
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Lester M, Guerrero M, Burge J
(2020). Using evolutionary algorithms to select
text features for mining design rationale.
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 34, 132–146.
https://doi.org/10.1017/S0890060420000037

Received: 30 January 2019
Revised: 23 October 2019
Accepted: 30 October 2019
First published online: 30 January 2020

Key words:
Ant colony optimization; design rationale;
feature selection; genetic algorithms; text
mining

Author for correspondence: Janet Burge,
E-mail: jburge@coloradocollege.edu

© Cambridge University Press 2020

Using evolutionary algorithms to select text
features for mining design rationale

Miriam Lester1, Miguel Guerrero2 and Janet Burge2

1Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, USA and 2Department
of Mathematics and Computer Science, Colorado College, Colorado Springs, CO, USA

Abstract

At its heart, design is a decision-making process. These decisions, and the reasons for making
them, comprise the design rationale (DR) for the designed artifact. If available, DR provides a
comprehensive record of the reasoning behind the decisions made during the design.
Unfortunately, while this information is potentially quite valuable, it is usually not explicitly
captured. Instead, it is often buried in other design and development artifacts. In this paper,
we study how to identify rationale from text documents, specifically software bug reports and
design discussion transcripts. The method we examined is statistical text mining where a
model is built to use document features to classify sentences. Choosing which features are
most likely to be good predictors is important. We studied two evolutionary algorithms to
optimize feature selection – ant colony optimization and genetic algorithms. We found that
for many types of rationale, models built with an optimized feature set outperformed those
built using all the document features.

Introduction

Designers make many decisions throughout the design process. These decisions, and the rea-
sons behind them, form the design rationale (DR) for the system or artifact created. DR
includes potentially useful information such as the alternative designs considered, reasons
for and against these alternatives, questions raised during the process and the procedure fol-
lowed to answer them, and the final decision made. This information has many potential uses.
For example, understanding past decisions can help predict the results of new decisions in sim-
ilar situations (Brazier et al., 1997). The rationale provides a record of what the original
designers of a system intended, which helps new designers joining the team remain consistent
with that intent. The rationale can also be used to improve design processes (King and
Bañares-Alcántara, 1997) and support design reuse (de Medeiros and Schwabe, 2008). If the
rationale was available, designers and re-designers would be able to take this information
into account when revising earlier decisions or making new ones.

There are many possible uses of DR, but it is often not captured explicitly because of per-
ceptions that it is expensive and time-intensive (Burge and Brown, 2004). It is often captured
implicitly, however, and potential sources include e-mail discussions between design contribu-
tors, transcripts of design discussions, project specifications, and domain-specific documents,
such as software bug reports. DR could be manually extracted from these text documents, but
this task is considered tedious and time-consuming. A preferable approach would be to have
automated extraction tools to identify and extract the DR from existing documents. The
extracted rationale could then be structured and formatted as needed, a process called “incre-
mental formalization” (Shipman and McCall, 1994).

We have been investigating techniques for mining rationale from text documents using text
mining techniques to classify sentences as rationale. These techniques use features found in the
documents being classified as an input into machine learning classifiers to build models that
can be used to classify additional data. Document features that can be used include
parts-of-speech (verbs, nouns, adverbs, etc.), word combinations (n-grams), sentence length,
and domain-specific terminology. Finding good feature sets for text mining is a critical part
of this process. The feature sets available for text mining are numerous, and it is difficult to
determine which ones will have the most predictive power. While it is sometimes possible
to use all of the features when text mining, this can cause problems when irrelevant features,
features that do not relate to whether a sentence contains rationale or not, are used and less,
then optimal results are returned. Using all of the features is also very expensive when consid-
ering the time and space requirements of a text mining algorithm.

Feature sets can be selected using statistical techniques (such as chi-squared, document fre-
quency, mutual information, and term strength) (Aghdam et al., 2009). Alternative approaches
use nature-inspired algorithms such as ant colony optimization (ACO) and genetic algorithms
(GAs). These algorithms perform a broader search of the feature space by introducing

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060420000037
mailto:jburge@coloradocollege.edu
https://orcid.org/0000-0003-0842-4185
https://doi.org/10.1017/S0890060420000037


randomness along with the knowledge from previous iterations to
search for more optimal feature sets (Aghdam et al., 2009).

In the work described in this paper, we decided to compare
two different evolutionary algorithms – ACO (Dorigo, 1992)
and GAs (Holland, 1975/1992). ACO simulates the process that
ants take to find food sources, while GAs mimic the process of
natural selection by representing solutions as chromosomes and
evolving them over multiple generations (iterations).

This work addresses the following research questions:

1. Does using evolutionary algorithms for feature selection
improve performance when identifying rationale compared
to building classifiers without feature selection?

2. How does the classification performance of the ACO selected
feature set compare to the GA selected feature set?

We measure performance using the F-1 measure, the harmo-
nic mean of the precision and recall. The F-1 measure takes
into account false positives and false negatives. This makes it a
better representation of how successful a classifier is than measur-
ing accuracy, which can give misleading results if a dataset is
imbalanced (Skiena, 2017). For example, if 10% of the instances
belong to the target category and all instances are given a negative
classification, then the accuracy would be 90% even though none
of the target instances were found.

The remainder of the paper is structured as follows: The
“Related research” section describes related work in feature set
selection and rationale extraction. The “Approach for mining
rationale” section describes our approach which includes how
we prepared our training data, a description of the “pipeline”
we used to integrate evolutionary algorithms for feature selection
with a classifier to extract rationale, our approach to using ACO
for feature selection, and how we used a GA for feature selection.
The “Results” section gives the results of our experiments, and the
“Conclusions and future work” section summarizes our results
and plans for future work.

Related research

DR is an active area of research in many domains, including
Human–Computer Interaction (Moran and Carroll, 1996),
Software Engineering (Dutoit et al., 2006; Burge et al., 2008),
and Engineering Design (Chung and Bañares-Alcántara, 1997;
Lee, 1997; Burge and Bracewell, 2008). Here, we are focusing on
work in two areas: feature set selection and rationale extraction.

Feature set selection

Text mining models work on looking for patterns of text features
(specific words, parts-of-speech, etc.) that indicate if the rationale
is present. Features that are irrelevant (those without any correla-
tion to the classification goals) can confuse classifiers that will try
to fit to them and lead to sub-optimal performance then if only a
subset of the features were used. Feature selection refers to the
process of choosing which features are most likely to be predictive.

Many variations of ACO algorithms are having success over
nonevolutionary methods when applied to feature selection for
classification problems. Al-Ani (2005) used ACO to select feature
sets for speech segment and image texture classification. He com-
pared results using ACO with results from a GA. ACO slightly
outperformed the GA with a classification accuracy of 0.842 ver-
sus the GA accuracy of 0.835. We cannot compare these results to

ours since we chose to use the F-1 measure rather than accuracy
since accuracy can produce misleading results in imbalanced
datasets.

