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We present a detailed theoretical study which demonstrates that electrokinetic effects
can also play a role in the motion of metallic-insulator spherical Janus particles.
Essential to our analysis is the identification of the fact that the reaction rates depend
on Pt-coating thickness and that the thickness of coating varies from pole to equator
of the coated hemisphere. We find that their motion is due to a combination of
neutral and ionic-diffusiophoretic as well as electrophoretic effects whose interplay
can be changed by varying the ionic properties of the fluid. This has great potential
significance for optimizing performance of designed synthetic swimmers.
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1. Introduction

In recent years there has been a flurry of activity in developing micro- and
nanoscale self-propelling devices that are engineered to produce enhanced motion
within a fluid environment (Kapral 2013). They are of interest for a number of
reasons, including the potential to perform transport tasks (Patra et al. 2013) and
exhibit new emergent phenomena (Volpe et al. 2011; Theurkauff et al. 2012; Bricard
et al. 2013; Kümmel et al. 2013; Marchetti et al. 2013; Palacci et al. 2013). A variety
of subtly different methods, all based on the catalytic decomposition of dissolved
fuel molecules, have been shown to produce autonomous motion or swimming.
Commonly studied systems are catalytic bimetallic rod-shaped devices (Kline et al.
2005b) and metallic-insulator spherical Janus particles that are half-coated with
catalyst (e.g. platinum) for a non-equilibrium reaction (e.g. the decomposition of
hydrogen peroxide) (Howse et al. 2007) (see figure 1a). The propulsion mechanism
is thought to be phoretic in nature (Anderson 1989; Golestanian, Liverpool & Ajdari
2007), but many specific details, such as which type of phoretic mechanism drive
propulsion, remain the subject of debate (Golestanian et al. 2007; Gibbs & Zhao
2009; Brady 2011; Moran & Posner 2011). A fundamental understanding of the
mechanisms is key for developing the knowledge of how to use and control them
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Platinum cap

Thin coating: slow reaction

Thick coating: fast reaction Polystyrene-core

U

FIGURE 1. Cross-section of a schematic swimmer showing the variation of the thickness
of the Pt-coating, the directions of the currents and swimming direction.

in applications and how to build up a picture of the collective behaviour through
implementation of realistic interactions between catalytic colloids.

For bimetallic swimmers, a plausible proposal is that the two metallic segments,
usually platinum and gold, electrochemically reduce the dissolved fuel in a process
that results in electron transfer across the rod (Paxton, Sen & Mallouk 2005; Kagan
et al. 2009). This, together with proton movement in the solution (Farniya et al.
2013) and the interaction between the resulting self-generated electric field and the
charge density on the rod, produces (self-electrophoretic) motion (Moran & Posner
2011). The direction of travel and swimming speed for arbitrary pairs of metals
are well understood in the context of this mechanism (Wang et al. 2006), as well
as the link between fuel concentration and velocity (Sabass & Seifert 2012). For
Pt-insulator Janus particles, the absence of conduction between the two hemispheres
suggests a mechanism independent of electrokinetics. Hence, a natural first proposal
is that a self-generated gradient of product and reactants can lead to motion via
self-diffusiophoresis (Golestanian, Liverpool & Ajdari 2005), provided the colloid is
sufficiently small (Gibbs & Zhao 2009). A number of predictions have been made
based on this mechanism (Golestanian et al. 2005; Rückner & Kapral 2007; Popescu,
Dietrich & Oshanin 2009; Sabass & Seifert 2010; Valadares et al. 2010; Brady 2011;
Sharifi-Mood, Koplik & Maldarelli 2013) which have to date shown good agreement
with the experimental dependency of swimming velocity on the size of the colloid
(Ebbens et al. 2012) and fuel concentration (Howse et al. 2007). It would thus appear
that a key difference between the bimetallic and metallic-insulator Janus particles is
that the motility in the latter system does not require conduction or electrostatic
effects. However recent experiments have raised the possibility that this assumption
might not be completely correct (Brown & Poon 2014; Ebbens et al. 2014; Das et al.
2015).

Here we present a detailed theoretical study which demonstrates however that
electrokinetic effects (Pagonabarraga, Rotenberg & Frenkel 2010) can also play a
role in the motion of metallic-insulator spherical Janus particles expanding on our
previous analyses briefly presented in Ebbens et al. (2014). We find that their motion
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is due to a combination of neutral and ionic-diffusiophoretic as well as electrophoretic
effects whose interplay can be changed by varying the ionic properties of the fluid
(see figure 8). This has great potential significance as the effect on the swimming
behaviour, of solution properties such as temperature (Balasubramanian et al. 2009),
contaminants (Zhao et al. 2013), pH and salt concentration are of critical importance
to potential applications (Patra et al. 2013).

We consider a Janus polystyrene (insulating) spherical colloid of radius a, half-
coated by a platinum (conducting) shell. It is known that such colloids are active
i.e. self-propel in hydrogen peroxide solution. This is due to gradients generated by
the asymmetric decomposition of H2O2 on the Pt-coating and the interaction of the
reactants and products with the sphere surface. In the rest of the paper we will call
this process self-phoresis.

Generically, the catalytic decomposition of the hydrogen peroxide by the platinum
catalyst is given by

Pt+ 2H2O2→ Intermediate-complexes → Pt+ 2H2O+O2, (1.1)

however there is still some debate about the nature of the intermediate complexes Hall,
Khudaish & Hart (1998, 1999a,b), Katsounaros et al. (2012).

In this article, we outline a detailed calculation of the self-phoresis problem. Our
approach is guided by the well-studied problem of a phoretic motion of a colloid
in an externally applied concentration gradient or electric field. To model the effect
of the non-equilibrium chemical reaction sketched above on the motion of the Janus
particle, we study the concentration fields of all the species involved in the reaction.
The half-coating of the colloid by catalyst is reflected by inhomogeneous reactive
boundary conditions on its surface. The reaction involves the production of charged
intermediates which can also lead to changes in the electric potential on the swimmer
surface and hence the possibility of local electric fields. Our flexible calculation
framework allows us to study a variety of different schemes for the reaction kinetics
of the intermediate complexes. Using this we analyse in detail a scheme with both
charged and uncharged pathways (see appendix A) whose results are consistent with
all the behaviour observed in the recent experiments.

2. The model
A Janus sphere of radius a has the catalytic reaction of hydrogen peroxide

decomposition occurring on its Pt coated half. We choose, without loss of generality,
that the normal to the plane splitting the hemispheres is aligned with the z-axis (see
figure 2). We propose a theoretical framework based on generally accepted properties
of the reaction scheme for Pt catalysis of H2O2 degradation to water and O2 (Hall
et al. 1998, 1999a,b). A key feature of our analysis of self-propulsion is that it takes
account of the existence of charged intermediates within the catalytic reaction scheme,
namely protons and that the reaction rates varies with the Pt coating thickness (see
figure 1).

The state of the system is therefore described by the local state of the Pt on the
coated hemisphere, the electric potential, Φ̄(r̄), the fluid velocity, v̄(r̄), the local
concentrations, c̄hp(r̄), c̄o(r̄), c̄h(r̄) of H2O2, O2 and H+ respectively, i.e. the various
reactive species, and the local concentrations, c̄oh(r̄), c̄s(r̄) of hydroxide and salt
ions, respectively. The background concentrations (far from the Janus sphere) of
the salt, H2O2, H+ and OH− are c∞s , c∞hp, c∞h , c∞oh respectively. Positions outside the
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Matching region

FIGURE 2. (Colour online) Schematic platinum–polystyrene swimmer and the domain
decomposition of the phoretic problem.

Janus sphere (in the bulk) are represented by the vectors r̄ = (x̄, ȳ, z̄) (in Cartesian
coordinates) while positions on the surface are parametrized by the unit vectors
n̂= (sin θ cos φ, sin θ sin φ, cos θ). We note that the vector r̄= (r̄, θ, φ) and n̂= êr̄ in
spherical polar coordinates. Each of the neutral species interacts non-electrostatically
with the surface of the swimmer via a fixed short-ranged potential energy Ψ̄n(r̄), that
depends on the distance from the Janus sphere surface. The interaction range, Leff is
taken to be the same for all neutral species.

2.1. Equations of motion
The relevant equations are Nernst–Planck equations (Probstein 2003) for the
concentration of charged species, c̄q,

∂tc̄q =−∇̄ · J̄q; J̄q =−Dq∇̄c̄q + ūqc̄q; ūq = v̄ −
Dqzqe
kBT
∇̄Φ̄, (2.1a−c)

drift-diffusion equations (Chandrasekhar 1943) for the neutral species, c̄n,

∂tc̄n =−∇̄ · J̄n; J̄n =−Dn∇̄c̄n + ūnc̄n; ūn = v̄ −
Dn

kBT
∇̄Ψ̄n, (2.2a−c)

Poisson’s equation (Jackson 1975) for the electric potential

∇̄
2Φ̄ =−

∑
q

zqec̄q

ε
(2.3)

and the incompressible Navier–Stokes equations (Lamb 1932) for the fluid velocity

ρ(∂tv̄ + v̄ · ∇̄v̄)= η∇̄2v̄ − ∇̄p̄+ f̄ (r̄); ∇̄ · v̄ = 0,

f̄ (r̄)=
∑

q

Γqc̄q(ūq − v̄)+
∑

n

Γnc̄n (ūn − v̄) ; Γq =
kBT
Dq

, Γn =
kBT
Dn

,

 (2.4)

where p̄(r̄) is the hydrostatic pressure at r̄, η is the viscosity, kB Boltzmann constant
and T temperature, Di is the diffusion coefficient of ith solute and zi its valency if
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charged. These equations together with the inhomogeneous boundary conditions (BC)
on the surface of the Janus sphere and as r̄→∞ (see next section) define a boundary
value problem whose approximate solution is the subject of this paper.

We consider the system in the steady state (time derivatives equal to zero), the
dynamics of the fluid around the swimmer in the zero Reynolds number (Re= 0) limit
of the Navier–Stokes equations for incompressible fluid flow. In this paper we restrict
ourselves to zero Peclét number, equivalent to assuming that diffusion of the solutes
occurs much faster than their convection by the flows generated by the Janus particle
– very reasonable for the experimental systems we attempt to describe. Thus, the
fluid velocity given by v̄(r̄)= v̄rêr̄ + v̄θ êθ obeys the Stokes equation, while the solute
concentration fields c̄q, c̄n are governed by the steady-state drift-diffusion equations.

