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Abstract. We examine the relations between topological entropy, invertibility, and
prediction in topological dynamics. We show that topological determinism in the sense
of Kamińsky, Siemaszko, and Szymański imposes no restriction on invariant measures
except zero entropy. Also, we develop a new method for relating topological determinism
and zero entropy, and apply it to obtain a multidimensional analog of this theory. We
examine prediction in symbolic dynamics and show that while the condition that each
past admits a unique future only occurs in finite systems, the condition that each past has
a bounded number of futures imposes no restriction on invariant measures except zero
entropy. Finally, we give a negative answer to a question of Eli Glasner by constructing a
zero-entropy system with a globally supported ergodic measure in which every point has
multiple preimages.

1. Introduction
There are several ways to define ‘determinism’ of a dynamical system, all of which express
the idea that the past determines the future (and vice versa). In ergodic theory, a measure-
preserving map T of a probability space (X, B, µ) is deterministic if, for every measurable
f : X→ R (or, equivalently, every finite-valued f ), the sequence f (T x), f (T 2x), . . .
determines f (x) with probability one, that is, f ∈ σ(T f, T 2 f, . . .), where σ(F) is the
σ -algebra generated by F . Another equivalent condition is that every factor (Y, C, ν, S) of
(X, B, µ, T ) is essentially invertible, i.e. there is an invariant set Y0 ⊆ Y of full measure
such that S|Y0 is invertible. Yet another equivalent condition which is widely used is that
entropy vanishes: h(T, µ)= 0.

In this work, we examine the relations between prediction, invertibility, and entropy in
the category of topological dynamics, where by a topological dynamical system (X, T ) we
mean a continuous onto map T : X→ X of a compact metric space. One can find analogs
of these three conditions, but the relations between them are more complex. We present
here several results that underscore the independence of these notions, complementing
some of the recent works on the subject, e.g. [3, 5, 9].
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120 M. Hochman

1.1. Topological predictability. Kamiński et al introduced in [6] an interesting and
natural notion of predictability for topological systems. A system (X, T ) is topologically
predictable†, or TP, if, for every continuous function f ∈ C(X), we have f ∈
〈1, T f, T 2 f, . . .〉, where 〈F〉 ⊆ C(X) denotes the closed algebra generated by a family
F ⊆ C(X). Kamiński et al showed that (X, T ) is topologically predictable if and only if
every factor of (X, T ) is invertible, where a factor is a system (Y, S) and a continuous onto
map π : X→ Y such that πT = Sπ .

One would like to understand what other dynamical implications topological
predictability has. In [7], it was shown that TP systems have zero topological entropy
(correcting a gap, as the authors note, in their earlier proof from [6]), but the converse to
this is false. Indeed, every TP system on a totally disconnected space is equicontinuous,
whereas every zero-entropy measure can be realized as an invariant measure on a totally
disconnected space (and, hence, for measures with irrational or continuous spectrum,
not TP).

Nonetheless, although ‘not TP’ seems to say little about the invariant measures, TP is a
rather strong condition, and one might suppose it to impose restrictions on the measurable
dynamics. In previous work on the subject, the main tool used to establish that a system
is TP was the fact that, if every point in the product (X × X, T × T ) is forward recurrent,
then (X, T ) is TP. Consequently, distal systems and the pointwise rigid systems are TP;
but no others were known.

Our first result, which may be of independent interest, is that TP imposes no restrictions
on invariant measures except zero entropy.

THEOREM 1.1. For every zero-entropy, ergodic measure-preserving system (X, B, µ, T )
there are a topological system (Y, S) and an invariant measure ν on Y such that (Y, ν, S)∼=
(X, B, µ, T ) and, for every y′, y′′ in Y , the point (y′, y′′) is forward recurrent for S × S.
In particular, (Y, S) is TP.

This construction is related to the construction in Weiss [12]. For any zero-entropy
measure-preserving system, that construction produces, as a by-product, a topological
model in which every pair is two-sided recurrent in the product system. However, that
is a far weaker statement than forward recurrence. In fact, the realization in [12] is on a
subshift, which is totally disconnected, and one cannot hope that such a system will be TP
(for then the action would be equicontinuous, and the invariant measures would have pure
point spectrum).

As a consequence of Theorem 1.1, one gets a new functional characterization of the
vanishing of entropy in measure-preserving systems.

COROLLARY 1.2. A measure-preserving system (X, B, µ, T ) has entropy 0 if and only
if there exists a separable subalgebra A⊆ L∞(µ) which separates points and such that
f ∈ 〈1, T f, T 2 f, . . .〉 for every f ∈A.

Next, we discuss the notion of TP for Zd actions. Such an action {T u
}u∈Zd of Zd by

homeomorphisms on X is topologically predictable (TP) if f ∈ 〈1, T u f : u < 0〉 for every
f ∈ C(X); here < is the lexicographical ordering on Zd . One can also work with other

† Kamiński et al use the term topological determinism, but this seems to us confusing in the present context.
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orderings, e.g. lexicographic orderings with respect to other coordinate systems. One
may ask whether this notion is independent of the generators (the lexicographic ordering
certainly is not). It is not; even in dimension one, the property TP depends on the generator,
i.e. TP for T does not imply it for T−1. Thus, TP is a property of a group action and a
given set of generators.

The proof in [6, 7] that TP implies zero entropy for a single transformation used the
non-trivial theory of extreme partitions and entropy pairs. In §3.2, we give a new and
direct argument for this implication, which is somewhat more transparent. Furthermore,
our proof can be used to generalize the result to actions of Zd .

THEOREM 1.3. For a Zd action, TP implies zero topological entropy.

There is a rather complete theory of entropy, developed by Ornstein and Weiss, for
actions of amenable groups on probability spaces. One feature which is absent from the
general theory (and which we utilized for Z and Zd actions) is a good notion of the ‘past’
of an action, and the ability to represent the entropy of a partition as a conditional entropy
of the partition with respect to the ‘past’. However, by analogy to the abelian case, the
following question is natural.

Problem 1.4. Suppose that an infinite discrete amenable group G acts by homeo-
morphisms on X . Let S ⊆ G be a subsemigroup not containing the unit of G, and such
that S ∪ S−1 generates G. Suppose that for every f ∈ C(X), we have f ∈ 〈1, s f : s ∈ S〉.
Does this imply that h(X, G)= 0?

1.2. Prediction for symbolic systems. Let 6 be a finite set of symbols and consider the
space 6Z of bi-infinite sequences over 6. Denote by σ :6Z

→6Z the shift map. A
symbolic system is a closed, non-empty, σ -invariant subset of 6Z.

Let X ⊆6Z be a subshift and let x− ∈6−N, where N= {1, 2, 3, . . .}; for x ∈6Z, we
also write x− = x |−N. A finite or infinite sequence x+ ∈

⋃
0≤n≤∞ 6

n is an admissible
extension of x− (with respect to X ) if the concatenation x−x+ is in X . If h(X)= 0, then
h(µ)= 0 for every invariant measureµ on X , and so there is a set of points X0 ⊆ X , having
full measure with respect to every invariant measure, such that x− has a unique extension
for every x ∈ X0; that is, if y ∈ X0 is another point, then y− = x− implies that x = y.
A natural question is whether this can occur for every x, y ∈ X . The answer is no: in fact,
it is well known that the only subshifts for which every admissible past x− admits a unique
continuation are finite unions of periodic orbits (we give a proof in Lemma 4.1).

However, there do exist subshifts where each x− ∈6−N has only finitely many
extensions; the best known are probably the Sturmian subshifts. Such subshifts must have
zero entropy. It turns out that such systems are not uncommon, and that entropy is again
the only restriction to the dynamics of their invariant measures.

THEOREM 1.5. Every ergodic measure-preserving system with entropy zero is isomorphic
to a shift-invariant Borel measure on a uniquely ergodic subshift X ⊆ {0, 1}Z with the
property that every x− ∈ {0, 1}−N has at most two infinite extensions.

This may be viewed as a sharpening of the Jewett–Krieger generator theorem, which
states that every measure-preserving system with finite entropy h can be realized as the
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unique invariant measure on a uniquely ergodic subshift on k symbols, provided that
log k > h. In zero entropy, one cannot use fewer than two symbols. This theorem says
that one can do the next best thing.