Aghdam et al. (2009) used the ACO algorithm to reduce the
dimensionality of the search space for a text categorization prob-
lem. They compared the performance of their ACO-based
approach to GA, chi-squared (CHI), and information gain (IG),
on the Reuters-21578 benchmark dataset. In the experiments,
ACO outperformed all other methods. They calculated a
Macro-F1 score (an F-1 measure that calculates a score for multi-
class classification by equally weighting all classes). Their experi-
ments resulted in Macro-F1 scores of 0.784 with ACO, 0.763 with
GA, 0.709 with CHI, and 0.698 with IG. They also calculated
Micro-F1 scores (a measure that gives the highest weights to
more common classes) of 0.891 with ACO, 0.864 with GA,
0.822 with CHI, and 0.809 with IG.

Saraç and Özel (2014) used the ACO for web page classifica-
tion. They worked with a very high-dimensional feature space
that consisted of pairs of “tagged terms” (e.g., <url><term>).
For each of the five datasets examined, they achieved better
F-measures by using ACO selected features. The ACO had an
average F-measure of 0.952, compared to 0.684 without feature
selection. They also implemented ACO with an ant feature subset
construction method that reduced unnecessary computation by
choosing features in groups rather than individually. We inte-
grated this approach into our ACO as well.

GAs are also used in feature selection. Ozyurt (2012) used a
GA-based feature selection technique to classify biomedical litera-
ture. Mukherjee et al. (2010) used a GA to select optimal features
for classifying e-mails. They form chromosomes from topics in the
document and select the “parents” for the next generation by ran-
domly choosing half of the chromosomes with the highest fitness.

Hybrid algorithms capture the best features of multiple algo-
rithms. Zaiyadi and Baharudin (2010) performed feature subset
selection by hybridizing ACO with IG. They used this technique
to reduce the dimensionality of feature space for text document
categorization by using IG as the heuristic desirability measure
for each ant. Ali and Shahzad (2012) combined ACO with sym-
metric uncertainty (SU) (a variation of IG). In the ACO-SU algo-
rithm, the fitness is calculated by weighting the length of the
chosen subset and the sum of the SU for all the features chosen
in the subset. We have inspired these two methods and used
the IG statistic of chi-squared as our measure of a heuristic value.

Some hybrid algorithms combine GAs and ACO algorithms.
Basiri and Nemati (2009) did this by having ants select a popula-
tion and then applying selection, mutation, and crossover. They
then exchanged poor performing individuals with better ones
found by the GA. This hybrid algorithm performed better ACO
alone. Roeva et al. (2013) combined ACO and GAs by using
ACO to generate an initial population for the GA, so the GA
could start with a population that was nearer to an optimal solu-
tion than one selected randomly. This allowed them to reduce
computational time by using smaller populations.

Jiang et al. (2009) hybridized the GA with a taboo search algo-
rithm for feature subset selection for text categorization. They
incorporated the taboo search’s memory function into the GA’s
evolution-based search.

Rationale extraction

Liang et al.’s work (2012) extracted DR from patent documents.
They used a three-tiered model to capture issues, design solutions,

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 133

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


and artifacts. They started by identifying artifacts using a modi-
fied PageRank (Brin and Page, 1998) algorithm on frequently
appearing words. Issue summarization was then done by using
issue language patterns in the manifold ranking. The final step
identified reason sentences and paired them with the remaining
solution sentences to create reason-solution pairs. This was
done using reason language patterns. They achieved a 0.185
F-measure for artifact identification, a 0.520 F-measure for issue
summarization, and a 0.562 F-measure for reason-solution
extraction.

López et al. (2012) worked on recovering DR from existing
software documents, as well as representing the rationale and
integrating the rationale with a software tool. They use ontology-
based extraction of software design rationale, where the ontologies
relate concepts of software architectures and thesauri of relevant
terms. They used documents for designs of a security clearing sys-
tem to evaluate their tool and achieved an F-measure of 0.5 for
recovering rationale, beating the F-measure for manual recovery
of 0.42 and taking less time.

Mao et al. (2014) looked for argument rationale in the
Wikipedia article for deletion discussion forums. Their main
goal was to identify direct imperative arguments. They achieved
an F-measure of 0.7874 on the Wikipedia data.

Kurtanovic and Maalej (2018) used Amazon reviews of soft-
ware products as a source of user rationale. They trained their
classifiers on a set of influential terms, review metadata, and a
syntax tree of the review text. They were looking for five categories
of rationale: issues, describing problems with the software; alter-
natives, which could refer to alternative software products, alter-
native versions of the software, alternative features of a different
type of software, and other types of alternatives; criteria, which
include usability, reliability, performance, supportability, and
other criteria; decisions, which include acquiring software, relin-
quishing software, switching software, and other decisions; and
justifications, which are sentences that justify other sentences
that contain purpose clauses, reason clauses, and independent
clauses. They evaluated seven different classification algorithms.
The algorithms, features, and preprocessing step combinations
were combined randomly, and they evaluated between 10,109
and 17,457 different configurations. The evaluation was done
using cross-validation rather than holding out data for testing.
They were able to get F-1 measures of 0.77 for issues, 0.82 for
alternatives, 0.77 for criteria, 0.83 for decisions, and 0.74 for
justifications.

Alkadhi et al. (2018) used machine learning techniques to clas-
sify Internet Relay Chat (IRC) messages into those with rationale
and those without. They achieved an F-1 measure of 0.61 for clas-
sifying messages with rationale at the message level. This was
done using 3-fold cross-validation where each fold consisted of
messages from a different project. The classifier with the best
results was multinomial Naïve Bayes.

Rogers et al. (2012) experimented with using two feature
sources – ontologies (vocabularies of potential arguments and
domain terminologies) and a small set of linguistic features
(modal auxiliaries, adverbial clauses, and projective clauses).
They used these features with a large number of different classi-
fiers to identify DR in Chrome bug reports. The best F-1 measure
achieved with ontologies was 0.597 for binary classification (ratio-
nale/not rationale). This small set of linguistic features resulted in
an F-1 measure of 0.336. Expanding to a larger set of linguistic
features and a more rigorously annotated dataset produced better
results; improving the F-1 measure to 0.676 for binary

classification and 0.569 for the argumentation subset (binary clas-
sification of rationale excluding the questions, answers, and pro-
cedures that commonly occurred along with boilerplate text
making them easier to identify) (Rogers et al., 2014). Our earlier
work using GAs and WEKA (Waikato Environment for
Knowledge Analysis) for feature selection and classification
(Rogers et al., 2016) resulted in F-1 measures of 0.576 for the
argumentation subset of the Chrome bug reports (using 10-fold
cross-validation). This was not the same implementation of the
GA described in this paper and used fewer document features.

McCall (2018) also extracted the rationale from design discus-
sions. This was done by building an Argumentative Semantic
Grammar, ASGARD (Argumentative, Semantic Grammar for
Analysis of Rationale for Design). This grammar contained
rules for parsing text and forming it into a version of the PHI
(Procedural Hierarchy of Issues) schema (McCall, 1991). This
grammar was customized for the particular design transcript, so
more testing is needed to see how it generalizes to other
documents.

