
3 ∩ Sλ

3 , we have

G(Iλ+ε(x), x)= (λ + ε)γ and G(Iλ(x), x)= λγ .

Further, G(ξ , x) is a continuous and differentiable function of ξ for any x ∈
[c, d], and thus, we apply the mean value theorem to obtain

εγ =G(Iλ+ε(x), x)−G(Iλ(x), x)=G′
ξ (ξ , x) (Iλ+ε(x)− Iλ(x))

for some constant ξ := ξx,λ valued between Iλ+ε(x) and Iλ(x), where G′
ξ (ξ , x) :=

∂

∂ξ
G(ξ , x). This implies

|Iλ+ε(x)− Iλ(x)| = εγ∣∣G′
ξ (ξ , x)

∣∣ ≤ εγ

infξ∈[0,M], x∈[c,d]
∣∣G′

ξ (ξ , x)
∣∣ . (A.2)

From (5), we have G′
ξ (ξ , x)=

∫ b
a U

′′ (w+ ξ − y− (1− θ)P) f (y|x) dy. Since
U ′′( · ) is a continuous function over its domain, there exits a constant δ > 0
such that∣∣G′

ξ (ξ , x)
∣∣ ≥ δ

∫ b

a
f (y|x) dy= δ, ∀ ξ ∈ [0,M] and x ∈ [c, d].

Consequently, it follows from (A.2) that∫
Sλ+ε
3 ∩Sλ

3

(Iλ+ε(x)− Iλ(x)) h(x) dx

≤
∫
Sλ+ε
3 ∩Sλ

3

εγ

δ
h(x) dx≤ ε

γ (d − c)
δ

→ 0, as ε → 0+.
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Therefore, from (A.1), we have Jε
3 → 0 as ε → 0+, by which we complete the

proof. �

A.4. Proof of Lemma 2

Proof. Without loss of generality, we assume that both Sλ
1 and S

λ
2 are non-

empty. One can see from the rest of the proof that it is actually easier to show
the desired result when either or both of the two sets are empty.

By Equation (9), it is sufficient to show Îλ(x)≤ 0 for x ∈ Sλ
1 and Îλ(x)≥M

for x ∈ Sλ
2 . In fact, if Îλ(x1)> 0 for some x1 ∈ S1, then

0 = G
(
Îλ(x1), x1

) − λγ

=
∫ b

a
U ′ (w+ Îλ(x1)− y− (1− θ)P

)
f (y|x1) dy− λγ

<

∫ b

a
U ′ (w− y− (1− θ)P) f (y|x1) dy− λγ

= G(0, x1)− λγ

< 0,

where the first inequality is due to the strict convexity of U and the second one
follows from the fact x1 ∈ Sλ

1 . The last display means 0< 0, a contradiction.
Thus, we must have Îλ(x)≤ 0 for x ∈ Sλ

1 . We can use the same contradiction
argument to show Îλ(x)≥M for x ∈ Sλ

2 . �

A.5. Proof of Proposition 3

Proof. We prove the proposition by contradiction. Suppose Sλ∗
3 = ∅. Then,

it must be one of the following three scenarios:

Case 1: Sλ∗
1 = [c, d],

Case 2: Sλ∗
2 = [c, d],

Case 3: Sλ∗
1 ∪ Sλ∗

2 = [c, d], Sλ∗
1 �= ∅ and Sλ∗

2 �= ∅.
For Case 1, it follows from (9) that I∗(x)= 0, ∀x ∈ [c, d], and thus P= γE[Iλ∗

(X )]= 0. Similarly, for Case 2, I∗(x)=M, ∀x ∈ [c, d], and thus P= γE[Iλ∗

(X )]= γM. Since the insurance premium budgetP ∈ (0, γM), both Cases 1 and
2 are impossible. Consider Case 3 and take x1 ∈ Sλ∗

1 and x2 ∈ Sλ∗
2 . By Equations

(6) and (7) and the fact that G(ξ , x) is strictly decreasing in ξ , we have

G(0, x1)< λγ <G(M, x2)<G(0, x2). (A.3)

Further, since f (y|x) is continuous on (x, y) ∈ [c, d]× [a, b], it must be
uniformly continuous on [a, b]. Therefore, for ε > 0,
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|G(0, x+ ε)−G(0, x)|
=

∣∣∣∣∫ b

a
U ′ (w− y− (1− θ)P) f (y|x+ ε) dy

−
∫ b

a
U ′ (w− y− (1− θ)P) f (y|x) dy

∣∣∣∣
≤ max

y∈[a,b]
∣∣U ′ (w− y− (1− θ)P)

∣∣ ·
∫ b

a
| f (y|x+ ε)− f (y|x)| dy

→ 0, as ε → 0+, ∀x ∈ [c, d],

which implies the continuity of G(0, x) as a function of x on [c, d]. Thus, those
inequalities in (A.3) imply the existence of a constant x3 between x1 and x2 to
satisfy G(0, x3)= λγ . Again, by the strictly increasing property of G(ξ , x) in ξ ,
we have G(M, x3)<G(0, x3)= λγ , which means that x3 ∈ Sλ∗