1.3. Non-invertibility and entropy. Consider a symbolic system X ⊆6N (note that we
now have a one-sided shift) and an invariant probability measure µ on X . Recall that, since
the partition of X according to the first symbol generates the σ -algebra, the entropy h(µ)
is the average of the entropy of the conditional measures, given x , induced on the preimage
set σ−1(x). Thus, if h(µ) > 0, then with positive probability σ−1(x) is not concentrated on
a single point, and consequently there is a large set of points in X with multiple preimages.
It is therefore natural to ask what ‘degree’ of non-invertibility is necessary to guarantee
positive entropy.

One plausible condition is that each point have multiple preimages; we call such a
system everywhere non-invertible. Indeed, for subshifts this is enough to imply positive
entropy, because, for symbolic systems, everywhere non-invertibility implies a stronger
condition: the preimage of every point has diameter >δ for some δ > 0. Whenever this
condition is satisfied, we say that the system has no small preimages. An easy argument
shows that a map with no small preimages has entropy at least log 2 (see Proposition 5.1
below).

Everywhere non-invertibility does not guarantee positive entropy in general, though in
some special cases it does, e.g. maps of the interval [1]. One would hope to find additional
hypotheses, which, together with everywhere non-invertibility, imply positive entropy. One
candidate is the presence of a globally supported ergodic measure. In an everywhere non-
invertible system there is always an open set of points whose preimages have diameter
which is bounded below by some positive constant and, when there is a globally supported
ergodic measure, almost every orbit spends a positive fraction of its time in this set. One
would hope to use this fact to construct many well-separated orbits. Eli Glasner has raised
the question of whether this hypothesis indeed implies positive entropy. We show that it
does not.

Example 1.6. There exists a zero-entropy, everywhere non-invertible system with a
globally supported ergodic measure.

For an integer k > 0, we say that a system (X, T ) is at least k-to-one if the preimage
set of every point is of size at least k. Bobok has shown that if a map of the circle (or
the interval) is k-to-one, then h(T )≥ log k, and has asked if this holds in general, at least
under the assumption that there are no small preimages. We can give a negative answer to
this question.

Example 1.7. There exists an infinite-to-one system (X, T ) with no small preimages, and
which supports a global ergodic invariant measure, but h(X, T )= log 2.

There seems to be no obstruction in our examples to making the measures weakly
mixing, and possibly strongly mixing, but we do not pursue this here.

The question remains whether such examples exist for a continuous map on a manifold.
For smooth maps they do not; see [2].
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2. Notation
We will use freely standard facts about topological dynamics and entropy which can be
found e.g. in [11]. This section contains some further notation for dealing with sequence
spaces.

Let 6 be a set and write 6∗ for the set of all finite words over 6. The i th letter of a
word a ∈6∗ is denoted by a(i). If a = a(1)a(2) · · · a(k), then k is the length of a and is
denoted by `(a). We denote concatenation of the words a, b ∈6∗ by ab.

Similarly, we define the spaces of one-sided sequences 6N, 6−N (we use the
convention N= {1, 2, 3, . . .}) and of two-sided sequences 6Z. If a topology is given on
6, these sequence spaces carry the product topology; for finite 6, we take the discrete
topology for 6. We denote by σ the shift map on both these spaces, which is defined
by the formula (σ (x))(i)= x(i + 1); this map restricted to 6N and 6Z is continuous and
onto, and is a homeomorphism in the two-sided case. In the one-sided case, the preimage
set of every point is identified with6. We also define the shift on6∗ in the obvious way, by

σ(x(1)x(2) · · · x(k))= x(2)x(3) · · · x(k)

(note that σ n(ab)= (σ na)b if n ≤ `(a) but is equal to σ n−`(a)(b) if `(a) < n ≤ `(a)+
`(b); otherwise it is the empty word). When concatenating infinite sequences, we adopt the
convention that, if x ∈6−N and y ∈6N, then xy ∈6Z is the sequence z with z(i)= x(i)
for i < 0 and z(i)= y(i + 1) for i ≥ 0 (note that 0 /∈ N, which is the reason for this shift
of y).

For a word x (finite or infinite), if x = ab, then a is called a front segment of x (if
`(a)= k, then a is a front k-segment of x), and b a back segment of x . For a, b ∈6∗,
we say that a is a subword of b at index i if i ≤ `(b)− `(a)+ 1 and a( j)= b(i + j) for
j = 1, . . . , `(a). The index i is called the alignment of a in b. If such an i exists, we say
that a appears in b, or that it is a subword of b.

We denote by [i; j] the segment of consecutive integers [i, j] ∩ Z, and denote by
x |[i; j] = x(i)x(i + 1) · · · x( j) the subword of x determined by [i; j], provided that x is
long enough for this to make sense.

All measures are assumed to be Borel probability measures.

3. Topological predictability
3.1. Realization of measures on TP systems. A topologically predictable system has
zero topological entropy and, therefore, by the variational principle, every invariant
measure on it has entropy zero. In this section, we prove Theorem 1.1, showing that this is
the only restriction on invariant measures. The construction is rather technical. We remark
that this section is not used in the following sections.

A point x in a dynamical system (X, T ) is forward recurrent if T n(k)x→ x for some
sequence of times n(k)→∞. Note that if every point in a system is forward recurrent,
then every closed subset A ⊆ X which is forward invariant, i.e. T A ⊆ A, is invariant, i.e.
T−1 A = T A = A.

In order to construct a TP system supporting a given measure, we shall construct an
isomorphic measure on a topological system (X, T ) for which every point in X × X is
forward recurrent. Indeed, by the remark above, this implies that every forward-invariant,
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closed equivalence R ⊆ X × X is also invariant under T−1, and this is equivalent to the
property that every factor is invertible, so (X, T ) is topologically predictable [6]. Our
construction cannot be symbolic, since infinite symbolic systems always contain forward-
asymptotic pairs. We shall instead construct a connected subshift of [0, 1]N.

Let (X, B, µ, T ) be a measure-preserving system with zero entropy. We wish to
construct a space Y and a homeomorphism S : Y → Y for which every pair is forward
recurrent and which support a measure isomorphic to (X, B, µ, T ).

For the construction, we may assume, by e.g. [12], that T is a minimal, topologically
weakly mixing, strictly ergodic homeomorphism of a totally disconnected metric space X ,
and that there exists a clopen generator for T .

Given a measurable function f : X→ [0, 1], let f (m) : X→ [0, 1]m denote the function

x 7→ ( f (x), f (T x), . . . , f (T m−1x)),

and similarly let f (∞) : X→ [0, 1]N denote the map

x 7→ ( f (x), f (T x), f (T 2x), . . .).

We use the notation ‖a‖∞ = sup |a(i)| for a ∈ Rm or a ∈ RN.
For integers m, r , we say that f is (m, r)-good if there is a subset X f,m,r ⊆ X of full

measure such that, for every x ′, x ′′ ∈ X f,m,r , there is an integer 0< k < r (which may
depend on x ′, x ′′) satisfying

‖ f (m)(x ′)− f (m)(T k x ′)‖∞ <
1
m
,

‖ f (m)(x ′′)− f (m)(T k x ′′)‖∞ <
1
m
.

Suppose that f is (m, r(m))-good for some sequence r(m). Setting X0 =
⋂
∞

m=1 X f,m,r(m),
the relation above holds for every x ′, x ′′ ∈ X0 and all m ∈ N. If we set ν = f (∞)µ and
Y = supp ν ⊆ [0, 1]N, it follows that each pair of points in Y is forward recurrent for the
shift σ . Also, ν is shift invariant on (Y, σ ), f (∞) is a factor map from X to Y , and, if
the partition induced by f on X generates for T , then this is an isomorphism. Thus, the
theorem will follow once we construct a function f as above.

We construct f by approximation. More specifically, we define a sequence of functions
fn : X→ [0, 1] and integers r(n) such that fn is (m, r(m))-good for each m ≤ n. The
sequence fn will be constructed so that it converges almost everywhere to a function f ,
which is clearly (m, r(m))-good for m ∈ N. Also, each fn will generate for T and we will
guarantee that f generates by controlling the speed of convergence of fn to f . The fn’s
will be continuous and each will take on only finitely many values, so we may identify
them with finite partitions Pn of X into clopen sets, where fn(x)= i if and only if x is in
the partition element of Pn indexed by i (we allow i to take non-integer values).