A final set of papers refers to arguments in legal texts, which
tend to have a higher density of rationale [about 50% for legal
texts (Palau and Moens, 2009) compared to 11% for bug reports
(Rogers et al., 2014)]. Prakken et al. (2003) explored the formali-
zation of rationale arguments in legal texts, using common legal
argumentation structures as a base. Moens et al. (2007) explored
the automatic extraction of rationale arguments from legal texts,
experimenting with a number of different feature sets. They
found that the best performing feature sets were unigrams,
bigrams, word couples, and combinations including the three,
with F-measures ranging from 0.704 to 0.738. Palau and Moens
(2009) built on the previous rationale argumentation work by
adding a context-free grammar to automatically structure argu-
mentation text, obtaining around 60% accuracy.

Approach for mining rationale

DR could appear in a variety of different types of text documents.
Some are domain neutral, such as meeting transcripts, meeting
minutes, e-mail messages, discussion boards, and design docu-
mentation. Others are more domain-specific, such as the bug
reports used in software development projects. Our eventual
goal would be to take a potentially large number of documents
and extract the rationale, so it would be available to engineers
to assist with making and revising decisions.

We followed a text mining process that used a set of data
labeled as rationale to train a classifier that could then be used
to classify additional data. The following sections describe how
we prepared our training data, a description of our general pipe-
line used to build the classifiers, and then the two specific feature
selection algorithms used in this work.

Training data

We annotated documents with rationale using GATE (General
Architecture for Text Engineering) (Cunningham et al., 2011)
with by having two researchers annotate and a third researcher
adjudicate using a process described in Rogers et al. (2014). We
also used GATE to automatically annotate the parts-of-speech
from the Penn Treebank (Marcus et al., 1993) and custom features
specific to this project: ontology terms (Burge, 2005; Rogers et al.,
2012), sentence length (Rogers et al., 2014), and acronyms
(Mathur, 2015).

134 Miriam Lester et al.

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


The experiments described here worked with two different
datasets. The first consisted of bug reports for the Chrome web
browser that were provided for the Mining Software
Repositories Mining Challenge (http://2011.msrconf.org/msr-
challenge.html). We selected 200 bug reports from this repository.
Our second dataset consisted of transcribed design discussions
that took place during the Studying Professional Software
Designer (SPSD) project. These two datasets provide two different
views of rationale sources in the category of design communica-
tion (Shipman and McCall, 1997) where one is asynchronous
(bug reports) and the other synchronous (discussion transcripts).
The bug reports are a type of document specific to a domain (soft-
ware engineering), while design discussion transcripts are more
domain neutral, although these specific transcripts involved dis-
cussions between software developers.

The data wasannotated looking for specific types of rationale
[adapted from Burge and Brown (2003)]:

• Requirements – statements referring to functionality that the
software was required to have;

• Decisions – statements that indicated what issue had to be
resolved;

• Alternatives – different options for resolving the issue described
by a decision;

• Arguments – reasons for or against an alternative;
• Assumptions – claims made where the author indicated
uncertainty;

• Questions – questions posed that indicate where more informa-
tion is needed to make a decision;

• Procedures – description of actions needed to gain information
required to answer a question or make a decision;

• Answers – answers to questions posed in the rationale.

A sentence can be classified as more than one type of rationale.
Figure 1 shows some example annotations inside GATE, the

tool that was used to annotate the documents. This example
shows a selection from the SPSD dataset.

The experiments described in this paper were designed to look
for five different classification targets:

• Binary rationale – a sentence was either rationale (any one of
the above types) or nonrationale.

• Argumentation subset – a sentence was either argumentation (a
requirement, decision, alternative, argument, or assumption) or
not.

• Decisions – a sentence was a decision or not.
• Alternative – a sentence was an alternative or not.
• Arguments-all – a sentence was a requirement, argument, or
assumption or not.

The argumentation subset classification was used to compare
results that included questions, procedures, and answers to
those that did not. Questions, procedures, and answers frequently
appeared in the boilerplate, common text at the start of each bug

Fig. 1. Annotated document in GATE.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 135

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

http://2011.msrconf.org/msr-challenge.html
http://2011.msrconf.org/msr-challenge.html
http://2011.msrconf.org/msr-challenge.html
https://doi.org/10.1017/S0890060420000037


report. This made them easier to classify than the argumentation.
The arguments-all classification was used because determining if
an argument referred to a requirement, assumption, or something
else was subjective. What might be a requirement for the author of
a bug report (for example) might not actually be a requirement
for the system being described.

Pipeline for text processing and model building

For our earlier work (Rogers et al., 2016), we built the
GATE_WEKA pipeline, which started with exported GATE
XML files and automatically ran WEKA tests as specified by
the user. This has a number of limitations, not the least of
which were feature set size limitations imposed by WEKA. For
this work, we built a new pipeline that was no longer
GA-specific, so we could use the same pipeline for both the
ACO and GA-based subset selection algorithms.

Figure 2 shows the pipeline for building classifiers. The follow-
ing paragraphs describe each major component.

Sentence parser
The input to the pipeline is a file (sentences.csv) that contains the
features extracted from each sentence along with its rationale
annotations. The sentence parser uses the sentence.csv file to cre-
ate a sentence dictionary data structure for each sentence (Fig. 2).
The dictionary structure organizes all the features where each
(key, value) pair holding information about an individual feature
category. The key is the ID of the feature category, and the value is
the set of all feature instances of that feature category for that sen-
tence. With a dictionary structure, each category can be accessed
in constant time, allowing the feature set to be created from a sim-
ple union of instances from each category in the chosen subset of
categories. In addition to discrete feature types, such as verbs and
adverbs, we also used n-grams of words and feature types (as
shown in Fig. 3). We captured features from adjacent sentences
since context is likely to be important in identifying rationale.

We split the data into training (70%) and test (30%) sets, being
careful to not have sentences in the same bug report or transcript
appear in training and test. The corresponding entries from the
sentence dictionary are written into either the Training
Sentences File or the Test Sentences File.

Feature subset selection
This component is implemented using either the ACO or GA, as
described in “ACO for feature selection” and ”GAs for feature
selection” sections. The common aspects to these algorithms are
that they iteratively search for a feature subset, train a classifier
using those features, and then use the results of the training to
choose features for the next iteration. This is done using the
Training Sentences File.

Classifier building and evaluation
The optimized feature sets are used to train an NLTK Naïve Bayes
classifier using 10-fold cross-validation. After training, we test the
classification model using the training set (the 30% of the sen-
tences pulled out before training).

We performed a number of preliminary experiments using dif-
ferent classifiers to select the one to use in our approach. Many
did not successfully complete training on our data. Of those
that did, the NLTK Naïve Bayes classifier achieved the best F-1
measure.