0= ∇̄ · v̄, (2.5)

0=∇ · Π̄ + f̄ = η∇̄2v̄ − ∇̄p̄−
∑

i∈ ions

ezic̄i∇̄Φ̄ −
∑

j∈ non-ions

c̄j∇̄Ψ̄j, (2.6)

0=−∇̄ · J̄q; J̄q =−Dq∇̄c̄q −
Dqzqec̄q

kBT
∇̄Φ̄; q ∈ ions, (2.7)

0=−∇̄ · J̄n; J̄n =−Dn∇̄c̄n −
Dnc̄n

kBT
∇̄Ψ̄n; n ∈ non-ions, (2.8)

where we have defined Π̄(r̄) = η(∇v + ∇vT) − pδ, the local hydrodynamic stress
tensor.

2.2. Boundary conditions
The hydroxide and the salt ions are not involved directly in the catalytic decomposition
of the fuel (1.1) so we impose zero flux boundary conditions for their concentrations
on the surface of the Janus particle,

n̂ · J̄oh|r̄=a = 0= n̂ · J̄s,±|r̄=a, (2.9)

where the unit vector, n̂ = (sin θ cos φ, sin θ sin φ, cos θ) = êr in spherical polar
coordinates. We define a catalyst coverage function, K(cos θ) which is 1 on the
platinum hemisphere and zero on the polystyrene hemisphere,

K(cos θ)=

{
1, 06 cos θ 6 1
0, −16 cos θ < 0.

(2.10)

The presence of protons as intermediates of the fuel decomposition reaction (1.1)
and the variation of the reaction rates across the Pt-coated hemisphere leads to non-
zero flux boundary conditions for the proton concentration on the surface of the Janus
sphere

n̂ · J̄h|r̄=a = J̄h(θ)K(cos θ), (2.11)

where the proton current, J̄h, varies with θ (position along the Pt-coated hemisphere).
The specific form of the proton current J̄h will depend on the details of the reaction
kinetics (see § 2.4 and appendix A). However, we note that J̄h> 0 implies a chemical
reaction producing protons while J̄h < 0 implies a proton sink.
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The fuel decomposition reaction involves the neutral species, H2O2 and O2 giving
rise to non-zero flux boundary conditions for their concentrations on the Janus particle
surface,

n̂ · J̄o|r̄=a = J̄o(θ)K(cos θ), (2.12)
n̂ · J̄hp|r̄=a = J̄hp(θ)K(cos θ), (2.13)

where J̄hp(θ) < 0 indicates H2O2 decomposition while J̄o(θ) > 0 indicates production
of the O2. Because of the variations in thickness of the Pt-coating, both J̄hp(θ), J̄o(θ),
defined in appendix A, are functions of position along the Pt-coated hemisphere.

All the concentrations, c̄i(r̄), decay to their background values, c̄∞i as r̄→∞.
We have Dirichlet boundary conditions for the electric potential on the particle

surface
Φ̄(r̄= a)= ϕ̄s(θ), (2.14)

where ϕ̄s is a possibly varying function over the swimmer surface. The potential,
ϕ̄s will in general be pH dependent and will also depend on the particular reaction
scheme of catalytic fuel decomposition. For our analysis, it is sufficient to know the
average value 〈ϕ̄s〉 = (1/2π)

∫
d cos θ ϕ̄s(θ) and in the following we take ϕ̄s ≡ 〈ϕ̄s〉.

The potential ϕ̄s can be related to the swimmer surface charge by double-layer models
(Russel, Saville & Schowalter 1992).

The boundary conditions for the fluid velocity field are

v̄|r̄=a = Ū+ Ω̄ × r̄; v̄(r̄→∞)= 0, (2.15a,b)

where Ū, Ω̄ are respectively the total linear and angular propulsion velocities of the
swimmer. These are unknown and their calculation is the goal of this paper.

2.3. Constraints
(Quasi-steady state condition) As we study the system in a quasi-steady state, this
requires that the average proton current on the swimmer surface vanishes,∮

r̄=a
J̄h(θ)K(cos θ) sin θ dθ = 0, (2.16)

and note that this also guarantees conservation of the surface charge (Moran & Posner
2011).
(Swimming conditions) We consider a freely swimming Janus particle with no external
load on the colloid which requires that there is zero total force and torque on the
swimmer:

F̄=
∮

r̄=a
Π̄ · n̂ dSp +

∫
f̄ dVp = 0, (2.17)

T̄=
∮

r̄=a
r̄×
(
Π̄ · n̂

)
dSp +

∫
r̄× f̄ dVp = 0, (2.18)

where dSp (dVp) is the differential surface (volume) element. These two conditions
uniquely determine both propulsion velocities (Ū, Ω̄) (Anderson 1989).

The linearity of the Stokes equation and the limit of vanishing Peclét number,
mean that we can divide the linear and angular velocities into non-electric, i.e.
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neutral diffusiophoretic, (due to the terms on the right-hand side of (2.6) depending
on the Ψ̄j), and electric, i.e. ionic-diffusiophoretic and electrophoretic, contributions
(due to the terms on the right-hand side of (2.6) depending on Φ̄), which can each
be calculated separately,

Ū= Ūe
+ Ūd

, (2.19)
Ω̄ = Ω̄e

+ Ω̄d, (2.20)

where (Ūe
, Ω̄e) are electric and (Ūd

, Ω̄d) are non-electric. We expect (and indeed find)
that the neutral-diffusiophoretic contribution to the propulsion is much smaller than the
electrophoretic contribution. While we will later briefly outline the calculation of the
neutral-diffusiophoretic contribution to the propulsion velocity in § 3.2, in this article
we will focus on the electrophoretic and ionic-diffusiophoretic contributions. Detailed
calculations of the neutral-diffusiophoretic contribution can be found in the literature
(Anderson, Lowell & Prieve 1982; Golestanian et al. 2005, 2007; Michelin & Lauga
2014).

Due to the axisymmetry of the swimmer and the constraint of zero torque (2.18),
the angular velocity (Ω̄) vanishes identically (Ω̄e

= 0, Ω̄d
= 0). Therefore in the

following we will only consider the swimmer velocity Ū.

2.4. Dependence of reaction rate constants on Pt-coating thickness
The cornerstone of our analysis in this paper is the identification of the fact that the
reaction rate of H2O2 decomposition depends on the Pt-coating thickness (Ebbens
et al. 2014). A further observation is the well-known presence of additional chemical
pathways in the decomposition which involve charged intermediates, in particular
protons, (Hall et al. 1998, 1999a,b). These charged intermediates, in conjunction with
the variation of Pt-coating thickness, allow an electric current to be established in
the Pt shell due to varying decomposition rates of the hydrogen peroxide on different
parts of the shell. We approximate for simplicity that this thickness variation is linear
in cos θ , with a peak at the pole and the minimum at the equator,

ki(θ)= k(0)i +
∑

l

k(l)i Pl (cos θ)' k(0)i + k(1)i cos θ, (2.21)

where ki(θ) is the reaction rate ‘constant’ for the ith reaction step in reaction (1.1)
above and Pn(x) is the Legendre polynomial of order n. The Legendre moments k(l)i =

(l+ 1/2)
∫ 1
−1 ki(θ)Pl(cos θ) d cos θ . We assume weak variation (k(1)i � k(0)i ) allowing us

to work perturbatively in the variation. As long as there is a competition between
a neutral pathway and a pathway involving charged intermediates, conservation of
charge in the steady state requires that the varying reaction rates across the Pt-coating
lead to establishment of electric currents in the Pt shell. This is described in detail for
a particular reaction scheme involving protons in appendix A, however the qualitative
features of our results do not depend on the details of the scheme.

3. Analysis
Guided by current experiments, we analyse the coupled problem of the

concentrations, electrostatic potential and fluid flow by considering situations in
which the length scale of the interactions (Debye screening length, κ−1 for charged
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species and effective interaction range Leff for the neutral species) is small compared
to the size (radius = a) of the swimmer. We verify a posteriori that this is indeed the
case. The effective diffusiophoretic interaction range Leff for all the neutral solutes
is defined as L2

eff = (η/kBT)µ̄‡
d, where µ̄‡

d = (kBT/η)
∫
∞

0 ρ(1 − e−Ψ̄ /kBT) dρ > 0 is the
characteristic diffusiophoretic mobility of the Janus particle. Hence the problem can
naturally be viewed as one with two very separate length scales with small parameters
λ = 1/(κa), χ = Leff /a for charged and neutral species respectively. A robust bound
for comparison with experiment would be λ6 0.1. A useful approach to multi-scale
problems with a small parameter multiplying the differential operator of highest order,
is the decomposition of the domain of the solution into a boundary layer, where the
fields vary on the small O(λ) length scale (O(χ) for the diffusiophoretic contribution)
and an outer domain where the characteristic length scale is the size of the swimmer
‘a’. To do this most efficiently, we group the dimensional quantities into useful
dimensionless groups whose variation determines the behaviour of the system.

3.1. Self-electrophoresis and ionic self-diffusiophoresis
In this section, we describe detailed calculations of the electrophoretic and ionic-
diffusiophoretic contributions to the swimming velocity which is the main focus of
the paper.

3.1.1. Dimensionless equations
We non-dimensionalize the equations as follows. The position vector r̄ is measured

in units of the swimmer size ‘a’, concentrations c̄i in units of the steady-state
background values c∞i , electric potential Φ̄ in terms of the thermal voltage (eβ)−1

(with β−1
= kBT , kB Boltzmann constant and T temperature), ionic solute fluxes, J̄q

in terms of Dq
∑

i |zi|
2c∞i /a, with Di the diffusion coefficient of ith solute and zi its

valency. The fluid flow velocity v̄ is rescaled by ε/(e2β2ηa), while the pressure p̄ is
rescaled by ε/(e2β2a2). Hence we express dimensionless quantities (without overbar)
in terms of the dimensional (with overbar): r = (x, y, z) = r̄/a, ci = c̄i/c∞i , Φ =
eβΦ̄, v = v̄e2β2ηa/ε, p= p̄e2β2a/ε.