The construction proceeds by induction. Our induction hypothesis will be that we
are given a function fn arising from a finite clopen generating partition Pn , and integers
r(1), . . . , r(n), such that fn is (m, r(m))-good for m = 1, . . . , n. For any ε, we will show
how to define fn+1 and r(n + 1) satisfying the same condition with n + 1 in place of n,
and such that

µ(x ∈ X : fn(x) 6= fn+1(x)) < ε.
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By choosing ε = ε(n) to decrease rapidly enough, this last condition guarantees that
fn→ f almost surely, and that f generates for T (see e.g. [10]).

Suppose then that we are given fn , r(1), . . . , r(n), and ε > 0 as above. First, note
that the properties of these objects are completely determined by the itineraries of length
r(n)+ n associated under fn to points in X , i.e. by the image of f (r(n)+n)

n . The following
lemma, whose proof we omit, says that the desired properties of the blocks continue to
hold if we modify itineraries in a sufficiently slow way.

LEMMA 3.1. For fn, Pn, r(1), . . . , r(n) as above, there is a number 0< ρ < 1/(n + 1)
with the following property. Suppose that y′, y′′ ∈ [0, 1]r(n)+n are blocks appearing
in f (∞)n (X) and α′, α′′ ∈ [0, 1]r(n)+n have the property that |α′(i)− α′(i + 1)|< ρ and
|α′′(i)− α′′(i + 1)|< ρ for all 1≤ i ≤ r(n)+ n − 1. Define z′, z′′ ∈ [0, 1]r(n)+n by
z′(i)= α′(i) · y′(i) and z′′(i)= α′′(i) · y′′(i). Then there exists 0< k ≤ r(m) with |z′(i)−
z′(i + k)|< 1/m and |z′′(i)− z′′(i + k)|< 1/m for i = 1, 2, . . . , n.

Let Y ⊆ [0, 1]N be the symbolic subshift defined by the property that every block of
length r(n)+ n in Y appears in f (∞)n (X). Note that Y is a shift of finite type and is
irreducible because X is topologically mixing. In particular, there is an integer D such that
given two blocks a, c appearing in Y , there is a block bk for every k ≥ D such that abkc
appears in Y . We can also fix a block a∗ appearing in Y which contains a copy of every
n-block in Y . Increasing D or lengthening a∗ if necessary, we may assume that D > 1/ε
and that a∗ is of length D.

We need the following, which is a specialized version of Lemma 2 from [12].

LEMMA 3.2. There exist δ > 0 and T0 ∈ N such that, for all T ≥ T0, there is a family I of
subsets of {0, . . . , T − 1} satisfying:

(1) |I | ≥ 2δT ;
(2) for A ∈ I and distinct u, v ∈ A, we have |u − v| ≥ 10D/ε;
(3) for each A, B ∈ I and k ≤ 9T/10, we have A ∩ (B + k) 6= 0.

We use the lemma in conjunction with the following simple fact.

LEMMA 3.3. Fix T and let A, B ⊆ {0, 1, . . . , T } satisfy the three conditions of the
previous lemma. Fix 0≤ k ≤ (9T/10)− n, and let z′, z′′ ∈ [0, 1]N be such that a∗ appears
in z′ at each index i ∈ A and in z′′ at each index j ∈ B + k. Then, for every pair a, b of
n-blocks from Y , there is an index u such that a appears in z′ at u, and b appears in z′′

at u.

Let ρ, δ, T0 be as in the preceding lemmas. Since (X, T, µ) has zero topological
entropy, it follows that we can choose an integer H ≥ (10/ρε)T0 large enough so that
2δ(ερ/10)H is greater than the number of (Pn, H)-names in X . We fix such an integer H
and construct an Alpern tower [4] over some clopen set B ⊆ X , with columns of heights
H and H + 1. This means that every point in B returns to B for the first time after either
H or H + 1 applications of T . The i th level of the tower is the set of points T i B\B, and
the disjoint union of these levels for 0≤ i ≤ H + 1 is all of X . The last property can be
obtained because (X, T ) is minimal. This is a standard modification of the construction
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of Alpern towers: one begins the construction with a clopen set and notes that, due of
minimality, all points eventually return to it.

Purify the columns according to Pn , and let B1 · · · BN be the bases of the purified
columns. Thus, {B1, . . . , BN } is a clopen partition of B which refines the partition
according to return time and, if h(i) denotes the height of the column over Bi , then all
x ∈ Bi have the same Pn-itinerary up to time h(i), and these itineraries are distinct for
different i . Note that the Pn-name of each column appears in Y .

Divide each column into 10/ερ blocks of length (ερ/10)H (which we assume for
convenience is an integer), and possibly an additional level in those columns which are
of height H + 1. We proceed to modify Pn as follows.
• In each column, rename the bottom 1+ (1/ρ) blocks so that they are identical, and

similarly for the top 1+ (1/ρ) blocks; and do so in such a way that the name of the
entire column is admissible for Y . This can be done because (ρε/10)H , the length
of each block, is much larger than D. Notice that by choice of ρ, the first and last
n + 1 blocks in each column are identical.

• To each block, except the top and bottom n blocks of each column, assign a
distinct set A ⊆ {0, . . . , (ερ/10)H − 1} such that |u − v| ≥ 10D/ε for distinct
u, v ∈ A and, if A, B are assigned to distinct blocks and 1/10 · (ερ/10)H ≤ k ≤
9/10 · (ερ/10)H , then A ∩ (B + k) 6= ∅. We can do this by the choice of H and
the lemma. To the bottom n blocks in each column assign the same set A which
is assigned to the (n + 1)th block of that column, and similarly to the top n blocks
assign the same set which is assigned to the (n + 1)th block from the top. We have
thus assigned a set to each block.

• For a block b appearing in one of the columns and the set A associated to it, we
modify b as follows. For convenience, in this paragraph we renumber the coordinates
of b from 0 to (10/ερ)− 1, no matter where in the column b actually appears. For
each i ∈ A, we replace the block of length D in b starting at i with the block a∗.
Next, modify the symbols from i − D to i − 1 and from i + D to i + 2D − 1 in
such a way that the entire block from i − 2D to i + 3D appears in Y ; we can do
this by the definition of D. All in all, we have changed b from index i − D to
index i + 2D − 1. Because of the distance between successive elements of A, these
changes for different i ∈ A occur at different places in b and the changes do not
interfere with each other.
Note that the bottom n + 1 blocks of each column are still identical, as are the n + 1
top blocks.
Denote by P̃n+1 the partition obtained so far, and by f̃n+1 the corresponding
function.

• If b1, b2, . . . , b1/ρ are the bottom 1/ρ blocks of some column, replace bk with
(k − 1)ρ · bk , where α · bi is the block obtained by multiplying each coordinate of
bi by α. Similarly, if c1, c2, . . . , c1/ρ are the top n blocks of a column, replace ck

with (1/ρ − k)ρck .
• For columns of height H + 1, replace the top symbol with 0.
• Perturb the first symbol of each column by less than ε in such a way that the name

of each column is unique.
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Let fn+1 be the function defined by the revised partition; we claim that it has the desired
properties for some integer r(n + 1).

We first estimate the measure of points on which fn and fn+1 differ. It suffices to show
that in each column the fraction of levels modified is less than ε. The change to the top
and bottom 1/ρ blocks amounts to 2/ρ blocks out of 10/ερ, which is ε/5 of the levels.
Consider now the intermediate levels. Since in the sets A associated to the blocks the
distance between elements is at least 10D/ε, and each element causes a change of 3D
symbols to its block, here too we have caused a change to at most a (3ε/10) fraction of
the levels. The change to the top symbol of columns of height H + 1 amounts to less than
1/H of the space. Thus, we have indeed modified fn on a set of measure less than ε.

We now show that we can choose r(n + 1) so that fn+1 is (m, r(m))-good for each
m ≤ n + 1. Note that every block in f (∞)n+1 (X) of length r(n)+ n is of the form described
in Lemma 3.1, so for m ≤ n the conclusion follows immediately from that lemma.