ACO for feature selection

In 1990, Deneubourg et al. (1990) showed that foraging ants find
the shortest path between their nest and a food source by using
pheromone trails. Ants lay down pheromone trails as they forage
for food and these are reinforced as they travel to and from food
sources. Dorigo (1992) showed that computer simulation of an
ant colony can model this process; a method known as the
ACO metaheuristic. Many different variations of the ACO were
developed, including a version of the ACO for subset problems
(Leguizamon and Michalewicz, 1999). We applied ACO to our
feature subset selection problem by having each ant construct a
subset of features where pheromone trails are applied feature

Fig. 2. Pipeline for classifier building (Lester and Burge, 2018).

Fig. 3. Sentence dictionary representation.

136 Miriam Lester et al.

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


components instead of connections between components using
some measure of heuristic desirability of each feature.

Feature subset problems can be considered combinatorial opti-
mization problems. To do this, we map the combinatorial optimi-
zation problem to a problem characterized by a finite set C = {c1,
c2, …, cn} of components, where n is the number of components.
Artificial ants perform randomized walks on a completely con-
nected graph Gc = (C, L) whose nodes are the components C,
and the set L fully connects the components of C. The graph
Gc is called a construction graph, and the elements of L are called
connections (Dorigo and Stützle, 2004). These walks form the
solutions. Artificial ants construct solutions, constrained so that
components are only added to the current solution if the resulting
solution is feasible (Dorigo and Stützle, 2004). Each component
ci∈C is associated with a pheromone trail τi and a heuristic
value ηi. Each ant updates the pheromones, which constitute a
global, long-term memory of good solutions found throughout
the search procedure. Pheromone trails evaporate over time to
avoid converging to sub-optimal local extrema. We also use a
heuristic value which captures information about the problem
obtained from a source other than the ants (such as the cost of
adding a component to the solution).

Simulated ants move by applying a probabilistic transition
rule, which is a function of the locally available pheromone trails,
problem constraints, and heuristic values. After a solution has
been built, the pheromone levels of the components along their
path are updated based on solution quality. Quality (fitness) is
evaluated using the Naïve Bayes algorithm. Dorigo explains his
algorithm by saying, “It is important to note that ants act concur-
rently and independently and that although each ant is complex
enough to find a (probably poor) solution to the problem
under consideration, good-quality solutions can only emerge as
the result of the collective interactions among the ants” (Dorigo
and Stützle, 2004).

ACO is traditionally applied to ordering problems such as the
traveling salesperson problem, where the goal is to find the short-
est path that visits all the cities (Dorigo and Stützle, 1999). The
ACO can also be used to solve subset problems (Leguizamon
and Michalewicz, 1999). In our problem, we are looking for sub-
sets of features. This means that nodes in the graph represent fea-
tures and the solution is the set of features chosen by the ant.
Solutions are constructed by applying a probabilistic transition
rule were ants add available features to their current subset until
meeting a stopping criteria. Pheromone trails are associated
with components (features), not connections.

ACO has been applied to many different types of subset prob-
lems (Dorigo and Stützle, 2010), including the Multiple Knapsack
problem (Leguizamon and Michalewicz, 1999), Set Covering
problem (Lessing et al., 2004), and Maximum Clique problem
(Solnon and Fenet, 2006). ACO has been further extended to a
wide range of machine learning problems, including learning
the structure of a Bayesian network (de Campos et al., 2002)
and learning rules in a Fuzzy system (Casillas et al., 2000).

Implementing the ACO requires defining the following critical
components (Dorigo et al., 1996; Aghdam et al., 2009; Basiri and
Nemati, 2009; Kanan et al., 2007):

1) Graphical representation of the problem: A fully connected
graph with nodes and edges between nodes representing the
discrete search space of the problem (Basiri and Nemati,
2009). It must be able to represent a solution to the problem.

For our problem, each node is a feature category and traversing
connections means selecting the category.

2) Feasible solution construction constraint: A mechanism to
make sure only feasible solutions are built (Basiri and
Nemati, 2009). In our case, we stop after a pre-specified num-
ber of nodes has been chosen, with each one chosen by satis-
fying the probabilistic transition rule.

3) Heuristic desirability: A “measure of goodness” (Kanan et al.,
2007) of adding any component to a partially constructed
solution. Because this is a subset problem, the heuristic
value is associated with a feature instead of the edge between
two features (Leguizamon and Michalewicz, 1999). We defined
local importance (LI) as the heuristic measure and calculated
LI as the highest chi-squared statistic of all terms in a feature
category.

4) Pheromone update rule: A rule for updating pheromone levels
– a strategy for increasing pheromone concentration for pre-
viously successful solutions, and an evaporation rule to glob-
ally decrease pheromone levels over time (Kanan et al.,
2007) This constitutes the autocatalytic feedback process.
Because this is a subset problem, the pheromone value is asso-
ciated with a feature rather than the edge between two features.
The pheromone update rule for an ant is shown below, where
pheromone of feature i is being updated from Ti � T ′

i , with ρ
representing the pheromone evaporation rate. Our ACO
implementation follows the standard method of selecting the
k best ants (those whose solutions had the highest fitness)
and updating the paths they took (Kanan et al., 2007), to rein-
force the success of these best paths.

For each feature fi, the new pheromone level for an ant in
the set of k best ants is given as follows:

DTi = fitness(ant)− worstfitness
max
j=1:k

(fitness(j)− worstfitness)
,

T ′
i = (1− r)∗ Ti + DTi,

where ρ is the evaporation rate.
We chose 20 as the number k, 0.1 as the pheromone eva-

poration rate (ρ), and our fitness function used the NLTK
Naïve Bayes classifier.

5) Probabilistic transition rule: A solution construction rule that
computes the probability of an ant next moving to a new
node in the graph (Basiri and Nemati, 2009). In our imple-
mentation, each ant chooses p features that maximize updated
selection measurement (USM).

USM
sj
i =

(Ti)h(LIsji )
k

∑
g�Sj (Tg)h(LISjg )

k if i � Sj

0 otherwise

.

⎧⎪⎨
⎪⎩

The USM of feature i with respect to Sj (the subset of ant j): Ti

is the pheromone level of feature fi; η is the relative weight of pher-
omone intensity; LIi is the local importance of feature fi; and κ is
the relative weight of local importance.

We chose 1 as the initial pheromone level (Ti), and 1 and 2 as
the relative weights of pheromone intensity (η) and local impor-
tance (κ), respectively. These were determined experimentally to

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 137

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


decrease the speed of convergence, so ants did not get stuck in
poor local optima.

Figure 4 shows the diagram of our ACO implementation;
based on an algorithm outlined by Al-Ani (2005). We chose
100 as the number of ants (NA) and 40 as the number of itera-
tions. When selecting each ant’s features for the next iteration,
we chose three-fourths from the features used in the 20 best
ants, and the remaining one-fourth from features currently not
assigned to the ant that maximize the update selection rule
(USM). Most of the ACO parameters were chosen to be consistent
with parameters used by the GA (100 ants to be similar to 100
chromosomes, 40 iterations for each algorithm, 20 best ants to
be similar to the feature subset size used in the GA).