It is useful for us to define the dimensionless deviations of the solute concentrations,
Ci(r)≡ ci(r)− 1= (c̄i/c∞i )− 1 from their bulk values. Hence we obtain the following
dimensionless equations of motion:

(i) The steady-state equations for concentration differences of the charged species;
protons Ch, hydroxide ions Coh and the salt Cs±,

∇ · Ji = 0; Ji =−∇Ci − zi(1+Ci)∇Φ, (3.1a,b)

where i ∈ {h, oh, s±}. We consider only monovalent salts |zi| = 1.
(ii) The dimensionless Poisson equation for the electric potential Φ(r),

−λ2
∇

2Φ =
∑

i∈{h,oh,s±}

ZiCi. (3.2)

(iii) The dimensionless Stokes equations for the fluid velocity v(r),

0=∇ · v, (3.3)

0=∇ ·Σ =∇2v −∇p− λ−2
∑

i∈ ions

ZiCi∇Φ, (3.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.502


326 Y. Ibrahim, R. Golestanian and T. B. Liverpool

where the dimensionless parameters λ and Zi are defined as

λ2
≡ (κa)−2

; κ−2
=

εkBT
e2
∑

j |zj|
2c∞j
=

1
4πlB

∑
j |zj|

2c∞j
; Zi =

zic∞i∑
j |zj|

2c∞j
, (3.5a−c)

where ε is the permittivity of the solvent and e is the electronic charge. κ−1 is the
Debye screening length and lB= e2/4πεkBT is the Bjerrum length (Russel et al. 1992).
We note that the stress Σ is the sum of the hydrodynamic stress tensor and the
Maxwell stress tensor due to the interactions of the charged species with each other
and the colloid surface.

The zero total force condition which determines the propulsion velocity Ue becomes

F=
∮

r=1
Σ · n̂ sin θ dθ = 0. (3.6)

3.1.2. Dimensionless boundary conditions
For the electric potential on the swimmer surface,

Φ(r= 1)= ϕs, (3.7)

and decays to zero in the bulk far from the swimmer, Φ(r→∞)= 0.
For the flow field on the swimmer surface,

v|r=1 =Ue, (3.8)

and v(r → ∞) = 0 far in the bulk, where Ue is the electric contribution to the
propulsion velocity.

For the hydroxide and the salt concentrations, the zero flux boundary conditions due
to the impermeability of the Janus particle surface,

n̂ · Joh|r=1 = 0= n̂ · Js,±|r=1. (3.9)

For the proton concentration, the non-zero flux boundary condition,

n̂ · Jh|r=1 =Jh(θ)K(cos θ). (3.10)

The essential mechanism which drives this process depends on the presence of a (i)
varying proton flux (as a result of variation of Pt thickness) which (ii) averages to
zero over the metallic hemisphere (due to charge conservation in the steady state). In
the limit of small linear variation in the thickness, this leads to a proton flux of the
general form

Jh(θ)= γ
(1) (1− 2 cos θ)K(cos θ)− γ (0)δ (Φ +Ch)K(cos θ), (3.11)

where both γ (i) 6= 0. We note that γ (1)= 0 for a uniform thickness coating and δ(Φ +
Ch)= [(Φ + Ch)−

∫ π

0 (Φ + Ch)K(cos θ) sin θ dθ ] is the deviation of the local electric
field and proton concentration from their surface average. γ (0) is a measure of the
scale of typical production and consumption of protons across the metallic hemisphere.
Since both terms on the right-hand side of (3.11) integrated over the surface give zero,
the flux, Jh automatically satisfies the steady-state requirement (2.16) and hence the
conservation of total charge on the swimmer surface.

Systems which possess both properties above, with both γ (i) > 0, will show all the
qualitative behaviours described in this article, however their values will depend on the
specific details of the chemical reaction scheme. A specific reaction scheme described
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in detail in appendix A gives:

γ (0) =
k(h)eff c∞hpa

Dh
∑

i c∞i
; γ (1) =

1k(h)eff c∞hpa

Dh
∑

i c∞i
, (3.12a,b)

where k(h)eff > 0 is the typical scale of the average proton consumption and production
while 1k(h)eff > 0 is the scale of the difference between the rates at the pole and equator
(see appendix A for their derivation from reaction kinetics).

We note that the conservation of protons also requires a relationship between the pH
of the solution and the potential on the surface of the Janus particle, which depends
on the reaction kinetics (see appendix A);

ϕs = ϕs(c∞h ), (3.13)

leading to an estimate of the average swimmer surface charge (σ0(c∞h )) using the
Gouy–Chapman model (Russel et al. 1992) of the interfacial double layer

σ0(c∞h )=
eκ

2πlB
sinh

(ϕs

2

)
, (3.14)

where lB = e2/4πεkBT is the Bjerrum length, with ε the solution permittivity.
In this electrostatic problem, the inner boundary layer (double layer) fields, H(r) ∈
{ci(r), v(r),Φ(r)} are expanded as

H(r, θ)=
∑

n

λnH(n) (ρ, θ); ρ =
r− 1
λ

, (3.15a,b)

while the outer fields, H(r) ∈ {ci(r), v(r),Φ(r)} are expanded as

H(r, θ)=H(0)(r, θ)+
∞∑

n=1

λnH(n)(r, θ), (3.16)

where r is the bulk-scale coordinate. Similar expansions will apply for the self-
diffusiophoretic problem, with λ replaced by χ .

The essence of the matched asymptotic method involves obtaining asymptotic
expansions of the solutions of the equations in the limit λ→0 for both the inner and
outer fields and matching the results in the intermediate region:

lim
λ→0;ρ→∞

{H(0)
i } (ρ, θ)= lim

r→1;λ→0
{H(0)

i }(r, θ)= {Hi}(1, θ). (3.17)

In the next section, we will proceed to solve the outer problem in the limit of λ =
(κa)−1

→ 0, i.e. thin double-layer limit where the swimmer radius a is much larger
than the Debye-layer thickness κ−1. The details of the inner (Debye-layer) calculations
(Prieve et al. 1984; Yariv 2011) can be found in the appendix B (see figure 3).

3.1.3. Outer concentration and electric fields
In the bulk, the fields vary over length scales comparable to the swimmer size, with

O(1) leading-order fields, and are expanded as

H(r, θ)=H(0)(r, θ)+ λH(1)(r, θ)+ · · · . (3.18)
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–3

0

3

0 2 4 6 8

FIGURE 3. (Colour online) Profiles of flow and electric field within the (inner) Debye
layer with C∗s = ∂C∗s /∂θ = ∂Φ/∂θ = 1 (see appendix B).

We drop the (0) superscript in the following as we will consider only the leading-order
terms C(0), Φ(0), v

(0)
i , p(0), in the expansions for the fields.

The leading-order solute concentrations and electric potential outside the Debye
layer obey the equations ∑

i∈{h,oh,s±}

ZiCi = 0, (3.19)

∇ · [∇Ci + zi(1+Ci)∇Φ]= 0, (3.20)

where Zi is defined in (3.5). It is useful for the rest of our analysis to treat all the
ionic solutes together. Combining the two equations (3.19) and (3.20), we obtain,

∇
2C∗ = 0, (3.21)

∇ · (C∗∇Φ)= 0, (3.22)

where we have defined the sum of the deviations of concentration of all of the ionic
solutes and its value at r= 1.

C∗(r, θ)= 2
∑

i∈{h,s+}

Zi (1+Ci(r, θ)); (3.23)

C∗s (θ)≡C∗(r= 1, θ). (3.24)

The boundary conditions for Φ and C∗ are obtained by matching to the inner solutions
(see appendix B), giving

−n̂ · ∇C∗|r=1 = γ
(1) (1− 2 cos θ)K(cos θ)− γ (0)δ(Φ +Ch)K(cos θ), (3.25)

−n̂ · (C∗∇Φ|r=1 = γ
(1) (1− 2 cos θ)K(cos θ)− γ (0)δ (Φ +Ch)K(cos θ), (3.26)

from equations (3.10) and (3.11).
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The fluid velocity field in the outer region obeys the equation

∇
2v −∇p+∇2Φ∇Φ = 0, (3.27)

with the slip boundary condition (Prieve et al. 1984)

v(1, θ)=Ue
+

[
ζ (θ)

∂Φ

∂θ
+ 4 ln cosh

(
ζ (θ)

4

)
∂ ln C∗s
∂θ

]
êθ , (3.28)

and quiescent fluid far away from the swimmer, v→ 0 as r→∞. The slip boundary
condition for v is obtained by matching to the inner solution (see appendix B).

3.1.4. Linear response and propulsion velocity
We note that with uniform coating, ki= k(0)i , which implies γ (1)=0, the deviations of

the electric potential and the ionic concentrations vanish (Φ= 0=Ci). The ζ potential
for this trivial solution is

ζ0 := ζ = ϕs. (3.29)

In addition, this implies the fluid velocity field vanishes v = 0, and hence the
contribution of self-electrophoresis to the propulsion velocity vanishes Ue

= 0.
However, a varying thickness coating and the consequent non-zero γ (1), lead to
a qualitatively different scenario. To explore this we perform an expansion to linear
order in γ (1)/γ (0) of the fields for the concentrations, fluid velocity, pressure and
electric potential: {Ci, v, p, Φ} for γ (1)� γ (0), where γ (1), γ (0) are defined in (3.12).

We first expand the deviations of the concentrations and the electric field as

H = γ (1)H(γ )
+O((γ (1))2), (3.30)

with H ∈ {Ci, C∗, Φ} and keeping only linear terms. Substituting these perturbative
fields into (3.21), (3.22), we find that at leading order, C∗(γ ) decouples from the
electric potential field Φ(γ ) – with both obeying Laplace equations

∇
2C∗(γ ) = 0, (3.31)
∇

2Φ(γ )
= 0, (3.32)

and the boundary conditions, from the matching with the inner solution, at this order
are

−n̂ · ∇C∗(γ )
∣∣

r=1 = −n̂ · ∇Φ(γ )
∣∣

r=1 = (1− 2x)K(x)− γ (0)δ(Φ(γ )
+Ch

(γ ))K(x), (3.33)

where x= cos θ , δ(Φ(γ )
+Ch

(γ ))= [(Φ(γ )
+Ch

(γ ))−
∫ 1

0 (Φ
(γ )
+Ch

(γ )) dx].
Now, the Laplace equations above for C∗(γ ), Φ(γ ) in conjunction with the

electroneutrality condition (3.19) imply (see figure 4)

Φ(γ )(r, θ)=Ch
(γ )(r, θ)=C∗(γ )(r, θ)− 1=

∞∑
l=0

Alr−(l+1)Pl(cos θ), (3.34)

where Pl(cos θ) are the Legendre polynomials. The unknown coefficients Al are
determined by the boundary conditions in (3.33) above.
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FIGURE 4. (Colour online) (a) Proton concentration deviation from the uniform
background profile and (b) associated electric potential difference contours (both plots
with pH = 5.5 for 10 % H2O2 without salt and the system parameters in table 1). The
equipotential contours 0.0066 and −0.0227 (in units of the thermal voltage (kBT/e) ≈
25 mV) are shown to indicate the electric pole–equator polarity. In both panels, the upper
(dark) hemisphere is the platinum cap.