We must show that fn+1 is (n + 1, r)-good for some r . Let x ′, x ′′ ∈ X . We must show
that there is a k of bounded size such that

‖ f (n+1)
n+1 (x ′)− f (n+1)

n+1 (σ k x ′)‖∞ <
1

n + 1

and

‖ f (n+1)
n+1 (x ′′)− f (n+1)

n+1 (σ k x ′′)‖∞ <
1

n + 1
.

Denote y′ = f̃n+1(x ′) and y′′ = f̃n+1(x ′′), and also z′ = f (n+1)
n+1 (x ′) and z′′ = f (n+1)

n+1 (x ′′).
We distinguish several cases.

Case 1. Both x ′, x ′′ are in the top block or level H + 1 of their respective columns. Then
the first 10/ρε symbols of f (∞)n+1 (x

′), f (∞)n+1 (x
′′) are 0, and the conclusion holds for k = 1.

Case 2. Exactly one of the points, say x ′, is in the top block or level H + 1 of its column,
so the first 10/ρε symbols of f (∞)n+1 (x

′) are 0. Note that in y′′ = f̃n+1(x ′′) the block a∗

appears somewhere between index 1 and 10/ρε; hence, there is a 0< k ≤ 10/ρε with

‖ f̃ (n+1)
n+1 (x ′′)− f̃ (n+1)

n+1 (σ k x ′′)‖∞ = 0.

If we replace f̃ (n+1)
n+1 with f (n+1)

n+1 , the left-hand side changes by at most ρ and we get

‖ f (n+1)
n+1 (x ′′)− f (n+1)

n+1 (σ k x ′′)‖∞ < ρ.

On the other hand,
‖ f (n+1)

n+1 (x ′)− f (n+1)
n+1 (σ k x ′)‖∞ = 0,

because the first 10/rε symbols of the itinerary of x ′ are 0, as desired.

Case 3. x ′, x ′′ are in different columns or the same column but at least 1/9 · 10/ερ levels
apart, and neither is in the top block or top level. By looking at the blocks to which x ′, x ′′

belong and at the next block, by Lemma 3.3 we see that for every pair of n + 1-blocks,
and in particular the one appearing at the start of the itineraries of x ′, x ′′, there is a k in the
range we want such that these blocks appear again in the f̃n+1 itinerary of both x ′ and x ′′ at
index k. As in Case 2, this gives the conclusion for the fn+1 itinerary, because the change
from f̃n+1 to fn+1 is ‘too slow’ to affect the inequality very much.
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Case 4. x ′, x ′′ belong to the same column and are within 1/9 · 10/ερ levels of each other.
If they are in one of the bottom 1/ρ levels, then we are done by the periodicity of these
blocks (again, there is some slow ‘drift’, which does not affect us). Otherwise, the initial
n + 1-block of both itineraries belongs to Y . We claim that there is an M such that either
for some 0< i < M the points T i x ′, T i x ′′ belong to different columns but not to the top or
bottom 1/ρ blocks of those columns, or else there exists a k < M , as desired. This suffices
because in the former case we can argue as in Case 3, and deduce that as k ranges over
1, . . . , M + 10/ρε, every pair of n + 1-blocks from Y appears at index k in the fn+1-
itineraries of x ′, x ′′. This gives the conclusion we want.

It remains to show that there is such an M . This follows from the fact that f (∞)n+1 (X)
is a minimal symbolic system. Indeed, suppose the contrary. Then for every M there
exist points x ′M , x ′′M ∈ X such that whenever 1≤ i ≤ M and T i x ′M , T i x ′′M are in different
columns it is because they are within 10/ερ of the top or bottom of a column, and
also the initial n + 1 blocks of the itineraries of x ′, x ′′ do not appear again together
before time M . We may assume that x ′M → x ′ and x ′′M → x ′′. Now x ′, x ′′ have these
properties as well, for all M . Assuming as we may that x ′ is above x ′′ in the column they
belong to, it follows that the itinerary of x ′ is a shift of the itinerary of x ′′, so the pair
( f (n+1)

n+1 (x ′), f (n+1)
n+1 (x ′′)) ∈ f (n+1)

n+1 (X) is of the form (y, T r y) for some r ≤ 1/9 · 10/ρε.

But since f (∞)n+1 (X) is minimal this point must be recurrent, a contradiction. This completes
the proof of Theorem 1.1. 2

Notice that the construction has introduced a fixed point 000 . . . in the resulting
subshift. We do not know if this can be avoided; more specifically, we do not know if
the subshift can be made to be minimal.

3.2. Partitions derived from continuous functions and predictable Zd actions. In this
section, we prove a purely measure-theoretic and topological lemma which involves no
dynamics. Let X be a normal topological space and µ a regular probability measure on
the Borel σ -algebra of X . The entropy and conditional entropy of finite and countable
partitions are defined as usual [11]. For finite or countable measurable partitions P =
(P1, P2, . . .) and Q= (Q1, Q2, . . .) of X with finite entropy, the Rohlin metric is
defined by

d(P, Q)= H(P|Q)+ H(Q|P).

This metric has the property that if P = (P1, P2, . . .) and we define

P(n)
=

(
P1, . . . , Pn,

∞⋃
k=n+1

Pk

)
,

then P(n)
→ P in d.

We say that a partition P is continuous if there is a continuous function f ∈ C(X)which
is constant almost surely on each atom of Pi . Equivalently, P agrees with the partition of
X into level sets of some f ∈ C(X), up to measure zero.

PROPOSITION 3.4. The continuous partitions are dense with respect to the Rohlin metric
in the space of finite-entropy countable partitions.
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Proof. The proof is a variation on Urisohn’s lemma, which states that given two closed
disjoint sets C0, C1 in a normal space, there is a continuous function 0≤ f ≤ 1 such that
f −1(0)= C0 and f −1(1)= C1.

Let D⊆Q ∩ [0, 1] denote the dyadic rationals. Let P = (P0, P1) be a partition
into two sets and let ε > 0. We construct a continuous function f : X→ [0, 1] with
µ(
⋃

r∈D f −1(r))= 1 such that the countable partition Q= { f −1(r) : r ∈ D} satisfies
d(P, Q) < ε. The proof in the case where P has more than two atoms is similar; this
is sufficient, because the finite partitions are dense in the Rohlin metric.

We construct a family of open sets {Ur }r∈D with Ur ⊆Us for r ≤ s and with µ(∂Ur )=

0. We will also define closed disjoint sets (Cr )r∈D such that Cs ⊆Ut\Ur for all r < s < t
and µ(∪Cr )= 1. We will then define f by

f (x)= inf({1} ∪ {r : x ∈Ur }).

This defines a continuous function with f |Cr = r , and so { f −1(x) : x ∈ [0, 1]} equals {Cr }

up to measure 0.
Fix a sequence (εk) to be determined later. For i = 0, 1, let Ci be disjoint closed sets

with null boundary and µ(Ci1Pi ) < ε. Set U0 = ∅ and U1 = [0, 1]\C1.
Let Dk ⊆ D be the set of reduced dyadic rationals with denominator 2k . We proceed by

induction on k, defining at each step the sets Ur , Cr for r ∈ Dk under the assumption that
they have been defined already for r ∈

⋃
j<k D j . Write Ek =

⋃
j<k D j = {r1, . . . , rn}

with r1 < · · ·< rn and let r ∈ Dk . Then there are r ′, r ′′ ∈ Ek with r ′ < r < r ′′ and
(r ′, r ′′) ∩ Ek = ∅. Let V =Ur ′′\U r ′ and choose Cr ⊆ V with

µ(Cr ) > (1− εk)µ(V )= (1− εk)µ(Ur ′′\Ur ′).