GAs for feature selection

The GA (Holland, 1975/1992) is a method inspired by natural
selection that uses a population of candidate solutions (chromo-
somes) that are evolved over a number of generations (iterations).
During each iteration, their fitness is evaluated, and the successful
solutions are combined and/or mutated to create new solutions.
This repeats until a stopping criteria is met, and the best solutions
are returned as potentially optimal solutions (Martin-Bautista and
Vila, 1999). The GA can be applied to the feature selection prob-
lem by having chromosomes represent candidate subsets of fea-
tures and using the F-measure of classifying sentences with
only features from the selected subset as a measure of fitness.

In a successful run of a GA, the population of chromosomes
converges so that each individual has a very similar genotype,
and the chosen chromosome is a near-optimal solution to the
central optimization problem (Anderson and Ferris, 1994). GAs
are superior to traditional search methods in that they explore
more solutions to the optimization problem in parallel, and there-
fore are less likely to become trapped in local sub-optimal areas of
the search space (Atkinson-Abutridy et al., 2004).

A GA implementation must define the following components:

1) Chromosome representation: Chromosomes represent poten-
tial solutions to the optimization problem, and each gene
represents one feature category. These chromosomes contain
a fixed length list of feature categories that represent a candi-
date feature subset. If a feature category is included as a gene in
a chromosome, all instances of features in that category will be
considered relevant and included in the resultant classifier
(Martin-Bautista and Vila, 1999). Each chromosome repre-
sents an unordered set of feature categories; therefore, the
order of the genes does not matter. The initial population of
chromosomes has randomly selected features and is evolved
using selection, crossover, and mutation.

Figure 5 shows an example chromosome with the feature
categories. Some categories include n-grams (denoted by (n)
prefix) and instances from adjacent sentences (denoted by
{m} prefix).

2) Fitness function: The fitness function is used to evaluate how
good each solution (chromosome) is. We used the NLTK
Naïve Bayes classifier and computed the F-measure.

3) Selection process: A process for choosing which chromosomes
are used to create new solutions. Parent chromosomes with the
highest fitness (for our case, the average Naïve Bayes
F-measure over 10-fold cross-validation) are chosen to “repro-
duce” in every next generation (Goldberg, 1989). This is an
example of truncated selection (Mukherjee et al., 2010),

where only the top chromosomes can be selected for
reproduction.

4) Crossover and mutation algorithms: The algorithms that decide
how to create the next generation of solutions. Crossover
(depicted in Fig. 6) is performed by randomly selecting two
different parents from the pool of chromosomes chosen to
repopulate the next generation. Then, half of the categories
from each parent are randomly selected and combined into
a new set representing the “child” chromosome with any

Fig. 4. ACO flow chart (Lester and Burge, 2018).

138 Miriam Lester et al.

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


duplicate categories removed. If duplicate features are
removed, we randomly add features from the set of all features
until the pre-determined chromosome length has been
reached. We use this method because the feature order is
not relevant (Dorigo and Stützle, 2004). Also, if the parents
contain too many duplicate features, that indicates that the
solutions are converging and no longer evolving, so adding
randomly selected features introduces more variation to con-
tinue searching the feature space. The mutation was performed
by first determining if mutation should occur (with a mutation
rate of 10%) and then randomly choosing one feature in the
chromosome to be replaced with a randomly selected feature
not already in the chromosome.

Figure 7 shows the diagram of the GA feature subset selection
algorithm run for the experiments. For our experiments, we used
40 iterations (I ), a population size of 100 (P), a feature subset size
of 20 (L), a mutation rate of 10%, and a retention rate of 20%.

Results

For this paper, we performed experiment trials on different ratio-
nale categories with the two feature selection algorithms. The GA
and ACO introduce randomness into the process, so different
trials resulted in different classification results. The results
reported are the best of the trials for each experiment, based on
predictive ability assessed by classifying hold-out test data
(Kohavi and John, 1997). The standard deviation of the trial
results is also given.

We ran baseline experiments using all feature categories, so we
could compare those results with those using feature selection. We
calculated the inter-annotator agreement by comparing annota-
tions of two researchers. This measure represents an estimate of
F-measure achievable manually. Any overlapping annotations
were considered a match (Rogers et al., 2014). We used the
F-measure instead of the Cohen’s kappa because it was better sui-
ted for analyzing text with overlapping annotations (Hripcsak and
Rothschild, 2005).

Fig. 5. Chromosome structure.

Fig. 6. Crossover example.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 139

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


Each experiment outputs the best feature subset at each itera-
tion along with their F-measure for training and test. Training
scores are the result of 10-fold cross-validation over the training
sentences with the Naïve Bayes classifier, using the subset of fea-
tures generated at the final iteration of feature selection.
Validation scores are based on training a Naïve Bayes classifier
with the training sentences, and evaluating this classifier over all
the test sentences – still using just the subset of features chosen
at the final iteration of the feature selection algorithm.

Dataset 1: Chrome bug reports

Binary rationale and alternatives had higher F-1 measure valida-
tion scores from the model generated with the ACO than with the
GA. All the rest had higher F-1 measure validation scores from
the model generated with GA than with ACO. Every rationale
subclass had higher validation scores from the model generated
with feature selection than with using all features. In the tables
below, the highest validation score is bolded, to indicate the
best model created. For the features identified by the ACO, the
largest difference between the training and validation results
was 0.098, with an average difference of 0.052. For the features
identified by the GA, the largest difference was 0.215 (for
arguments-all), with an average difference of 0.079. Using all fea-
tures had the largest difference of 0.099 and an average difference
of 0.049 (Tables 1–5).

Dataset 2: studying professional software designers

Binary rationale, the argumentation subset, and alternatives had a
higher validation F-measure from the model generated with the
ACO than with the GA. The rest had a higher validation
F-measure from the model generated with the GA than with
the ACO. For binary rationale, alternatives, and decisions, using
all features gave a better validation F-measure than either the
GA or ACO. In the tables below, the highest validation score is
bolded, to indicate the most representative model created. For
the features identified by the ACO, the largest difference between
the training and validation results was 0.258, with an average dif-
ference of 0.163. For the features identified by the GA, the largest
difference was 0.224 (for arguments-all), with an average differ-
ence of 0.158. Using all features had the largest difference of
0.091 and an average difference of 0.018 (Tables 6–10).

Conclusions and future work

The results given above evaluated the rationale identified using
the machine learning models against the annotated documents
used as test and training data. We would like to add another
level of verification by looking at correctly and incorrectly classi-
fied sentences manually. This is still in progress since it requires
re-building the documents (pre-processing converts them into
collections of features, so they are no longer human-readable)
and importing them into a tool that can be used by humans.

The results presented here show that rationale identification is
a challenging task, even for humans. In some cases, our models
did better than the humans, as shown by the examples where it
did better than the inter-annotator agreement.