Description Symbol Value Units (SI)

Boltzmann energy scale (at 300 K) kBT 4.05× 10−21 J
Permittivity (water) ε 6.90× 10−10 CV−1 m−1

Electronic charge e 1.60× 10−19 C
Average surface charge density (at zero salt conc.) σ0 1.60× 10−3 Cm−2

Viscosity of water (at 300 K) η 8.9× 10−4 Nm−2 s−1

Diffusiophoretic characteristic mobility µ̄
‡
d 4.57× 10−38 m5 s−1

Peroxide [H2O2] diffusion coefficient Dhp 6.60× 10−10 m2 s−1

Oxygen [O2] diffusion coefficient Do 2.00× 10−9 m2 s−1

Protons [H+] diffusion coefficient Dh 9.30× 10−9 m2 s−1

Swimmer radius a 1.00× 10−6 m
H2O2 decomposition reaction rate (K := k(hp)

eff c∞hp) K 3.00× 1022 m−2 s−1

(Brown & Poon 2014; Ebbens et al. 2014)
10 % w/v H2O2 number concentration c∞hp 1.76× 1027 m−3

Effective proton absorption/release rate (∼0.3 %K) k(h)eff c∞hp 1.00× 1020 m−2 s−1

Proton pole-to-equator rate ‘difference’ (∼0.09 %K) 1k(h)eff c∞hp 2.70× 1019 m−2 s−1

TABLE 1. System parameters.

Finally, the coefficients Al are obtained as a self-consistent system of equations,

∞∑
l=0

Al(l+ 1)Pl(x)= (1− 2x)K(x)− 2γ (0)
∞∑

l=0

Al

(
Pl (x)−

∫ 1

0
Pl(x′) dx′

)
K(x), (3.35)

where x= cos θ .
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Using the orthogonality of the Legendre polynomials, we obtain a linear system of
equations for the coefficients Al,

1 0 0 · · · 0 · · ·

0 M11 M12 · · · M1l · · ·

0 M21 M22 · · · M2l · · ·

...
...

...
. . .

... . . .

0 Mn1 Mn2 . . . Mnl . . .
...

...
...

...
...

. . .





A0
A1
A2
...

Al
...


=



0
Λ1
Λ2
...

Λn
...


(3.36)

or more compactly

M ·A=Λ, (3.37)

where A= (A0, . . . , AN, . . .), and the matrix M and vector Λ entries are given by

Mnl = δnl + γ
(0)

(
2n+ 1
n+ 1

) ∫ 1

0
Pn(x)

(
Pl(x)−

∫ 1

0
Pl(x′) dx′

)
dx, (3.38)

Λn =
1
2

(
2n+ 1
n+ 1

) ∫ 1

0
(1− 2x) Pn(x) dx. (3.39)

The infinite linear system of equations (3.36) above can be solved approximately
by truncating the infinite system after a finite number of components, reducing the
description to the first N Legendre coefficients Al. The approximate (numerical)
solution requires inversion of an N × N matrix M (see figure 5). However, we can
extract asymptotic regimes of this solution for γ (0) � 1 and γ (0) � 1. Note that
γ (1)� γ (0) in both limits.
γ (0)� 1: In this regime, Al ∼Λl and

A1 ∼−
1
8 (3.40)

γ (0)� 1: In this regime,
A1 ∼−

α

γ (0)
, (3.41)

where α is a positive constant whose value can be determined numerically. The
asymptotes show that the perturbations of Ci and Φ decay to zero for large γ (0)

(proportional to swimmer size) – when the diffusion time becomes large compared
to the reaction time.

In figure 5(a), the deviations of the proton concentration Ch
(γ )(1, θ) and electric

potential Φ(γ )(1, θ) on the surface from their bulk values are plotted showing the an
excess at the equator and depletion at the pole. Increasing the number of Legendre
polynomial modes (N) improves the accuracy of the fields on the polystyrene
hemisphere. The proton depletion (excess) at the pole (equator) is stronger for
larger swimmer sizes (see figure 5b).

The calculated coefficients Al above determine the slip velocity and we can now
solve the Stokes flow problem. Hence, as above, we expand the velocity and pressure
fields about the trivial solution v = 0, p= p∞,

v = γ (1)v(γ ) + · · · ; (3.42)
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FIGURE 5. (Colour online) (a) The deviations of the surface electric potential, Φ(1, θ),
and ionic concentrations, Ch(1, θ),C∗s (1, θ)− 1, from the uniform background values (for
swimmer size a = 1.00 µm). We show the convergence of the solution as the number
N of the Legendre modes in (3.34) are increased, i.e. A = {A0, . . . , AN−1, AN}. (b) The
deviations of the surface potential and ionic concentration as a function of swimmer size
a (truncating at N = 40).

p− p∞ = γ (1)p(γ ) + · · · (3.43)

and the propulsion velocity about the stationary colloid, Ue
= 0

Ue
= γ (1)Ue(γ )

+ · · · . (3.44)

Then, the Stokes equations become

∇
2v(γ ) −∇p(γ ) = 0; ∇ · v(γ ) = 0, (3.45a,b)

with the slip boundary condition from matching to the inner solution,

v(γ )(1, θ)=Ue(γ )
+µe

∂Φ(γ )

∂θ
êθ , (3.46)

where µe = ζ0 + 4 ln cosh(ζ0/4). Recall that ζ0 = ϕs is the ζ potential for the trivial
solution with γ (1) = 0.

Solving the homogeneous Stokes equations (3.45) with these boundary conditions
gives the following structure for the flow generated by the electrophoretic and ionic-
diffusiophoretic contributions:

v(r)= γ (1)v(γ ) = B2[−∂zG(r)] + B1D(r)+ B3[∂
2
z G(r)] +O(r−4), (3.47)

expressed in terms of the leading-order fundamental singularities of the Stokes
equation:

G(r)=
êz

r
+

rr · êz

r3
; D(r)= 3

rr · êz

r5
−

êz

r3
, (3.48a,b)

with the strengths given by

B1 =−
1
3
µeγ

(1)A1

(
1−

3
2

A3

A1

)
; B2 =

3
2
µeγ

(1)A2; B3 =
5
4
µeγ

(1)A3,

(3.49a−c)
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FIGURE 6. (Colour online) (Electrophoretic and ionic-diffusiophoretic contributions)
(a) the propulsion speed Ue as a function of the salt concentration C∞s . (b) The propulsion
speed Ue decays with increasing size a. (c) The speed Ue against the solution pH (we
expect that the charge balance may be more complicated and the reaction kinetics are
known to change with the solution pH (McKee 1969; Liu et al. 2014)).

where the Al are obtained from solving equations (3.36). Imposing the constraint of
zero total force, equation (3.6), leads to an expression for the electrophoretic and ionic-
diffusiophoretic contributions to the propulsion velocity,

Ue
=−

2
3µeγ

(1)A1êz. (3.50)

Written in dimensional form (see figure 6),

Ūe
=−

1
3

(
kBT

e

)2
ε

η

A11k(h)eff c∞hp

Dh
(
c∞h + c∞s

) [ eζ̄0

kBT
+ 4 ln cosh

(
eζ̄0

4kBT

)]
êz, (3.51)

where ζ̄0= (kBT/e)ζ0 is the average swimmer ζ potential. A plot of this electrophoretic
contribution against the solution salt concentration (ionic strength) is shown in
figure 6(a). As expected, this contribution is strongly sensitive to salt concentration.
Interestingly, the swimmer speed is only weakly dependent on pH (see figure 6c)
under weakly acidic conditions (high c∞h ). This is due to the competition between
the dependence on c∞h of A1 (decreases with ch), µe (increases with ch) and the
denominator of the expression for Ue (increases with ch). This is consistent with recent
experiments (Brown & Poon 2014) which showed a minor reduction of swimming
speed on addition of sodium hydroxide (NaOH). Furthermore, the propulsion speed
is inversely dependent on swimmer size, a for large swimmer sizes as shown in
figure 6(b). This is consistent with the experimental observation of ∼1/a propulsion
velocity decay for large swimmer sizes (Howse et al. 2007).

3.2. Self-diffusiophoresis
In this section, we outline a solution of the equations of motion for the neutral
solutes in the outer region (χ = Leff /a→ 0) to calculate the neutral-diffusiophoretic
contribution to the propulsion velocity, Ud. Detailed calculations for the inner
interaction layer where the fields vary on the length scale Leff can be found in
the literature (Anderson et al. 1982; Golestanian et al. 2005, 2007; Howse et al.
2007; Michelin & Lauga 2014).

Here since there is a finite propulsion velocity, Ūd
6= 0, for the uniformly coated

system, k(0)i 6= 0, k(1)i = 0, then a weak variation of rates due to a varying thickness
k(0)i � k(1)i leads to a small correction which we can ignore. Hence we set k(1)i = 0 for
the rest of this section.
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3.2.1. Dimensionless equations
The position vector r̄ is measured in units of the swimmer size ‘a’, concentrations

c̄i in units of the steady-state background values c∞i (note that c̄o is measured in units
of c∞hp), the short-ranged interaction potential of solutes with the Janus sphere, Ψ̄ in
terms of the thermal energy scale β−1

= kBT , neutral solute fluxes, J̄n in units of
Dnc∞hp/a, with Di the diffusion coefficient of the ith solute. The fluid flow velocity
v̄ is rescaled by µ̄‡

dc∞hp/a, where µ̄‡
d is the characteristic diffusiophoretic mobility, the

pressure p̄ is rescaled by µ̄‡
dηc∞hp/a

2. Hence, the dimensionless quantities (no overbar)
are expressed in terms of dimensional ones (with overbar) as follows r= (x, y, z)=
r̄/a, ci = c̄i/c∞i , Ψ = βΨ̄ , v = v̄a/c∞hpµ̄

‡
d, p = p̄a2/c∞hpµ̄

‡
dη. As before we define the

dimensionless difference of the concentrations from their bulk values as Ci(r)≡ ci(r)−
1= (c̄i/c∞i )− 1.