3 . This contradicts
to the assumption of Sλ∗

3 = ∅, and thus the proof is complete. �

A.6. Proof of Theorem 1

Proof. By our assumption of U ′′(x)< 0 and f (y|x)≡ f (x,y)
h(x) > 0, a.e., for

(x, y) ∈ [c, d]× [a, b], we have∫ b

a
U ′′ (w+ Î(x)− y− (1− θ)P

)
f (y|x) dy< 0, ∀ x ∈ [c, d],

and thus F(x,L) is well defined.
By Proposition 3, Sλ∗

3 �= ∅ for any constant λ∗ such that E[Iλ∗(X )]=P/γ ,
where Iλ∗(x) is defined in (9). If we could find a constant λ∗ to satisfy E[Iλ∗(X )]=
P/γ and show that L̂(x)= Îλ∗(x), a.e., on Sλ∗

3 , then Lemma 2, along with the
fact that L̂(x) is well defined on [c, d], implies that L∗ = (

L̂(x)∨ 0
) ∧M is the

optimal solution to problem (1).
Since L̂(x) satisfies Equation (12), we have∫ b

a

{
U ′′ (w+ L̂(x)− y− (1− θ)P

)
f (y|x)dL̂(x)

dx

+U ′ (w+ L̂(x)− y− (1− θ)P
) ∂

∂x
f (y|x)

}
dy= 0,

that is,

d
dx

∫ b

a
U ′ (w+ L̂(x)− y− (1− θ)P

)
f (y|x) dy= 0, x ∈ [c, d].

This implies

G(L̂(x), x)=
∫ b

a
U ′ (w+ L̂(x)− y− (1− θ)P

)
f (y|x) dy= λ0γ , x ∈ [c, d], (A.4)
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where the constant λ0 is defined as

λ0 := 1
γ

∫ b

a
U ′ (w+ L̂(c)− y− (1− θ)P

)
f (y|c) dy.

The last two displays, together with the fact that Equation (10) has a unique
solution Îλ(x) for every x ∈ Sλ0

3 , imply that L̂(x)= Îλ∗(x) on Sλ∗
3 for λ∗ = λ0.

Comparing (10) and (A.4), we see L̂ and Îλ∗ satisfy the same equation. Thus,
from the proof of Lemma 2, L̂(x)≤ 0 for x ∈ Sλ∗

1 and L̂(x)≥M for x ∈ Sλ∗
2 .

Further, the second equation in (12) obviously implies E[Iλ∗(X )]=P/γ , and
thus, the proof is complete. �

A.7. Proof of Proposition 4

Proof. With the given utility, the function F in Equation (12) becomes

F(x,L)

= −
∫ b
a U

′ (w+L(x)− y− (1− θ)P)
∂

∂x
f (y|x) dy∫ b

a U
′′ (w+L(x)− y− (1− θ)P) f (y|x) dy

= −
∫ b
a (α − 2βw− 2βL(x)+ 2β(1− θ)P)

∂

∂x
f (y|x) dy+∫ b

a 2βy
∂

∂x
f (y|x) dy

−2β

=
(α − 2βw− 2βL(x)+ 2β(1− θ)P)

∂

∂x

∫ b
a f (y|x) dy+ 2β

∂

∂x

∫ b
a yf (y|x) dy

2β

=
0+ 2β

∂

∂x
E[Y |X = x]

2β

= ∂

∂x
E[Y |X = x],

where we apply the fact that
∫ b
a f (y|x) dy= 1, and thus ∂

∂x

∫ b
a f (y|x) dy= 0.

Due to the existence and continuity of ∂

∂x f (y|x), ∂

∂xE[Y |X = x]=∫ b
a y

∂

∂x f (y|x) dy exists for every x ∈ [c, d]. Therefore, a direct application of
Proposition 1 implies the following optimal index insurance:

I∗(x)= [(E [Y |X = x]+ η∗) ∨ 0]∧M,

given that a constant η∗ exists to satisfy

E[I∗(X )]=E {[(E [Y |X ]+ η∗) ∨ 0]∧M} = P
γ
.
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In fact, E[I∗(X )] is apparently continuous and non-decreasing in η∗, and
thus, a solution η∗ must exist for the above equation. Therefore, the proof is
complete. �

A.8. Proof of Proposition 5

Proof. From the given utility, the function F in Equation (12) becomes

F(x,L) = −
∫ b
a U

′ (w+L(x)− y− (1− θ)P)
∂

∂x
f (y|x) dy∫ b

a U
′′ (w+L(x)− y− (1− θ)P) f (y|x) dy

= −
∫ b
a e

−α(w+L(x)−y−(1−θ )P) ∂

∂x
f (y|x) dy∫ b

a (− α)e−α(w+L(x)−y−(1−θ )P) f (y|x) dy

= 1
α

·
e−α(w+L(x)−(1−θ )P)

∫ b
a e

αy ∂

∂x
f (y|x) dy

e−α(w+L(x)−(1−θ )P)
∫ b
a e

αyf (y|x) dy

= 1
α

∂

∂x
E

[
eαY |X = x

]
E [eαY |X = x]

= ∂

∂x

{
1
α
ln

(
E

[
eαY |X = x

])}
.