In our study, we answered two research questions:

1. Does using evolutionary algorithms for feature selection
improve performance when identifying rationale compared

to building classifiers without feature selection?
For the larger bug report dataset, the validation F-measures

were higher with feature selection than without. Results were
less clear for the smaller SPSD dataset. Thus, the hypothesis
that there are irrelevant, redundant features that hurt classifica-
tion is supported for the bug report data but not necessarily for
the smaller dataset. Further, we achieved a better F-measure for
most inter-annotator agreement F-measures. The exceptions
were BR-Decision, BR-Alternative, and SPSD-Decision. For
BR-Arguments-all, the ACO was within 0.001 of the AI. This
suggests that automatic identification may be as effective as
manual identification for the broader categories of rationale.

We noticed that in some experiments, the validation score
was higher than the training score. This may be because of

Fig. 7. Genetic algorithm process.

140 Miriam Lester et al.

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


Table 1. Binary rationale (all rationale subclasses)

Precision Recall F-measure Standard deviation

ACO

Training 0.943 0.712 0.808 0.00068

Validation 0.950 0.065 0.772 0.000513

GA

Training 0.939 0.723 0.813 0.00079

Validation 0.656 0.936 0.771 0.00095

All features

Training 0.979 0.635 0.766

Validation 0.992 0.578 0.730

Inter-annotator agreement 0.752

The percentage of sentences with this classification: 17.4%.

Table 2. Argumentation subset (alternative, argument, assumption, decision, and requirement)

Precision Recall F-measure Standard deviation

ACO

Training 0.828 0.494 0.614 0.00237

Validation 0.834 0.381 0.523 0.00909

GA

Training 0.851 0.507 0.631 0.00445

Validation 0.859 0.387 0.533 0.01090

All features

Training 0.981 0.375 0.540

Validation 0.990 0.291 0.450

Inter-annotator agreement 0.524

The percentage of sentences with this classification: 9.5%.

Table 3. Arguments-all (requirement, argument, and assumption)

Precision Recall F-measure Standard deviation

ACO

Training 0.750 0.366 0.484 0.00163

Validation 0.788 0.255 0.386 0.00449

GA

Training 0.749 0.378 0.497 0.00082

Validation 0.742 0.250 0.282 0.00590

All features

Training 0.981 0.212 0.346

Validation 0.992 0.141 0.247

Inter-annotator agreement 0.261

The percentage of sentences with this classification: 5%.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 141

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


Table 4. Alternative

Precision Recall F-measure Standard deviation

ACO

Training 0.572 0.205 0.296 0.00113

Validation 0.661 0.181 0.285 0.01018

GA

Training 0.447 0.242 0.304 0.00122

Validation 0.683 0.176 0.306 0.01126

All features

Training 0.969 0.090 0.164

Validation 0.993 0.075 0.139

Inter-annotator agreement 0.332

The percentage of sentences with this classification: 2.7%.

Table 5. Decision

Precision Recall F-measure Standard deviation

ACO

Training 0.465 0.338 0.374 0.00064

Validation 0.479 0.341 0.399 0.00531

GA

Training 0.462 0.374 0.397 0.00074

Validation 0.479 0.352 0.406 0.00289

All features

Training 0.991 0.083 0.153

Validation 0.993 0.865 0.159

Inter-annotator agreement 0.554

The percentage of sentences with this classification: 2.5%.

Table 6. Binary rationale (all rationale subclasses)

Precision Recall F-measure Standard deviation

ACO

Training 0.947 0.679 0.785 0.00036

Validation 0.970 0.539 0.692 0.00405

GA

Training 0.951 0.697 0.799 0.00210

Validation 0.932 0.540 0.684 0.00722

All features

Training 0.797 0.608 0.682

Validation 0.875 0.587 0.703

Inter-annotator agreement 0.622

The percentage of sentences with this classification: 53.5%.

142 Miriam Lester et al.

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


the number of sentences used to train each model. The training
models use 10-fold cross-validation of training sentences,
meaning each model is trained with 9/10 of 70% of the sen-
tences – 63% of the sentences. The models used to evaluate

the test scores are trained with all of the training sentences –
or 70% of the sentences. This may be why the test scores some-
times surpass the training scores since the model learns over
more total instances. This is one possible explanation, but it

Table 7. Argumentation subset (alternative, argument, assumption, decision, and requirement)

Precision Recall F-measure Standard deviation

ACO

Training 0.951 0.665 0.778 0.00179

Validation 0.926 0.517 0.664 0.00932

GA

Training 0.947 0.687 0.791 0.00183

Validation 0.909 0.512 0.655 0.06581

All features

Training 0.831 0.591 0.682

Validation 0.872 0.531 0.660

Inter-annotator agreement 0.606

The percentage of sentences with this classification: 50.8%.

Table 8. Arguments-all (requirement, argument, and assumption)

Precision Recall F-measure Standard deviation

ACO

Training 0.485 0.533 0.469 0.02320

Validation 0.386 0.145 0.211 0.02257

GA

Training 0.563 0.427 0.461 0.00833

Validation 0.523 0.153 0.237 0.01726

All features

Training 0.627 0.201 0.297

Validation 0.727 0.119 0.200

Inter-annotator agreement 0.205

The percentage of sentences with this classification: 11.2%.

Table 9. Alternative

Precision Recall F-measure Standard deviation

ACO

Training 0.908 0.502 0.639 0.00364

Validation 0.787 0.342 0.477 0.02893

GA

Training 0.869 0.555 0.669 0.00621

Validation 0.651 0.268 0.470 0.00684

All features

Training 0.921 0.411 0.562

Validation 0.863 0.334 0.482

Inter-annotator agreement 0.391

The percentage of sentences with this classification: 32.1%.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 143

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


is also possible that some of the faults lies in the random split
of the training and test sentences.

2. How does the classification performance of the ACO selected
feature set compare to the GA selected feature set?

In “Dataset 1: Chrome bug reports” and “Dataset 2: study-
ing professional software designers” sections, we compared the
results of the ACO and GA experiments for both datasets. For
the BR dataset: binary rationale and arguments-all had higher
validation F-measures from the model generated with the ACO
than with the GA. For the SPSD dataset: the argumentation
subset and alternatives had higher validation F-measure from
the model generated with the ACO than with the GA. Thus,
for 6 out of 10 different experiments, the GA outperformed
the ACO. The results from the ACO and GA were generally
very close. For the BR dataset, the average difference in valida-
tion F-measure was 0.035. For the SPSD dataset, the average
difference in validation F-measure was 0.014.

Since the ACO performed comparably to the GA, and took half
the time on average to run on the large BR dataset, the ACO
may be preferable to the GA if training time is a concern. For
the larger bug report dataset, the F-measure with feature selection
was higher than without feature selection; however, this was only
the case with some of the rationale categories for the smaller
SPSD dataset.

As mentioned above, we are currently in the process of study-
ing the misclassified sentences to see if there might be features in
common that we should be adding to our feature sets that might
help us improve performance. We are examining both the false
negatives and false positives. Another way to evaluate our work
would be to have domain experts look at the classified rationale
to see if what we did capture, although not complete, might still
be sufficient to help a developer. For the broader rationale cate-
gories, the precision was better than the recall – is some rationale
better than none? Other interesting experiments that could be
performed include looking at how features interact and a sensitiv-
ity analysis to determine if some features are more important than
others.