The dimensionless equations for r>1 in the outer region are thus Laplace equations
for the concentration deviations

∇
2Co = 0, (3.52)
∇

2Chp = 0, (3.53)

and the Stokes equations for the fluid velocity, v(r)

0=∇ ·Π =∇2v −∇p; 0=∇ · v, (3.54a,b)

where p(r) is the hydrostatic pressure at r (Anderson 1989; Golestanian et al. 2005,
2007; Howse et al. 2007; Michelin & Lauga 2014).

3.2.2. Dimensionless boundary conditions
Matching with the inner layer (Anderson 1989; Golestanian et al. 2005, 2007;

Howse et al. 2007; Michelin & Lauga 2014), gives rise to non-zero flux boundary
conditions for hydrogen peroxide and oxygen

−∂rCo|r=1 =Jo(θ)K(cos θ)=
Dhp

2Do
K(hp)

eff (1+Chp)K(cos θ), (3.55)

−∂rChp

∣∣
r=1 =Jhp(θ)K(cos θ)=−K(hp)

eff (1+Chp)K(cos θ), (3.56)

and vanishing concentration deviations far from the swimmer Co,Chp→ 0 as r→∞.
K(cos θ), the catalyst coverage function, is 1 on the platinum hemisphere and zero
on the polystyrene hemisphere. From the reaction kinetics in appendix A, we obtain
non-zero fluxes for hydrogen peroxide and oxygen

Jo(θ)=
1
2

(
k(hp)

eff c̄hpa
Doc∞hp

)
K(cos θ)=

Dhp

2Do
K(hp)

eff (1+Chp(1, θ))K(cos θ), (3.57)

Jhp(θ)=−

(
k(hp)

eff c̄hpa
Dhpc∞hp

)
K(cos θ)=−K(hp)

eff (1+Chp(1, θ))K(cos θ). (3.58)

We have defined dimensionless K(hp)
eff = k(hp)

eff a/Dhp, where k(hp)
eff c̄hp > 0 is the effective

rate of consumption of the hydrogen peroxide (see appendix A for details of the
derivation).
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The boundary conditions for the fluid velocity are

v|r=1 =Ud
+ vd

slip; v(r→∞)= 0, (3.59a,b)

where Ud is the neutral self-diffusiophoretic contribution to the propulsion velocity.
is the self-diffusiophoretic slip velocity obtained

by matching with the inner solution (Anderson et al. 1982; Anderson 1989) and
is a unit matrix. The dimensionless self-diffusiophoretic mobility is given by µ

(i)
d =

limρ′→∞

∫ ρ′
0 ρ[1− e−Ψi(ρ)] dρ (Anderson 1989).

Finally, the zero total force condition on the swimmer

F=
∮

r=1
Π · n̂ sin θ dθ = 0, (3.60)

determines the diffusiophoretic propulsion velocity Ud.

3.2.3. Outer concentration fields
The general solution of the Laplace equations (3.52), (3.53) for the neutral solutes

is of the form

Co(r, θ)=
∞∑

l=0

(
Dhp

2Do

)
Wl

Pl(cos θ)
rl+1

, (3.61)

Chp(r, θ)=−
∞∑

l=0

Wl
Pl(cos θ)

rl+1
, (3.62)

where Pl(cos θ) are the Legendre polynomials and note that we have used the fact that
DhpJhp+ 2DoJo= 0. The amplitudes, Wl, are determined from either of the boundary
conditions;

−∂rCo|r=1 =
Dhp

2Do
K(hp)

eff (1+Chp)K(cos θ), (3.63)

−∂rChp

∣∣
r=1 =−K

(hp)
eff (1+Chp)K(cos θ). (3.64)

This gives rise to a system of equations:
∞∑

l=0

Wl(l+ 1)Pl(cos θ)=K(hp)
eff

(
1−

∞∑
l=0

WlPl(cos θ)

)
K(cos θ). (3.65)

From this, using the orthogonality condition of the Legendre polynomials, we obtain
the linear system of equations for the amplitudes, Wl:

M (d)
·W =Λ(d), (3.66)

where W = (W0, . . . ,Wl, . . .), and more explicitly

1 0 0 · · · 0 · · ·

0 M(d)
11 M(d)

12 · · · M(d)
1l · · ·

0 M(d)
21 M(d)

22 · · · M(d)
2l · · ·

...
...

...
. . .

... . . .

0 M(d)
n1 M(d)

n2 . . . M(d)
nl . . .

...
...

...
...

...
. . .





W0
W1
W2
...

Wl
...


=



0
Λ
(d)
1

Λ
(d)
2
...

Λ(d)
n
...


, (3.67)
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where the matrix M (d) and vector Λ(d) entries are given by

M(d)
nl = δnl +K(hp)

eff

(
n+ 1

2

n+ 1

)∫ 1

0
Pn(x)Pl(x) dx, (3.68)

Λ(d)
n =K(hp)

eff

(
n+ 1

2

n+ 1

)∫ 1

0
Pn(x) dx. (3.69)

Here as in the ionic section, we solve a truncated approximation of the linear
equations above, including all modes up to the Nth Legendre mode{W0,W1, . . . ,WN}.
As above, we can obtain analytic asymptotic solutions for K(hp)

eff � 1 and K(hp)
eff � 1:

K(hp)
eff � 1: In this regime, Wl ∼Λ

(d)
l and

W1 ∼
3
8K

(hp)
eff (3.70)

K(hp)
eff � 1: In this regime,

W1 ∼Ξ, (3.71)

where Ξ > 0 is some constant to be determined numerically. Since K(hp)
eff ∝ a (swimmer

size), this implies the limit K(hp)
eff � 1 corresponds to large swimmer size. For a =

1.00 µm sized swimmer in 10 % w/v H2O2 solution, and the measured reaction rates
in table 1, the estimate of the dimensionless reaction rate coefficient is K(hp)

eff ≈ 0.026.
Hence, this puts the current experimental measurements (Brown & Poon 2014; Ebbens
et al. 2014) in the first regime (Wl ∼Λ

(d)
l ). We note that in this regime Chp ∼Wl ∼

K(hp)
eff � 1.
The coefficients Wl determine the solute concentration, and hence the slip velocity

which act as boundary conditions for the Stokes flow problem. Hence the velocity
fields generated, expressed in terms of the fundamental singularities (see (3.48)) of
the Stokes flow are

v(r)= B(d)1 D(r)+ B(d)3 [∂
2
z G(r)] +O(r−4), (3.72)

where the coefficients (B(d)1 , B(d)3 ) are

B(d)1 =−
1
3
µdW1

(
1−

3
2

W3

W1

)
; B(d)3 =

5
4
µdW3. (3.73a,b)

Imposing the condition of net zero total force, we obtain the neutral-diffusiophoretic
contribution to the propulsion velocity as

(3.74)

where since we have taken the interaction potential, Ψ identical for all species, we
have identical neutral-diffusiophoretic mobilities for all the neutral solute species,
µ
(i)
d = 1, i ∈ {o, hp}. From the modes calculated above, we thus obtain

Ud
=−

2
3µdW1êz, (3.75)

where µd = µ
(hp)
d − (Dhp/2Do)µ

(o)
d = 1 − (Dhp/2Do) is the combined effective

diffusiophoretic mobility.
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10010–4 104
0

10

20

30

FIGURE 7. Plot of comparison of the ionic solute contribution to the neutral solute
contribution (3.77) for system parameters in table 1 and pH= 5.8.

3.3. Comparison of ionic and neutral velocities
Finally, we can now compare the two contributions to the swimmer propulsion from
ionic and neutral solutes using dimensional quantities. From (3.50) and (3.75), the
relative speed

Ūe

Ūd
=

(
εk2

BT2/aηe2
)

Ue(
µ̄

‡
dc∞hp/a

)
Ud
=
µ̄e

µ̄d

(kBT/e)γ (1)A1

c∞hpW1
, (3.76)

where µ̄e = (εkBT/eη)µe is the electrophoretic mobility and µ̄d = µdµ̄
‡
d is the

diffusiophoretic mobility, both in dimensional form. For a fixed swimmer size, and
in the limit γ (0)� 1,K(hp)

eff � 1, the above ratio takes the simple analytic expression

Ūe

Ūd
=

1
6
µ̄e

µ̄d

Dhp

Dh

1k(h)eff

k(hp)
eff

(kBT/e)
(c∞s + c∞h )

, (3.77)

where k(hp)
eff c∞hp > 0 is the effective rate of the hydrogen peroxide consumption

and 1k(h)eff > 0 is the scale of the difference between the rates at the pole and
equator due to the Pt thickness variation (defined in appendix A for a particular
example of reaction model). These rates are linear functions of the c∞hp concentration
for low fuel concentration. In figure 7, it can be seen that the electrophoretic
contribution vanishes at large ionic strengths and the swimmer speed asymptotically
approaches the diffusiophoretic contribution value Ūd. The self-diffusiophoretic speed
Ūd
= µ̄dk(hp)

eff c∞hp/4Dhp ∼ 0.52 µms−1 (see table 1) for the chosen system parameter
values in the plot (figure 7).

4. Summary and discussion

The total propulsion velocity of the metallic-insulator sphere from both electro-
phoresis and diffusiophoresis, from (3.50) and (3.75), in dimensional form is

Ū=−

[
1
3
µ̄e

1k(h)eff c∞hp

Dh
(
c∞s + c∞h

) (kBT
e

)
A1 +

2
3
µ̄d

c∞hp

a
W1

]
êz, (4.1)
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a (size)

(s
al

t)

a (size)

(I) (II)

Decreasing pH

Increasing pH

(III) (IV)

FIGURE 8. (Colour online) Asymptotic regimes of the swimmer propulsion speed Ū. The
dimensionless parameters on the horizontal axes are γ (0) = k(h)eff c∞hpa/Dh

∑
i∈ ions c∞i and

K(hp)
eff = k(hp)

eff a/Dhp where Di and c∞i are respectively the diffusion coefficient and bulk
concentration of chemical species i. k(i)eff is the average rate of production/consumption
of species i on the catalytic coated hemisphere. 1k(i)eff is the difference in the reaction
rate between the equator where the coating is thinnest and the pole where the coating is
thickest. µ̄e and µ̄d are electrophoretic and diffusiophoretic mobilities respectively.

where µ̄e and µ̄d are the electrophoretic and diffusiophoretic mobilities. The scale
of the difference between the rates at the poles and equator due to the Pt thickness
variation 1k(h)eff >0 is defined in appendix A for a particular reaction kinetic model. We
point out that these results are qualitatively independent of the details of the reaction
kinetics, provided the reaction involves both charged and neutral pathways for the
reduction of the hydrogen peroxide and the reaction rate varies along the catalytic
cap.