Choose Ur such that it contains Cr ∪Ur ′ ; it satisfies µ(∂Ur )= 0 and U r ⊆Ur ′′ .
Write Q= {Cr }r∈D. Set C̃k =

⋃
i≥k

⋃
r∈Di

Cr and let Qk = {Cr }r∈Ek ∪ {C̃k} be the
partition obtained by merging all the atoms Cr in Q with r ∈

⋃
j≥k D j . Let C∗k =⋃

r∈Dk
Cr . The sequence (εk) controls the convergence of the sequence (µ(C∗k )) to 1,

and the latter can be made to converge arbitrarily quickly. In particular, we can guarantee
that Q has finite entropy. Now Qk→Q in the Rohlin metric, so

d(P, Q) = lim
k→∞

d(P, Qk)

≤ lim
k→∞

(
d(P, Q1)+

k−1∑
i=1

d(Qi , Qi+1)

)

= d(P, Q1)+

∞∑
i=1

d(Qi , Qi+1)

and the last line can be made arbitrarily small by prudent choice of (εk), since Qi+1 refines
Qi by splitting C∗k into at most 2k atoms whose relative mass is determined by εk . 2

We can now prove Theorem 1.3. Note that even for d = 1 this proof is more direct than
that given in [6].

Proof of Theorem 1.3. Let Zd act on X and suppose that for every f ∈ C(X) one has

f ∈ 〈1, T u f : u < 0〉,
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where< is the lexicographical order on Zd . This implies that f is measurable with respect
to the σ -algebra generated by {T u f : u < 0} and, in particular, this shows that for any
T -invariant measure µ there is a dense (in the Rohlin metric) set of partitions Q for which
h(Q)= 0, namely those which come from continuous functions (Proposition 3.4). Since
h(µ, P) is continuous in P under the Rohlin metric, we conclude that h(µ, P)= 0 for
every two-set partition and hence h(µ)= 0. By the variational principle, htop(T )= 0. 2

4. Prediction in symbolic systems
4.1. Generalities about subshifts and prediction. Let 6 be a finite alphabet and σ :
6Z
→6Z the shift transformation. For x ∈6Z, set x− = (. . . , x−2, x−1), and for a

subshift X ⊆6Z let X− = {x− : x ∈ X}. A finite or right-infinite word a is an extension
of x− ∈ X− if x−a appears in X . Let L(X) be the set of finite words appearing in X and
Lm(X)= L(X) ∩6m .

The following fact is well known.

LEMMA 4.1. A subshift X is the union of periodic orbits if and only if every x− ∈ X−

extends uniquely to x ∈ X.

Proof. If X is a finite union of periodic orbits, the conclusion is clear.
For the converse, we rely on the simple fact that, if there is some n such that

x−n, . . . , x−1 determines x0 for all x ∈ X , then X is the finite union of periodic orbits.
Thus, if X ⊆6Z is not the union of periodic orbits, then for every n there are a word
an ∈ Ln(X) and distinct symbols un, vn ∈6 such that anun, anvn ∈ Ln+1(X). Therefore,
there are words bn, cn ∈6

N+ beginning with un, vn respectively such that anbn, ancn

appear in X . By compactness, we can choose a subsequence n(k) such that u = un(k) and
v = vn(k) are constant, an(k)→ x− ∈ X−, bn(k)→ b ∈6N+ , and cn(k)→ c ∈6N+ . But
then a, b begin with the distinct symbols u, v and x−a, x−b ∈ X , so x− has at least two
extensions in X . 2

Thus, every infinite subshift, including zero-entropy ones, has at least one past with
multiple extensions. On the other hand, the following observation was pointed out to us by
Weiss. Note that it is a special case of the general fact that minimal systems are invertible
on a dense Gδ .

LEMMA 4.2. If X is a minimal subshift, then, for every a ∈ L(X) and k ∈ N, there is a
word b ∈ L(X) such that ba ∈ L(X), and every occurrence of ba in X is followed by a
unique word c ∈6k .

Proof. It suffices to show this for k = 1, as the general case then follows by induction. Let
a ∈ L(X) and u ∈6 be such that au ∈ L(X). Consider all b’s such that bu ∈ L(X) and au
appears in bu exactly twice, as a front segment and a back segment. By minimality, the
lengths of such b’s is bounded above and we can choose a maximal such b. If x+ ∈ X+

and bx+ ∈ X+, then by minimality au appears in x+; thus, by maximality of b, we must
have x+(1)= u, for otherwise there is a front segment c of x+ such that au appears in bc
only as a front and a back segment, which is impossible by maximality of b. Thus, b is
always followed by u in X . 2
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COROLLARY 4.3. If X is a minimal subshift and u ∈ L(X), then there is a word v ∈ L(X)
such that every occurrence of v is followed by u.

Proof. Let u be given and let k be large enough that every c ∈ Lk(X) contains u. In the
previous lemma, let a be the empty word and let b, c be the words obtained. Then b is
always followed by c and c = c′uc′′ for some c′, c′′. The word v = bc′ has the desired
property. 2

4.2. Realization theorem. We now begin the proof of Theorem 1.5. We start with a
measure-preserving system (X, B, µ, T ) of entropy zero, and wish to construct a strictly
ergodic subshift, supporting an isomorphic measure, in which each past has at most two
futures. We may assume that µ is aperiodic (i.e. the set of periodic points has measure
zero), otherwise the statement is trivial. By e.g. [12], we may assume that µ is an
invariant measure on a uniquely ergodic, topologically weakly mixing, minimal subshift
X ⊆ {0, 1}Z.

We construct a sequence of two-set generating clopen partitions Pn for n = 0, 1, 2, . . .
such that Pn→ P∗, where P∗ generates for µ. Denote by Xn the symbolic system arising
from X and Pn . Note that since Pn is clopen, Xn is minimal and uniquely ergodic. The
two-sided Pn-name of a point x ∈ X is a point in Xn .

We will define a sequence of integers m(n)≥ n such that Lm(n)(Xn)= Lm(n)(Xn+1),
and another sequence k(n)≥ n with the property that for every u ∈6k(n),

#{w ∈6n
: uw ∈ L(Xn)} ≤ 2;

these numbers will satisfy m(n)≥ k(n)+ n, so that the system X∗ arising from P∗ will
have the property that for every u ∈6k(n),

#{w ∈6n
: uw ∈ L(X∗)} ≤ 2.

This implies the desired result. By choosing the m(n) large enough at each stage, we can
furthermore guarantee that X∗ is minimal and uniquely ergodic, but for simplicity we do
not go into the details of this.

The construction is by induction. Define P(0) to be the clopen generating partition
according to the zeroth symbol; set m(0)= 0 and k(0)= 0.

We describe now the inductive step of the construction. We are given a two-set
generating partition Pn of X into clopen sets and an integer m(n). Given ε > 0, we will
construct a new partition Pn+1 which is ε-close to Pn . We will ensure that Lm(n)(Xn)=

Lm(n)(Xn+1) and define an integer k(n + 1) with the properties above. Finally, we will be
free to choose m(n + 1) arbitrarily, since it only affects the next step of the construction.

Let Yn be the shift of finite type whose allowed blocks of length m(n)+ 1 are those
appearing in Lm(n)+1(Xn). Since Xn is infinite and transitive, and Xn ⊆ Yn , it follows
from basic properties of shifts of finite type that Yn has positive entropy. Using the fact
that Xn is mixing and has zero entropy (whereas Yn has positive entropy), we can find a
word a ∈ Lm(n)+1(Xn), a word bold ∈ L(Xn), and a word bnew ∈ L(Yn)\L(Xn) such that
bold, bnew have the same length, and both begin and end with the word a. Furthermore,
using standard marker arguments (see e.g. [8]), we may assume that if x ∈ Xn and we
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replace some sequence of occurrences of bold in x with bnew, and if these occurrences were
at least 2`(bold) apart, then we can identify the location of the changes from the modified
sequence.

The partition of Pn+1 will be constructed by replacing some of the occurrences of bold

in Xn with bnew. This is done as follows. First, using Corollary 4.3, choose c ∈ L(Xn)

such that every time c appears in Xn it is followed by bold. We can extend c backwards
arbitrarily while preserving this property, so we may assume that c is arbitrarily long. Since
Xn is minimal, there is an R such that the gap between occurrences of c in Xn is at most R.

Next, choose a large N (how large will depend on R, `(bold) and on the growth of words
in the system Xn , and will be explained below) and choose a clopen bounded Alpern tower
in Xn all of whose columns are of height N − 1 or N , and such that the base is contained in
the cylinder set defined by cbold. Purify each column of the tower according to the clopen
partition

∨4N
i=0 T−i Pn . Consider one such column, which corresponds to the Pn-name w.