A potential future extension of this work is integrating auto-
matic design rationale capture algorithms into a tool for software
engineers. We are working on importing the classification results
into a rationale structuring and presentation tool, C_SEURAT
(Collaborative Software Engineering Using Rationale) and will

use this to study if partially captured rationale is easier to work
with than starting with documents where no rationale is
indicated.

Acknowledgements. We thank Miami University graduate students
Michelle Flowers, John Malloy, Tanmay Mathur, and Benjamin Rogers and
undergraduate students James Gung, and Yechen Qiao for their assistance
in annotating the data used in these experiments and Wesleyan student
Connor Justice for creating the sentences.csv file. Miriam Lester was supported
by a fellowship from the American Association of University Women
(AAUW). The SPSD data was produced in design sessions funded by the
National Science Foundation (NSF) (award CCF-0845840). We thank the
workshop organizers, André van der Hoek, Marian Petre, and Alex Baker
for granting access to the transcripts. The data annotation work was supported
by NSF CAREER Award CCF-0844638 (Burge). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

References

Aghdam MH, Ghasem-Aghaee N and Basiri ME (2009) Text feature selec-
tion using ant colony optimization. Expert Systems with Applications 36,
6843–6853.

Al-Ani A (2005) Feature subset selection using ant colony optimization.
International Journal of Computational Intelligence 2, 53–58.

Ali SI and Shahzad W (2012) A feature subset selection method based on
symmetric uncertainty and ant colony optimization. International
Conference on Emerging Technologies. New York, NY: IEEE, pp. 1–6.

Alkadhi R, Nonnenmacher M, Guzman E and Bruegge B (2018) How do
developers discuss rationale? International Conference on Software
Analysis, Evolution and Reengineering, Campobasso, Italy, March 20–
23, pp. 357–369.

Anderson EJ and Ferris MC (1994) Genetic algorithms for combinatorial
optimization: the assemble line balancing problem. ORSA Journal on
Computing 6, 161–173.

Atkinson-Abutridy J, Mellish C and Aitken S (2004) Combining information
extraction with genetic algorithms for text mining. IEEE Intelligent Systems
19, 22–30.

Basiri ME and Nemati S (2009) A novel hybrid ACO-GA algorithm for text
feature selection. IEEE Congress on Evolutionary Computation. New York,
NY: IEEE, pp. 2561–2568.

Brazier FMT, van Langen PHG and Treur J (1997) A compositional
approach to modelling design rationale. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 11, 125–139.

Brin S and Page L (1998) The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems 30, 107–117.

Table 10. Decision

Precision Recall F-measure Standard deviation

ACO

Training 0.461 0.288 0.342 0.00676

Validation 0.277 0.220 0.245 0.02843

GA

Training 0.549 0.288 0.368 0.00050

Validation 0.308 0.228 0.261 0.02367

All features

Training 0.847 0.112 0.195

Validation 0.892 0.155 0.264

Inter-annotator agreement 0.262

The percentage of sentences with this classification: 9.8%.

144 Miriam Lester et al.

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


Burge JE (2005) Software Engineering Using Design RATionale (Dissertation).
Worcester, Massachusetts: Worcester Polytechnic Institute.

Burge J and Bracewell R (2008) Special issue: design rationale. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 22, 309–
310.

Burge JE and Brown DC (2003) Rationale support for maintenance of large
scale systems. Workshop on Evolution of Large-Scale Industrial Software
Applications (ELISA), ICSM’03, Amsterdam, Netherlands.

Burge JE and Brown DC (2004) An integrated approach for software design
checking using design rationale. In Gero JS (ed), Design Computing and
Cognition ’04. Dordrecht: Springer Netherlands, pp. 557–575.

Burge J, Carroll JM, McCall R and Mistrik I (2008) Rationale-Based Software
Engineering. Heidelberg: Springer.

Casillas J, Cordón O and Herrera F (2000) Learning fuzzy rules using ant col-
ony optimization algorithms. Proc. 2nd International Workshop on Ant
Algorithms, Brussels, Belgium, September 8–9, pp. 13–21.

Chung PWH and Bañares-Alcántara R (Guest Eds) (1997) Special issue on
representation and use of design rationale. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 11, 89–167.

Cunningham H, Maynard D and Bontcheva K (2011) Text processing with
GATE (Version 6). University of Sheffield Department of Computer
Science. 15 April 2011. ISBN 0956599311.

de Campos LM, Fernández-Luna JM, Gámez JA and Puerta JM (2002) Ant
colony optimization for learning Bayesian networks. International Journal
of Approximate Reasoning 31, 291–311.

de Medeiros AP and Schwabe D (2008) Kuaba approach: integrating formal
semantics and design rationale representation to support design reuse.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing
22, 399–419.

Deneubourg J-L, Aron S, Goss S and Pasteels JM (1990) The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Behavior 3, 159–168.

Dorigo M (1992) Optimization, Learning and Natural Algorithms (PhD
Thesis). Politecnico di Milano, Italy.

Dorigo M and Stützle T (1999) ACO algorithms for the traveling salesman
problem. In Evolutionary Algorithms in Engineering and Computer
Science: Recent Advances in Genetic Algorithms, Evolution Strategies,
Evolutionary Programming, Genetic Programming and Industrial
Applications. Chichester: John Wiley & Sons.

Dorigo M and Stützle T (2004) Ant Colony Optimization. Cambridge, MA:
MIT Press.

Dorigo M and Stützle T (2010) Ant colony optimization: overview and recent
advances. In Gendreau M and Yves Potvin J (eds), Handbook of
Metaheuristics. Boston, MA: Springer, pp. 227–263.

Dorigo M, Maniezzo V and Colorni A (1996) Ant system: optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 26, 29–41.

Dutoit A, McCall R, Mistrik I and Paech B (2006) Rationale Management in
Software Engineering. Berlin: Springer-Verlag.

Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: AddisonWesley.

Holland JH (1975/1992) Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA: MIT Press.

Hripcsak G and Rothschild A (2005) Agreement, the F-Measure, and reliabil-
ity in information retrieval. Journal of the American Medical Informatics
Association 12, 296–298.

Jiang P-p, Liu P, Zhu Z and Zhao L (2009) Optimization of text feature sub-
sets based on GATS algorithm. IEEE International Symposium on IT in
Medicine & Education. New York, NY: IEEE, pp. 924–927.

Kanan HR, Faez K and Hosseinzadeh M (2007) Face recognition system
using ant colony optimization-based selected features. IEEE Symposium
on Computational Intelligence in Security and Defense Applications,
Honolulu, HI, pp. 57–62.

King JMP and Bañares-Alcántara R (1997) Extending the scope and use of
design rationale records. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 11, 155–167.

Kohavi R and John GH (1997) Wrappers for feature subset selection.
Artificial Intelligence 97, 273–324.