The ionic contribution to the expression above has a number of important simple
features that are in agreement with recent experimental results on this system (Howse
et al. 2007; Ebbens et al. 2012; Brown & Poon 2014; Ebbens et al. 2014; Das
et al. 2015): (i) it depends linearly on the fuel, c∞hp, at low concentrations and the
dependence weakens at high concentrations, (ii) it is independent of a at small a and
behaves as 1/a for large a due to fuel depletion as shown in Ebbens et al. (2012) and
(iii) it is a monotonically decreasing function of salt concentration, c∞s starting from
a finite value when c∞s = 0 and tending to zero as c∞s becomes large. Hence at high
salt concentration the swimming speed saturates to the neutral-diffusiophoretic value
(see figure 7). The electrophoretic contribution, which can be much larger than the
diffusiophoretic part, vanishes if there is no variation in the rates ki on the surface.

Adding salt to the solution containing the swimmer would influence the propulsion
in three possible ways (i) pH neutral salts that do not specifically adsorb to the surface
would enhance the solution conductivity thereby reducing the effective screening
length (ii) while alkali or acidic salts would in general alter the total surface charge
in addition to the increased solution conductivity, (iii) Pt catalytic decomposition of
H2O2 is known to strongly depend on the solution pH (McKee 1969; Liu et al. 2014).
Hence, non-pH neutral salts would also affect the Pt catalytic activity.
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We note also that due to the existence of the two separate reaction loops, the overall
catalytic reaction rate (measured from the current Jo above) can be significantly
reduced with only small reductions to the swimming speed; say by a significant
decrease in k1. This type of behaviour would be expected from any reaction scheme
which has this topological structure.

In conclusion, we have shown that in a system with catalytic reaction with charged
intermediates, the existence of thickness dependence in the reaction rates up to a
certain limit (a few nanometres), allows us to create – by tapering the catalyst layer
– spatially separated non-equilibrium cycles that could lead to large-scale (many
microns) ionic currents in the form of closed loops in the bulk. This remarkable
effect, combining long-range electrostatic interactions with non-equilibrium chemical
reactions to substantially enhance surface generated flows has potential for application
in many different areas of nanoscience.
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Appendix A. Reaction kinetics

In this section, our goal is to obtain the fluxes on the surface of the swimmer, J̄i

of all the chemical species involved in the H2O2 decomposition

Pt+ 2H2O2→ Intermediate complexes → Pt+ 2H2O+O2. (A 1)

Though a complete picture of the intermediate complexes in reaction (A 1) remains
elusive, it is known that there are neutral pathways as well as ionic electrochemical
pathways (Hall, Khudaish & Hart 2000; Katsounaros et al. 2012). However, we find
that our results are qualitatively independent of many details of the reaction scheme
considered as long as they involve both neutral and charged pathways. So our lack of
knowledge of the microscopic chemical kinetics is not such a hindrance. To illustrate
this, we consider two different reaction schemes involving a neutral as well as a
charged pathway. We emphasize that both schemes are provided simply as examples
as the precise details of the chemical kinetics are not known.

A.1. Reaction scheme 1
First, we consider a reaction scheme for the reaction (A 1) made up of two pathways,
one neutral

Pt+ 2H2O2
k0
−→ Pt (H2O2)+H2O2

k1
→ Pt (H2O2)2

k2
→ Pt+ 2H2O+O2, (A 2)

and the other ionic involving charged intermediates,

Pt+ 2H2O
k3


k−3

Pt (H2O2)+ 2e− + 2H+. (A 3)
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Charged loop

Inert loop

FIGURE 9. (Colour online) (Reaction scheme 1): schematic complexation kinetics of
the platinum catalyst with free (0th state) Pt occupied with probability density p0; first
complex state Pt(H2O2) occupied with probability density p1 and the second complex state
Pt(H2O2)2 occupied with probability density p2.

The reaction scheme above and the intermediate states denoted by (0, 1, 2) are
enumerated in figure 9. The kinetics of the Pt catalyst complexation in stationary state
reads

0= ∂tp0 =−k0c̄hpp0 − k3p0 + k2p2 + k−3c̄2
hp1, (A 4)

0= ∂tp1 = k0c̄hpp0 + k3p0 − k1c̄hpp1 − k−3c̄2
hp1, (A 5)

0= ∂tp2 = k1c̄hpp1 − k2p2, (A 6)

where pi are the complexation probabilities. Solving for these probabilities pi, we
obtain

p0 =M−1k2
(
k1c̄hp + k−3c̄2

h

)
, (A 7)

p1 =M−1k2
(
k0c̄hp + k3

)
, (A 8)

p2 =M−1k1c̄hp
(
k0c̄hp + k3

)
, (A 9)

where the normalization condition p0 + p1 + p2 = 1 was used and we have defined

M := k2k3 + k2k−3c̄2
h + (k0k2 + k1k3 + k1k2) c̄hp + k0k1c̄2

hp. (A 10)

This leads to expressions for the fluxes J̄i of i ∈ {o, hp, h}

J̄o(θ) = k2p2K(cos θ),
= M−1k1k2c̄hp(k0c̄hp + k3)K(cos θ), (A 11)

J̄hp(θ) = −(k0p0 + k1p1) c̄hpK(cos θ),

= −M−1k2c̄hp(k1k3 + k0k−3c̄2
h + 2k0k1c̄hp)K(cos θ), (A 12)

J̄h(θ) = 2
(
k3p0 − k−3c̄2

hp1
)

K(cos θ),

= 4M−1k2c̄hp(k1k3 − k0k−3c̄2
h)K(cos θ), (A 13)
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and for the fluxes of hydroxide and the salt, J̄oh = 0, J̄s,± = 0. Measurements of the
reaction rates (Ebbens et al. 2014) imply that J̄hp and J̄o vary with the Pt coating
thickness (of ∼nm scale). Hence we may assume that the rate ‘constants’ ki vary in
a similar manner.

Since the thickness of the coating varies across the Pt cap, the reaction rates ki(θ)
vary over the coated hemisphere, and can be expanded in Legendre polynomials. We
consider a simple linear approximation

ki(θ)∼= k(0)i + k(1)i cos θ, (A 14)

in cos θ and we assume a weak variation k(1)i /k
(0)
i � 1 of the rates.

The solute fluxes J̄i above in (A 11)–(A 13) require the inner (Debye-layer) proton
concentration profile

c̄h(1, θ)/c∞h = (1+Ch(1, θ)) e−ζ (θ); ζ (θ)= ϕs −Φ(1, θ), (A 15a,b)

from (B 22) in appendix B, where Ch(1, θ) and Φ(1, θ) are the deviations from
the uniform background of proton concentration and electric fields. ϕs is the
electric potential on the swimmer surface. We have taken ϕs constant here, but
it is straightforward to generalize our calculations to situations in which it varies
across the surface. We note that having an electric potential difference between the
coated and non-coated hemispheres does not lead to qualitative differences from the
results presented here. Hence, the proton flux at the outer edge of the double layer
reads

J̄h(θ)= 4M−1k2c̄hp(k1k3 − k0k−3(c∞h )
2(1+Ch)

2e−2ζ (θ))K(cos θ). (A 16)

Furthermore, Taylor expanding the flux up to linear order in k(1)i , and the deviations
Ch, Φ;

J̄h(θ)=
(
J̄ (0)

h + J̄ (1)
h P1(cos θ)+ J̄

′(0)
h (Φ +Ch)

)
K(cos θ), (A 17)

where j= {0, 1, 2}. We define

J̄ (0)
h = 4{k2chp}

(0)
(
{k1k3}

(0)
− {k0k−3}

(0)(c∞h )
2e−2ϕs

)
/M(0), (A 18)

J̄ (1)
h = 4{k2chp}

(0)
(
{k1k3}

(1)
− {k0k−3}

(1)(c∞h )
2e−2ϕs

)
/M(0), (A 19)

J̄
′(0)

h = 8{k2chp}
(0)
{k0k−3}

(0)(c∞h )
2e−2ϕs/M(0), (A 20)

M(0)
=
{

k2k3 + k2k−3c̄2
h + (k0k2 + k1k3 + k1k2) c̄hp + k0k1c̄2

hp

}(0)
. (A 21)

Now, imposing net charge conservation, equation (2.16), on the swimmer surface,
equation (A 17) for the proton flux leads to

J̄ (0)
h +

1
2
J̄ (1)

h + J̄
′(0)

h

∫ π

0
(Φ +Ch)K(cos θ) sin θ dθ = 0. (A 22)

Then, substituting for J̄ (i)
h (from (A 18)–(A 20)) and simplifying;

(c∞h )
2e−2ϕs

(
1+

1
2
{k0k−3}

(1)

{k0k−3}
(0)
+ 2

∫ π

0
(Φ +Ch)K(cos θ) sin θ dθ

)
(A 23)

=
{k1k3}

(0)

{k0k−3}
(0)
+

1
2
{k1k3}

(1)

{k0k−3}
(0)
. (A 24)
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For a uniform coating (i.e. k(1)i = 0 for all i), which has the trivial solution Φ=Ch= 0,
the zero total current condition gives rise to

(c∞h )
2e−2ϕs ∼=

{k1k3}
(0)

{k0k−3}
(0)
, (A 25)

which is all that is required for a linear expansion about a uniform coating. Hence
solving for the swimmer potential ϕs, we obtain the equation

ϕs = ϕ
	

s − ln 10pH, (A 26)

where pH=−log10c∞h (with c∞h measured in molar units) and

ϕ	s =−
1
2

ln
(
{k1k3}

(0)

{k0k−3}
(0)

)
. (A 27)

Therefore, eliminating the swimmer potential and proton background concentration
(ϕs, c∞h ) by substituting (A 25) into (A 17) and keeping only linear perturbations, the
proton flux assumes a simple form

J̄h(θ)∼=

[
1k(h)eff (1− 2 cos θ)− k(h)eff δ (Φ +Ch)

]
c∞hpK(cos θ), (A 28)

where we have defined

k(h)eff =
8{k1k2k3}

(0)

M(0)
; (A 29)

1k(h)eff =
k(h)eff

2

(
{k0k−3}

(1)

{k0k−3}
(0)
−
{k1k3}

(1)

{k1k3}
(0)

)
, (A 30)

δ (Φ +Ch)=

[
(Φ +Ch)−

∫ π

0
(Φ +Ch)K(cos θ) sin θ dθ

]
. (A 31)

k(h)eff c∞hp > 0 is the typical scale of the average proton consumption and production
and 1k(h)eff c∞hp the scale of the difference between the rates at the pole and equator
due to variation of coating thickness over the surface. δ (Φ +Ch) is the deviation
of the perturbative fields from their surface average; which promotes/penalize
the oxidation/reduction reactions. The proton flux J̄h is linear in c∞hp for low
fuel concentration and the dependence weakens for high fuel concentration. It is
noteworthy that with uniform coating, ki = k(0)i ⇒ 1k(h)eff = 0 and the deviation fields
vanish (Φ = 0=Ci).