We proceed to modify the Pn-name of the column; doing this for each column defines a
new partition Pn+1.

Fix x ∈ X and its corresponding column. Let i(1)= 0 denote the height in the column
of the first occurrence of cbold in w, let i(2) be the index of the next occurrence which
does not intersect the first occurrence, and so on until i(r), the index of the last occurrence
of cbold which is contained completely in the current column. Replace the occurrences of
cbold at indices i(1), i(2) with cbnew.

Using the syndeticity of occurrences of c, for some α > 0 we have r ≥ αN , where α
depends on R but not N . We next encode the Pn-name of x from time 0 to 4N . We do
so by replacing the word cbold at some of the levels i(4), i(6), . . . , i(r − 2) with cbnew.
We use only locations i( j) where j is even; thus, no new consecutive occurrences of cbnew

are introduced, and the consecutive occurrences of cbnew at the bottom of the column
are unique and serve to identify it. We can encode the atom of

∨4N
i=0 T−i Pn to which x

belongs in the approximately 1
2αN bits available because h(Xn)= 0, so the number of∨4N

i=0 T−i Pn-names is < 2αN/4 assuming that N is large enough.
We have defined a partition Pn+1. Note that we have modified w along a set of density

at most `(bold)/`(cbold), which can be made arbitrarily small by making c long; thus, Pn+1

can be made ε-close to Pn .
Since bnew does not appear in L(Xn), we can recover the Pn-name of a point x ∈ X

simply by replacing every occurrence of cbnew with cbold. Thus, since Pn generates, so
does Pn+1.

Because bold, bnew agree on their first and last m(n) symbols, and because bnew ∈ Yn

and all m(n)-blocks in Yn are in Ln(Xn), we also have Lm(n)(Xn)⊆ Lm(n)(Xn+1).
Consider a point x ∈ X . We will show that by looking 2N symbols into the past of

the Pn+1-name of x , we can determine that the Pn+1-name of x from time 1 to `(bnew)

takes on one of at most two possible values. Thus, setting k(n)= 2N and noting that
`(bnew)≥ m(n)≥ n, we will have completed the inductive step.

Look into the Pn+1-past of x until we find a sequence of two consecutive occurrences of
cbnew; this must happen after at most N symbols at some index i . Looking back at most N
symbols more, we find the next group of two or five consecutive cbnew’s at some index j .
Between j and i we have coded the Pn-name of x from time j to time j + 3N (and even

https://doi.org/10.1017/S0143385710000738 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385710000738


On notions of determinism in topological dynamics 133

a little bit more). In any case, assuming as we may that N > `(bnew), and since j ≥−2N ,
we can certainly recover the Pn-name of x from time j to time `(bnew).

We now claim that there are at most two choices for the Pn+1-name of x from time 1
to m(n + 1). Note that the Pn-name of x and the Pn+1-name of x differ only at points
which lie in the `(bnew) symbols following certain occurrences of c. But if some such
occurrence of c intersects the Pn-name of x from times−`(bnew)+ 1 to `(bnew), then from
space considerations there is a unique such c; and in this case the next `(bnew) symbols of
x are either bnew or bold. Thus, there are at most two possible choices for the atom of∨m(n)+1

s=1 T s Pn+1 to which x belongs.
This completes the discussion of the induction step. By choosing ε small enough at each

stage, we can arrange that Pn→ P∗ with P∗ a generating partition for µ, and X∗ will be
2-branching. By a proper choice of m(n) and using the unique ergodicity and minimality
of X (and hence of all the Xn), we can also ensure that X∗ is minimal and uniquely ergodic.

5. An extremely non-invertible zero-entropy system
5.1. Generalities. In this section, we address the relation between entropy and the
structure of preimage sets of points in non-invertible topological systems. The motivation
for this is the following simple fact, whose proof is a good illustration of why one expects
there to be a connection between entropy and large preimage sets.

PROPOSITION 5.1. A system with no small preimages has entropy at least log 2.

Proof. Let (X, T ) be a system and δ > 0 be such that for every x ∈ X there are
x ′, x ′′ ∈ T−1(x) with d(x ′, x ′′) > δ. We can define functions τ0, τ1 : X→ X such that
τ0(x), τ1(x) ∈ T−1(x) and d(τ0(x), τ1(x)) > δ; note that τ0, τ1 need not be continuous.
For n ∈ N and a sequence a = anan−1 · · · a1 ∈ {0, 1}n , let

τa(x)= τan (τan−1(· · · τa1(x) · · · )).

Note that T (τa(x))= τb(x), where b ∈ {0, 1}n−1 is obtained by deleting the first symbol
of a.

For a fixed x ∈ X , consider the set

An(x)= {τa(x) : a ∈ {0, 1}n}.

If a, b ∈ {0, 1}n and a 6= b, then there is a maximal index i < n such that a j = b j for
1≤ j ≤ i but ai+1 6= bi+1. Let y = τai ai−1···a1(x)= τbi bi−1···b1(x); then

T n−i−1(τa(x))= τai+1(y),

T n−i−1(τb(x))= τbi+1(y),

so d(T n−i+1τa(x), T n−i+1τb(x)) > δ. It follows that all the points in An(x) are distinct
and the set An(x) is (n, δ)-separated; since this is true for all n, this implies that h(X, T ) >
log 2. 2

One easy consequence of this is that for finite alphabets 6 every extremely non-
invertible subshift of 6Z has entropy at least log 2, because once a metric is fixed there
is a δ such that every two distinct preimages of a point are δ apart.
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As was mentioned in the introduction, Bobok has shown that for maps of the interval if
a map is k-to-one then it has entropy >log k [1].

It is not hard to construct examples of zero-entropy systems where every point has
multiple preimages, but it is not so easy to construct such a system with a globally
supported ergodic measure, and Eli Glasner has asked whether this is possible. The
construction below gives an affirmative answer to this question.

5.2. The construction. Let σ be the shift on the one-sided Bebutov system [0, 1]N. We
will construct a subshift of the Bebutov system by specifying a point x∗ ∈ [0, 1]N and
taking its orbit closure X = {σ n x∗}n∈N. Things will be engineered so that X has zero
topological entropy, and x∗ is generic for an ergodic measure µ on X having support X .

For words x, y ∈ [0, 1]N, we set

d(x, y)=
∞∑

i=1

|x(i)− y(i)| · 2−i
;

this defines a metric on [0, 1]N which is compatible with the compact product topology.
We also write

‖x‖ = d(x, 0),

where 0= (0, 0, . . .). For a finite word x , we define

‖x‖ =
`(x)∑
i=1

|x(i)| · 2−i
= inf{‖y‖ : y ∈ [0, 1]N and x is a front segment of y}.

Note that ‖ab‖ ≥ ‖a‖ and that if xn are finite words and xn→ x ∈ [0, 1]N in the obvious
sense, then ‖xn‖→ ‖x‖.

Suppose that x ∈ [0, 1]∗ is a finite word. We define θ0(x), θ1(x) ∈ [0, 1] by

θ0(x)= 1
8‖x‖, θ1(x)= 1

4‖x‖

and we define τ0, τ1 : [0, 1]∗→ [0, 1]∗ by

τ0(x)= θ0(x)x, τ1(x)= θ1(x)x,

i.e. the symbols θi (x) are appended to the beginning of x .
For a sequence b = bM bM−1 · · · b1 ∈ {0, 1}M , define τb inductively by

τbM ···b1(x)= τbM (τbM−1···b1(x))

and set T∅(x)= x . Note that if b = bM · · · b1, then

σ i (τb(x))= τbM−i ···b1(x)

and in particular σM (τb(x))= x . One verifies that ‖τb(x)‖→ 0 exponentially as the length
of b tends to∞, uniformly in b and x .

We define τb on [0, 1]N by the same formula. In the subshift we are about to construct,
the preimage set of a point x will contain at least τ0(x), τ1(x). Since τb(x)→ 0 as
`(b)→∞, the preimage tree of each point will be ‘narrow’, and not contribute to the
entropy. Note however that there will also be preimages which do not come from
applications of τb.