Kurtanovic Z and Maalej W (2018) On user rationale in software engineering.
Requirements Engineering 23, 357–379.

Lee J (1997) Design rationale systems: understanding the issues. IEEE Expert
12, 78–85.

Leguizamon G and Michalewicz Z (1999) A new version of ant system for
subset problems. Proceedings of the 1999 Congress on Evolutionary
Computation, Vol. 2. IEEE, pp. 1459–1464.

Lessing L, Dumitrescu I and Stützle T (2004) A comparison between ACO
algorithms for the set covering problem. International Workshop on Ant
Colony Optimization and Swarm Intelligence. Berlin, Heidelberg: Springer.

Lester M and Burge J (2018) Identifying design rationale using ant colony
optimization. Proc. of the International Conference on Design, Computing,
and Cognition, Lake Cuomo, Italy, pp. 581–600.

Liang Y, Liu Y, Kwong C and Lee W (2012) Learning the ‘Whys’: discovering
design rationale using text mining – an algorithm perspective.
Computer-Aided Design 44, 916–930.

López C, Codocedo V, Astudillo H and Cysneiros LM (2012) Bridging the
gap between software architecture rationale formalisms and actual architec-
ture documents: an ontology-driven approach. Science of Computer
Programming 77, 66–80.

Mao F, Mercer RE and Xiao L (2014) Extracting Imperatives from Wikipedia
Article for Deletion Discussions. Proceedings of the first workshop on
Argumentation Mining, Baltimore, Maryland, ACL, p. 106.

Marcus MP, Marcinkiewicz MA and Santorini B (1993) Building a large
annotated corpus of English: the Penn Treebank. Computational
Linguistics 19, 313–330.

Martin-Bautista MJ and Vila M-A (1999) A survey of genetic feature selec-
tion in mining issues. Proceedings of the 1999 Congress on Evolutionary
Computation, CEC 99, Vol. 2. New York, NY: IEEE, pp. 1314–1321.

Mathur T (2015) Improving Classification Results Using Class Imbalance
Solutions & Evaluating the Generalizability of Rationale Extraction
Techniques (Master’s Thesis). Miami University.

McCall R (1991) PHI: a conceptual foundation for design hypermedia. Design
Studies 12, 30–41.

McCall R (2018) Using argumentative, semantic grammar for capture of
design rationale. Proceedings of the International Conference on Design
Computing and Cognition ’18, Lecco Italy, 2–4 July 2018, pp. 571–580.

Moens M-F, Boiy E, Palau RM and Reed C (2007) Automatic detection of
arguments in legal texts. Proceedings of the 11th International Conference
on Artificial Intelligence and Law. New York, NY: ACM, pp. 98–107.

Moran T and Carroll J (Eds) (1996) Design Rationale Concepts, Techniques,
and Use. Mahwah, NJ: Lawrence Erlbaum Associates.

Mukherjee I, AL-Fayoumi M, Mahanti PK, Jha R and Al-Bidewi I (2010)
Content analysis based on text mining using genetic algorithm. 2nd
International Conference on Computer Technology and Development.
New York, NY: IEEE, pp. 432–436.

Ozyurt IB (2012) Automatic identification and classification of noun argu-
ment structures in biomedical literature. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 9, 1639–1648.

Palau M and Moens M (2009) Argumentation mining: the detection, classifi-
cation and structure of arguments in text. Proc. of the 12th International
Conference on Artificial Intelligence and Law (ICAIL ’09),Barcelona,
Spain, June 8–12, 2009, pp. 98–107.

Prakken H, Reed C and Walton D (2003) Argumentation schemes and gen-
eralisations in reasoning about evidence. In Proceedings of the 9th interna-
tional conference on Artificial intelligence and law (ICAIL ’03). Association
for Computing Machinery, New York, NY, USA, pp. 32–41.

Roeva O, Fidanova S and Atanassova V (2013) Hybrid ACO-GA for parameter
identification of an E. coli cultivation process model. International Conference
on Large-Scale Scientific Computing. Berlin, Heidelberg: Springer.

Rogers B, Gung J, Qiao Y and Burge J (2012) Exploring techniques for ratio-
nale extraction from existing documents. New Ideas and Emerging Results
Track, International Conference on Software Engineering, Zurich,
Switzerland, June 2012.

Rogers B, Qiao Y, Gung J, Mathur T and Burge J (2014) Using text mining
techniques to extract rationale from existing documentation. International
Conference on Design Computing and Cognition, London, UK 23–25
June, pp. 457–474.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 145

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037


Rogers B, Justice C, Mathur T and Burge JE (2016) Generalizability of docu-
ment features for identifying rationale. Design Computing and Cognition
’16. Berlin, Heidelberg: Springer, pp. 633–651.

Saraç E and Özel SA (2014) An ant colony optimization based feature
selection for web page classification. The Scientific World Journal
2014, 16.

Shipman F and McCall R (1994) Supporting knowledge-base evolution
with incremental formalization. Proc. CHI’94, Boston, Massachusetts,
April 24–28, pp. 285–291.

Shipman F and McCall R (1997) Integrating different perspectives on design
rationale: Supporting the emergence of design rationale from design com-
munication. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 11, 141–154.

Skiena S (2017) The Data Science Design Manual. Berlin, Heidelberg:
Springer.

Solnon C and Fenet S (2006) A study of ACO capabilities for solving the max-
imum clique problem. Journal of Heuristics 12, 155–180.

Zaiyadi M and Baharudin B (2010) A proposed hybrid approach for feature
selection in text document categorization. World Academy of Science,
Engineering and Technology 48, 111–116.

Miriam Lester is currently working as a Software Engineer at YouTube. She
received her MA in Computer Science at Wesleyan University, with support
from the AAUW Selected Professions Fellowship. Her research focused on
machine learning and natural language processing.

Miguel Guerrero is an undergraduate student at Colorado College. Miguel’s
interests include the role of software in ideation, turning natural language
into formal logic, algorithmic art, and game design.

Janet E. Burge is an Associate Professor in the Colorado College Department
of Mathematics and Computer Science. Dr. Burge’s major research interests
are in Software Engineering and Artificial Intelligence. Her primary research
area is in Design Rationale, with a focus on Design Rationale for Software
Maintenance. Dr. Burge is a co-author of the book Rationale-Based
Software Engineering. She has worked in industry as a researcher and soft-
ware developer for over 20 years. She received her PhD and MS in
Computer Science from WPI, and her BS in Computer Science from
Michigan Technological University.

146 Miriam Lester et al.

https://doi.org/10.1017/S0890060420000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000037

	Using evolutionary algorithms to select text features for mining design rationale
	Introduction
	Related research
	Feature set selection
	Rationale extraction

	Approach for mining rationale
	Training data
	Pipeline for text processing and model building
	Sentence parser
	Feature subset selection
	Classifier building and evaluation

	ACO for feature selection
	GAs for feature selection

	Results
	Dataset 1: Chrome bug reports
	Dataset 2: studying professional software designers

	Conclusions and future work
	Acknowledgements
	References