The fluxes of neutral solutes from (A 11), (A 12) give

J̄o(θ)∼=
1
2 k(hp)

eff c̄hp(1, θ), (A 32)

J̄hp(θ)∼=−k(hp)
eff c̄hp(1, θ), (A 33)

where the effective rate of hydrogen peroxide consumption is defined

k(hp)
eff =

2
M(0)
{k0k1k2}

(0)c̄hp(1, θ)+
1
2

k(h)eff , (A 34)

and the effective rate of proton consumption/desorption k(h)eff is defined in (A 29). Note
that J̄hp and J̄o are linear in c∞hp for low fuel (c∞hp) concentration, and show the
saturation typical of Michaelis–Menten kinetics at high fuel concentration.
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Inert loop

Charged loop

FIGURE 10. (Colour online) (Reaction scheme 2): schematic complexation kinetics of
the platinum catalyst with free (0th state) Pt occupied with probability density p0; first
complex state Pt(H2O2) occupied with probability density p1, and the second complex state
Pt(H2O2)2 occupied with probability density p2.

A.2. Reaction scheme 2
Alternatively, we may consider a different reaction scheme, with the same neutral
pathway

Pt+ 2H2O2
k0
−→ Pt (H2O2)+H2O2

k1
→ Pt (H2O2)2

k2
→ Pt+ 2H2O+O2, (A 35)

but with a different electrochemical pathway

Pt (H2O2)
k3
−→ Pt+ 2H+ + 2e− +O2, (A 36)

Pt (H2O2)+ 2H+ + 2e−
k4
−→ Pt+ 2H2O. (A 37)

This is the reaction scheme commonly used in modelling the electrophoretic motion
of the bimetallic nanorods (Kline et al. 2005a,b; Paxton et al. 2005; Dhar et al. 2006;
Sabass & Seifert 2012). As for the reaction scheme considered in the previous section,
we can write down the equations of motion for the kinetics for this scheme (see
figure 10). Hence, we can, as in the previous section, obtain the fluxes J̄i,

J̄h(θ)= 2M−1 k0k2c̄hp
(
k3 − k4c̄2

h

)
K(cos θ), (A 38)

J̄hp(θ)=−M−1 k0k2c̄hp
(
2k1c̄hp + k3 + k4c̄2

h

)
K(cos θ), (A 39)

J̄o(θ)=M−1 k0k2c̄hp
(
k1c̄hp + k3

)
K(cos θ), (A 40)

where here M := k2k3 + (k0 + k1) k2c̄hp + k2k4c̄2
h + k0k1c̄2

hp.
Now, imposing the steady-state constraint

∮
J̄h(θ) d cos θ = 0, and following the

same procedure as in the previous section (with ki = k(0)i + k(1)i cos θ ), we obtain the
same expression for the proton flux as (A 28)

J̄h(θ)∼= [1k(h)eff (1− 2 cos θ)− k(h)eff δ(Φ +Ch)]c̄∞hpK(cos θ), (A 41)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.502


344 Y. Ibrahim, R. Golestanian and T. B. Liverpool

where here we have

k(h)eff =
4{k0k2k3}

(0)

M(0)
; 1k(h)eff =

k(h)eff

2

(
k(1)4

k(0)4

−
k(1)3

k(0)3

)
. (A 42a,b)

The deviation δ(Φ + Ch) = [(Φ + Ch) −
∫ π

0 (Φ + Ch)K(cos θ) sin θ dθ ] retains
its previous definition as given in (A 31). Finally, we obtain the same relation
ϕs = ϕ

	

s − ln 10pH and the kinetically defined potential for this scheme is ϕ	s =
−(1/2) ln(k(0)3 /k

(0)
4 ).

It is noteworthy that both reaction schemes possess many similar qualitative features:
the solute fluxes J̄i retain the same functional dependence on the fuel concentration
c̄hp and the variation in reaction rates.

Appendix B. Derivation of the slip velocity

In the Debye layer, where the fields vary on the Debye length scale κ−1, we rescale
the radial coordinate by the λ= (κa)−1,

ρ =
r− 1
λ

, (B 1)

and expand the deviation fields in the form

Ci(r, θ)= C(0)i (ρ, θ)+ λC(1)i (ρ, θ)+ · · · , (B 2)
Φ(r, θ)= ϕ(0)(ρ, θ)+ λϕ(1)(ρ, θ)+ · · · (B 3)

v(r, θ)=V (0)
(ρ, θ)+ λV (1)

(ρ, θ)+ · · · , (B 4)
p(r, θ)= λ−2P (−2)(ρ, θ)+ λ−1P (−1)(ρ, θ)+ · · · , (B 5)

where i∈ {h, oh, s±}. It is noteworthy that the expansion for the pressure field begins
with P (−2) to balance O(λ−2) radial electric stresses that could not be accounted by
the viscous stresses at the interface (Anderson 1989; Yariv 2011).

B.1. Ionic solute concentrations
Exploiting the axisymmetry of the problem, we write the steady-state Nernst–Planck
equations (3.1) in spherical polar coordinates, with only radial and polar angle
dependence:

∇ · Ji(r, θ)=
(
∂

∂r
+

2
r

)
Ji,r +

1
r

(
∂

∂θ
+ cot θ

)
Ji,θ = 0, (B 6)

where

Ji,θ =−r−1∂θCi − zi(1+Ci)r−1∂θΦ (B 7)
Ji,r =−∂rCi − zi(1+Ci)∂rΦ. (B 8)

We therefore expand the fluxes in the inner coordinates (ρ, θ), noting that r=λρ+1

Ji(r, θ)=Ji(ρ, θ)= λ
−1J(−1)

i (ρ, θ)+J(0)i (ρ, θ)+O(λ), (B 9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.502


Self-phoresis of a Pt-insulator Janus swimmer 345

where we define radial and polar components of the currents (see (B 2) and (B 3))

J(−1)
i,θ (ρ, θ)= 0, (B 10)

J(−1)
i,ρ (ρ, θ)=−

∂C(0)i

∂ρ
− zi

(
1+ C(0)i

) ∂ϕ(0)
∂ρ

, (B 11)

J(0)i,θ (ρ, θ)=−
∂C(0)i

∂θ
− zi

(
1+ C(0)i

) ∂ϕ(0)
∂θ

, (B 12)

J(0)i,ρ(ρ, θ)=−
∂C(1)i

∂ρ
− zi

∂ϕ(1)

∂ρ
− ziC(1)i

∂ϕ(0)

∂ρ
. (B 13)

Hence, equation (B 6) can be written

∇ ·Ji(ρ, θ)=
1
λ

∂Ji,ρ

∂ρ
+

2
(1+ λρ)

Ji,ρ +
1

(1+ λρ)

(
∂

∂θ
+ cot θ

)
Ji,θ , (B 14)

from which performing an expansion in λ and equating terms order by order gives
the following equations at order,

λ−2
:

∂J(−1)
i,ρ

∂ρ
= 0, ⇒ J(−1)

i,ρ (ρ, θ)= hi(θ), (B 15)

λ−1
:

∂J(0)i,ρ

∂ρ
+ 2J(−1)

i,ρ = 0, ⇒ J(0)i,ρ(ρ, θ)= gi(θ)+ 2hi(θ)ρ, (B 16)

λ0
:

∂J(1)i,ρ

∂ρ
+ 2J(0)i,ρ − 2ρJ(−1)

i,ρ +

(
∂

∂θ
+ cot θ

)(
J(0)i,θ − ρJ

(−1)
i,ρ

)
= 0, (B 17)

where hi(θ), gi(θ) are arbitrary functions of θ . Matching the currents in the inner and
outer regions,

hi(θ)= lim
λ→0,ρ→∞

J(−1)
i,ρ (ρ, θ)= lim

r→1,λ→0
n̂ · J(−1)

i (r, θ)= 0, (B 18)

which implies hi(θ)=0 for all the species. Furthermore, the matching at the next order
gives

gi(θ)= J(0)i,ρ(ρ = 0, θ)= lim
λ→0,ρ→∞

J(0)i,ρ(ρ, θ)= lim
r→1,λ→0

n̂ · J(0)i (r, θ), (B 19)

providing the solution gi(θ)=Ji(θ)K(cos θ); where Ji(θ) are defined in appendix A
and K(cos θ) is defined in (2.10). Therefore, the outer flux boundary conditions at
leading order are,

n̂ · Ji(r= 1, θ)= gi(θ)=

{
Jh(θ)K(cos θ); i= h, (protons),
0; i ∈ {oh, s±}.

(B 20)

In the following we drop the (0) subscript for the outer fluxes as we are interested
only in the leading-order contributions (i.e. we have set J(n)i = 0 for n> 1).

Next, we obtain the concentration profiles by first matching the inner fields with
the O(1) outer fields Ci(r, θ), Φ(r, θ);

lim
λ→0;ρ→∞

{C(0)i , ϕ
(0)
}(ρ, θ)= lim

r→1;λ→0
{C(0)

i , Φ
(0)
}(r, θ)= {Ci, Φ}(1, θ). (B 21)
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Integrating (B 11) and using equations (B 15), (B 18) and (B 21), we obtain the leading-
order concentration profile

1+ C(0)i (ρ, θ)= (1+Ci(1, θ)) e−(ϕ
(0)(ρ,θ)−Φ(1,θ)). (B 22)

This method can be iterated to obtain the higher-order concentration fields such as
C(1)(ρ, θ) from (B 17) above.