Similar to the proof of Proposition 4, the continuity of ∂

∂x f (y|x) and f (y|x)
implies that both ∂

∂xE
[
eαY |X = x

]
and E

[
eαY |X = x

]
exist for every x ∈ [c, d],

and thus

∂

∂x

{
1
α
ln

(
E

[
eαY |X = x

])}
also exists for every x ∈ [c, d]. Then, by invoking Proposition 1, we derive the
optimal index insurance as follows:

I∗(x)=
[(

1
α
ln

(
E

[
eαY |X = x

]) + η∗
)

∨ 0
]

∧M,

given the existence of a constant η∗ to satisfy P= γE [I∗(X )]. Apparently,
E[I∗(X )] is continuous and non-decreasing in η∗, which indicates the existence
of η∗. Hence, the proof is complete. �

A.9. A Numerical Scheme for Solving ODE (12)

For utility functions other than the quadratic and exponential ones, closed-
form solutions for the ODE (12) are generally unavailable, and thus a
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numerical scheme is needed. The general boundary ODE problem (12)
can be viewed as an initial value problem (A.5) along with an algebraic
Equation (A.6): ⎧⎨⎩

dI
dx

= F(x, I), x ∈ [c, d],

I(c)= Ic,
(A.5)

with initial value Ic determined by

P= γE [I∗(X )]= γE
[(
Îλ∗(X )∨ 0

) ∧M
]
. (A.6)

For any fixed Ic, the initial value problem (A.5) is a standard ODE prob-
lem. If Equation (A.5) yields a unique solution for a given Ic, then Equation
(A.6) becomes an algebraic equation of Ic. By Theorems 5.4 and 5.6 in Burden
and Faires (2011), a sufficient condition for existence and uniqueness of the
solution, and the well-posedness of problem (A.5) is given by

H2:

⎧⎪⎨⎪⎩
∣∣∣∣∂F(x, I)∂I

∣∣∣∣ ≤L, ∀ (x, I) ∈ [c, d]×R for some constant L> 0,

F(x, I) is continuous on [c, d]×R.

If condition H2 holds, then the implicit ODE (A.5)–(A.6) are well posted
and it can be solved using a numerical procedure. We recommend the 4th order
Runge–Kutta (RK4) method combined with a binary search to numerically
compute I∗(x), x ∈ [c, d]. The specific numerical scheme is summarized in six
steps below.

Step 1: Find a large enough interval [Lc,Uc] such that I(c) ∈ [Lc,Uc]. Check
that (PLc −P)(PUc −P)< 0, where PIc denotes the premium calculated
by Equation (A.6) for the contract starting at Ic. Suppose PLc −P< 0,
PUc −P> 0, and define I0(c)= 1

2 (Lc +Uc).
Step 2: Apply RK4 with a step-size δ > 0 to the initial value problem dI

dx =
F(x, I), x ∈ [c, d], with I(c)= I0(c) : For n= 0, 1, 2, ..., � d−c

δ
− 1�, define

1. k1 = F(xn, In),

2. k2 = F
(
xn + δ

2
, In + δ

2
k1

)
,

3. k3 = F
(
xn + δ

2
, In + δ

2
k2

)
,

4. k4 = F (xn + δ, In + δk3),

5. xn+1 = xn + δ,

6. In+1 = In + δ

6
(k1 + 2k2 + 2k3 + k4).
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Step 3: Define I∗
n = (In ∨ 0)∧M, n= 0, 1, 2, ..., d−c

δ
, where In is obtained from

the previous step.
Step 4: Approximate the premium constraint P= γE [I∗] numerically using

P0 := δγ

2

⎡⎣2

⎛⎝ d−c
δ∑

n=0

I∗
n h(c+ nδ)

⎞⎠ − I∗
0h(c)− I∗

d−c
δ

h(d)

⎤⎦.

Step 5: Verify whether |P0 −P| < ε is satisfied by the given tolerance ε. If yes,
I∗ is already an accurate approximation to the solution of ODE (A.5)
and (A.6), and we stop the algorithm; otherwise, we go to Step 6.

Step 6: IfP0 <P, then define I1(c)= 1
2 (I0(c)+Uc); ifP0 >P, then define I1(c)=

1
2 (Lc + I0(c)). Go back to Step 2, replace the initial condition with
I(c)= I1(c), and repeat Steps 2–6.
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