We construct x∗ recursively. At the nth stage, we will be given a finite word xn of length
Ln and construct a word xn+1 of length Ln+1 such that xn+1 = xn x ′n for some word x ′n . We
then take x∗ to be the limit of this increasing sequence of finite words.
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We begin with an arbitrary finite word x0 of length L0 > 0. Our only assumption about
x0 is that it is strictly positive.

The passage from stage n to stage n + 1 is as follows. Given xn of length Ln , for
0≤ k < Ln let wk be the back segment of xn starting at index k, that is,

wk = xn(k)xn(k + 1) · · · xn(Ln),

so `(wk)= Ln − k + 1. For b ∈ {0, 1}3
Ln , set

wb,k = τb(wk).

Define yn to be some concatenation of the words wb,k as b varies over {0, 1}3
Ln and

0≤ k < Ln (the order is not important).
Now choose a large integer Mn which we will specify later. For now, we note that Mn

may be chosen to depend not only on all the previous stages but also on yn . Define

xn+1 = (xn xn · · · xn)︸ ︷︷ ︸
Mn times

yn .

Set x∗ = lim xn and let X be the orbit closure of x∗. In the next few subsections, we
will show that (X, σ ) has the advertised properties.

5.3. (X, σ ) is extremely non-invertible. The point x∗ has been constructed in such a
way that if some finite word a appears in x∗, then it appears in at least two different
configurations, preceded by symbols r, r ′ ∈ [0, 1] such that |r − r ′| ≥ 1

16‖a‖. This is
because if a is a subword of xn , then a is a front segment of some back segment b of xn , and
so τ0(b) and τ1(b) appear in xn+1, and by definition the first symbols of τ0(b) and τ1(b)
differ by 1

16‖b‖, and ‖b‖ ≥ ‖a‖.
Thus, if y is a limit point of x∗ and y 6= 0, then y is a limit point of finite subwords an of

x∗, and since ‖y‖> c > 0 for some c, we have ‖an‖> c for all large enough n. Therefore,
we can find symbols r ′n, r ′′n ∈ [0, 1] such that |r ′n − r ′′n |>

1
16 c and r ′nan, r ′′n an appear in x∗.

Passing to a subsequence, we get r ′nan→ r ′y and r ′′n an→ r ′′y for some r ′, r ′′ ∈ [0, 1]with
|r ′ − r ′′| ≥ 1

16 c, and so r ′y, r ′′y are distinct preimages of y in X .
It remains to check that 0 has two preimages (it is clear from the construction that 0 ∈ X ,

since x∗ has arbitrarily long sequences of small numbers, consisting of front segments of
the wb,k). Since 0 is a fixed point of σ , one preimage is 0 itself. To see that there are
other preimages, note that the words xn all end in the same positive letter ε, the last letter
of x0, and this is also the last letter of all the words wb,k we constructed at each stage.
On the other hand, as `(b)→∞, the front segments of wb,k approach 0, so there are
arbitrarily long sequences of arbitrarily small numbers in x∗, each sequence preceded by
an occurrence of ε. Thus, ε000 . . . is also a preimage of 0 in X .

5.4. (X, σ ) has zero topological entropy. We verify this by estimating the number of
ε-separated orbits. For words a, a′ (either finite or infinite), we write

‖a − a′‖∞ = sup
i
|a(i)− a′(i)|.

https://doi.org/10.1017/S0143385710000738 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385710000738


136 M. Hochman

Note that for x, x ′ ∈ X ,

‖x |[1;n] − x ′|[1;n]‖∞ > ε H⇒ max{d(σ i x, σ i x ′) : i = 1, . . . , n}> ε.

Fix ε > 0, and let An be the set of all subwords of x∗ of length n. Set

Cε(n)=max{|A| : A ⊆ An, ∀a, a′ ∈ A ‖a − a′‖∞ > ε}.

The topological entropy of (X, S) is

lim
ε→0

lim sup
n→∞

1
n

log Cε(n).

For a finite or infinite word a with symbols in [0, 1], let [a]ε denote the word b of the
same length such that

b(i)= [a(i)/ε] · ε

(here [r ] denoted the integer part of r ). Thus, the coordinates of [a]ε belong to the finite
set {0, ε, 2ε, . . . , [1/ε]ε}. Note that if ‖a − a′‖∞ ≥ ε, then ‖[a]ε/2 − [a′]ε/2‖∞ ≥ ε/2. It
is therefore sufficient to prove the following.

CLAIM 5.2. For every ε > 0, the number of length-n subwords of [x∗]ε/2 which are at
least ε/2 apart in ‖ · ‖∞ grows subexponentially with n.

We will use the following property of x∗.

LEMMA 5.3. For every n, we can write x∗ = a1a2a3 · · · , where each ai is of length at
least 3Ln and, for each i , either:
(1) ai = xn; or
(2) for each 1≤ j ≤ `(ai )− Ln , we have ai ( j)≤ 7

8 ai ( j + 1).
In particular, for any ε > 0, for n large enough either each ai is equal to xn or else all the
coordinates of ai , except the last 2Ln coordinates, are of magnitude <ε.

The proof of the lemma is an elementary induction from the definitions, and is omitted.

Proof of Claim 5.2. Fix ε > 0 and let z∗ = [x∗]ε/2 and zm = [xm]ε/2. From the lemma, we
see that for the given ε for large enough m, we can write

z∗ = v1v2v3 · · ·

and for each i either the word vi is equal to zm or else `(vi )≥ 3Lm and at least a
(1− 2−Lm )-fraction of the coordinates of vi are 0. In view of this, the fact that the number
of subwords of z∗ of length n grows subexponentially is now a standard counting argument,
and the claim follows. This shows that htop(X, σ )= 0. 2

5.5. x∗ is generic for a globally supported measure µ on X. A point y in a dynamical
system (Y, S) is a generic point for a measure µ if for every continuous function f ∈ C(Y )
limN→∞(1/N )

∑N
n=1 f (Si y) exists. When this is true, then (1/N )

∑N
n=1 δSi y converges

in the weak-∗ topology to an invariant measure µ on Y (here δx is the point mass at x). One
condition that guarantees that y is generic is that for every open set U ⊆ Y the averages
limN→∞(1/N )

∑N
n=1 1U (Si y) exist; in fact, it is sufficient to verify this for U coming

from a basis for the topology of X .

https://doi.org/10.1017/S0143385710000738 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385710000738


On notions of determinism in topological dynamics 137

For U ⊆ [0, 1]k , let

[U ] =U × [0, 1]N\{1,...,k} ⊆ [0, 1]N

be the cylinder determined by U . Sets of this form for open U constitute a basis for the
topology of [0, 1]N. We will show that for every such U , the sequence

p(m)=
1
m

m∑
i=1

1[U ](σ i x∗) (5.1)

converges. This implies that the weak∗ limit measure

µ= lim
n→∞

1
n

n∑
i=1

δσ i x∗

exists, and is a shift-invariant measure on X . In fact, we will show that µ(U ) > 0 if and
only if p(n) > 0 for some n. From this, it will follow that µ has global support in X .

For a finite word a, we will say that a ∈ [U ] if ab ∈ [U ] for every infinite b ∈ [0, 1]N.
Thus, if a ∈ [U ], then ab ∈ [U ] for every finite b. The property a ∈ [U ] depends only on
the first k coordinates of a (recall that U ⊆ [0, 1]k). Note that if `(a) < k it is possible that
a /∈ [U ] but that ab ∈ [U ] for some (finite of infinite) b.

CLAIM 5.4. Let U ⊆ [0, 1]k and p(n) be as above. The limit lims→∞ p(Ls) exists;
furthermore, if p(n) > 0 for some n then the limit is positive.

Proof. If σ n x∗ /∈ [U ] for every n, then clearly lim p(n)= 0. Therefore, we must check
only the case when σ n x∗ ∈ [U ] for some n. Note that in this case, p(m) > 0 for all m ≥ n.
We prove first that p(Lr ) converges at r→∞, and then the general claim.