B.2. Electric field
Writing out Poisson’s equation, in spherical polar coordinates,

−λ2

(
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ

)
Φ(r, θ)=

∑
i∈{h,oh,s±}

ZiCi, (B 23)

which at the leading order in the inner expansion reduces to

−
∂2ϕ(0)

∂ρ2
=

∑
i

ZiC(0)i . (B 24)

Substituting the concentration profiles from (B 22) into to the foregoing (B 24), we
have

−
∂2ϕ(0)

∂ρ2
=

∑
i∈{h,oh,s±}

Zi(1+Ci(1, θ))e−zi(ϕ
(0)(ρ,θ)−Φ(1,θ)). (B 25)

In addition, applying electroneutrality in the outer region (see (3.19) in the main text)
at leading order, ∑

i∈{h,oh,s±}

ZiCi = 0, (B 26)

leads to the simpler expression

∂2ϕ(0)

∂ρ2
=C∗s (θ) sinh

(
ϕ(0)(ρ, θ)−Φ(1, θ)

)
, (B 27)

where we have defined

C∗s (θ)= 2
∑

i∈{h,s+}

Zi (1+Ci(1, θ)) . (B 28)

Introducing a convenient factor

2
∂ϕ(0)

∂ρ

∂2ϕ(0)

∂ρ2
= 2C∗s

∂ϕ(0)

∂ρ
sinh

(
ϕ(0)(ρ, θ)−Φ(1, θ)

)
(B 29)

and integrating once gives(
∂ϕ(0)

∂ρ

)2

= 2C∗s
[
cosh

(
ϕ(0)(ρ, θ)−Φ(1, θ)

)
− 1
]
, (B 30)
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where the matching condition ∂ρϕ
(0)(ρ →∞, θ) = 0 (since the outer electric field

expansion begins at O(1)) was applied. Thus, we obtain the electric field in the Debye
layer using the identity (2 sinh2(x/2)= cosh(x)− 1),

−
∂ϕ(0)

∂ρ
= 2
√

C∗s sinh
(
ϕ(0)(ρ, θ)−Φ(1, θ)

2

)
. (B 31)

Integrating once again, we obtain

1
2

ln

[
cosh

([
ϕ(0)(ρ ′, θ)−Φ(1, θ)

]
/2
)
− 1

cosh
([
ϕ(0)(ρ ′, θ)−Φ(1, θ)

]
/2
)
+ 1

]ρ′=ρ
ρ′=0

=−
√

C∗sρ. (B 32)

Now, using the hyperbolic identities 2
{

sinh
cosh

}2

(x/2) = cosh(x) ∓ 1, we obtain

(Anderson 1989; Yariv 2011)

tanh
(
ϕ(0)(ρ, θ)−Φ(1, θ)

4

)
= tanh

(
ζ (θ)

4

)
e−
√

C∗s ρ, (B 33)

where ζ (θ)= ϕs −Φ(1, θ).

B.3. Momentum conservation
Writing the Stokes equations in spherical polar coordinates,

(∇ ·Π) · êr =∇
2vr −

2vr

r2
−

2
r2 sin θ

∂

∂θ
(sin θ vθ)−

∂p
∂r
+
∂Φ

∂r
∇

2Φ = 0, (B 34)

(∇ ·Π) · êθ =∇2vθ −
vθ

r2 sin2 θ
+

2
r2

∂vr

∂θ
−

1
r
∂p
∂θ
+

1
r
∂Φ

∂θ
∇

2Φ = 0, (B 35)

∇ · v =
∂vr

∂r
+

2vr

r
+

1
r sin θ

∂

∂θ
(sin θ vθ)= 0. (B 36)

To the leading order in the inner expansion (see (B 2)–(B 4)), the static pressure
balances the electrostatic stresses normal to the surface (Anderson 1989; Yariv 2011)

êρ : λ−3

(
−
∂P (−2)

∂ρ
−

∑
i

ZiC(0)i
∂ϕ(0)

∂ρ

)
+ λ−2 ∂

2V (0)
ρ

∂ρ2
+O

(
λ−1
)
= 0. (B 37)

Note that the expansion for the pressure field begins at P (−2) to balance O(λ−2) radial
electric stresses that cannot be accounted by the viscous stresses (Anderson 1989;
Yariv 2011). The viscous stresses balances the static pressure gradient and tangential
electric stresses along the surface

êθ : λ−2

(
∂2V (0)

θ

∂ρ2
−
∂P (−2)

∂θ
−

∑
i

ZiC(0)i
∂ϕ(0)

∂θ

)
+O

(
λ−1
)
= 0, (B 38)

with the leading-order incompressibility constraint

λ−1 ∂V
(0)
ρ

∂ρ
+O (1)= 0. (B 39)
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Therefore, to leading O(λ−3) in (B 37), the static pressure balances the radial
electrostatic stress

−
∂P (−2)

∂ρ
−

∑
i

ZiC(0)i
∂ϕ(0)

∂ρ
= 0, (B 40)

which gives the static pressure field

P (−2) (ρ, θ)= 2C∗s (θ) sinh2

(
ϕ(0)(ρ, θ)−Φ(1, θ)

2

)
, (B 41)

where matching with the outer solution implies P (−2)(∞, θ)= 0 (since the outer field
p expansion begins at O(1)). The next-order O(λ−2) in (B 37), momentum balance is

∂2V (0)
ρ

∂ρ2
= 0, (B 42)

where the continuity equation (B 39), ∂ρV (0)
ρ = 0 (i.e. V (0)

ρ is ρ independent), implies

V (0)
ρ (ρ, θ)=Ue

· êρ . (B 43)

At O(λ−2) in (B 38), viscous stresses balance the tangential pressure gradient ∂θP (−2)

and the tangential electrical stress;

∂2V (0)
θ

∂ρ2
−
∂P (−2)

∂θ
−

∑
i

ZiC(0)i
∂ϕ(0)

∂θ
= 0. (B 44)

Using (B 41) and (B 27), we obtain

∂2V (0)
θ

∂ρ2
= 2 sinh2 (2ϕ)

∂C∗s
∂θ
− 2C∗s sinh (2ϕ) cosh (2ϕ)

=
2 tanh (2ϕ)

1− tanh2 (2ϕ)

[
tanh (2ϕ)

∂C∗s
∂θ
+C∗s

∂Φ

∂θ

]
, (B 45)

where 4ϕ(ρ, θ) = ϕ(0)(ρ, θ) − Φ(1, θ). Using the identity tanh(2x) = 2 tanh(x)/(1 +
tanh2(x)),

∂2V (0)
θ

∂ρ2
= 2

 4 tanh2(ϕ)
∂C∗s
∂θ

(1+ tanh(ϕ))2 (1− tanh(ϕ))2
−

2 tanh(ϕ)C∗s
∂Φ

∂θ

(1+ tanh(ϕ))2 (1− tanh(ϕ))2

 .
(B 46)

It is helpful to write the coefficients of the right-hand side first and second terms as

4 tanh2(ϕ)

(1+ tanh(ϕ))2 (1− tanh(ϕ))2
=

−1
(1+ tanh(ϕ))

+
1

(1+ tanh(ϕ))2

+
−1

(1− tanh(ϕ))
+

1
(1− tanh(ϕ))2

, (B 47)
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2 tanh(ϕ)
(1+ tanh(ϕ))2 (1− tanh(ϕ))2

=
1

(1+ tanh(ϕ))
+

−1
(1+ tanh(ϕ))2

+
−1

(1− tanh(ϕ))
+

1
(1− tanh(ϕ))2

. (B 48)

Using (B 33) and integrating once, we obtain

∂V (0)
θ

∂ρ
=

2√
C∗s

 2Q2(
Q2 − e2

√
C∗s ρ
) ∂C∗
∂θ
−

2Qe
√

C∗s ρ(
Q2 − e2

√
C∗s ρ
)C∗s

∂Φ

∂θ

 , (B 49)

where Q = tanh(ζ (θ)/4) and such that matching with the outer solution imposes
∂ρV (0)

θ (∞, θ) = 0. In obtaining the above expression, we have used the following
integral identities∫

dρ ′

1+Qe−
√

C∗s ρ′
=

1√
C∗s

ln
(

Q+ e
√

C∗s ρ
)
+ const., (B 50)∫

dρ ′(
1+Qe−

√
C∗s ρ′
)2 =

1√
C∗s

Q(
Q+ e

√
C∗s
) + 1√

C∗s
ln
(

Q+ e
√

C∗s ρ
)
+ const.,

(B 51)∫
dρ ′

1−Qe−
√

C∗s ρ′
=

1√
C∗s

ln
(

e
√

C∗s ρ −Q
)
+ const., (B 52)∫

dρ ′(
1−Qe−

√
C∗s ρ′
)2 =−

1√
C∗s

Q(
Q+ e

√
C∗s
) + 1√

C∗s
ln
(

e
√

C∗s ρ −Q
)
+ const.

(B 53)

Finally, integrating again,

V (0)
θ (ρ, θ) = V (0)

θ (0, θ)+
2

C∗s

∂C∗s
∂θ

ln

(
1−Q2e−2ρ

√
C∗s

1−Q2

)

− 4
∂Φ

∂θ

(
tanh−1

(
Qe−
√

C∗s ρ
)
− tanh−1 (Q)

)
. (B 54)

Therefore, in the thin-layer limit λ→ 0 and ρ→∞,

lim
λ→0;ρ→∞

V (0)
θ (ρ, θ)=V (0)

θ (0, θ)+ ζ (θ)
∂Φ

∂θ
−

2
C∗s

∂C∗s
∂θ

ln
(

1− tanh2

(
ζ (θ)

4

))
. (B 55)

Finally, matching with the leading-order outer flow field

lim
λ→0;ρ→∞

V (0)
θ (ρ, θ)= lim

r→1,λ→0
v(0)(r, θ)= v(1, θ), (B 56)

we obtain the slip velocity boundary condition for the outer flow (Anderson et al.
1982; Yariv 2011)

v(1, θ)=Ue
+

[
ζ (θ)

∂Φ

∂θ
+ 4

∂ ln C∗s
∂θ

ln cosh
(
ζ (θ)

4

)]
êθ . (B 57)
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