For a word a, let I (a) be the number of indices 0≤ n < `(a) such that σ na ∈ [U ]. If
we let am be the front m-segment of x∗, we have

I (am)

m
≤ p(m)≤

I (am)+ k

m

(the right inequality is because of edge effects; it is possible for σ na /∈ [U ] but σ n x∗ ∈ [U ]
if `(a)− k < n < `(a)). In particular, for any r we have

I (xr )

Lr
≤ p(Lr )≤

I (xr )+ k

Lr
. (5.2)

If p(Lr ) > 0, then also p(Lr+1) > 0, and xr+1 contains at least Mr copies of xr . Thus,
if we assume that Ms ≥ 2s for every s, we may fix r such that I (xs)≥ 2s for every s ≥ r .

For an s as above, write
xs+1 = xs xs · · · xs ys

as in the construction of xs+1, with the xs’s repeating Ms times. We can write I (xs+1)=

I1 + I2, where

I1 = #{0≤ n < Ms Ls : σ
n xs+1 ∈ [U ]},

I2 = #{Ms Ls ≤ n < Ls+1 : σ
n xs+1 ∈ [U ]}.

We have
Ms · I (xs)≤ I1 ≤ Ms · (I (xs)+ k),
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since we may gain at most Msk occurrences at the edges of the xs’s but we cannot lose
occurrences. Also, we have the trivial bound I2 ≤ `(ys). Therefore,

Ms I (xs)≤ I (xs+1)≤ Ms(I (xs)+ k)+ `(ys)

and, substituting this and Ls+1 = Ms Ls + `(ys) into inequality (5.2), we get

Ms · I (xs)

Ms Ls + `(ys)
≤ p(Ls+1)≤

Ms · I (xs)+ `(ys)+ (Ms + 1)k
Ms Ls + `(ys)

.

Dividing the middle term by p(Ls) and using (5.2) again, we get

1
1+ k/I (xs)

·
1

1+ `(y)/Ms Ls
≤

p(Ls+1)

p(Ls)
≤

1+ k/I (xs)+ (`(y)+ k)/Ms I (xs)

1+ `(y)/Ms Ls
.

We saw above that k/I (xs) is exponentially small in s. Thus, if {Mn} grows quickly
enough, both the expression on the left, which we denote αs , and the expression on the
right, which we denote βs , converge to 1 rapidly enough for their product to converge
to a finite positive number. Now the relation αs ≤ p(Ls+1)/p(Ls)≤ βs and the fact that
0<

∏
∞

r αs,
∏
∞

r βs <∞ imply that p(Ls) converges to a positive limit as s→∞. 2

CLAIM 5.5. For U and p(n) as above, limn→∞ p(n) exists and is positive if p(n) > 0 for
some n.

Proof. Let p = lim p(Ls), the limit of p(n) along the subsequence Ls . To show that
p(n)→ p, we show that if Ls ≤ n < Ls+1, then p(n)/p(Ls−1) is close to 1, in a manner
depending on s and tending to 1 with s. To see this, recall that

xs+1 = (xs xs · · · xs)ys

= ((xs−1 · · · xs−1 ys−1) · · · (xs−1 · · · xs−1 ys−1))ys .

Write an for the front n-segment of xs+1. Then there is a unique way to write an as

an = (xs · · · xs)(xs−1 · · · xs−1)w

with w a front segment of either xs−1, ys−1 or ys .
For n ≥ Ls , the number of xs’s appearing is at least 1. Now consider two alternatives: if

w is a front segment of either xs−1 or ys−1, then `(w) is negligible compared to `(an)

because `(an)≥ `(xs)≥ Ms−1`(xs−1) and Ms−1 has been chosen large. On the other
hand, if w = ys , then all Ms repetitions of xs appear in an , and again we have that `(w) is
negligible compared to `(an).

An estimate like the one carried out for p(Ls) shows that we can ignore edge effects
and write p(n) as some weighted average of p(Ls) and p(Ls−1). But we know already
that p(Ls)/p(Ls−1)→ 1, so p(n)≈ p(Ls−1)→ p. 2

5.6. The only ergodic measures on X are µ and the point mass δ0. A-priori the measure
µ for which x∗ is generic need not be ergodic. Rather than prove directly that µ is ergodic,
we will show that if ν is any ergodic measure on (X, σ ), then ν is a convex combination of
µ and δ0. This implies that µ is an extreme point of the convex set of invariant measures
on X , so it is ergodic and is the only ergodic measure on X other than δ0.
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THEOREM 5.6. The only ergodic measures for (X, σ ) are µ and δ0.

Proof. Using Lemma 5.3, we can select a sequence r(n)→∞ and write

x∗ = b1,nb2,nb3,n · · ·

such that each bi,n is either equal to xr(n) or has the property that `(bi,n)≥ 3Lr(n) and all
but the final 2Lr(n) coordinates are <1/n.

If ν is an ergodic measure for (X, σ ), then for some sequence with m(n)− k(n)→∞
we have

ν = lim
n→∞

1
m(n)− k(n)+ 1

m(n)∑
i=k(n)

δσ i x∗

(this follows from the fact that by the ergodic theorem ν has generic points, and these can
be approximated arbitrarily well by shifts σ i (x∗) of x∗). By passing to subsequences, we
can assume that m(n)− k(n) > 2Lr(n) ; denote wn = x∗|[k(n),m(n)] so that `(wn) > 2Lr(n) .
Write λn for the total number of indices i = 1, . . . , `(wn) such that i is in a word b j,n with
b j,n = xr(n). We may further assume, by passing to a subsequence, that λn→ λ ∈ [0, 1].

Now we can write wn = b′bi(n),n · · · b j (n),nb′′ for some i(n) < j (n) and b′, b′′ as short
as possible. Notice that if bi(n)−1,n or b j (n)+1,n are xr(n), then their lengths, respectively,
are negligible (logarithmic) compared to `(wn), and so also are the lengths of b′, b′′,
respectively. On the other hand, if bi(n)−1,n is not xr(n) and if the length of b′ is more
than (1/n)`(wn), then that word is made up almost entirely of coordinates of magnitude
less than 1/n. Similar reasoning holds for b′′. It is now simple to verify the following.
• If λ= 0, then for large n most of wn is made up of coordinates of magnitude <1/n,

so in this case we have ν = δ0.
• If λ= 1, then for large n the distribution of words of length

√
Lr(n) in wn is very

close to their distribution in xr(n), and since r(n)→∞ we have ν = µ in this case.
• Finally, for 0< λ < 1 the same reasoning as above shows that

ν = λµ+ (1− λ)δ0

(note that because the lengths of the bi,n tend to infinity with n, the statistics of
subwords of wn of length

√
Lr(n) are only very slightly affected by the places where

two bi,n’s meet. Since we assumed that ν is ergodic, this is impossible.
Thus, ν = δ0 or ν = µ. Since µ 6= δ0, this implies that µ is ergodic. This completes the
proof. 2

5.7. Further comments. This example is optimal in the following sense. Any minimal
system (X, T ) has the property that on some dense Gδ subset of X the preimage of any
point is a single point. Thus, there are no minimal extremely non-invertible systems. Thus,
if we want an extremely non-invertible system supporting a global ergodic measure, we
cannot hope for a uniquely ergodic example. The example we have given is the next
best thing: it has only two invariant measures and a unique minimal subsystem, the fixed
point 0.

The construction can be modified in several ways. For instance, one can guarantee that
the preimage set of every point is large: by augmenting the two functions θ0, θ1 at each
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stage of the construction with other functions, it is not hard to make the preimage set of
every point of cardinality 2ℵ0 . By modifying θ0, θ1 in a more complex way, one can replace
the minimal subsystem {0} with other systems.

Using the last modification, one can establish Example 1.7 by taking the product of the
resulting system with the one-sided two-shift {0, 1}N, and the product (Bernoulli) measure.
This yields a system with infinitely many preimages for every point, no small preimages,
and a globally supported ergodic measure of entropy log 2. In this example, there are
many other invariant measures; by a more careful choice of the system we multiply with,
for example, a minimal, uniquely ergodic subshift with a weakly mixing invariant measure
of entropy log 2, this can be avoided.

Finally, in the construction we defined words wb,k = τb(wk), where b varies over all
0, 1-valued sequences of a fixed length. By varying this length in a ‘random’ way, the
measure µ can be made to be weakly mixing, and perhaps even strongly mixing.
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